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Abstract

We study the relation between two sets of correlators in interacting quantum field
theory on de Sitter space. The first are correlators computed using in-in perturbation
theory in the expanding cosmological patch of de Sitter space (also known as the
conformal patch, or the Poincaré patch), and for which the free propagators are taken
to be those of the free Euclidean vacuum. The second are correlators obtained by
analytic continuation from Euclidean de Sitter; i.e., they are correlators in the fully
interacting Hartle-Hawking state. We give an analytic argument that these correlators
coincide for interacting massive scalar fields with any m2 > 0. We also verify this
result via direct calculation in simple examples. The correspondence holds diagram
by diagram, and at any finite value of an appropriate Pauli-Villars regulator mass
M . Along the way, we note interesting connections between various prescriptions for
perturbation theory in general static spacetimes with bifurcate Killing horizons.

1 Introduction

While free quantum fields in de Sitter space (dSD) have been well understood for some time

(see [1] for scalar fields), interacting de Sitter quantum field theory continues to be a topic

of much discussion. In particular, there has been significant interest in the possibility of

large infrared (IR) effects in interacting de Sitter quantum field theories [2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17]), both with and without dynamical gravity. Most of
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these discussions have been in Lorentzian signature, using some form of in-in perturbation

theory. (See, e.g. [18, 19, 20, 21] for early use of in-in perturbation theory in QFT in curved

space.) A popular choice is to choose the initial surface to be a cosmological horizon, so

that the perturbation theory involves integrals over the region to the future of this horizon

(see figure 1). This region of de Sitter space is also known as the expanding cosmological

patch, the conformal patch, or the Poincaré patch. We will therefore refer to the associated

perturbation scheme as the Poincaré in-in formalism, especially when the initial state is

chosen to be the free Bunch-Davies (i.e., Euclidean) vacuum.

therefore refer to the associated perturbation scheme as the Poincaré in-in

formalism, especially when the initial state is chosen to be the free Bunch-

Davies (i.e., Euclidean) vacuum.
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Figure 1: Standard Carter-Penrose diagram of de Sitter space. Region I is
the static patch, and the Poincaré patch consists of regions I and II. The
causal pasts of points X1 and X2 are the shaded regions. See section 2.1 for
details.

On the other hand, IR effects are often easier to control and analyze in

Euclidean signature de Sitter space, which is just the D-sphere SD. Analytic

continuation of such correlators to Lorentz signature defines the so-called

Hartle-Hawking vacuum of the theory [22]. The fact that SD is compact

means that no IR divergences can arise in perturbation theory unless they

are already present at order zero. With appropriate techniques one can

often analytically continue the resulting IR-finite Euclidean correlators to

Lorentzian signature while maintaining control over the IR behavior. This

was done in [23, 24, 25] for massive scalar fields using standard perturbation

theory. For massless scalars, [26] used the Euclidean setting to introduce

a new form of perturbation theory which again yields IR-finite Euclidean

correlators whose continuation to Lorentz signature can be controlled.

One would therefore like to understand precisely how correlators analyti-

cally continued from Euclidean signature are related to those computed using

an intrinsically Lorentz-signature technique. On general grounds, the ana-

lytically continued correlators will satisfy the Lorentz-signature Schwinger-
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On the other hand, IR effects are often easier to control and analyze in Euclidean signa-

ture de Sitter space, which is just the D-sphere SD. Analytic continuation of such correlators

to Lorentz signature defines the so-called Hartle-Hawking vacuum of the theory [22]. The

fact that SD is compact means that no IR divergences can arise in perturbation theory unless

they are already present at order zero. With appropriate techniques one can often analyt-

ically continue the resulting IR-finite Euclidean correlators to Lorentzian signature while

maintaining control over the IR behavior. This was done in [23, 24, 25] for massive scalar

fields using standard perturbation theory. For massless scalars, [26] used the Euclidean set-

ting to introduce a new form of perturbation theory which again yields IR-finite Euclidean

correlators whose continuation to Lorentz signature can be controlled.

One would therefore like to understand precisely how correlators analytically contin-

ued from Euclidean signature are related to those computed using an intrinsically Lorentz-

signature technique. On general grounds, the analytically continued correlators will sat-

isfy the Lorentz-signature Schwinger-Dyson equations. So long as they satisfy appropri-

ate positivity requirements to define a positive-definite Hilbert space, this means that the
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analytically-continued (Hartle-Hawking) correlators define a valid state of the theory. Recall

that positivity will generally follow from the de Sitter analogue [27] of reflection-positivity

and the Osterwalder-Schräder construction, and that reflection positivity holds formally

when the Euclidean action is bounded below1. In such cases, it remains only to ask how the

Hartle-Hawking state relates to other states of interest, such as the state defined by in-in

perturbation theory in the Poincaré patch.

A hint was given by [12] which studied a free scalar field but treated the mass term

as a perturbation about the conformally-coupled value. The Euclidean and Poincaré in-in

formalisms were found to agree, and in fact to both give the exact result once all orders

in perturbation theory had been included. (There are no UV divergences due to the fact

that the theory has only quadratic terms and thus only tree diagrams.) This may at first

seem surprising. Indeed, for in-in perturbation theory defined using a Cauchy surface at

finite time as the initial surface, a result of this form would be impossible. Since the past

light cone of any external point of a Feynman diagram is cut off by the initial surface, all

integrals are over regions of finite spacetime volume. Furthermore, the volume of any such

region would shrink to zero when the external point approaches the initial surface. As a

result, the in-in correlators would necessarily approach the correlators of the zeroth-order

theory as all arguments approach the initial slice. On the other hand, analytic continuation

of Euclidean correlators gives a de Sitter invariant interacting state that cannot approach

the zeroth-order state on any surface, so the two formalisms could not agree.

In contrast, in the Poincaré in-in formalism the initial surface is a null cosmological hori-

zon. In particular, it has the important property that there is an infinite volume of spacetime

that lies both to the future of this surface and to the past of any given point in the interior

of the Poincaré patch2. This means that the integrals which compute perturbative correc-

tions to the zeroth-order correlators need not become small as the arguments of correlators

approach the initial surface and no contradiction with the Euclidean formalism arises.

Indeed, symmetry arguments suggest that this correspondence holds more generally.

Since both the free propagators and the Poincaré patch is invariant under translations,

rotations, and dilations, the results of Poincaré in-in perturbation theory will be similarly

invariant so long as all integrals converge. But for free fields on dSD the only Hadamard

state which is invariant under these symmetries is the Euclidean vacuum. One therefore

expects a similar result to hold in perturbation theory, suggesting that the Poincaré in-in

approach generally computes correlators in the interacting Euclidean vacuum.

An independent motivation comes from the work of Gibbons and Perry [29], who pointed

1This has been rigorously shown in D = 2 dimensions for standard kinetic terms and polynomial poten-
tials; see e.g., [28].

2This follows immediately from the fact that the Poincaré patch is a homogeneous space in and of itself.
Any spacetime point in the patch can be mapped to any other using only the symmetries of the patch.

3



out that interacting Euclidean field theory on SD describes thermal field theory inside the

cosmological horizon of de Sitter space (i.e., in the static patch) with Gibbons-Hawking

temperature [30]. While the Euclidean formalism is commonly used to study thermal field

theory, there is a Lorentzian version called the Schwinger-Keldysh formalism [31, 32]. This

formalism agrees with what is usually called the in-in formalism in relativistic field theory

if the property called factorization is satisfied (see, e.g., [33]). The physical content of this

property is that generic states thermalize if given sufficient time, so that one need not take

particular care to prepare a thermal state so long as the initial state is taken to be sufficiently

far in the past. Since it is known that correlators in a wide class of states approach those

of the Euclidean vacuum at late times [23, 24, 25], it is reasonable to conjecture that the

Euclidean and in-in formalisms agree at least in the static patch of de Sitter space.

We argue below that the Euclidean and Poincaré in-in approaches in fact agree for general

interacting scalar field theories with m2 > 0. The argument can be sketched in three steps.

Step 1 is to relate the analytic continuation of Euclidean correlators to in-in perturbation

theory in the static patch of de Sitter. This amounts to checking that conditions are right

for the usual relation between Euclidean field theory and Lorentz-signature thermal field

theory, i.e., factorization, to hold. Step 2 is to note that, for position-space correlators

with all arguments in the static patch, in-in perturbation theory is the same whether one

thinks of it as perturbation theory in the static patch or as perturbation theory in the

Poincaré patch. This follows from the well-known fact that in-in perturbation theory can

be expressed in terms of integrals over the region that is i) to the past of all external points

of a Feynman diagram and ii) to the future of the initial surface; see figure 1. As a result,

analytic continuation from the Euclidean reproduces Poincaré in-in calculations at least when

the arguments are restricted to a single static patch. Finally, step 3 is to show that both

sets of correlators are appropriately analytic, so that their extension to the full spacetime is

uniquely determined by their values in the static patch. We consider Pauli-Villars regulated

correlators and show agreement at each value of the Pauli-Villars regulator masses. It follows

that the fully renormalized correlators must agree as well.

The bulk of this paper is devoted to the details of this argument and to providing some

simple checks of the results. Section 2 quickly reviews the relevant features of de Sitter

geometry. Section 3 then verifies that analytic continuation of Euclidean correlators does

indeed give in-in correlators in the static patch for massive scalar fields, while section 4 argues

that the correlators are sufficiently analytic so as to be determined by their restriction to

the static patch. Since the arguments are somewhat involved, we explicitly compute some

simple in-in loop diagrams in section 5 and demonstrate agreement with Euclidean results

computed in [23]. We close with some discussion in section 6. In an appendix we describe a

more direct way for the analytic continuation of Euclidean correlators, which gives a slightly

different method for demonstrating their equivalence to Poincaré in-in correlators.
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2 Preliminaries

This section serves to briefly review various features of both Lorentzian and Euclidean de

Sitter space, and to introduce notation and conventions. After discussing geometry and

the relevant coordinate systems in section 2.1 we review aspects of de Sitter propagators in

section 2.2.

2.1 De Sitter Geometry and Coordinates

Let us begin with Euclidean de Sitter space. As is well known, this is just the sphere SD.

Throughout this work, we set the de Sitter length ` to 1 and work on the unit sphere. We

may thus describe SD using the metric

ds2
SD = dΩ2

D = dϑ2 + sin2 ϑdΩ2
D−1, ϑ ∈ [0, π], (2.1)

where dΩ2
d is the line element of the unit Sd.

It is useful to consider the complexified manifold SD, which may be thought of as the

surface X ·X = 1 in CD+1. Wick rotations of various coordinates correspond to passing from

one real section of SD to another, e.g. from SD to dSD. One useful Wick rotation is given

by defining

Θ = i
(
ϑ− π

2

)
(2.2)

and taking Θ real; i.e., by Wick rotating the polar angle. This yields

ds2
global dSD

= −dΘ2 + cosh2 Θ2dΩ2
D−1, Θ ∈ R, (2.3)

which is the metric of dSD in so-called global coordinates. Indeed, these coordinates are

regular on all of dSD. Making a further coordinate transformation

tanT = sinh Θ (2.4)

and writing dΩ2
D−1 = dχ2 + sin2 χdΩ2

D−2, we have

ds2
global dSD

= sec2 T (−dT 2 + dχ2 + sin2 χdΩ2
D−2) T ∈ (−π/2, π/2), (2.5)

where the factor inside the parentheses is the metric on a piece of the Einstein Static Universe.

Note that this piece extends only for a finite amount of Einstein Static Universe time.

Figure 1 is the corresponding Carter-Penrose diagram.

However, one may also arrive at the same real section dSD by defining

t = iφ, for tanφ =
X1

X2
, (2.6)
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where X = (X1, X2, . . . , XD+1), and taking t real; i.e., by Wick rotating the azimuthal angle.

This yields

ds2
static dSD

= − cos2 θdt2 + dθ2 + sin2 θdΩ2
D−2, t ∈ R, θ ∈ [0, π/2), (2.7)

with

tan θ =

√
(X3)2 + · · ·+ (XD+1)2

(X1)2 + (X2)2
, (2.8)

which is the metric of dSD in so-called static coordinates. The coordinate range t ∈ R, θ ∈
[0, π/2) describes the static patch of de Sitter. The coordinates t and θ can be expressed in

terms of T and χ as

tanh t = sinT secχ, (2.9)

sin θ = secT sinχ. (2.10)

The boundary at θ = π/2 is a coordinate singularity that coincides with the past and future

cosmological horizons, T = ±(χ− π
2
), defined by the observer at θ = 0; see figure 2.

where X = (X1, X2, . . . , XD+1), and taking t real; i.e., by Wick rotating the

azimuthal angle. This yields

ds2
static dSD

= − cos2 θdt2 + dθ2 + sin2 θdΩ2
D−2, t ∈ R, θ ∈ [0, π/2), (2.7)

with

tan θ =

√
(X3)2 + · · ·+ (XD+1)2

(X1)2 + (X2)2
, (2.8)

which is the metric of dSD in so-called static coordinates. The coordinate

range t ∈ R, θ ∈ [0, π/2) describes the static patch of de Sitter. The coordi-

nates t and θ can be expressed in terms of T and χ as

tanh t = sin T sec χ, (2.9)

sin θ = sec T sin χ. (2.10)

The boundary at θ = π/2 is a coordinate singularity that coincides with the

past and future cosmological horizons, T = ±(χ− π
2
), defined by the observer

at θ = 0; see figure 2.
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Figure 2: Carter-Penrose diagram of de Sitter space with θ = const surfaces
(schematically) indicated by solid lines and t = const surfaces by dashed
lines.

We will also make use of so-called Poincaré (also known as conformally

flat) coordinates on dSD in which the metric takes the form

ds2 =
1

λ2
(−dλ2 + dx2), (2.11)
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indicated by solid lines and t = const surfaces by dashed lines.

We will also make use of so-called Poincaré (also known as conformally flat) coordinates

on dSD in which the metric takes the form

ds2 =
1

λ2
(−dλ2 + dx2), (2.11)

where x = (x1, . . . , xD−1). These coordinates are related to the global ones via

λ =
cosT

sinT + cosχ
, (2.12)

xi =
sinχ

sinT + cosχ
X̂ i, (2.13)
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where X̂ i = X i+2/
√

(X3)2 + · · ·+ (XD+1)2. The expanding cosmological patch is the region

0 < λ <∞ with x ∈ RD−1, which we also call the conformal or Poincaré patch. Here λ =∞
is the (past) cosmological horizon defined by the observer at x = 0, which we take to coincide

with the geodesic θ = 0. With this convention, the Poincaré patch contains the static patch

as shown in figure 1. We also take λ = 0 to coincide with both t = +∞ and Θ = +∞ on

this geodesic. (Thus, the variable λ runs backwards in time. It is more common to use the

variable η = −λ in the cosmology community.)

The remaining relation between Poincaré coordinates and those discussed before is best

summarized by using the concept of embedding coordinates. Recall that dSD can be defined

as the locus of points X · X = 1 in D + 1 dimensional Minkowski space. Given two such

points, X and Y , one may treat them as vectors and compute the invariant Minkowski scalar

product Z = X · Y , which gives a de Sitter invariant measure of the separation between X

and Y . In the above coordinate systems one finds

Z = − sinh Θx sinh Θy + cosh Θx cosh Θy cos γD−1, (global) (2.14)

= cos θx cos θy cosh(tx − ty) + sin θx sin θy cos γD−2, (static) (2.15)

= 1− ‖x− y‖2 − (λy − λx)2

2λxλy
, (Poincaré) (2.16)

where γd is the angle between the X and Y on the relevant Sd. It is useful to note that

Z = 1 for X = Y or for points connected by a null geodesic, Z > 1 for points connected

by a timelike geodesic, |Z| < 1 for points connected by a spacelike geodesic, and Z < −1

for points which cannot be connected by any geodesic in real de Sitter space. In the latter

case, the points are not causally related; see figure 3. Note that Z > −1 in the static patch.

Thus, if points X and Y are in the static patch, then there is a geodesic connecting these

two points.

On complex de Sitter space we may take t = σ + iτ in static coordinates to write

Z = cos θx cos θy [cosh(σx − σy) cos(τx − τy)− i sinh(σx − σy) sin(τx − τy)]
+ sin θx sin θy cos γD−2, (2.17)

so that

|Z|2 = | cos θx cos θy cosh(σx − σy) cos(τx − τy) + sin θx sin θy cos γD−2|2
+ cos2 θx cos2 θy sinh2(σx − σy) sin2(τx − τy), θx, θy ∈ [0, π/2).

(2.18)
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On complex de Sitter space we may take t = σ + iτ in static coordinates
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Figure 3: Carter-Penrose diagram of de Sitter space with timelike geodesics
from point O drawn with solid lines and spacelike geodesics from it drawn
with dashed lines.

2.2 De Sitter Propagators

Consider two points X, Y on Euclidean de Sitter SD. In terms of Z = X ·Y ,

the scalar propagator on SD is [34, 35]

∆(X, Y ) =
Γ(a+)Γ(a−)

2(2π)
D
2 Γ

(
D
2

)(1− Z)
2−D

2 F
(

D
2
− a+, D

2
− a−; D

2
; 1+Z

2

)
, (2.19)

where

a± = 1
2

[
D − 1 ±

√
(D − 1)2 − 4m2

]
. (2.20)
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2.2 De Sitter Propagators

Consider two points X, Y on Euclidean de Sitter SD. In terms of Z = X · Y , the scalar

propagator on SD is [34, 35]

∆(X, Y ) =
Γ(a+)Γ(a−)

2(2π)
D
2 Γ
(
D
2

)(1− Z)
2−D

2 F
(
D
2
− a+,

D
2
− a−; D

2
; 1+Z

2

)
, (2.19)

where

a± = 1
2

[
D − 1±

√
(D − 1)2 − 4m2

]
. (2.20)

Here F is Gauss’ hypergeometric function:

F (a, b; c;x) = 1 +
∞∑
n=1

a(a+ 1) · · · (a+ n− 1)b(b+ 1) · · · (b+ n− 1)

n!c(c+ 1) · · · (c+ n− 1)
xn. (2.21)

We will be interested in the analytic properties of (2.19) for general complex Z. The only

singularities are branch points3 at Z = 1 and Z =∞, and we take the branch cut to connect

these points along the positive real axis. It will be particularly important to understand the

singularity structure in terms of static coordinates (2.7). Careful inspection of (2.17) shows

the following:

Observation. The Green’s function for two points X, Y with static coordinates (tx, θx) and

(ty, θy) with θx, θy ∈ [0, π/2) is analytic for all complex tx, ty except when tx − ty is real

modulo 2πi (so that the two points lie on the same Lorentz-signature real section) and the

3These are poles if D is even and if the scalar is conformally coupled and massless.
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two points obtained by replacing tx and ty by Re tx and Re ty, respectively, are causally

related. (within this real section).

It will be useful to regulate the divergences of (2.19) at Z = 1 using Pauli-Villars subtrac-

tions both for the internal and external propagators so that all propagators become bounded

functions of Z. Because the unbounded nature of the external propagators needs to be taken

into account only in the coincidence limit, where the vertex integral is convergent due to the

small integration measure, it is in fact possible to show the equivalence of the Poincaré and

Euclidean formalisms regulating only the internal propagators. However, since analyzing

such issues in detail would make the argument more cumbersome, we choose to regulate the

external propagators as well.

For each m,D we define a regulated propagator

∆reg(X, Y ) = ∆(X, Y ) +

[D/2]∑
i=1

Ci∆Mi
(X, Y ), (2.22)

where [D/2] denotes the integer part of D/2, ∆Mi
(X, Y ) is the propagator (2.19) for a particle

of mass Mi, and Ci are constants. We will always assume Mi � 1 in units of the de Sitter

scale, so that in particular the masses Mi correspond to principal series representations [36]

of the de Sitter group. One may choose the coefficients Ci so that ∆reg(X, Y ) has a well-

defined finite limit as Z → 1 (see, e.g., [37] for D = 4). For D = 2, 3 we have [D/2] = 1 and

one may take C1 = −1 for any M1. For D = 4, 5 one may choose any C1, C2,M1,M2 which

satisfy C1 + C2 = −1 and C1M
2
1 + C2M

2
2 = −m2. Nevertheless, ∆reg(X, Y ) is not analytic

at Z = 1. Instead, Z = 1 remains a branch point analogous to that of the function x lnx or

x1/2 at x = 0.

If desired, one can also make further subtractions to define regulated propagators with

continuous (and thus bounded) derivatives to any specified order. Such additional sub-

tractions are useful in treating theories with derivative interactions, or for consideration of

field-renormalization counter-terms. Below, we will focus on non-derivative interactions for

which the above subtractions will suffice. But it will be clear from the argument that the

same results hold for derivative interactions so long as an appropriate number of additional

Pauli-Villars subtractions have been made.

Finally, it is useful to study ∆(X, Y ) at large |Z|. There, ∆ behaves either like |Z|−a− (for

m2 < (D− 1)2/4) or |Z|−(D−1)/2 (for m2 ≥ (D− 1)2/4). Hence for given choices of regulator

parameters Ci,Mi the modulus of the regularized propagator |∆reg(Z)| is bounded. It is

useful to take each Ci,Mi to be a given function of the smallest regulator mass M , so that

the regulator is removed as M →∞. We may then take the bound on |∆reg(Z)| to be B(M),

determined only by m and the lightest regulator mass M .
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3 Euclidean correlators vs. thermal static patch cor-

relators

We now turn to step 1 of the argument sketched in the introduction. Our task here is to

show that the analytic continuation of Euclidean correlators is equivalent to those computed

using in-in perturbation theory (defined using the propagator of the free Euclidean vacuum)

in the so-called static patch of de Sitter. This essentially amounts to checking that condi-

tions are right for the usual relation between Euclidean field theory and Lorentz-signature

thermal field theory to hold; i.e., that the Hartle-Hawking correlators are indeed thermal

correlators in the static patch. At a formal level, this follows from the fact that correlation

functions Tr[φ(x1)...φ(xn)e−βH ] in the canonical ensemble are given by an imaginary-time

path integral; see e.g., [33]. However, in order not to miss any subtleties (perhaps due to IR

divergences of the sort predicted in [14]) and because of the many controversies surrounding

dS quantum field theory, we will proceed slowly through an explicit perturbative argument.

Below, we consider diagrams using the Pauli-Villars regularized propagators (2.22) so that

|∆reg(Z)| ≤ B(M). We restrict attention to connected diagrams since vacuum bubbles are

automatically excluded both in the Euclidean and in-in formalisms. Because the desired

result is trivial for the diagram with two external points connected by a single propagator,

we also exclude this diagram from our discussion. Non-derivative interactions are assumed

for simplicity, though the argument is readily extended to derivative interactions so long as

additional Pauli-Villars subtractions are made as described in section 2.2 above.

Recall that in static coordinates (2.7) points of de Sitter space are labeled by a pair (t, X̂)

where X̂ is a point in the (open) northern hemisphere of SD−1. We will use these coordinates

for both the static patch of Lorentz-signature dSD (where t ∈ R) and on Euclidean-signature

de Sitter SD (where −it ∈ (−π, π).) We imagine that the integrals over the time coordinates

ti of the internal vertices will be performed first, followed later by the integrals over X̂i. So

for the moment we consider the X̂i to be fixed. We also assume that all internal vertices and

external points correspond to distinct spatial points X̂; i.e., X̂i 6= X̂j for i 6= j. Due to our

Pauli-Villars regularization, we can always recover information at coincidence by continuity.

Let us first review the general argument relating Euclidean correlators to in-in correlators

(see e.g. [33]) using our de Sitter static patch notation. In the Euclidean approach the time

integrals of the internal vertices are all from iπ to −iπ. The external points are taken to lie

on this contour and, at least for the moment, we take them to all lie close to (though not

necessarily precisely at) t = 0. Since the X̂i are distinct, it follows from the Observation

of section 2.2 that the integrand is analytic in all time coordinates ti in a region containing

the contour of integration. Thus the contour can be deformed. In fact, taking all internal

coordinates ti to be integrated along the same contour C, we note that the contour can be

freely deformed so long as i) it begins at some t = t0 + iπ with t0 real and ends at t = t0− iπ,
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ii) the imaginary part of t is strictly decreasing everywhere (so that no two points on the

path have the same value of Im t) and iii) the path continues to pass through the external

points. In particular, we are free to take the limit t0 → −∞.

Now, these rules allow us to choose the contour C = A1 + C1 + B + C2 + A2 to be as

in figure 4. Here ε (< π) is a nonzero positive number. The imaginary part is increasing
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Figure 4: A deformation of the Euclidean contour.

part is increasing infinitesimally on the horizontal portions of the contour.

This is equivalent to using the Feynman propagator when the two points

are both on the upper horizontal portion and the Dyson (or anti-Feynman)

propagator if the two points are both on the lower horizontal portion. In

general, in the ε → 0 limit (and where the imaginary parts of the times

for all external points are also taken to zero), one may say that the above

contour computes correlators using the free path-ordered two-point function

as the propagator, just as occurs in the in-in formalism. Furthermore, since

all integrals converge after Pauli-Villars regularization, it is clear that the

integral along B is of order ε and can be neglected in the limit ε→ 0.

As a result, the Euclidean correlators (evaluated at t = 0) agree with

the corresponding in-in correlators in the static patch (computed using the

propagators of the free Euclidean vacuum) so long as a property called fac-
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infinitesimally on the horizontal portions of the contour. This is equivalent to using the

Feynman propagator when the two points are both on the upper horizontal portion and

the Dyson (or anti-Feynman) propagator if the two points are both on the lower horizontal

portion. In general, in the ε → 0 limit (and where the imaginary parts of the times for all

external points are also taken to zero), one may say that the above contour computes corre-

lators using the free path-ordered two-point function as the propagator, just as occurs in the

in-in formalism. Furthermore, since all integrals converge after Pauli-Villars regularization,

it is clear that the integral along B is of order ε and can be neglected in the limit ε→ 0.

As a result, the Euclidean correlators (evaluated at t = 0) agree with the corresponding

in-in correlators in the static patch (computed using the propagators of the free Euclidean

vacuum) so long as a property called factorization [33] holds, which states that the A1, A2

pieces of the contour C can be neglected in the t0 → −∞ limit. We now establish this

property for our systems, diagram by diagram4. For each Feynman diagram, let us choose

one external point X = (te, X̂e) and one internal point Y that lies on either segment A1 or

A2. To show that the integral of Y over the above segments can be neglected, we also choose

a path through the diagram from X to Y ; i.e., a particular chain of propagators.

Now, recall from section 2.2 that at fixed Pauli-Villars regulator mass M all propagators

are bounded by some B(M). To establish a bound on the integrals, we may thus replace the

4For a general contour C, we will refer to the associated diagrams below as Feynman diagrams, even
though they may sometimes involve Dyson (or other) propagators as noted above.
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integrand with its magnitude and replace all propagators not on the chosen path by B(M).

Next consider the propagators on the chosen path. For at least one such propagator, external

or internal, the (static-patch) time coordinates of its two arguments have real parts differing

by at least (te− t0)/K, where K is the number of propagators in the chain. From (2.18) and

the asymptotics of the propagators discussed in section 2.2, this means that this propagator

is of order [cos θ1 cos θ2e
(te−t0)/K ]−ν or smaller for some positive ν determined by the mass

m of the quantum fields, where θ1 and θ2 are the θ-coordinates of the two arguments of this

propagator, if te − t0 is large enough. Replacing all other propagators on this chain with

B(M), we integrate the time coordinate τ of Y along the segments from t0 + iπ to t0 + iε

and from t0 − iε to t0 − iπ. We also perform all other t-integrals at the vertices. The result

is clearly bounded by

c2[B(M)]n1(te − t0)n2 [cos θ1 cos θ2e
(te−t0)/K ]−ν (3.1)

for some constants c2, n1, n2, where the factors of (te − t0)n2 come from the measure. It is

important to note that c2, n1, n2 are independent of the positions of all vertices, as well as

t0.

To complete the argument, we divide the integrals over θ1, θ2 (or, say, just θ1 if the 2nd

point is external so that cos θ2 is fixed and independent of t0) into two regions. In the first,

we take cos θ1, cos θ2 > e−(te−t0)/3K . The bound in (3.1) then shows that the integral over this

region tends zero at least like (te − t0)n2e−2ν(te−t0)/3K as t0 → −∞. The remaining region

of integration is small since one of the variables to be integrated (θ1 and/or θ2) satisfies

cos θ < e−(te−t0)/3K and the integration measure sinD−2 θ cos θ dθ contains a factor of cos θ.

We note that the length of the interval on which θ is integrated is of order e−(te−t0)/3K as well.

We may therefore replace all propagators by the bound B(M) and find that the contribution

from this region is again bounded by a number of the form c3(te − t0)n3e−2(te−t0)/3K , which

of course tends to zero as t0 → −∞. This establishes the fact that sections A1 and A2 can

be neglected in the desired limit for any (finite or infinitesimal) choice of ε in figure 4. In

particular, this demonstrates the agreement of Euclidean and static patch in-in correlators

(computed using the propagator of the free Euclidean vacuum) when the external points are

located at t = 0.

To demonstrate agreement for more general external points, we need only analytically

continue the correlators as a function of the time coordinates of the external points. This is

in fact the definition of the Euclidean correlators evaluated at more general times, and we

will show that it also gives the static patch in-in correlators. For this step, it is convenient

to take the external points to have distinct (and fixed) values of Im t. At the end of the

argument we will take the limit where all of these imaginary parts vanish.

We first consider the analyticity of the integrand for some given diagram in the time

coordinate t1 of some external point with the time coordinates of all other points (both

12



internal and external) held fixed and taken to lie on one of the contours C discussed above.

We also take the spatial coordinates of all points to be fixed and distinct. Due to the

observation of section 2.2, the singularities are then a finite distance from the contour C. For

example, for the original Euclidean integral, if the external point with the time coordinate

t1 is connected to a vertex with time coordinate t which is also connected to two other

vertices, the singularities and associated branch cuts on the complex t-plane are similar to

those shown in figure 5.

t

!t1

!!
""

"" ""

#

#
C

πi

−πi

Figure 5: Singularities and branch cuts of propagators.

indicated in figure 5, for a fixed contour C this will in general allow only a

finite range over which the integrand can be analytically continued in Re t1.

However, as noted earlier, we are also free to further deform the contour. For

example, by shifting the contour for all vertices a bit to the right at Im t1,

we shift the allowed window for analytic continuation a bit to the right, and

we do so without changing the size of this window. It is thus clear that,

by dragging the contour along with the external point in this way, we may

analytically continue the result of the time integrations to arbitrary values

of Re t1 for any given distinct set of spatial coordinates. But as before, our

Pauli-Villars regularization scheme implies the same result holds for general

spatial coordinates by continuity5. It follows that the analytic continuation

of Euclidean correlators can be computed via the usual Feynman diagrams

associated with any contour which i) begins at some t = −∞ + iε with

any real and positive ε ends at t = −∞ − iε, ii) has the imaginary part

of t strictly decreasing everywhere (so that no two points on the path have

the same value of Im t) and iii) passes through all external points6. An

5Continuity of the integrand is clear from the regularization scheme. Continuity of the
result of the time integrations follows from the fact that these integrals converge absolutely.
This in turn follows from the same estimates used to show factorization above.

6 The reader may ask if the analytic continuation of a full diagram (after all integrals,
including space integrals, have been performed) coincides with the result described above
(in which the integrand is first continued, before performing the spatial integrals). The
potential obstacle is the fact that spatial coordinates will necessarily coincide somewhere
during the integrals over space, and such coincidences shrink the windows (used to enact
the analytic continuation above) between past- and future-branch cuts to zero size. One
may show that this is not an issue by performing a further regularization in which all
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Figure 5: Singularities and branch cuts of propagators.

We may thus analytically continue t1 to any complex value so long as we avoid the branch

cuts. Let us do so holding Im t1 fixed and distinct from the imaginary parts of all other

external time coordinates. Then the only singularities which are of concern are those due to

the vertex connected to t1 with the same imaginary part of t; i.e., for which Im t = Im t1.

As indicated in figure 5, for a fixed contour C this will in general allow only a finite range

over which the integrand can be analytically continued in Re t1. However, as noted earlier,

we are also free to further deform the contour. For example, by shifting the contour for all

vertices a bit to the right at Im t1, we shift the allowed window for analytic continuation

a bit to the right, and we do so without changing the size of this window. It is thus clear

that, by dragging the contour along with the external point in this way, we may analytically

continue the result of the time integrations to arbitrary values of Re t1 for any given distinct

set of spatial coordinates. But as before, our Pauli-Villars regularization scheme implies the

same result holds for general spatial coordinates by continuity5. It follows that the analytic

continuation of Euclidean correlators can be computed via the usual Feynman diagrams

associated with any contour which i) begins at some t = −∞+ iε with any real and positive

ε ends at t = −∞− iε, ii) has the imaginary part of t strictly decreasing everywhere (so that

no two points on the path have the same value of Im t) and iii) passes through all external

5Continuity of the integrand is clear from the regularization scheme. Continuity of the result of the time
integrations follows from the fact that these integrals converge absolutely. This in turn follows from the
same estimates used to show factorization above.
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points6. An example is shown in figure 6. Taking the limit ε → 0 (and taking the limit

example is shown in figure 6. Taking the limit ε→ 0 (and taking the limit in

−∞ + iε t! t4 ! t3!
t2!

t1
−∞− iε

Figure 6: Deformed contour for external points at ti with finite imaginary
parts.

which all external time coordinates now become real) gives the usual closed-

time-path representation of the static patch in-in correlators (defined using

the propagators of the free Euclidean vacuum) just as described above for

external points at t = 0; see figure 7.

4 Analyticity of in-in correlators

Recall that our goal is to demonstrate the equivalence of the Poincaré and

Euclidean formalisms for perturbation theory. We outlined a three-step ar-

gument in the introduction. As described there, it is clear that the in-in

formalism in the static patch is a restriction of that in the Poincaré patch

(Step 2). Since we have now shown that the static patch in-in correlators

propagators ∆(Z) are replaced by ∆(Z − s) for some positive s. This regularization
maintains windows of finite size even at coincidence. Furthermore, so long as one drags
the contour along with the external point as described above, one finds that the resulting
integral is analytic in the external time variables for all positive s on the domain where
the external times have distinct imaginary parts. Then we find that the full diagram is
analytic at s = 0, and its analytic continuation is given by the prescription above. The
argument is very similar to that given in Section 4.2 to establish the analyticity of the
Poincaré in-in correlators in the conformal-time variables.
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Figure 6: Deformed contour for external points at ti with finite imaginary parts.

in which all external time coordinates now become real) gives the usual closed-time-path

representation of the static patch in-in correlators (defined using the propagators of the free

Euclidean vacuum) just as described above for external points at t = 0; see figure 7.
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!
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Figure 7: t-integration contour for the in-in formalism in the static patch.
The open circles denote external points at times ti.

agree with those of the Euclidean formalism (Step 1), it remains only to

show that Poincaré in-in correlators are appropriately analytic in their argu-

ments (Step 3). The desired result then follows since two analytic functions

that agree in any non-empty open subset of a real section must in fact agree

everywhere. In this section we will establish analyticity of Poincaré in-in

correlators as functions of the conformal-time coordinates with space coor-

dinates fixed. This will turn out to be sufficient for our purpose.

Recall that, for given external points Xj = (λ̃j,xj), in the coordinates of

(2.11) any Poincaré correlator is a sum of terms of the form

AP = c1

(
n∏

k=1

∫
dD−1yk

∫
C

dλk

λD
k

)
F (Y1, . . . , Yn)

m∏
j=1

∆reg(Xj, Yk), (4.1)

where a typical contour C is shown in figure 8 and we have used the Pauli-

Villars regulated propagators ∆reg(Xj, Yk). The contour is infinitesimally

away from the real line, and the imaginary part of λ increases infinitesimally

everywhere along the contour, even on the horizontal sections. Time-ordered

correlators are obtained by putting the λ-coordinates, λ̃j , of the external

points on the lower horizontal line, whereas anti-time-ordered correlators

are obtained by putting them on the upper horizontal line. We will refer

to any such AP as an amplitude, and we will again refer to the associated

diagram as a Feynman diagram even though diagrams include Dyson (or

other) propagators in computing AP .

Like the in-in amplitude in the static patch, the Poincaré in-in amplitude

AP is obtained by first considering the corresponding amplitude with finite

and distinct imaginary parts Im λ̃j of the conformal-time coordinates of the

18

Figure 7: t-integration contour for the in-in formalism in the static patch. The open circles
denote external points at times ti.

4 Analyticity of in-in correlators

Recall that our goal is to demonstrate the equivalence of the Poincaré and Euclidean for-

malisms for perturbation theory. We outlined a three-step argument in the introduction.

6 The reader may ask if the analytic continuation of a full diagram (after all integrals, including space
integrals, have been performed) coincides with the result described above (in which the integrand is first
continued, before performing the spatial integrals). The potential obstacle is the fact that spatial coordinates
will necessarily coincide somewhere during the integrals over space, and such coincidences shrink the windows
(used to enact the analytic continuation above) between past- and future-branch cuts to zero size. One may
show that this is not an issue by performing a further regularization in which all propagators ∆(Z) are
replaced by ∆(Z − s) for some positive s. This regularization maintains windows of finite size even at
coincidence. Furthermore, so long as one drags the contour along with the external point as described above,
one finds that the resulting integral is analytic in the external time variables for all positive s on the domain
where the external times have distinct imaginary parts. Then we find that the full diagram is analytic at
s = 0, and its analytic continuation is given by the prescription above. The argument is very similar to
that given in Section 4.2 to establish the analyticity of the Poincaré in-in correlators in the conformal-time
variables.
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As described there, it is clear that the in-in formalism in the static patch is a restriction of

that in the Poincaré patch (Step 2). Since we have now shown that the static patch in-in

correlators agree with those of the Euclidean formalism (Step 1), it remains only to show

that Poincaré in-in correlators are appropriately analytic in their arguments (Step 3). The

desired result then follows since two analytic functions that agree in any non-empty open

subset of a real section must in fact agree everywhere. In this section we will establish

analyticity of Poincaré in-in correlators as functions of the conformal-time coordinates with

space coordinates fixed. This will turn out to be sufficient for our purpose.

Recall that, for given external points Xj = (λ̃j,xj), in the coordinates of (2.11) any

Poincaré correlator is a sum of terms of the form

AP = c1

(
n∏
k=1

∫
dD−1yk

∫
C

dλk
λDk

)
F (Y1, . . . , Yn)

m∏
j=1

∆reg(Xj, Yk), (4.1)

where a typical contour C is shown in figure 8 and we have used the Pauli-Villars regulated

propagators ∆reg(Xj, Yk). The contour is infinitesimally away from the real line, and the

imaginary part of λ increases infinitesimally everywhere along the contour, even on the

horizontal sections. Time-ordered correlators are obtained by putting the λ-coordinates, λ̃j,

of the external points on the lower horizontal line, whereas anti-time-ordered correlators are

obtained by putting them on the upper horizontal line. We will refer to any such AP as an

amplitude, and we will again refer to the associated diagram as a Feynman diagram even

though diagrams include Dyson (or other) propagators in computing AP .
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Figure 8: Typical λ-contour for the in-in formalism in the Poincaré patch.
All external points have λ > λf

external points and then taking the limit Im λ̃j → 0. For this reason we

let λ̃j satisfy Im λ̃1 < Im λ̃2 < · · · < Im λ̃m without loss of generality and

use the contour analogous to that considered for the static patch. Figure 9

shows an example with m = 4 with finite imaginary parts, before taking the

ε→ 0 limit.

λ1

C ∞+ iε

∞− iε

!λ̃1!λ̃2 !
λ̃3 !

λ̃4

Figure 9: Deformed contour for external points with finite imaginary parts
in the Poincaré patch

It is important to note that, in general, one must integrate over the

conformal-time coordinates λk first in (4.1), before integrating over the spa-

tial coordinates as the integrand may otherwise decay too slowly at large

‖yk‖ for the yk-integrals to converge if each λk is fixed on the contour. We

will show below that, with our Pauli-Villars regulators, all integrals converge

so long as the λk-integrals are performed first. We then use this result to

demonstrate the desired analyticity of AP .

19

Figure 8: Typical λ-contour for the in-in formalism in the Poincaré patch. All external
points have λ > λf

Like the in-in amplitude in the static patch, the Poincaré in-in amplitude AP is obtained

by first considering the corresponding amplitude with finite and distinct imaginary parts

Im λ̃j of the conformal-time coordinates of the external points and then taking the limit

Im λ̃j → 0. For this reason we let λ̃j satisfy Im λ̃1 < Im λ̃2 < · · · < Im λ̃m without loss of

generality and use the contour analogous to that considered for the static patch. Figure 9

shows an example with m = 4 with finite imaginary parts, before taking the ε→ 0 limit.

It is important to note that, in general, one must integrate over the conformal-time

coordinates λk first in (4.1), before integrating over the spatial coordinates as the integrand
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conformal-time coordinates λk first in (4.1), before integrating over the spa-

tial coordinates as the integrand may otherwise decay too slowly at large

‖yk‖ for the yk-integrals to converge if each λk is fixed on the contour. We

will show below that, with our Pauli-Villars regulators, all integrals converge

so long as the λk-integrals are performed first. We then use this result to

demonstrate the desired analyticity of AP .
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Figure 9: Deformed contour for external points with finite imaginary parts in the Poincaré
patch

may otherwise decay too slowly at large ‖yk‖ for the yk-integrals to converge if each λk
is fixed on the contour. We will show below that, with our Pauli-Villars regulators, all

integrals converge so long as the λk-integrals are performed first. We then use this result to

demonstrate the desired analyticity of AP .

4.1 Convergence of AP
We now verify that integrals defining the amplitude AP converge with the contour C chosen

as in figure 9 so long as we perform the λk-integrations before the yk-integrations. The

general strategy is deform the λ-contour at each vertex as much to the right as possible,

while avoiding singularities, so that the regions of spacetime over which the vertices are

integrated become small enough to guarantee absolute convergence.

The structure of singularities in the complex λ-plane is directly analogous to that dis-

cussed in the complex t-plane in section 3. We again fix the spatial coordinates of all points,

both internal and external, and take them to be distinct. An example for the conformal-time

λ1 of the vertex Y1 = (λ1,y1) is shown in figure 10, where dashed lines again indicate branch

cuts. Of the two singularities with the same imaginary part, we call the one with the larger

(smaller) real part a past (future) singularity. For example, the singularities due to vertex

(λ3,y3) are at

λ± = λ3 ± ‖y1 − y3‖. (4.2)

The points λ+ and λ− are a past singularity and a future singularity, respectively. Notice that

(Reλ+,y1) and (Reλ−,y1) are on the past and future light-cones of (Reλ3,y3), respectively.

Also in the same way as in section 3, each λk-contour can be deformed as we like so

long as it encloses all past singularities and avoids all future singularities. In particular, for

the given values of all spatial coordinates xi,yk, the portion of the contour to the left of
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a vertical line segment connecting two points on the contour can be replaced by this line

segment provided that all past singularities lie to its right. For example, the λ1 contour in

figure 10 can be deformed as in figure 11. Note that this contour may no longer pass through

certain λ-values corresponding either to external points or to other contours which were not

similarly deformed.

λ1

!" "λ̃1

!" "
λ̃3 !" "

λ3

!" "
λ2

Figure 10: Singularities in the complex λ1 plane. Two external points lie at
λ̃1, λ̃3 and two internal points lie at λ2, λ3 as indicated by the open circles.
Filled circles are singularities and dashed lines are branch cuts.

past singularities on the complex λk-plane for all k is to its right. Then we

let this line segment replace the portion of the contour to its left. We keep

deforming the contour in this manner by moving the vertical line segment

to the right until it encounters a past singularity, say, on the λk1-plane, λk1

being the conformal-time for Yk1, due to some external point, say Xj1. We

then stop deforming the contour for Yk1 (since we cannot deform it beyond

the singularity) and hold it fixed. We describe this relationship between Yk1

and Xj1 by saying that Yk1 is past-related to Xj1 (for the given values of all

spatial coordinates) and writing7 Yk1 → Xj1.

We then choose some value of λk1 on its fixed contour and deform the

remaining contours by moving the vertical line segment to the right with λk1

fixed until one of them, say a contour for Yk2, hits a past singularity due to,

say Xj2, which is either an external point or the vertex Yk1 whose contour

is being held fixed. We write Yk2 → Xj2 and hold the contour for Yk2 fixed

from now on. We continue in this manner until each vertex is past-related

7For certain spatial coordinates, our contour will encounter two singularities due to
distinct external points Xj1 and Xj2 at the same time. Since this happens only on a set
of spatial coordinates of measure zero, we will ignore such cases and assume below that
Yk1 is past-related to only one point, and similarly for other vertices in the diagram.
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Figure 10: Singularities in the complex λ1 plane. Two external points lie at λ̃1, λ̃3 and two
internal points lie at λ2, λ3 as indicated by the open circles. Filled circles are singularities
and dashed lines are branch cuts.
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Figure 11: The λ1-contour in figure 10 deformed as much to the right as
possible for the given values of the spatial coordinates as described in the
text.

to another point, so that all contours have been fixed8.

To understand the resulting structure, we now use the above past-relations

to decorate the Feynman diagram under discussion for each fixed set of spa-

tial coordinates. Note that any pair (A, B) of vertices with A past-related

to B must be connected by at least one line on the diagram9. If there is one

line from A to B, we decorate it with an arrow pointing from A to B (i.e.,

toward the future). If there is more than one such line, we decorate only

one of them. Once all past-relations have been indicated in this way, we re-

place all remaining undecorated propagators with dashed lines. An example

is shown in figure 12.

In the deformation of contours described above, the contours are deformed

until one of them encounters a past singularity. Although this procedure is

sufficient to show the convergence of AP itself, we need to modify it slightly

for proving convergence of the derivatives of AP with respect to the external

coordinates, which diverge at past singularities. Here we briefly describe this

8It may be that Xj2 = Yk1 for some values of λk1 while for other values Xj2 is an
external point. In this way, our definition of new past-relations can depend on the positions
of integration variables along contours that have already been fixed. It is straightforward
to deal with this seeming complication as discussed in footnote 11 below.

9Otherwise the location of point B could not produce singularities in the propagators
evaluated at A. In particular, our notion of past-relation is not transitive.
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Figure 11: The λ1-contour in figure 10 deformed as much to the right as possible for the
given values of the spatial coordinates as described in the text.

Using this observation, we deform the contours as follows. We begin with an integral

where all λk are integrated over the same contour C of the form shown in figure 9 for some

given values of the spatial coordinates xj,yk. We deform all of the λk-contours in the same

way as follows. We choose a vertical line segment connecting two points of the contour such

that all past singularities on the complex λk-plane for all k is to its right. Then we let this

line segment replace the portion of the contour to its left. We keep deforming the contour
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in this manner by moving the vertical line segment to the right until it encounters a past

singularity, say, on the λk1-plane, λk1 being the conformal-time for Yk1 , due to some external

point, say Xj1 . We then stop deforming the contour for Yk1 (since we cannot deform it

beyond the singularity) and hold it fixed. We describe this relationship between Yk1 and Xj1

by saying that Yk1 is past-related to Xj1 (for the given values of all spatial coordinates) and

writing7 Yk1 → Xj1 .

We then choose some value of λk1 on its fixed contour and deform the remaining contours

by moving the vertical line segment to the right with λk1 fixed until one of them, say a contour

for Yk2 , hits a past singularity due to, say Xj2 , which is either an external point or the vertex

Yk1 whose contour is being held fixed. We write Yk2 → Xj2 and hold the contour for Yk2
fixed from now on. We continue in this manner until each vertex is past-related to another

point, so that all contours have been fixed8.

To understand the resulting structure, we now use the above past-relations to decorate

the Feynman diagram under discussion for each fixed set of spatial coordinates. Note that

any pair (A,B) of vertices with A past-related to B must be connected by at least one line

on the diagram9. If there is one line from A to B, we decorate it with an arrow pointing from

A to B (i.e., toward the future). If there is more than one such line, we decorate only one

of them. Once all past-relations have been indicated in this way, we replace all remaining

undecorated propagators with dashed lines. An example is shown in figure 12.

In the deformation of contours described above, the contours are deformed until one of

them encounters a past singularity. Although this procedure is sufficient to show the conver-

gence of AP itself, we need to modify it slightly for proving convergence of the derivatives

of AP with respect to the external coordinates, which diverge at past singularities. Here

we briefly describe this modification. The main difference is that the modified deformation

keeps the contours away from past singularities.

We choose the initial contour common to all λk as before. We define an effective past

singularity as follows: if λ is a past singularity, then the corresponding effective past sin-

gularity is λ − b, where b is a small but positive constant. We deform the contours in the

same way as before except that they are deformed until one of the contours encounters an

effective past singularity rather than a true one. We define the past-relation as before. It

7For certain spatial coordinates, our contour will encounter two singularities due to distinct external
points Xj1 and Xj2 at the same time. Since this happens only on a set of spatial coordinates of measure
zero, we will ignore such cases and assume below that Yk1 is past-related to only one point, and similarly for
other vertices in the diagram.

8It may be that Xj2 = Yk1 for some values of λk1 while for other values Xj2 is an external point. In this
way, our definition of new past-relations can depend on the positions of integration variables along contours
that have already been fixed. It is straightforward to deal with this seeming complication as discussed in
footnote 11 below.

9Otherwise the location of point B could not produce singularities in the propagators evaluated at A. In
particular, our notion of past-relation is not transitive.
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Figure 12: A Feynman diagram in which arrows indicate past-relations as
described in the text, determined by some particular set of spatial coordi-
nates.

modification. The main difference is that the modified deformation keeps the

contours away from past singularities.

We first choose the initial contour, common to all vertices, to have the

form Im λ = ±c(Re λ)1/2, c > 0, for Reλ > Λ, where Λ is a real constant

larger than the largest of the real parts of the conformal-time coordinates

of the external points. We define an effective past singularity as follows:

if λ is a past singularity, then the corresponding effective past singularity

is λ − b(Re λ)1/2, where b is a small but positive constant. We deform the

contours in the same way as before except that they are deformed until one of

the contours encounters an effective past singularity rather than a true one.

We define the past-relation as before. It may happen that some effective past

singularities are outside the contour though the true ones must be inside. If

the effective past singularity on the complex λk3-plane due to a point Xj3 ,

external or internal, is outside the contour, we stop deforming the contour

for λk3, fix the value of λk3 on this contour, and let Yk3 → Xj3 . (If there are

two or more effective past singularities outside the contour, we choose one to

define the past-relation.) The rest is the same as the original deformation10.

10Notice that, since the contour is separated from the past singularities due to external
points by a distance of order |λ|1/2 for large |λ|, the Z in (2.16) for an external propagator
is bounded away from 1 as |λ| → ∞. This means that a differentiated external propagator
is bounded on the contours and that the proof for convergence of AP below can be used
virtually unaltered for the derivative of AP .
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Figure 12: A Feynman diagram in which arrows indicate past-relations as described in the
text, determined by some particular set of spatial coordinates.

may happen that some effective past singularities are outside the contour though the true

ones must be inside. If the effective past singularity on the complex λk3-plane due to a point

Xj3 , external or internal, is outside the contour, we stop deforming the contour for λk3 , fix

the value of λk3 on this contour, and let Yk3 → Xj3 . (If there are two or more effective past

singularities outside the contour, we choose one to define the past-relation.) The rest is the

same as the original deformation10.

As noted in the introduction, it is well-known that in-in diagrams can be computed by

integrating only over the past light cones of external points. The choice of contours above

gives a similar result, but one which is clearly valid for finite ε. To see the similarity, note

that when A is past-related to B the real part of point A lies in the casual past of the real

part of point B over most of the contour for A. The exception is a finite piece near the

minimum value of Re λ due to the use of effective past singularities in the modified contour

deformation. Since any internal point is connected by some chain of arrows to some external

point, except for a set of finite-sized pieces as noted above, the projection of the integration

region onto the real λ-axis lies in the causal past of at least one external point. We will find

it useful below to break up the integration region into such past light cones and finite-sized

protruding segments.

Now we establish convergence using the modified deformation of contour. Recall that each

internal point A is past-related to precisely one point B (see footnote 7), which may be either

internal or external. Also recall that, starting at any internal point, one may always follow a

chain of arrows upwards until one arrives at an external point. As a result, deleting all dashed

lines results in a set of disconnected subdiagrams for which each connected component is a

10Notice that, since the contour is separated from the past singularities due to external points by a finite
distance for large |λ|, the Z in (2.16) for an external propagator is bounded away from 1 as |λ| → ∞.
This means that a differentiated external propagator is bounded on the contours and that the proof for
convergence of AP below can be used virtually unaltered for the derivative of AP .
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tree whose root (which in this case means that future-most point) is an external point. As

a result, if we replace every dashed-line propagator by the bound B(M), our amplitude AP
factorizes into a product of tree amplitudes in which all points are connected by a chain of

past-relations11.

But each such tree amplitude is easy to bound. We begin by bounding the integrals

corresponding to some past-most vertex Y = (λ,y) in a given tree (e.g., Y2, Y4 or Y6 in

figure 12). Taking the magnitude of the integrand, this integral takes the form

I =

∫
dD−1y

∫
Cy

|dλ|
|λ|D |∆

reg(Y ′, Y )|, (4.3)

where the notation indicates that the contour Cy over which we integrate λ can depend

on the spatial coordinates y. Recall that ∆reg(Y ′, Y ) behaves like |Z|−ν , ν > 0, for large

Z = Y · Y ′. As a result, |∆reg(Y ′, Y )| behaves at most like Z−νR , where ZR := Re Z. Let

us choose some Z0 large enough that for ZR > Z0 our |∆reg(Y ′, Y )| is bounded by αZ−νR for

some real constant α.

It is now useful to break up the integration domain into several pieces. First consider

the portion of Cy noted above that protrudes from the past light cone of Re Y ′. The

past singularity which has stopped this contour from being deformed further is at λ+
y =

λy′ + ‖y − y′‖ and the corresponding effective past singularity is at λ+,eff
y = λ+

y − b on

the complex λy-plane. Hence the length of this portion of the contour is bounded by a

constant, which is larger than 2b because the contour has a finite width. We also find that

Re λy ≥ λ0 + c‖y − y′‖, where λ0 and c are some positive constants, on this portion of the

contour. This is because Re λy ≥ λmin, where λmin is the minimum of the real part of λy
at y = y′, and that Reλ+,eff

y /‖y − y′‖ → 1 as ‖y‖ → ∞. The contribution to I from the

protruding portions is thus bounded by a constant times B(M)
∫
dD−1y(λ0 + c‖y‖)−D.

Next consider the contribution to I from the region 0 < ZR < Z0. This is bounded by

βB(M) times the total measure
∫
dD−1y

∫ |dλ| |λ|−D of this region, where β is a constant,

assuming that this measure is finite. To see that this is so, consider any point X in the

Poincaré patch of real de Sitter space and, furthermore, consider the part of its past light

cone that is both within embedding distance Z0 and which also lies to the future of the

cosmological horizon. This region is compact and thus has finite volume. Since widening of

11 Since past-relations depend on both the spatial coordinates and the conformal time coordinates of
the previously-fixed contours (see footnote 8), the tree structure exhibits a similar dependence. It would
therefore be better to say that each amplitude can be written as a finite sum of products of tree amplitudes,
where the amplitudes for any given term in the product are integrated only over some subset of the spacetime
coordinates. But since we wish only to establish absolute convergence of the amplitude, it does no harm to
extend the spatial integrations for each tree to the full space Rn(D−1) and each λ-integrations over the whole
of the appropriate contour and to then abuse language by referring to the amplitude as a ‘product’ of tree
amplitudes without mentioning the remaining sum explicitly.
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the contour described above for large Re λ has little effect at large Z, for fixed ε, we may

therefore choose Z0 large enough that the measure of the desired region in complex de Sitter

is within, say, a factor of 2 of the volume of the region just discussed in real de Sitter space.

Thus this part of our integral is easily bounded.

We can similarly bound the contribution from the region ZR > Z0. For large enough

Z0, this contribution is no more than, say, a factor of 2 times the integral of αZ−νR over the

region of real de Sitter space lying to the future of the cosmological horizon but more than

an embedding distance Z0 to the past of the point (Re λy′ ,y
′). To proceed further, one

should compute the volume of surfaces lying a constant embedding distance ZR to the past

of the given point but to the future of the cosmological horizon. In the limit of large ZR,

this volume turns out to approach the constant 1/(D − 1). We also note that the proper

time difference between the two surfaces at ZR and ZR + dZR is dZR/ZR for large ZR. As a

result, for large enough Z0 the contribution from the region Re Z > Z0 is bounded by, say,

4α(D− 1)−1
∫∞
Z0
dZRZ

−1−ν
R . Combining this with our observations above shows that (4.3) is

bounded by some constant B(I) which (for, say, |ε| < 1) depends only on the mass of our

field and which in particular is independent of both ε and the location of the point Y ′.
As a result, we can bound the integral corresponding to any of the above tree diagrams

by B(I) times the integral corresponding to the diagram shortened by cutting off a lowest

line. We can clearly repeat this procedure and continue to remove the lowest lines until we

are left with no lines at all. Thus, the integral corresponding to each arrowed tree diagram

is bounded by (B(I))n, where n is the number of lines in the given tree. Hence the integral

for the amplitude AP given by (4.1) is (absolutely) convergent after translating the contours

appropriately.

4.2 Analyticity of the amplitude AP
To complete the argument for equivalence between the Euclidean and Poincaré in-in correla-

tors, we now establish the desired analyticity property of the amplitude AP , which we have

shown above to be well-defined. Specifically, we will show that AP is analytic as a func-

tion of the conformal times λ̃i of the external points if (λ̃1, . . . , λ̃m) ∈ U = {(µ1, . . . , µm) ∈
Cm : Im µi < Im µi+1, i = 1, . . . ,m − 1}, or more generally if the imaginary parts of λ̃i
are all distinct, for any given spatial coordinates xi. For this purpose we introduce an addi-

tional regulator defined by some s > 0 and show that the regulated correlators are analytic

functions on U . We then show that this analyticity property persists in the s→ 0 limit.

Our choice of regulator is straightforward to introduce. We define the amplitude AP,s for

s > 0 by simply replacing each (already Pauli-Villars regulated) propagator ∆reg(Z) with

∆reg
s (Z) = ∆reg(Z − s), where these propagators are written as functions of the embedding

distance Z defined by (2.16). Note that s is indeed a regulator in the sense that it widens
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the gap between any pair of past and future singularities such as those shown in figures 10

and 11. As a result, any contour that can also be used to compute the unregulated AP can

be used to compute AP,s for s > 0. Thus, contours similar to figure 9 are again allowed for

(λ̃1, . . . , λ̃m) ∈ U . The (absolute) convergence of the integrals for AP,s can be established in

exactly the same way as in the s = 0 case.

Now consider complex λ̃i-derivatives of AP,s computed formally by differentiating the

integrand, which is a product of propagators, and then integrating over the contours. Our s-

regularization makes the integrand analytic in an open neighborhood of (λ̃1, . . . , λ̃m) with the

contours fixed so that complex derivatives of the integrand are well-defined. Furthermore,

differentiated propagators are bounded at fixed s and their behavior as Z → ∞ is not

worse than that of un-differentiated propagators. Hence the argument for the (absolute)

convergence of the integrals defining AP,s applies equally well to integrals of the differentiated

integrands. But absolute convergence guarantees that these latter integrals do in fact give

the complex λ̃i-derivatives of AP,s. It follows that such integrals are well-defined and that

each AP,s is analytic in U .

Now, since the integrals defining AP converge, it is clear that AP,s tends to AP as

s → 0. As for the λi-derivative of AP,s, the integrand will be divergent in the s → 0 limit

only where the arguments of the differentiated external (regulated) propagator, become

coincident. However, due to our Pauli-Villars regularization this divergence is very mild and

does not spoil absolute convergence. It follows that the λi-derivative of AP,s has a finite limit

as s→ 0 which gives the λi-derivative of AP . In particular, these derivatives are well-defined

on U , so that AP is analytic in this domain. This completes our step 3.

Let us now assemble the facts demonstrated above to establish the equivalence of the Eu-

clidean and Poincaré in-in correlators. The amplitude AP and the corresponding Euclidean

amplitude, which we call AE, are both analytic functions of the conformal-time variables λ̃i
of the external points (λ̃i,xi) if (λ̃1, . . . , λ̃m) ∈ U (Step 3). These amplitudes coincide in the

limit where the imaginary parts of the conformal-time variables tend to zero if the limits of

the external points all lie in the static patch of real de Sitter space. (This was established in

two steps: In step 1 we established thatAE agrees with the static in-in amplitude, and in step

2 we established (rather trivially) that the latter agrees with the Poincaré in-in amplitude if

the limits of the external points are all in the static patch of real de Sitter space.) Hence,

by uniqueness of analytic continuation12, AP = AE for all λ̃i wherever these amplitudes are

well-defined. Then, AP and AE have, of course, the same limit as Im λ̃i → 0, producing the

same physical amplitude for any points Xi in the Poincaré patch.

12Here, we are using the agreement of AP and AE on an open subset of a real section, B = {(µ1, . . . , µm) ∈
Cm : Im µi = 0, i = 1, . . . ,m}, on the boundary of the region of analyticity U to conclude AP = AE in U .
This is a simple corollary of Bogolubov’s edge-of-the-wedge theorem (see, e.g., Theorem 2-17 in [38]).
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Figure 13: The 1-loop corrections to the propagator.

Fig. 13 (a). The in-in correlation function is given by

〈Tφ(X1)φ(X2)〉 = −λi

2

∫
Y

{
∆reg

m2
3
(Y, Y )∆m2

1
(Y, X1)∆m2

2
(Y, X2)

−∆reg ∗
m2

3
(Y, Y )Wm2

1
(Y, Y1)Wm2

2
(Y, X2)

}
(5.1)

Here
∫

Y
. . . denotes an integral over the Poincaré patch, and we remind the

reader that ∆m2(X, Y ), ∆∗
m2(X, Y ), and Wm2(X, Y ) are the time-ordered,

anti-time-ordered, and Wightman 2-point functions of the Gaussian theory.

It is convenient to let each line in the Feynman diagram have a distinct mass;

one may take the limit of equal masses later. This expression has a UV

divergence for D ≥ 4 which we control by using Pauli-Villars regularization.

For simplicity, we regulate only the internal lines, though we could of course

also regulate the external lines as well.

To simplify (5.1) we first note that the regulated Feynman function ∆reg
m2(X, Y )

evaluated at coincident points is real and independent of position, so ∆reg
m2(Y, Y ) =

∆reg ∗
m2 (Y, Y ) =: ∆reg

m2(1). After removing a common factor of ∆reg
m2

3
(1) from the

integrand the remaining integral is

I(X1, X2) := i

∫
Y

{
∆m2

1
(Y, X1)∆m2

2
(Y, X2)−Wm2

1
(Y, X1)Wm2

2
(Y, X2)

}
.

(5.2)

The integral (5.2) can be quickly performed as follows. Consider a theory

of two free massive scalar fields Φ1,2(X) with masses M2
1 %= M2

2 . We can re-

write this theory in terms of two new fields φ1,2(X) by performing an SO(2)

29

Figure 13: The 1-loop corrections to the propagator.

5 Explicit checks in simple examples

As a check on our arguments, we now explicitly compare the Euclidean and Poincaré in-in

results for one-loop corrections to propagators from φ4 and φ3 interactions. As the Eu-

clidean computations (including the analytic continuation to Lorentz-signature de Sitter)

were performed in [23], we focus on the in-in calculations here.

5.1 φ4 correction

Consider the 1-loop correction to the propagator due to an interaction term of the type

Lint[φ] = − λ
4!
φ(X)4. The relevant Feynman diagram is shown in Fig. 13 (a). The in-in

correlation function is given by

〈Tφ(X1)φ(X2)〉 = −λi
2

∫
Y

{
∆reg

m2
3
(Y, Y )∆m2

1
(Y,X1)∆m2

2
(Y,X2)

−∆reg ∗
m2

3
(Y, Y )Wm2

1
(Y, Y1)Wm2

2
(Y,X2)

}
(5.1)

Here
∫
Y
. . . denotes an integral over the Poincaré patch, and we remind the reader that

∆m2(X, Y ), ∆∗m2(X, Y ), and Wm2(X, Y ) are the time-ordered, anti-time-ordered, and Wight-

man 2-point functions of the Gaussian theory. It is convenient to let each line in the Feynman

diagram have a distinct mass; one may take the limit of equal masses later. This expression

has a UV divergence for D ≥ 4 which we control by using Pauli-Villars regularization. For

simplicity, we regulate only the internal lines, though we could of course also regulate the

external lines as well.

To simplify (5.1) we first note that the regulated Feynman function ∆reg
m2(X, Y ) evaluated

at coincident points is real and independent of position, so ∆reg
m2(Y, Y ) = ∆reg ∗

m2 (Y, Y ) =:

∆reg
m2(1). After removing a common factor of ∆reg

m2
3
(1) from the integrand the remaining

integral is

I(X1, X2) := i

∫
Y

{
∆m2

1
(Y,X1)∆m2

2
(Y,X2)−Wm2

1
(Y,X1)Wm2

2
(Y,X2)

}
. (5.2)
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The integral (5.2) can be quickly performed as follows. Consider a theory of two free

massive scalar fields Φ1,2(X) with masses M2
1 6= M2

2 . We can re-write this theory in terms

of two new fields φ1,2(X) by performing an SO(2) rotation in field space:

φ1(X) = cosωΦ1(X)− sinωΦ2(X),

φ2(X) = sinωΦ1(X) + cosωΦ2(X). (5.3)

The fields φ1,2(X) have masses m2
1,2 that are functions of M2

1,2 and ω, and also an interaction

−gφ1(X)φ2(X) in the Lagrangian with the coupling g = (M2
1−M2

2 ) sinω cosω. Now consider

the correlation function 〈Tφ1(X1)φ2(X2)〉. We may compute this correlation function using

standard in-in perturbation theory; the term at lowest order in g (or equivalently, in ω) is

〈Tφ1(X1)φ2(X2)〉 = −gI(X1, X2) +O(g3). (5.4)

On the other hand, by simply using (5.3) we can compute 〈Tφ1(X1)φ2(X2)〉 exactly13 :

〈Tφ1(X1)φ2(X2)〉 = sinω cosω
[ 〈TΦ1(X1)Φ1(X2)〉 − 〈TΦ2(X1)Φ2(X2)〉 ]

= sinω cosω
[
∆M2

1
(X1, X2)−∆M2

2
(X1, X2)

]
. (5.5)

We can then write M2
1 , M2

2 and ω in terms of m2
1, m2

2 and g, expand the right-hand side of

(5.5) in a power series in g, and equate the O(g) term with the right-hand side of (5.4). The

result is the equality

I(X1, X2) =
∆m2

1
(X1, X2)−∆m2

2
(X1, X2)

m2
2 −m2

1

. (5.6)

Returning to (5.1), we may use (5.6) to obtain

〈Tφ(X1)φ(X2)〉 =
λ

2
∆reg

m2
3
(1)

[
∆m2

1
(X1, X2)−∆m2

2
(X1, X2)

m2
1 −m2

2

]
. (5.7)

It is clear that the same steps can be used to compute the Euclidean expression. The

analogue of (5.2) then involves only Euclidean propagators, but these are just what are

needed to arrive at the analogue of (5.6). After analytic continuation to real de Sitter space,

the result is precisely (5.7).

13A truly skeptical reader might ask whether (5.4) must necessarily give the vacuum correlator of the
theory defined by (5.3). But at this order the result must be a Gaussian state invariant under translations,
rotations, and the scaling symmetry of the Poincaré patch. This determines the state uniquely, assuming
that the results are finite. Finiteness in turn can be shown by either a careful direct analysis or by using the
results of [12] to expand both m2

1 and m2
2 about the conformal coupling value m2

c = 1
4D(D − 2) and then

using the explicit calculations of that reference.
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We note that the above calculations could be performed equally well using dimensional

regularization rather than the Pauli-Villars scheme. In dimensional regularization the com-

putation is performed in an arbitrary real dimension which is sufficiently small such that

there are no ultraviolet divergences. As in Pauli-Villars regularization, the values of de Sitter-

invariant Green’s functions ∆m2(1), etc., are divergent but de Sitter-invariant constants. By

the usual arguments [39], the manipulations we performed to derive (5.6) and its Euclidean

analogue are valid for arbitrary real dimension.

5.2 φ3 correction

Next we turn to the 1-loop correction to the propagator that arises from the interaction

Lint[φ] = − g
3!
φ3(X). The relevant Feynman diagram is shown in Fig 13 (b). Once again it

is convenient to let each leg of this diagram have a distinct mass. This correction has a UV

divergence for spacetime dimension D ≥ 4. Both to draw on results of [23] and to simplify

the arguments, we carry out the computations below using dimensional regularization. In

particular, we will compute this correction in arbitrary D < 2, then analytically continue

D to extend the result to higher dimensions. However, we also explain how similar results

(with more complicated explicit forms) can be obtained via Pauli-Villars techniques.

It is useful to introduce a so-called linearization formula for the Green’s functions ∆m2(X, Y ),

∆∗m2(X, Y ) and Wm2(X, Y ). We use the variable α := (D − 1)/2 to keep track of spacetime

dimension and the mass variable σ defined by the equation −σ(σ + 2α) = m2`2. All three

Green’s functions are proportional to the Gegenbauer function Cα
σ (Z). The following lin-

earization formula for the Gegenbauer function allows us to replace a product of Gegenbauer

functions with an integral of a single Gegenbauer function [23]:

Cα
σ1

(Z)Cα
σ2

(Z) = − 4πα

Γ(α)
sin(πσ1) sin(πσ2)

∫
µ

ρασ1σ2
(µ)

sin(πµ)
Cα
µ (Z). (5.8)

In this equation Cα
σ (Z) is the Gegenbauer function which is analytic in the complex Z plane

cut along Z ∈ (−∞,−1]. We assume Reσ1 < 0 and Reσ2 < 0, which is valid for m2
1,2 > 0.

The shorthand
∫
µ
. . . denotes a contour integral in the complex µ plane with measure dµ/2πi.

The integration contour runs from −i∞ to +i∞ within the strip Re(σ1 + σ2) < Reµ < 0.

Within this strip the integrand is analytic and the contour integral converges absolutely.

From (5.8) we may write the following linearization formula for the Green’s functions, with

Hσ(X, Y ) standing for ∆σ(X, Y ), ∆∗σ(X, Y ), or Wσ(X, Y ):

Hσ1(X, Y )Hσ2(X, Y ) =

∫
µ

ρασ1σ2
(µ)Hµ(X, Y ). (5.9)

Of course, most of the content of (5.9) is contained in the details of the function ρασ1σ2
(µ).
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The explicit form of ρασ1σ2(µ) can be found in [23]14; we will not need the explicit form. We

need only note that:

1. ρασ1σ2
(µ) is itself analytic in the region Reµ > Re(σ1 + σ2) and that in this region the

function behaves at large |µ| � 1 like |µ|2α−3 log(µ). In particular, it follows that∫
µ

ρασ1σ2
(µ)

m2 + µ(µ+ 2α)
= 0 for α < 2 (5.10)

for m2 > 0 with the µ contour lying to the right of poles at µ = −α±√α2 −m2 (both

of which lie in the left half-plane).

2. The function ρασ1σ2
(µ) is proportional to Γ(2−2α) and so has simple poles as a function

of α at α = 1, 3/2, 2, . . . . Of course, the left-hand sides of (5.8) and (5.9) are regular

for these values of α; the integral over µ cancels these poles. However, the integral of

an arbitrary function of µ times ρασ1σ2
(µ) will generically not cancel this divergence and

so will diverge at these values of α.

The O(g2) correction to the propagator in this theory is given in the in-in formalism by

the expression

〈Tφ(X1)φ(X2)〉 = −g2

∫
Y1

∫
Y2

{
∆σ1(Y1, X1)∆σ2(Y2, X2)∆σ3(Y1, Y2)∆σ4(Y1, Y2)

−Wσ1(Y1, X1)∆σ2(Y2, X2)Wσ3(Y1, Y2)Wσ4(Y1, Y2)

+Wσ1(Y1, X1)Wσ2(Y2, X2)∆∗σ3
(Y1, Y2)∆∗σ4

(Y1, Y2)

−∆σ1(Y1, X1)Wσ2(Y2, X2)Wσ3(Y2, Y1)Wσ4(Y2, Y1)

}
.

(5.11)

The first two terms in (5.11) contain the integral over Y1:

T1 :=

∫
Y1

{
∆σ1(Y1, X1)∆σ3(Y1, Y2)∆σ4(Y1, Y2)

−Wσ1(Y1, X1)Wσ3(Y1, Y2)Wσ4(Y1, Y2)

}
. (5.12)

14The definition of ρασ1σ2
(µ) used here is (−2) times the ρασ1σ2

(L) of that paper.
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To compute T1 we first use the linearization formula (5.9) in each term, then use (5.6) to

integrate over Y1:

T1 =

∫
µ

ρασ3σ4
(µ)

∫
Y1

{∆σ1(Y1, X1)∆µ(Y1, Y2)−Wσ1(Y1, X1)Wµ(Y1, Y2)}

=
1

i

∫
µ

ρασ3σ4
(µ)

[
∆µ(Y2, X1)−∆σ1(Y2, X1)

m2
1 −m2

µ

]
=

1

i

∫
µ

ρασ3σ4
(µ)

m2
1 −m2

µ

∆µ(Y2, X1). (5.13)

We compute with α < 3/2, so the final equality follows from (5.10). The latter two terms in

(5.11) contain the integral over Y1:

T2 :=

∫
Y1

{
Wσ1(Y1, X1)∆∗σ3

(Y1, Y2)∆∗σ4
(Y1, Y2)

−∆σ1(Y1, X1)Wσ3(Y2, Y1)Wσ4(Y2, Y1)

}
. (5.14)

To compute T2 we again use the linearization formula (5.9), then use the integral

J(X1, X2) := i

∫
Y

{
Wσ1(X1, Y )∆σ2(Y,X2)−∆∗σ1

(X1, Y )Wσ2(Y,X2)
}

=
Wσ1(X1, X2)−Wσ2(X1, X2)

m2
2 −m2

1

. (5.15)

This integral may be derived in the same manner as I(X1, X2) by examining the Wightman

correlation function 〈φ1(x1)φ2(x2)〉 in the SO(2)-rotated theory.

Inserting (5.15) into (5.14) yields

T2 =

∫
µ

ρασ3σ4
(µ)

∫
Y1

{
Wσ1(Y1, X1)∆∗µ(Y1, Y2)−∆σ1(Y1, X1)Wµ(Y2, Y1)

}
= −1

i

∫
µ

ρασ3σ4
(µ)

[
Wµ(Y2, X1)−Wσ1(Y2, X1)

m2
1 −m2

µ

]
= −1

i

∫
µ

ρασ3σ4
(µ)

m2
1 −m2

µ

Wµ(Y2, X1). (5.16)

Once again the last equality follows from (5.10). Assembling (5.13) and (5.16) we may write

the propagator correction as

〈Tφ(X1)φ(X2)〉 = −g
2

i

∫
µ

ρασ3σ4
(µ)

m2
1 −m2

µ

∫
Y2

{
∆σ2(Y2, X2)∆µ(Y2, X1)

−Wσ2(Y2, X2)Wµ(Y2, X1)
}
.

(5.17)
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The remaining integral over Y2 may be performed using (5.6):

〈Tφ(X1)φ(X2)〉 = g2

∫
µ

ρασ3σ4
(µ)

m2
1 −m2

µ

[
∆µ(X1, X2)−∆σ2(X1, X2)

m2
2 −m2

µ

]
= g2

∫
µ

ρασ3σ4
(µ)

(m2
1 −m2

µ)(m2
2 −m2

µ)
∆µ(X1, X2). (5.18)

The expected UV divergence of this expression is in the factor Γ(2−2α) contained in ρασ1σ2
(µ).

The Euclidean computation is essentially identical, using the analogue of (5.15) involving

only Euclidean propagators15, so that the results agree under analytic continuation as desired.

The details of the Euclidean calculation were given in [23], where it is also shown that

both the final expression and the counterterms used to render a finite expression in higher

dimensions agree with the standard flat-space results in the limit `→∞.

One can perform essentially the same computations using Pauli-Villars regularization

instead of dimensional regularization. Note that the key steps above were the linearization

formula (5.8), the property (5.10) of the form factor ρασ1σ2
, and the composition rules (5.6)

and (5.15). But it is clear from the derivation in [23] that a similar linearization formula

can be used to express the product of two Pauli-Villars regularized Green’s functions as an

integral over (un-regularized) Gegenbauer functions. In this case, the corresponding form

factor ρα,Mσ1σ2
is manifestly finite for all α, but depends on the Pauli-Villars regulator mass M .

While ρα,Mσ1σ2
is analytic as above, it falls off faster at large µ so that the analogue of (5.10)

is in fact satisfied for all α. Expanding any remaining regularized propagators as a sum of

un-regularized propagators then allows us to apply the composition rules (5.6) and (5.15)

and to complete the calculation. The result is similar to that above with the replacement

ρασ1σ2
→ ρα,Mσ1σ2

and with extra terms coming from the regulators. The Euclidean Pauli-Villars

computation proceeds in precisely the same way and again agrees after analytic continuation.

Finally, we note that the analogous 1-loop correction to the Wightman function 〈φ(X1)φ(X2)〉
of this theory was recently considered by Krotov and Polyakov (see §6 of [17]; the same cor-

relation function is considered in §7, but with respect to a different state). Our result

for this correlation function is simply the right-hand side of (5.18) with the replacement

∆µ(X1, X2) → Wµ(X1, X2). It is difficult to compare these two results exactly because

the result of [17] has not been renormalized (our renormalized result is presented in [23]).

However, we can safely compare the behavior of the two results in the infrared where the

effect of renormalization is clear. To compare with [17] we set all masses to be equal. Using

15The Euclidean analogue of (5.15) is identical to the Euclidean analogue of (5.2).
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techniques presented in [23] we find the leading behavior at large |Z12| � 1 to be

〈φ(X1)φ(X2)〉 =
g2ρασσ(σ)− δm2 +m2δφ

16πα+1(σ + α)2

×{Γ(−σ)Γ(σ + α)(−2Z12)σ logZ12

+Γ(σ + 2α)Γ(−σ − α)(−2Z12)−(σ+2α) logZ12

} [
1 +O

(
Z−1

12

)]
.

(5.19)

Here δm2 and δφ are the real, divergent, coefficients of the mass and field renormalization

counterterms which cancel the divergent terms in ρασσ(σ). We find the same asymptotic

dependence on Z12 as [17]; in particular, while the Wightman function of the free theory has

two asymptotic branches which decay like Zσ
12 and Z

−(σ+2α)
12 , the O(g2) correction has two

asymptotic branches that each decay slower by a multiplicative factor of logZ12.

The authors of [17] interpret the appearance of the logarithm in the asymptotic behavior

(5.19) as an indication of an “infrared correction” to the correlator. Indeed, the logarithm

indicates that the 1-loop correction induces an O(g2) correction to the mass parameter σ;

as a result, the asymptotic expansion of the correlator is altered in perturbation theory

like (Z)σ+O(g2) = O(g2)(Z12)σ logZ12 + O(g4). The O(g2) correction to σ can be computed

by performing the sum over 1PI diagrams of the form of Figure 13 (b). This analysis

was performed in detail [23]. There it was found that, at least for scalar fields with bare

masses belonging to the principal series of SO(D, 1), the O(g2) correction to σ has a finite

negative real part (equivalently, the correction introduces a finite negative imaginary part

to the self-energy) which cannot be removed with a local Hermitian counterterm. Thus the

O(g2) correction unambiguously increases the rate of decay of the 1PI-summed correlator

so that this correlator decays faster than any free Wightman function. This agrees with

the analogous computation in flat-space where the 1PI-summed correlator also enjoys an

enhanced exponential rate of decay at large separations [40].

6 Discussion

We have shown that Euclidean techniques and in-in perturbation theory on the Poincaré

(a.k.a. cosmological) patch of de Sitter yield identical correlation functions for scalar field

theories with positive masses. This is in contrast with the situation for the in-in perturbation

theory defined by global coordinates on de Sitter, where the corresponding factorization

property fails [17] and the in-in scheme contains infra-red divergences. Our equivalence holds

diagram by diagram and for any finite value of appropriate Pauli-Villars regulator masses.

It thus also holds for the fully renormalized diagrams. While we focussed on non-derivative

interactions, interactions involving derivatives can be handled in precisely the same way so
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long as additional Pauli-Villars subtractions are made as described in section 2.2. We used

a 3-step argument in the main text, though a more direct analytic continuation is described

in appendix A.

As a check on the above arguments, we also explicitly calculated the one-loop propagator

corrections due to both φ3 and φ4 interactions for all masses and in all dimensions in section

5. The Poincaré in-in and Euclidean calculations agreed precisely 16. We suspect that

methods similar to those used in section 5, perhaps combined with Mellin-Barnes techniques

as in [24], could be used to give a rather direct diagram-by-diagram proof of the equivalence

of Euclidean and Poincaré in-in techniques, but we have not explored the details.

A number of points merit further discussion. First, some physicists have conjectured

that in-in calculations in the Poincaré patch lead to IR divergences, even for fields with

m2 > 0 due to contributions with vertices at large conformal time λ. But there are clearly

no such divergences in Euclidean signature. So how can the two forms of perturbation theory

agree diagram by diagram? We believe that, if there are such divergences, they are better

classified as ultra-violet (UV) divergences and are associated with the fact that the limit

λ→∞ defines a null surface (the cosmological horizon) so that light-cone singularities can

arise even at what appear to be large separations between points.

To a certain extent, the classification of these divergences as UV or IR in the cosmological

patch may be a matter of semantics. What is important is that any divergences may be

cancelled using only local counter-terms. This much is clear from our analysis: We have

seen that adding a Pauli-Villars regulator M2 removes all divergences, and that the in-in

and Euclidean calculations agree at all finite values of M2. This means that they have the

same divergence structure in the limit M2 →∞, and that divergences can be removed using

the same sets of counter-terms. But all divergences for massive theories on SD are clearly

ultra-violet in nature and so are the same as on Rd. Local counter terms suffice to remove

them.

Second, the reader will recall that the argument given in section 3 to show factorization

(i.e., that the vertical sections of the contour at infinite past may be neglected) required

the propagators to fall off at large timelike separations. Without such fall-off, the two

formalisms should not agree. Instead, analytic continuation of the Euclidean perturbation

theory would give the terms of the in-in formalism, together with terms associated with

integrals over some contour at infinity in the complex t-plane. How then should we interpret

this disagreement? If the propagators do not fall off at large times, then integrals over the

16 We have also used a combination of analytic and numerical techniques to check agreement of Poincaré
in-in and Euclidean correlators for the tree-level 3-point function for D = 4 for m2 = 2 (conformal coupling)
and also for the one-loop correction to the 4-point function for D = 3 and m2 = 3/4 (also conformal coupling)
evaluated at two pairs of coincident points. Both of these diagrams are finite and require no regularization.
Our numerics indicate agreement to at least one part in 107. As these calculations do not yield significant
insights, we have refrained from presenting the details.
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contour at infinity will generally diverge. Thus, one would expect at most one formalism to

give finite results. Let us suppose that the Euclidean formalism is well-defined and finite.

If one can establish the appropriate positivity properties, then analytic continuation will

define a good quantum state. In this case, it would appear that any divergences of the

in-in formalism are an unphysical artifact of this particular perturbative framework, and one

might hope to better relate the two formalisms through an appropriate resummation of the

divergent in-in formalism.

There is some potential for this scenario to hold in perturbative gravity. For example, the

tree-level three-point correlator constructed by Maldacena in [41] in the momentum space

is IR divergent when inverse Fourier-transformed to position space. On the other hand,

the three-point function constructed on SD using Euclidean propagators would have no IR

divergences (see, e.g. [42, 43] for D = 4). It may therefore be interesting to re-examine the

three-point function in Euclidean gravity. However, we note that some physicists have raised

objections to these propagators [44, 45]. In addition, at least with generic gauge choices the

Euclidean gravitational action is not bounded below (though see [46]) . This means that one

cannot rely on Osterwalder-Schräder arguments [28] to guarantee that analytic continuation

of the Euclidean correlators defines a positive-definite Hilbert space, and positivity would

need to be verified.

The other possibility when propagators do not fall off is that both forms of perturbation

theory are ill-defined. This is the case for massless scalars on de Sitter. But even here the

divergences can be an artifact of the particular scheme for perturbation theory. In [26],

Rajaraman showed that, in the presence of a φ4 interaction with positive coefficient in the

Hamiltonian, the Euclidean scheme can be resummed to give a new well-defined perturbation

theory. Since the Euclidean action is bounded below, the resulting Euclidean correlators will

satisfy reflection-positivity and can be analytically continued to give a good state of the

Lorentzian theory.

We close with a brief comment on other generalizations. Recall that our first step was to

verify that the usual connection between Euclidean methods and thermal in-in field theory

on a static spacetime holds in the context of the de Sitter static patch. It is clear that

similar arguments will hold in the static regions of generic spacetimes with bifurcate Killing

horizons, so long as the propagators again fall off sufficiently quickly at large separations.

For a particularly amusing application, consider the standard Minkowski space correlators

(in the Minkowski vacuum) for which the usual perturbation theory integrates the vertices of

Feynman diagrams over all of Minkowski space. We now see that, so long as their arguments

are taken to lie in, say, the right Rindler wedge, these correlators can in fact be computed

using in-in perturbation theory in the Rindler wedge, and thus by integrating vertices of the

in-in diagrams only over this Rindler wedge. One would expect this fact to be well-known,

but we have been unable to find any discussions in the literature.
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A Direct analytic continuation

If an analytic function f(z1, . . . , zN) of N variables is integrated over a real N -dimensional

compact surface S with no boundary in CN as

I =

∫
S
f(z1, . . . , zN)dz1 ∧ · · · ∧ dzN , (A.1)

we have I = 0 as long as f has no singularities on or inside S because the differential

form f(z1, . . . , zN)dz1 ∧ · · · ∧ dzN is closed. This generalization of Cauchy’s theorem can be

used for the analytic continuation of correlators in the Euclidean formalism to those in the

Poincaré in-in formalism. In either formalism the integration is over a manifold of the form

Mn, where M is a real D-dimensional surface in complexified sphere, SD, and where n is the

number of internal vertices. We showed in section 3 that we can take M = CE×SD−1
h where

CE is a contour similar to that shown in figure 6 and where SD−1
h is a D − 1 dimensional

half-sphere in the Euclidean formalism. On the other hand, we take M = CP ×RD−1 where

CP is a contour on the complex λ-plane with measure dλ/λD (see figure 9) in the Poincaré

in-in formalism. The generalized Cauchy’s theorem together with the regularization of the

propagator in section 4.2 can be used to show that the amplitude, which is an integral over

Mn, is analytically continued as an analytic function of the external points on SD if M can be

deformed, with the external points moving and remaining on M , without letting it cross any

singularities of the integrand17. In this appendix we demonstrate that this deformation of

the surface M of integration from S1 = CE×SD−1
h (Euclidean formalism) to S2 = CP ×RD−1

(Poinaré in-in formalism) can indeed be achieved.

We start with the surface S1 for the Euclidean formalism. It can be given in Poincaré

coordinates as follows:

S1 = {(Λeiτ ,Xeiτ ) : τ ∈ (−ε, ε), Λ2 − ‖X‖2 = f(τ) > 0, Λ > 0,X ∈ RD−1}, (A.2)

17We expect that the integrals on all intermediate surfaces can be shown to converge by methods similar
to those employed in sections 3 and 4.
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where f(τ) → ∞ as τ → ±ε. This can be shown using the following relationship between

the static and Poincaré coordinates, (t, θ, X̂) with X̂ · X̂ = 1, and (λ,x), respectively:

e−2t = λ2 − x · x, (A.3)

X̂ i sin θ = xi/λ. (A.4)

On the other hand the contour in figure 9, which is the λ-contour for the Poincaré in-in

formalism before taking the limit Im λ→ 0, corresponds to

S2 = {([f(τ)]1/2 + iτ,X) : τ ∈ (−ε, ε), X ∈ RD−1}. (A.5)

If the points X1 = (λ1,x1) and X2 = (λ2,x2) are the arguments of a propagator, then

(2.16) shows that it is singular if and only if

(X1 −X2)2 = −(λ1 − λ2)2 + (x1 − x2) · (x1 − x2) = 0. (A.6)

It can readily be seen that this equation is not satisfied by any pair of distinct points on

S1 or S2. Since the integrand is a product of propagators with arguments on the surface of

integration, what we need to show is that there is a continuous deformation from S2 to S1

such that no intermediate surfaces contain two distinct points satisfying (A.6)18. We note

that, if the vector Im X1 − Im X2 is timelike, then (A.6) does not hold.

First consider the following one-parameter family of surfaces:

S2,γ = {(Λ + iτ,X) : Λ2 − γ‖X‖2 = f(τ)}, (A.7)

where f(τ) is the same positive function as in (A.2) and where 0 ≤ γ ≤ 1. Note that

S2,0 = S2. For any two points Xj = (Λj + iτj,Xj), j = 1, 2, on S2,γ, we have

Im X1 − Im X2 = (τ1 − τ2,0), (A.8)

which is timelike if τ1 6= τ2. If τ1 = τ2, then (X1 − X2)2 > 0 because X1 = (Λ1,X1) and

X2 = (Λ2,X2) are both on the hyperboloid Λ2 − γ‖X‖2 = f(τ1) with 0 ≤ γ ≤ 1. Thus, the

deformation of S2 to S2,1 leads to analytic continuation of the integral.

Next we consider the following two-parameter family of surfaces:

S(α,β) = {((Λ + iατ)eiβτ ,Xeiβτ ) : Λ2 − ‖X‖2 = f(τ)}, (A.9)

where 0 ≤ α, β ≤ 1. We note that S2,1 = S(1,0) and S1 = S(0,1). Consider two points on

S(α,β):

X1 = ((Λ1 + iατ1)eiβτ1 ,X1e
iβτ1), (A.10)

X2 = ((Λ2 + iατ2)eiβτ2 ,X2e
iβτ2). (A.11)

18We can show as in section 4.2 that coincidence singularities do not spoil the analytic continuation
argument here.
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Define X̃j := e−iβτ2Xj, j = 1, 2. Since (A.6) is invariant under multiplication of X1 and X2

by a common factor, it is not satisfied if Im X̃1 − Im X̃2 is timelike. We find

Im X̃1 − Im X̃2 = (Λ1 sin β(τ1 − τ2) + ατ1 cos β(τ1 − τ2)− ατ2,X1 sin β(τ1 − τ2)). (A.12)

If ε is sufficiently small — recall |τ1|, |τ2| < ε — then this vector is timelike for 0 ≤ α, β ≤ 1

provided that at least one of them is nonzero and that τ1 6= τ2. If τ1 = τ2, then we have

(X̃1 − X̃2)2 > 0 because X̃1 = (Λ1,X1) and X̃2 = (Λ2,X2) are both on the hyperboloid

Λ2 − ‖X‖2 = f(τ1). Thus, the deformation of S2,1 to S1 gives analytic continuation of the

integral if ε is sufficiently small, and, hence, so does the deformation of S2 to S1. When

combined with the various convergence and fall-off arguments from the main text, this result

implies that the correlators computed using the contour of figure 9 in the Poincaré in-in

formalism is equal to the corresponding analytic continuation of the Euclidean correlators.
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