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We treat a model in which tensor perturbations of de Sitter spacetime, represented as a spatially
flat model, are modified by the effects of the vacuum fluctuations of a massless conformally invari-
ant field, such as the electromagnetic field. We use the semiclassical theory of gravity with the
expectation value of the conformal field stress tensor as a source. We first study the stability of
de Sitter spacetime by searching for growing, spatially homogeneous modes, and conclude that it is
stable within the limits of validity of the semiclassical theory. We next examine the modification
of linearized plane gravity waves by the effects of the quantum stress tensor. We find a correction
term which is of the same form as the original wave, but displaced in phase by π/2, and with an
amplitude which depends upon an initial time. The magnitude of this effect is proportional to the
change in scale factor after this time. We discuss alternative interpretations of this time, but pay
particular attention to the view that this is the beginning of inflation. So long as the energy scale
of inflation and the proper frequency of the mode at the beginning of inflation are well below the
Planck scale, the fractional correction is small. However, modes which are transplanckian at the
onset of inflation can undergo a significant correction. The increase in amplitude can potentially
have observable consequences through a modification of the power spectrum of tensor perturbations
in inflationary cosmology. This enhancement of the power spectrum depends upon the initial time,
and is greater for shorter wavelengths.

PACS numbers: 04.62.+v,98.80.Cq,04.60.-m,04.30.-w

I. INTRODUCTION

Most versions of inflationary cosmology assume a period of exponential expansion in which the universe is ap-

proximately a portion of de Sitter spacetime. Quantum fields in de Sitter spacetime play a crucial role in creating

the primordial spectrum of scalar and tensor perturbations. In addition, quantum effects can potentially modify the

duration of inflation and possibly introduce instabilities. Recently, there has been work on the possible effects of

quantum stress tensor fluctuations in inflation [1, 2].

In the present paper, we examine some effects in the semiclassical theory, where gravity is coupled to the renormal-

ized expectation value of a matter field stress tensor, the mean value around which stress tensor fluctuations occur.

The semiclassical theory has been extensively studied and applied to scalar perturbations of de Sitter spacetime. (See,

for example, Ref. [3] and references therein.) There seems to have been less attention paid to tensor perturbations,

which will be the topic of this paper. A brief discussion was given by Starobinsky [4] and a more detailed derivation

of the equations for tensor perturbations was given by Campos and Verdaguer [5]. We will treat a model in which the
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matter field is a conformal field, such as the electromagnetic field, and address two physical questions: the stability

of de Sitter spacetime under tensor perturbations, and the effects of one-loop quantum matter field corrections upon

the propagation of gravity waves in de Sitter spacetime.

In Sect. II, we review the aspects of the semiclassical theory needed for our analysis. Section III treats the geometric

terms in the stress tensor expectation value. Here we find that these terms have no physical effect for our problems.

The stability of the tensor perturbations is discussed in Sect. IV. The one-loop correction to gravity wave modes is

derived in Sect. V, and the possible implications for inflationary cosmology are discussed in Sect. VI. Our results are

summarized in Sect. VII.

We adopt the sign conventions of Ref. [6], and use units in which ~ = c = 1.

II. WEAKLY PERTURBED DE SITTER SPACETIME

We will be concerned with the piece of global de Sitter spacetime which can be represented as a spatially flat

Robertson-Walker universe with the metric

ds2 = a2(η) (−dη2 + dx2 + dy2 + dz2) , (1)

where a(η) = −1/(Hη) and η < 0 is the conformal time coordinate. We wish to consider tensor perturbations of this

geometry, which describe gravitational waves on the de Sitter background. Let the perturbed metric be

gµν = γµν + hµν , (2)

where γµν is the background metric of Eq. (1), and hµν is the perturbation. We will employ the transverse trace-free

gauge defined by

hµν
;ν = 0, h = 0 and hµνuν = 0 . (3)

Here uν = δν
t is the four velocity of the comoving observers, covariant derivatives are taken respect to the fixed

de Sitter background, and indices are raised and lowered by the background metric. These conditions remove all of

the gauge freedom, and leave only the two physical degrees of freedom associated with the possible polarizations of a

gravity wave.

It was shown long ago by Lifshitz [7] that the mixed components hν
µ satisfy the scalar wave equation

�sh
ν
µ = 0 , (4)
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where �s is the scalar wave operator. One consequence of this result is that de Sitter spacetime is classically stable

against tensor perturbations, as the solutions of Eq. (4) are oscillatory functions. A second consequence is that

gravitons in de Sitter spacetime behave as a pair of massless, minimally coupled quantum scalar fields [8].

It is well known that such massless scalar fields exhibit a type of quantum instability in that they do not possess a

de Sitter invariant vacuum state. As a result, the mean squared field grows linearly in time [9–11] as 〈ϕ2〉 ∼ H3t/(4π2).

Similarly, the mean squared graviton field also grows linearly: 〈hν
µ h

µ
ν 〉 ∼ H3t/π2. However, this growth does not

produce any physical consequences, at least in pure quantum gravity at the one loop level. It was shown in Ref. [12]

that this level, all of the linearly growing terms cancel in the graviton effective energy momentum tensor. Whether

there is an instability at higher orders is still unclear [13–15].

In this paper, we will study a model involving coupling of the tensor perturbations to a matter field. As a prelude,

let us briefly recall the essential features of the renormalization of 〈Tµν〉, the expectation value of a matter stress

tensor on a curved background [16]. This quantity is formally divergent, but under a covariant regularization, the

divergent terms are of three types. The first is proportional to the metric tensor, and can be absorbed in a cosmological

constant renormalization. The second is proportional to the Einstein tensor, and can be absorbed in a renormalization

of Newton’s constant. Finally, there are divergent terms proportional to two geometric tensors, Hµν and Aµν , which

arise from variation of R2 and CµναβC
µναβ terms in the action, respectively. Here R is the scalar curvature and

Cµναβ is the Weyl tensor. The explicit forms of these tensors are expressible in terms of R, the Ricci tensor, Rµν ,

and their second derivatives as

Hµν = −2∇ν∇µR+ 2gµν∇ρ∇
ρR−

1

2
gµνR

2 + 2RRµν , (5)

and [18]

Aµν = −4∇α∇βCµ
α

ν
β − 2Cµ

α
ν

β Rαβ . (6)

The derivative terms lead to a potential problem of making the Einstein equations fourth-order equations and leading

to unstable solutions. This effect is analogous to the runaway solutions of the Lorentz-Dirac equation for classical

charged particles. Various solutions to this problem have been suggested, including order-reduction approaches [17],

and criteria for the validity of the semiclassical theory [3, 18].

A well-known aspect of quantum stress tensor is the conformal anomaly. At the classical level, the stress tensor

of a conformally invariant field has a vanishing trace. This no longer holds for the renormalized stress tensor, where

〈T µ
µ 〉 6= 0. Furthermore, the anomalous trace for a free field is a state independent local geometric quantity which
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is quadratic in the Riemann tensor. In the case of a conformally invariant field in a conformally flat spacetime, the

unambiguous part of the anomalous trace arises from a geometrical term in 〈Tµν〉 of the form C Bµν , where C is a

constant which depends upon the specific field, and

Bµν = −2CαµβνR
αβ +

1

2
gµνRαβR

αβ +
2

3
RµνR −Rµ

αRνα −
1

4
gµνR

2 , (7)

where Cαµβν is the Weyl tensor. The term containing the Weyl tensor vanishes in conformally flat spacetime, but

is needed to give the correct generalization to non-conformally flat spacetimes. The tensor Bµν was obtained by

Davies et al [19] and by Bunch [20]. The conformal anomaly is given by

〈T µ
µ 〉 = C B

µ
µ = C

(

RαβR
αβ −

1

3
R2

)

. (8)

More generally, there can be a term proportional to CµναβC
µναβ in the anomalous trace, but this term will vanish

for weakly perturbed conformally flat spacetimes, such as we consider.

The semiclassical Einstein equations for gravity with a cosmological constant Λ coupled to a quantum field can be

written as

Rµν − Λgµν = 8πGN

(

〈Tµν〉 −
1

2
gµν〈T

ρ
ρ 〉

)

, (9)

where GN is Newton’s constant. In addition to the local, geometric terms in 〈Tµν〉, in general there are non-local

terms which are difficult to compute explicitly. Fortunately, for the case of small perturbations around a conformally

flat spacetime, they have been found in Refs. [4, 5, 21]. Here we will follow the coordinate space formulation given

by Horowitz and Wald [21], which is based on earlier work by Horowitz [22] and by Horowitz and Wald [23].

To first order in the perturbation hµν , Horowitz and Wald’s result can be written as

〈Tµν〉 = β Hµν + C Bµν + Pµν +Qµν . (10)

Here

Pµν = −16παa−2 ∂ρ∂σ[ln(a) C̃µρνσ ] , (11)

where C̃µρνσ is the Weyl tensor for perturbed Minkowski spacetime with the perturbation h̃µν = a−2hµν , the partial

derivatives are performed with respect to the Minkowski space coordinates, and α is another constant which depends

upon the quantum field. The most complicated term in Eq. (10) is the non-local part given by

Qµν = α a−2

∫

d4x′Hλ(x− x′) Ãµν , (12)
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Field C α

Conformal scalar 1/(2880 π2) 1/(3840 π3)

Spin 1

2
11/(5760 π2) 1/(1280 π3)

Photon 31/(1440 π2) 1/(320 π3)

TABLE I: The coefficients C and α are listed for three different massless fields, where the spin 1

2
field result refers to for Weyl

fermions and becomes a factor of 2 larger for 4-component Dirac fermions. This table is based on data from Refs. [16, 22].

where

Ãµν = −4 ∂ρ∂σ C̃µρνσ , (13)

is the first order form of Aµν for perturbed Minkowski spacetime with the perturbation h̃µν = a−2hµν . The action of

the distribution Hλ(x−x′) on a function f can be expressed in terms of radial null coordinates u = t− r and v = t+ r

and an angular integration as

∫

d4x′Hλ(x− x′) f(x′) =

∫ 0

−∞

du

∫

dΩ

[

∂f

∂u

∣

∣

∣

∣

∣

v=0

ln(−u/λ) +
1

2

∂f

∂v

∣

∣

∣

∣

∣

v=0

]

. (14)

This expression is an integral over the past lightcone of the point x.

The result for 〈Tµν〉, Eq. (10), contains two constants, C and α, whose values can be determined explicitly, and are

given in Table I for several fields. The remaining two constants, β and λ, are undetermined. A shift in either of these

constants adds additional terms proportional to Hµν and Aµν = a−2Ãµν , respectively. We could have added a term

of the form cAAµν to the right-hand side of Eq. (10). The result would then be invariant under changes in λ in the

sense that a shift in λ would alter cA.

III. EFFECTS OF THE LOCAL GEOMETRIC TERMS

Here we treat the local, geometric tensors Hµν and Bµν , and show that they produce no effects on the tensor

perturbations other than finite shifts of the cosmological and Newton’s constants. Write Eq. (9) as

Rµν − Λ0gµν = 8πG0

(

〈Tµν〉 −
1

2
gµν〈T

ρ
ρ 〉

)

, (15)

where Λ0 and G0 are the cosmological and Newton’s constants after all infinite renormalizations have occurred, but

before these finite shifts. Here we take

〈Tµν〉 = β Hµν + C Bµν . (16)

To zeroth order, that is, on the de Sitter background, we have

(0)
Bµν = −

1

3
γµνΛ2 , (0)

B = −
4

3
Λ2 , and (0)Hµν = 0 . (17)
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If we insert these relations in Eq. (9), we find

(0)Rµν − Λγµν = 0 , (18)

where the shifted cosmological constant, Λ, is related to Λ0 by

Λ = Λ0 +
8π

3
G0 C Λ2 , (19)

In general, Bµν is not of the form of a cosmological constant term, but in de Sitter space, it produces an effective shift

in Λ. Here we have written the second term on the right-hand side of Eq. (19) in terms of the shifted cosmological

constant, Λ, but to the order we are working, we could have equally well used Λ0.

Next we need to find the explicit forms for the various tensors in Eq. (15) to first order in hµν in the transverse,

trace-free gauge, Eq (3). The Ricci tensor has the first order form

(1)Rµν = −
1

2
h α

µν;α +
4

3
Λ hµν . (20)

Thus, if 〈Tµν〉 = 0, Eq. (9) becomes h α
µν;α − 2

3 Λ hµν = 0, which is equivalent to Eq. (4). Note that in the presence of

sources, Eq. (3) is generally no longer a gauge condition, but rather a physical restriction on the perturbation. Here

all the terms in the first order Einstein equations are traceless, so this condition is fulfilled. (Strictly, it is (1)Rµ
ν which

is a gauge invariant quantity, whereas (1)Rµν and (1)Rµν are not necessarily gauge invariant [24].) The first order

form of Hµν is

(1)Hµν = 4Λ

(

h α
µν;α −

2

3
Λ hµν

)

, (21)

and that of Bµν is

(1)
Bµν = −

1

3
Λ

(

h α
µν;α +

1

3
Λ hµν

)

. (22)

The net contribution of Bµν to the right hand side of Eq. (15) is proportional to

(1)
Bµν −

1

2
hµν

(0)
B = −

1

3
Λ

(

h α
µν;α −

5

3
Λ hµν

)

. (23)

If we use Eqs. (19), (20), (21), and (23), then we may write Eq. (15) as

(

1 + 64πG0 β Λ −
16π

3
G0 C Λ

)

((1)Rµν − Λhµν) = 0 . (24)

This implies that once we introduce additional terms in the stress tensor, the Einstein equation becomes Eq. (9), with

the shifted Newton’s constant given by

GN = ℓ2p = G0

(

1 + 64πG0 β Λ −
16π

3
G0 C Λ

)−1

, (25)
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where ℓ2p is the Planck length.

Now we may consider only the effects of the Pµν and Qµν terms on the tensor perturbations, which satisfy the

equation

�sh
j
i = −16πℓ2p (P j

i +Qj
i ) , (26)

in the transverse, trace-free gauge.

IV. SPATIALLY HOMOGENEOUS SOLUTIONS

In this section, we study the stability of the tensor perturbations of de Sitter spacetime in the presence of the

quantum stress tensor of the conformal field. For this purpose, it is sufficient to examine spatially homogeneous

solutions of Eq. (26), as these will be the most rapidly growing modes if there is an instability. Note that the

tensor modes which we are considering are associated with anisotropic perturbations, even when they are spatially

homogeneous. This follows from the fact that they have non-vanishing Weyl tensor. Thus, the results of this section

are distinct from, but complementary to, recent results by Pérez-Nadal et al [25], who demonstrate stability of de

Sitter spacetime under isotropic perturbations at the one-loop level in semiclassical gravity.

In order to find the tensors Pµν and Qµν , we first need C̃µρνσ . We here ignore spatial derivatives, and restrict our

attention to spatial components, which are the only nontrivial ones in our gauge. Then we need Ãij = −4 C̃iηjη,ηη .

The relevant components of the Riemann and Ricci tensors associated with the Minkowski perturbation h̃ij are

R̃iηjη = − 1
2 h̃ij,ηη and R̃ij = 1

2 h̃ij,ηη. Note that although hij is a gravity wave on de Sitter spacetime, h̃ij is not a

source-free solution near flat spacetime. From these results, we obtain C̃iηjη = R̃iηjη + 1
2 R̃ij = − 1

4 h̃ij,ηη and hence

Ãij = ∂4
η h̃ij . (27)

We may express the local tensor Pij as

Pij = 4παa−2
[

ln(a) (a−2 hij),ηη

]

,ηη
. (28)

The non-local term involves the distribution Hλ, and an integral over the past lightcone of the point x at which the

stress tensor is evaluated. Take r = 0 at this point, in which case we may write u = η′ − η − r′ and v = η′ − η + r′.

The function on which the distribution acts depends only upon η′, so f = f(η′) = f [ 12 (u + v) + η]. As a result,

(∂f/∂u)v=0 = (∂f/∂v)v=0 = 1
2f

′(η′), and we may write Eq. (14) as

∫

d4x′Hλ(x− x′) f(η′) = 4π

∫ 0

−∞

dη′
{

f ′(η′) ln

[

2(η − η′)

λ

]

+
1

2
f ′(η′)

}

. (29)
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The last term in the integrand may be absorbed in a redefinition of λ, and hence will be dropped. Thus we obtain

Qij = 4παa−2

∫ 0

−∞

dη′ ∂5
η′ h̃ij(η

′) ln

[

2(η − η′)

λ

]

. (30)

We wish to look for a growing, spatially homogeneous solution of Eq. (9). In particular, let

h̃ij = a−2 hij = hj
i = ej

i (−η)−b , (31)

where ej
i is a constant tensor and b is a constant. A solution for which b > 0 will grow as a power of conformal time

as η → 0, or exponentially in comoving time.

If we insert Eq. (31) into Eq. (28), the result is

P j
i = 4πα ej

i H
4 (−η)−b b(1 + b)[2b+ 5 − (2 + b)(3 + b) ln(−Hη)] . (32)

Similarly, Eq. (30) yields

Qj
i = 4πα ej

i H
4 (−η)−b b(1 + b)(2 + b)(3 + b)[ln(−2η/λ) − ψ(b+ 4) − γ] , (33)

where γ is Euler’s constant and ψ is the digamma function. The scalar wave operator in de Sitter spacetime here has

the form

�sh
j
i = −H2η4 d

dη

(

η−2 d

dη

)

hj
i . (34)

Equation (26) may now be written as

b(3 + b) = −ξ (2 + b)(3 + b) {b(1 + b) [ψ(b) + γ + ln(Hλ/2)] + 1 + 2b} , (35)

where ξ = 64π2 ℓ2pH
2α, and we have used the identity ψ(x + 1) = ψ(x) + 1/x. Thus the homogeneous solutions in

the absence of the quantum stress tensor (ξ = 0) are b = 0 and b = −3, which are both stable. The only possibility

for an unstable solution which is within the domain of validity of the semiclassical theory is one with a small positive

value of b. If we expand Eq. (35) for |b| ≪ 1, we find

b(3 + b) ≈ −ξ
{

6[1 + ln(Hλ/2)] b+ [5 + π2 + 11 ln(Hλ/2)] b2 +O(b3)
}

. (36)

Thus b = 0 is still a solution, but there are no solutions with b > 0 so long as ξ ≪ 1 and ξ | ln(Hλ/2)| ≪ 1. These

latter conditions can be considered to be criteria for the validity of the semiclassical theory. Hence we conclude that

de Sitter spacetime is stable in the semiclasical theory against tensor perturbations. Here we should comment on the

explicit appearance of the parameter λ in Eq. (35). Although the theory is invariant under changes in λ so long as
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there is a term proportional to Aµν in 〈Tµν〉, we have set the coefficient of this term to zero, which is analogous to a

gauge choice. In any case, our conclusion does not depend upon the value of λ in Eq. (35), so long as ξ | ln(Hλ/2)| ≪ 1.

If this condition is not fulfilled, any resulting instabilities can be viewed as a breakdown of the semiclassical theory.

V. EFFECTS ON GRAVITY WAVES

A. The Form of the Correction

In this section, we will study the effect of the quantum stress tensor on gravity waves in de Sitter spacetime. The

plane wave solutions of Eq. (4) are of the form

hν
µ = c0 e

ν
µ (1 + ikη) ei(k·x−kη) , (37)

where c0 is a constant and eν
µ is the polarization tensor. We need to compute the quantum stress tensor in perturbed

de Sitter spacetime, with this plane wave perturbation. The first step in finding the tensors Pµν andQµν is constructing

C̃µρνσ , the Weyl tensor associated with the conformally transformed perturbation of flat spacetime, h̃µν . Note that

mixed components of h̃ν
µ coincide with those of the original perturbation of de Sitter spacetime, hν

µ. However, h̃ν
µ is

not a vacuum solution of perturbed flat space, and has a non-zero Ricci tensor

R̃ν
µ = −

1

2
�̃h̃ν

µ , (38)

where �̃ is the flat space wave operator. Similarly, we find the associated Riemann tensor to satisfy

∂ρ∂σ R̃µρνσ = −
1

2
�̃�̃h̃µν . (39)

Hence the tensor Ãµν and the Weyl tensor satisfy

Ãµν = −4∂ρ∂σ C̃µρνσ = �̃�̃h̃µν . (40)

However, when we use the perturbation given by Eq. (37), we find that Ãµν = 0, so the non-local term vanishes:

Qµν = 0 . (41)

The tensor P ν
µ is non-zero and is given by

P ν
µ = 8πiαH2 eν

µ c0k
3 η a−2 ei(k·x−kη) . (42)

In the presence of the quantum stress tensor, the modified gravity wave may be expressed as hν
µ + h′

ν
µ, where

h′
ν
µ(x) = 16πℓ2p

∫

d4x′
√

−g(x′)GR(x, x′) P ν
µ , (43)



10

where GR(x, x′) is the scalar retarded Green’s function in de Sitter space. Note that we are performing a perturbation

expansion in powers of the squared Planck length, ℓ2p, or equivalently Newton’s constant, GN . Because this expansion

parameter has dimensions, the effective dimensionless coupling constant is (ℓp/λP )2, where λP is a characteristic

physical length scale associated with the perturbation.

The retarded Green’s function vanishes for η < η′ and satisfies

�sGR(x, x′) = −
δ(x− x′)
√

−g(x′)
. (44)

It is convenient to take a spatial Fourier transform and write

GR(x, x′) =
1

a2(η′) (2π)3

∫

d3k eik·(x−x
′) G(η, η′; k) , (45)

where G(η, η′; k) satisfies

d2G

dη2
−

2

η

dG

dη
+ k2G = δ(η − η′) . (46)

The explicit form for G(η, η′; k) is given in Eq. (72) of Ref. [1], and may be expressed as

G(η, η′; k) =
1

k3 (η′)2
{

(1 + k2ηη′) sin[k(η − η′)] − k(η − η′) cos[k(η − η′)]
}

, (47)

for η > η′.

B. Initial Conditions and Explicit Results

One possible initial condition is to set h′
ν
µ(x) = 0 at η = η0. Now we may write the solution for h′

ν
µ(x), which

vanishes for η < η0, as

h′
ν
µ(x) = 128π2 ieν

µ c0αH
2 ℓ2pe

ik·x

×

∫ η

η0

dη′
{

(1 + k2ηη′) sin[k(η − η′)] − k(η − η′) cos[k(η − η′)]
} e−ikη′

η′
. (48)

In the limit that η0 → −∞, that is, |η0| ≫ |η|, the dominant contribution to the integral will come from terms in the

integrand which are independent of η′. This leads to a result proportional to |η0|,

h′
ν
µ(x) ∼ 64π2 i eν

µ c0αH
2 kℓ2p |η0| (1 + ikη) ei(k·x−kη) , (49)

which has the same functional form as does hν
µ, but is out of phase by π/2 due to the factor of i.

A more precise form for h′
ν
µ is obtained by replacing η0 by η0 − η in Eq. (49). Thus the modified wave is no longer

exactly a solution of the Lifshitz equation, Eq. (4). It is no longer constant when the mode has a proper wavelength
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larger than the horizon size, k|η| < 1. This is in contrast to the unperturbed mode, Eq. (37), whose magnitude is

approximately constant when it is outside the horizon.

The most striking feature of the result Eq. (49) is that the correction term due to the quantum stress tensor is

proportional to |η0|, and hence is larger the earlier the coupling between the quantum stress tensor and the metric

perturbation is switched on. This bears some similarities to the results found in Refs. [1, 2], where the effects

of conformal stress tensor fluctuations in inflation were found to depend upon powers of the scale factor change

during inflation. However, here we are concerned with an effect of the stress tensor expectation value, and not with

fluctuations around this value.

One might think that the |η0| dependence is an artifact of sudden switching at η = η0. However, it is possible

to derive an equivalent result with a more gradual switching. For example, introduce an additional factor of ep η′

in

the integrand of Eq. (48) and let the lower limit of integration become −∞. This introduces a gradual switch-on in

which 1/p plays the role of |η0|. The result is still Eq. (49), with |η0| replaced by 1/p, showing that the more gradual

switching has no effect.

In all cases, the dependence upon |η0| might appear to violate a theorem first due to Weinberg [26]. (See also

Ref. [27].) This result states that quantum loop effects should grow no faster than logarithmically with the scale

factor during inflation. However, it was argued in Ref. [2] that there is no real violation of this theorem, because the

quantum effects are not so much growing as always large, and are due to very high frequency modes at η = η0.

The same interpretation applies to our present result, Eq. (49). We can write the ratio of the magnitude of the

correction to that of the original wave as

Γ =

∣

∣

∣

∣

h′
ν
µ

hν
µ

∣

∣

∣

∣

= 64π2αH2kℓ2p|η0| = 64π2αH kP ℓ
2
p . (50)

Here kP = k/a(η0) = kH |η0| is the physical wavenumber of the mode as measured by a comoving observer at time

η = η0. If we require that the curvature of the de Sitter spacetime be well below the Planck scale, then we have

H ℓp ≪ 1 . (51)

Similarly, if the mode in question is always below the Planck scale while it interacts with the quantum stress tensor,

then

kP ℓp ≪ 1 . (52)

These two conditions together imply that |h′
ν
µ/h

ν
µ| < 1, and hence the quantum correction to the gravity wave is

smaller than the original wave.
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However, if inflation lasts for a sufficiently long time, then modes which are cosmological interest today appear to

have been above the Planck scale at the onset of inflation. This is the cosmological version of the transplanckian

problem, which also arises in black hole physics. Hawking’s derivation of black hole evaporation [28] requires modes

which start far above the Planck scale. It is possible to obtain black hole evaporation without the use of transplanckian

modes [29, 30], but only at the price of introducing a nonlinear dispersion relation which violates local Lorentz

symmetry. An analogous choice arises in the present problem. One option is to take transplanckian mode seriously,

and allow their contributions. This option has the advantage of being the simplest extrapolation of known physics. It

has the disadvantage of doubts about the validity of perturbation theory as a expansion in powers of (ℓp/λP )2, with

λP the physical wavelength of the mode in question. A second option is to apply Eq. (49) only to modes which are

below the Planck scale at η = η0. This option avoids the possible problems with transplanckian modes, but seems to

require a non-local cutoff when implemented in coordinate space. This issue was discussed in more detail in Ref. [2],

where numerous references to earlier papers on the tranplackian issue in cosmology may be found.

In the remainder of this paper, we will explore the consequences of adopting the first option. We wish to study

the possible observational effects of the modification of gravity wave modes, and their use as a possible probe of

transplanckian physics.

VI. TENSOR PERTURBATIONS IN INFLATIONARY COSMOLOGY

One of the successes of inflationary cosmology is the prediction of a Gaussian and nearly scale invariant spectrum

of primordial density fluctuations [31–35], which seems to be confirmed by measurements on the cosmic microwave

background (CMB) [36]. Another prediction is a similar spectrum of tensor perturbations [37–40], which might be

found in polarization measurements of the CMB, but at the present these perturbations have not been detected.

The tensor perturbations from inflation are less model dependent than are the density perturbations, The former

arise from vacuum modes of the quantized graviton field in de Sitter spacetime which evolve according to the Lifshitz

equation, Eq. (4), until the last scattering surface. At this time, they leave an imprint on the CMB in the form of a

power spectrum of tensor perturbations given by (see, for example, Refs. [41, 42].)

δ2h ≈
8

π
ℓ2pH

2 . (53)

This is an approximately flat spectrum. If H slowly decreases as inflation progresses, then the spectrum is slightly

enhanced for longer wavelengths. The numerical coefficient is fixed by the normalization of vacuum graviton modes,

which leads to c0 = ℓp
√

16π/k in Eq. (37).
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The effect of the conformal stress tensor is to modify the amplitude of these modes by a factor of 1 − iΓ, where

Γ is given by Eq. (50). This in turn multiplies the power spectrum by |1 − iΓ|2 = 1 + Γ2. In order to estimate this

enhancement factor, we need to make some assumptions about a model of inflation. Let ER be the reheating energy

and assume that most of the vacuum energy which drives inflation is converted into radiation at reheating. Then

Einstein’s equations yield

H2 =
8π

3
ℓ2pE

4
R . (54)

For this discussion, we assume that H is approximately constant throughout the inflationary era. There is expansion

by a factor of about ER/(1 eV) between the end of inflation and last scattering and a further expansion by a factor

of 103 to the present. Let us choose the scale factor to be unity at the end of inflation, so its present value will be

anow = 103 ER

1 eV
. (55)

Consider a scale which presently has a proper length of ℓ0, and hence a physical wavenumber of kP = 2π/ℓ0. At the

end of inflation, its physical and comoving wavenumber coincide and are given by

k =
2π anow

ℓ0
. (56)

Recall that k is constant, so this form holds throughout the cosmological expansion.

Let

S = H |η0| , (57)

which is the factor by which the universe expands from the initial conformal time η = η0 to the end of inflation. We

may combine the above relations to write

Γ2 =
8π

3
(128π3α)2ℓ6pE

4
R S

2 a
2
now

ℓ20
. (58)

If we use the value of α = 1/(320π3) corresponding to the electromagnetic field, then we may write

Γ2 = 1.34 × 10−78

(

1025 cm

ℓ0

)2 (

ER

1015 GeV

)6

S2 . (59)

Recall that the present horizon size is of order 1028 cm, so ℓ0 ≈ 1025cm corresponds to angular scales of the order of

1◦ today.

If one has only the minimal inflation needed to solve the horizon and flatness problems, so S ≈ 1023, then the

effects of the one-loop correction on the tensor perturbation spectrum is negligible. However, larger values of S have
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the potential to produce significant corrections. For example, ER ≈ 1015GeV and S ≈ 1039 would lead to an effect of

order unity at 1◦ scales. One should expect the one-loop approximation to begin to break down, but this can serve as

an order of magnitude estimate. In contrast to the nearly flat spectrum, Eq. (53), due to free graviton fluctuations,

the one-loop effect is highly tilted toward the blue end of the spectrum.

It is of interest to compare the magnitude of this effect on the tensor perturbations with the stress tensor fluctuation

effect on density perturbations which was treated in Refs. [1, 2]. The latter effect becomes significant if ER ≈ 1015GeV

and S ≈ 1033 (See Eq. (108) in Ref. [2].), and is hence somewhat larger than the effect treated in the present paper.

VII. SUMMARY

We have constructed the semiclassical Einstein equation with a conformal matter field on a weakly perturbed

de Sitter background, using the coordinate space formulation of Horowitz and Wald [21–23], and examined gravity

wave solutions of this equation. We found no growing, spatially homogeneous (but anisotropic) solutions in a spatially,

flat universe, which implies that de Sitter spacetime is stable to tensor perturbations at the one-loop level in the

presence of conformal matter.

We further examined the effects of the one-loop correction on the propagation of finite wavelength gravity waves,

and found a correction term which depends upon the interval over which the interaction with the quantum matter

field is switched on. One viewpoint is that this is the duration of inflation. So long as the curvature of de Sitter

spacetime and the initial proper frequency of the mode are below the Planck scale, the fractional correction is small.

The effect take the form of both a phase shift and an amplitude change. If one is concerned only with the form of the

gravity wave modes at late times, this effect can be absorbed in a complex amplitude shift. However, gravity wave

modes are no longer exactly solutions of the Lifshitz equation, Eq. (4).

The effect is potentially observable with a sufficient amount of inflation through an increase in the amplitude of

the spectrum of tensor perturbations of the cosmic microwave background. This possibility does require one to take

seriously the contribution of modes which were transplanckian at the beginning of inflation.
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