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Abstract

We develop a new, mathematically precise framework for treating the effects of nonlinear phe-
nomena occurring on small scales in general relativity. Our approach is an adaptation of Burnett’s
formulation of the “shortwave approximation”, which we generalize to analyze the effects of mat-
ter inhomogeneities as well as gravitational radiation. Our framework requires the metric to be
close to a “background metric”, but allows arbitrarily large stress-energy fluctuations on small
scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak
energy condition (i.e., positivity of energy density in all frames), then the only effect that small
scale inhomogeneities can have on the dynamics of the background metric is to provide an “ef-
fective stress-energy tensor” that is traceless and has positive energy density—corresponding to
the presence of gravitational radiation. In particular, nonlinear effects produced by small scale
inhomogeneities cannot mimic the effects of dark energy. We also develop “perturbation theory”
off of the background metric. We derive an equation for the “long-wavelength part” of the lead-
ing order deviation of the metric from the background metric, which contains the usual terms
occurring in linearized perturbation theory plus additional contributions from the small-scale in-
homogeneities. Under various assumptions concerning the absence of gravitational radiation and
the non-relativistic behavior of the matter, we argue that the “short wavelength” deviations of the
metric from the background metric near a point x should be accurately described by Newtonian
gravity, taking into account only the matter lying within a “homogeneity lengthscale” of . Finally,

we argue that our framework should provide an accurate description of the actual universe.
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I. INTRODUCTION

It is generally believed that our universe is very well described on large scales by a
Friedmann-Lemaitre-Robertson-Walker (FLRW) model. However, on small scales, ex-
tremely large departures of the mass density from FLRW models are commonly observed,
e.g., on Earthll, we have dp/p ~ 10%°. Nevertheless, common sense estimates [, 2] suggest
that (a) the deviation of the metric (as opposed to mass density, which corresponds to
second derivatives of the metric) from a FLRW metric are globally very small on all scales
except in the immediate vicinity of strong field objects such as black holes and neutron
stars, and (b) the terms in Einstein’s equation that are nonlinear in the deviation of the
metric from a FLRW metric are negligibly small as compared with the linear terms in the
deviation from a FLRW metric except in the immediate vicinity of strong field objects.
These common sense estimates together with the fact that the motion of matter relative
to the rest frame of the cosmic microwave background is non-relativistic strongly suggest
that (1) the large scale structure of the universe is well described by a FLRW metric, (2)
when averaged on scales sufficiently large that |0p/p| < 1—i.e., scales of order 100 Mpc in
the present universe—the deviations from a FLRW model are well described by ordinary
FLRW linear perturbation theory, and (3) on smaller scales, the deviations from a FLRW
model (or, for that matter, from Minkowski spacetime) are well described by Newtonian
gravity—except, of course, in the immediate vicinity of strong field objects.

The above assumptions underlie the standard cosmological model, which has been re-
markably successful in accounting for essentially all cosmological phenomena. Thus, there is
good empirical evidence that assumptions (1)—(3) are at least essentially correct. Neverthe-
less, the situation is quite unsatisfactory from the perspective of having a mathematically
consistent theory wherein the assumptions and approximations are justified in a systematic
manner. Indeed, it is not even obvious that assumptions (1)—(3) are mathematically consis-
tent [3,4]. In particular, nonlinear effects play an essential role in Newtonian dynamics, e.g.,
the fact that the Earth orbits the Sun arises from Einstein’s equation as a nonlinear effect
in the deviation of the metric from flatness. It is clear that one would get an extremely poor
description of small-scale structure in the universe if one neglected the nonlinear terms in

Einstein’s equation in the deviation of the metric from a FLRW model; for example, galaxies

LIf we go to scales of atomic nuclei, then §p/p ~ 10%3.



would not be bound. But if one cannot neglect nonlinear terms in Einstein’s equation on
small scales, how can one justify neglecting them on large (i.e., ~ 100 Mpc or larger) scales?
In addition, since it is not clear exactly what approximations are needed for assumptions
(1)—(3) to be valid, it is far from clear as to how one could go about systematically improving

these approximations.

Indeed, it is far from obvious, a priori, that nonlinearities associated with small-scale
inhomogeneities could not produce important effects on the large-scale dynamics of the
FLRW model itself, as has been suggested by a number of authors [5-117] as a possible
way to account for the effects of “dark energy” without invoking a cosmological constant,
a new source of matter, or a modification of Einstein’s equation. In fact, the example of
gravitational radiation of wavelength much less than the Hubble scale illustrates that it is
possible, in principle, for small-scale inhomogeneities in the metric and curvature to affect
large-scale dynamics. The dynamics of a FLRW model whose energy content is dominated
by gravitational radiation will be very different from one with a similar matter content but no
gravitational radiation. It is the nonlinear terms in Einstein’s equation associated with the
short-wavelength gravitational radiation that are responsible for producing this difference
in the large-scale dynamics. Although common-sense estimates indicate that similar effects
on large-scale dynamics should not be produced by nonlinear effects of small-scale matter
inhomogeneities in our universe, it would be very useful to have a systematic and general
approach that can determine exactly what effects small-scale inhomogeneities can and cannot

produce on large-scale dynamics.

The main approach that has been taken to investigate the effects of small-scale inhomo-
geneities on large-scale dynamics has been to consider inhomogeneous models, take spatial
averages to define corresponding FLRW quantities, and derive equations of motion for these
FLRW quantities [18, [19]. Since, in particular, the spatial average of the square of a quan-
tity does not equal the square of its spatial average, the effective FLRW dynamics of an
inhomogeneous universe will differ from that of a homogeneous universe. However, a ma-
jor difficulty with this approach is that, when the deviations of the metric from that of
a FLRW background are not very small, it is not obvious how to interpret the averaged
quantities in terms of observable quantities. For example, if the total volume of a spatial
region is found to increase with time, this certainly does not imply that observers in this

region will find that Hubble’s law appears to be satisfied. Further serious difficulties with



this approach arise from the fact that the notion of averaging is slicing dependent and the
average of tensor quantities over a region in a non-flat spacetime is intrinsically ill defined.
In addition, the equations for averaged quantities that have been derived to date are only
a partial set of equations—they contain quantities whose evolution is not determined—so it
is difficult to analyze what dynamical behavior of the averaged quantities is actually possi-
ble. This difficulty is well illustrated by a recent paper of Buchert and Obadia [2(], where
they suggest that inflationary dynamics may be possible in vacuum spacetimes. However,
this conclusion is drawn by simply postulating that a particular functional relation holds
between certain averaged quantities under dynamical evolution. In fact, Einstein’s equation
controls the dynamical evolution of these quantities—so one is not free to postulate addi-
tional relations—but the restrictions imposed by Einstein’s equation are not considered.

The main purpose of this paper is to develop a framework that allows us to consider space-
times where there can be significant inhomogeneity and nonlinear dynamics on small scales,
yet the frameworkH is capable of describing “average” large-scale behavior in a mathemati-
cally precise manner. We seek a framework wherein the approximations are “controlled” in
the sense that they can be shown to hold with arbitrarily good accuracy in some appropriate
limit. The results obtained within this framework will thereby be theorems, and the only
issue that can arise with regard to the applicability of these results to the physical universe
is how close the physical universe is to the limiting behavior of the theorems, in which the
results hold exactly.

The situation that we wish to describe via our framework is one in which there is a

“background spacetime metric”, gi?,), that is supposed to correspond to the metric “aver-

aged” over small scale inhomogeneities. In the case of interest in cosmology, gi(;) would be
taken to be a metric with FLRW symmetry, but our framework does not require this choice,
and no restrictions will be placed upon 922) until section IV. The difference, hyy = gap — gg;),
between the actual metric g,, and the background metric is assumed to be small everywhere.
This precludes the existence of strong field objects such as black holes and neutron stars,
but even if such objects are present, by replacing these objects with weak field objects of

the same mass, our framework should give a good description of the universe except in the

2 Our framework will have some significant similarities to the approach of [21] (see also [22]), but our
assumptions will be considerably more general and our results will have considerably wider applicability.
Our assumptions also will be stated much more precisely. In addition, we will develop perturbation theory

within our framework.



immediate vicinity of these objects. However, even though our framework requires h;, to be
small, derivatives of hy, (say, with respect to the derivative operator V, of the background
metric g((l?,)) are not assumed to be small. Specifically, quadratic products of V_ hy, are al-
lowed to be of the same order as the curvature of gg;). Thus, a priori, such terms are allowed
to make a significant contribution to the dynamics of g((lg) itself. Finally, no restrictions are

placed upon second derivatives of hy. In particular, if matter is present, the framework

allows dp/p > 1.

How can one formulate a mathematically precise framework where approximations such
as the smallness of hy, = gup— gi(;) are “controlled” in the sense that limits can be taken where
they hold with arbitrarily good accuracy? The basic idea is to consider a one-parameter
family of metrics gq(A) that has appropriate limiting behavior as A — 0. To illustrate this
idea, consider the much simpler case of ordinary perturbation theory, wherein one wishes to
describe a situation where not only is g, — g((lg) small, but all of its spacetime derivatives are
correspondingly small. To describe this in a precise way, we can consider a one-parameter
family of metrics g.(A, ) that is jointly smooth in the parameter A and the spacetime
coordinates x. The limit as A — 0 of this family of metrics clearly exists and defines the
background metric gff;) () = gap(0, ). If we assume that g, (\) satisfies Einstein’s equation
for all A > 0, it follows immediately that gg;) also satisfies Einstein’s equation. The first
order perturbation, 4, of g((lg) is defined to be the partial derivative of gq,(A\) with respect
to A, evaluated at A = 0. It satisfies the linearized Einstein equation, which is derived by
taking the partial derivative with respect to A of Einstein’s equation for g,,(\), evaluated
at A = 0. More generally, the nth order perturbation, %(IZ), of gl(l?)) is defined to be the nth
partial derivative of g, (\) with respect to A evaluated at A = 0, and the equation it satisfies
is derived by taking the nth partial derivative with respect to A of Einstein’s equation. The
perturbative equations for the metric perturbation at each order hold rigorously and exactly.
Of course, the issue remains as to how accurately an nth order Taylor series approximation
in A describes a particular metric g, (A) for some small but finite value of A. This issue
may not be easy to resolve in any specific case. Nevertheless, even if the accuracy of the
Taylor approximation cannot be fully resolved, it is far more satisfactory mathematically to
derive rigorous results for the perturbative quantities than to make crude arguments about

(0)
b

o 1S “small.”

Jap based on the assumption that hy, = g — g

To obtain a mathematically precise framework that can be applied to describe situations



relevant for cosmology, we also wish to consider a one-parameter family of metrics g.(\)
that approaches a smooth background metric g((l(;) as A — 0. However, we do not want to

require that first spacetime derivatives of

hao(A) = gap(A) — g (1)

go to zero as A — 0. Indeed, in order to capture the effects we are interested in, it is
essential that, a priori, the framework allow quadratic products of derivatives of hq(\) to
be of the same order as the curvature of g((l(;) in the limit as A — 0. This suggests that
we should consider a one-parameter family wherein, as A — 0, the deviations of g.())
from 91(12) simultaneously become of smaller amplitude and shorter wavelength, in such a
way that first spacetime derivatives of hg,(A) remain bounded but do not necessarily go to
zero. If hy(A) — 0 as A — 0 but spacetime derivatives of hy(A) do not go to zero, then it
is easy to see that spacetime derivatives of hq () cannot converge pointwise (i.e., at fixed
spacetime points) as A — 0. However, spacetime derivatives of hg,(A) will automatically go
to zero when suitably averaged over a spacetime region; more precisely, their “weak limit”
exists and vanishes. Similarly, although we cannot require that quadratic products of first
spacetime derivatives of hy,(A\) approach a limit at fixed spacetime points as A — 0, it is
mathematically consistent to require that the weak limit of these quantities exists. As we
shall see in the next section, a certain combination of weak limits of quadratic products of
first spacetime derivatives of hg,(\) acts as an “effective stress energy tensor”, which affects
the dynamics of the background metric gg;). In this way, the possible effects on FLRW
dynamics of small-scale inhomogeneities—which are required to be of small amplitude in
the metric but may be of unbounded amplitude in the mass density—can be studied in a
mathematically precise manner.

In fact, the issues we confront in attempting to treat the effects of small-scale mass density
fluctuations in cosmology are very similar to the issues arising when one attempts to treat
the self-gravitating effects of short-wavelength gravitational radiation. In the latter case, one
is interested in considering a situation where the amplitude of the gravitational radiation
relative to some background metric gi?,) is small, but the “effective stress-energy tensor” of
the gravitational radiation—i.e., products of first spacetime derivatives of (ga, — gi(;))—is

comparable to the curvature of gl(l(l])). A “shortwave approximation” formalism was developed

by Isaacson [23, 24] (see also pp. 964-966 of [25]) to treat this situation. The shortwave
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approximation was put on a rigorous mathematical footing by Burnett [26], who derived
the equations satisfied by g((l(;) by considering a one-parameter family of metrics gq,(A) with
suitable limiting behavior. In this paper, we shall generalize Burnett’s formulation of the
shortwave approximation by allowing for the presence of a nonvanishing matter stress-energy
tensor T,;,. By following Burnett’s approach, we shall derive an equation for the “background
metric”, g((l(;), which takes the form of Einstein’s equation with an “averaged” matter stress-
energy tensor and an additional “effective stress-energy” contribution arising from the small-
scale inhomogeneities.

One of the main results of our paper, proven in the analysis of section II, is that if the
true matter stress-energy tensor Ty, satisfies the weak energy condition (i.e., if the energy
density is positive in all frames), then the effective stress-energy tensor appearing in the
equation for ((12) must be traceless and must have positive energy density—just as in the
vacuum casetl. In other words, no new effects on large-scale dynamics can arise from small-
scale matter inhomogeneities; the only effects that small-scale inhomogeneities of any kind

can have on large-scale dynamics corresponds to having gravitational radiation present. Our

(2) and makes no

analysis makes no assumptions of symmetries of the background metric g,

assumptions about the matter stress-energy tensor T, other than that it satisfies the weak

energy condition. However, if gl(l(;)

is assumed to have FLRW symmetry, then our results
establish that, within our framework, the only effect that small-scale inhomogeneities can
have on FLRW dynamics corresponds to the additional presence of an effective P = % p fluid
with p > 0. In particular, within our framework, small-scale inhomogeneities cannot provide
an effective source of “dark energy”.

In cosmology, in addition to analyzing the dynamics of the background FLRW spacetime,
one is interested in analyzing the deviations from the FLRW background. In section III,
we undertake a general analysis of perturbation theory within our framework. It is not
straightforward to do this because g, () is not differentiable in A at A = 0, so there is no
notion of a “linearized metric perturbation” in our framework. However, the weak limit as
A — 0 of [gap(A) — g((lg)] /A may exist, and, under the assumption that it does, this limit

defines a quantity fyflf), which corresponds closely to what is called the “long wavelength

3 Our result on the positivity of energy density within this framework is new, i.e., it was not previously
shown to hold in the vacuum case by Burnett [2€]. Positivity of the effective energy density in the vacuum

case was shown by Isaacson [24] only under an additional WKB ansatz.



part” of the metric perturbation in other analyses (see, e.g., [27]). We also write
s
B (V) = ha(A) = Mgy (2)

and refer to hf;z) as the “short wavelength part” of the deviation of the metric from a FLRW

model. (Note that in our framework, hfj) and 7((15) have precise mathematical definitions.)

) as well as to determine hg) (M) to accuracy

Our goal is to derive the equations satisfied by %(15
O(A). This will yield the spacetime metric to accuracy O(\).

In section III, we will systematically derive the equations satisfied by 725) and hfj)(k) in
a completely general context. By taking the weak limit of 1/\ times the difference between

the exact Einstein equation for g, (\) and the effective Einstein equation for gi?,), we ob-

(L)
b

. corresponding to that arising in ordinary linearized perturbation

tain an equation for ~
theory. However, in addition to the familiar terms appearing in ordinary linearized per-
turbation theory, this equation contains additional “source terms” arising from hg) and, if

gravitational radiation is present in the background spacetime, this equation also contains
(

ai) and quadratic in hg). We also obtain additional relations

additional terms linear in ~
between quantities appearing in this equation by taking weak limits of Einstein’s equation
multiplied by hg) /A and by hf;z) hﬁ? /A. These relations are used to simplify the perturbation
equation for fyflf). Finally, we write down Einstein’s equation for hgi)(k). In the vacuum
case, we consider the simplifications that can be made to this equation if one is interested
only in determining h,(j)()\) to sufficient accuracy to obtain gg?)). We compare our approach
to that of Isaacson [23, 24] and subsequent works (see, e.g., [21]).

In section IV, we apply our general perturbative analysis to cosmology. We introduce the
“generalized wave map gauge” in subsection IVA. In subsection IVB, we make additional
assumptions concerning initial conditions and the Newtonian nature of the deviation, 07, =
Tw(N) — T, a(g), of the stress-energy tensor from a FLRW model. We argue that, for small
A, h((l*z)()\) should be well approximated (in the wave map gauge) by the Newtonian gravity
solution, whereby one needs only take into account the “nearby” matter. In contrast to
the rest of the paper—where all of the assumptions are stated in a mathematically precise
manner, and all of the results are theorems—in subsection IVB we provide only a sketch
of the assumptions needed, and many of our arguments have the character of plausibility

arguments rather than proofs. In subsection IVC, we simplify the equation for 725) derived

in section III by using our Newtonian assumptions. We show that this equation reduces to



the ordinary cosmological perturbation equation with an additional effective source arising

from hfj)(k), in agreement with a result recently obtained by [217].

In summary, in this paper we introduce a new framework for treating spacetimes whose
metric is close to that of a background metric gi(;) but is such that nonlinear departures

(0)
b

. are dynamically important on small scales. We proceed by introducing a suitable

from g
one-parameter family of metrics gq,(A) and deriving results in the limit as A — 0. We prove
that the small-scale inhomogeneities cannot affect the dynamics of the background metric
gi?,) except by the addition of an effective stress-energy tensor with positive energy density
and vanishing trace, which can be interpreted as arising from gravitational radiation. We
derive an equation for the “long-wavelength part” of the leading order deviation of the metric
from ggz), which contains the usual terms occurring in linearized perturbation theory plus
additional contributions from the small-scale inhomogeneities. Finally, we argue that the
small-scale deviations of the metric from g((lg) should be accurately described by Newtonian

gravity.

Of course, the real universe is not the limit as A becomes arbitrarily small of the type
of a one-parameter family of metrics g, (\) considered here. Thus, our results do not ap-
ply exactly to the real universe—any more than the results of an analysis using ordinary
linearized perturbation theory would apply to a real situation. However, in section V we
will argue that since the scales in which nonlinear dynamics are important in the present
universe (i.e., scales much less than ~ 100 Mpc) are much smaller than the scale of the back-
ground curvature (i.e., the Hubble radius ~ 3 Gpc), it seems reasonable to expect that the
real universe will be accurately described by a “small A” approximation to gu,(A) within our
formalism. We believe that our analysis thereby goes a long way toward providing a mathe-
matically sound framework that can be used to justify the assumptions and approximations
used in cosmology. At the end of section V, we will discuss how these approximations can

be improved.

Our notation and sign conventions follow that of [2§]. Lower case Latin indices from early
in the alphabet (a,b,c,...) denote abstract spacetime indices. Greek indices denote com-
ponents of tensors. Latin indices from mid-alphabet (i, 7, k, ... ) denote spatial components

of tensors.



II. DYNAMICS OF THE BACKGROUND METRIC

In this section, we will give a precise statement of the assumptions that underlie our
framework. We will then analyze the dynamics of the background metric g((lg) and prove that
if the matter stress-energy tensor, Ty, satisfies the weak energy condition, then the “effective
stress-energy” contributed by small-scale inhomogeneities must have positive energy density
and vanishing trace.

As explained in the Introduction, we wish to consider a situation wherein we have a one-
parameter family of metrics g, (\) that approaches a background metric gg;), but spacetime
derivatives of gq,(A\) do not approach the corresponding spacetime derivatives of gg;). An
example of the type of behavior that we have in mind is for components of h.,(A) = gap(A) —
gi(;) to behave like Asin(x/A). In this situation, if we let V, denote the derivative operator
associated with g((lg), we cannot have V. hq,(\) — 0 pointwise as A — 0. However, suitable

spacetime averages of V. hg,(\) will go to zero. More precisely, if f°® is any smooth tensor

field of compact support, we have

/ P ha(N) = — / (Ve han(N)
—0 as A—0 (3)

provided only that he(A) — 0 locally in L!, where the volume element in this integral is

) If @) holds for all “test” (i.e., smooth and compact support)

that associated with gg;
tensor fields, f we say that V. ha(\) — 0 weakly. More generally, if Ay, 4, ()\) is a one-
parameter family of tensor fields defined for A\ > 0, we say that A,,. ., (\) converges weakly

to Ba,..a, as A — 0 if for all smooth f %" of compact support, we have

lim/fal‘““"Aal___an()\):/fal"'“"Balman. (4)

A—0
Roughly speaking, the weak limit performs a local spacetime average of A, 4, (\) before
letting A — 0.

As noted above, if gqu(A) converges to gl(l?)) in a suitably strong sense—locally in L!
suffices—then spacetime derivatives of hy,(A) automatically converge weakly to zero. How-
ever, there is no reason why products of spacetime derivatives of hq,(A) must converge weakly
at all, and, if they do converge, one would not expect them to converge to zero. (This latter

observation is closely related to the fact that averages of products of quantities are not nor-

mally equal to the product of their averages.) As discussed in the Introduction, we wish to
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consider a situation where first spacetime derivatives of h,(A) remain bounded but do not
necessarily go to zero as A — 0. However, in order to have well defined averaged behavior
in the limit as A — 0 we want the weak limit of the nonlinear terms in Einstein’s equation
to exist. As we shall see below, this will be the case if the weak limit of quadratic products
of first spacetime derivatives of hg,(\) exists.

All of the above considerations lead us to consider a one-parameter family of metrics
gan(N), defined for all A > 0, satisfying the following conditions, which are straightforward
generalizations to the non-vacuum case of the conditions considered by Burnett [26] in his
formulation of the shortwave approximation. In these conditions, V, denotes an arbitrary
fixed (i.e., A-independent) derivative operator on the spacetime manifold M. For convenience
in stating these conditions, we choose an arbitrary Riemannian metric e,, on M and for any

tensor field t,,. o, on M we define |to, o, |2 = €™ ... e%bnt, Wty b
(i) For all A > 0, we have
Gar(9(N)) + Agap(X) = 87T (N (5)

where Ty, (\) satisfies the weak energy condition, i.e., for all A > 0 we have

Tap(MN)t*(A)t(N) > 0 for all vectors t%()\) that are timelike with respect to gu,()).
(ii) There exists a smooth positive function Cy(x) on M such that
|han(A, )| < ACh () (6)
where hop(A, ) = gap(A, ) — gap(0, ).
(iii) There exists a smooth positive function Cy(z) on M such that

|vchab()‘7x)‘ S 02(5(:) . (7>

(iv) There exists a smooth tensor field figpeder on M such that
V‘;‘E{)n [vahcd()\>vbhef()‘)] = Wabcdef (8)
where “w-lim” denotes the weak limit.

It follows immediately that papcayes) = Habeder and fapeder = Hoaefed, and it is not difficult
to show [26] that fi(ap)cdes = Mabedes- It also is not difficult to see that if g, () satisfies the

11



above conditions for any choice of V, and e, then it satisfies these conditions for all choices
of V, and ey,. In our calculations, it will be convenient to choose V, to be the derivative

operator associated with the background metric 91(12) = gw(0), and in the following, we shall

make this choice. We shall also raise and lower indices with gi?.

As discussed in the Introduction, the key idea is that our actual spacetime, with all of its
inhomogeneities, is described by an element of such a one-parameter family, at some small
but finite value of A\. By analyzing the limiting behavior of such one-parameter families at
small \, we hope to attain an excellent approximate description of our universe. However,
unlike ordinary perturbative analyses, our one-parameter family g,,() is not differentiable
in A at A = 0, so we cannot define perturbative quantities or obtain useful equations by
differentiation with respect to A.

Our first task is to derive an equation satisfied by the background metric gg;) = gap(0).

This equation will follow directly from Einstein’s equation (H) for gu,(\), using the general

relationship between the Ricci curvature of g((lg) and gu(\), namely

Rab(g(o)) = Rap(g(\)) + Qv[accc]b - QCdb[aCcc}dv 9)
where
1
Cu = 59“[()\) {Vagbi(A) + Vigad(N) — Vaga(N)} (10)

and, again, we remind the reader that V, denotes the derivative operator associated with

91(12)7 so that chflg) = 0. It follows immediately from () that
1
Rar(9"™) = 59N g“ (M) Real9™) + Agar (M)

= Gap(9(N)) + Agar(N) + 2v[aCee]b - 2Cfb[acee]f
— (Vg M)V Ca + 9ar(N) g™ (N 1 C% (11)

and invoking the Einstein equation for A > 0,

1
Rar(9"™) = 590N g“ (M) Real9™) + Agar(N)
= 87T () + 2V C<,y, — 207, C
— (Mg M)V Ca + gan (N g™ (N CT 1, O - (12)
We now take the weak limit of both sides of () as A — 0. It is easy to see that the weak limit
of the left side exists and is equal to G (g(o))+Ag£). Aside from the term 877, (), the terms

12



on the right side of ([IZ) all contain a total of precisely two derivatives of hg,(A). These terms
can be classified into the following types: (a) Terms linear in hq(\), corresponding to the
linearized Einstein operator acting on hg,(\); (b) terms quadratic in hg,(A), corresponding
to the second order Einstein operator acting on hg,(A); (¢) terms cubic and higher order in
ha(A). The weak limit of terms of type (a) vanish by the type of argument leading to (B).
The terms of type (b) depend upon hg,(A) either in the form Voheq(X)Viphes(A)—which has
weak mit fiapeqer—or in the form heq(A)V,Viher(X). However, since

hea(N) Vo Viher(A) = Vi [hea(A) Vihe(N)] — Vahea(A) Vipher(A) (13)

and the weak limit of V,, [hcq(A\) Vipher(A)] vanishes, we see that the weak limit of heq(A) Vo Vipher(X)
also exists and is equal to —figpedes- Finally, it is easily seen that the weak limit of all terms
of type (c) vanish.

Since the weak limit of all terms in () apart from Tp,(\) exist, it follows that the
weak limit of T,,()\) itself also must exist, without the necessity to impose any additional

assumptions on our one-parameter family. We write

Ty = wlim T ()) (14)

and we may interpret Ta(g) as representing the matter stress-energy tensor averaged over

small scale inhomogeneities. Since T,,()\) satisfies the weak energy condition for all A > 0
and since g, (\) converges uniformly (on compact sets) to gg;), it is not difficult to show

that T(b also satisfies the weak energy condition, i.e., T( Jtatb > 0 for all timelike vectors 2

with respect to gab The weak limit of () then takes the form

G, (g )+Agab —87TTab +87Ttab , (15)

where the “effective gravitational stress-energy tensor” tg%) arises from the weak limit of terms

of type (b) above and can be expressed entirely in terms of jigpeqer. A lengthy calculation

(see [26]) yields

1 1 1
0) cde cd e c c
87Tt¢(1b - g { c de cdd e + 2:“ dc de} + 5:““ dacbd - 5:“ cadbd
1 1 3 1,
T Hab “a— 2/~L (ab)c atgH Cat’a oM Tabed (16)

Note that % o, corresponds to the “Isaacson average” of the second order Einstein tensor of

hay(A). It can be shown to be gauge invariant [2€].
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Following Burnett [26], we decompose figpedes N0 tWO tensors Qgpedes = Hfc|[ab]|d)es and

Babedef = H(abedyes SO that

4
Mabedef = _g(ac(ab)def + Qe(ab) fed — ae(cd)fab)
+Babedef + Bavefed — Bedefab - (17)
Then, we have
1
0 c c cd 0 cd e cde
87Ttt(zb) = Qg bdcd + 50& dcdab - 2Oé(a led|b) igc(ub) {Oé dcd e 2a ¢ cde} : (18>

Note that the right hand side is independent of Bpcde-

The remainder of this section will be devoted to establishing two key properties of tﬁf}),

namely, t(?¢, = 0 and tgl)))t“tb > 0 for any timelike vector ¢* of the background metric gi?,).
To prove these results, we need to obtain further information about agpeqes from Einstein’s

equation (IZ). To do so, it is convenient to re-write this equation in “Ricci form” as
Rab(g(o)) — Agap(A) = 8TT(N) — 4779ab()‘)96d()‘)Tcd()‘) + 2v[aCCc]b - 2Cdb[accc}d . (19)

We now multiply this equation by h.r(A) and take the weak limit as A — 0. The left side
clearly goes to zero. The weak limit of h, f()\)Cdb[aCC oy 1s also easily seen to vanish. On the

other hand, we have

w-lim hef()\)V[aCcc}b = — W)\-li(I]n V[ah‘eﬂ ()\)Ccc}b

A—0
= —fipaciderg "
= _aacbcef : (20)
Thus, we obtain
) 1 .
ey = A () (T = SN T ) (21)

In particular, the weak limit of the right side of this equation must exist. By similar
arguments starting with Einstein’s equation in the form (), it also follows that the weak

limit as A — 0 of hcr(A)Top(A) exists. We write
Kefab = V\i\-li(r)n hef(N)Tap(N) . (22)

We will now show that the right side of (2I]) vanishes. We first prove the following lemma.

14



Lemma. Let A(\) be a one-parameter family of smooth tensor fields (with indices sup-
pressed) converging uniformly on compact sets to A(0), and let B(\) be a one-parameter
family of non-negative smooth functions converging weakly to B(0). Then AN)B(\) —
A(0)B(0) weakly as A — 0.

Proof. Let I’ be a test tensor field—i.e., a smooth tensor field of compact support—with
index structure dual to that of A. Let f be a smooth, non-negative function of compact

support with f = 1 on the support of F. Then F' = fF. We have

lim [ (AA)B(A) — A(0)B(0)) F

= lim [ [(A(A) = A(0))B(A) + A(0)(B(A) = B(0))] F'- (23)

A—0

The second term is zero because B(\) — B(0) weakly and A(0)F is a test function. On the

other hand, we have
/(A(/\) —A(U))B(/\)F' < /I(A(A) —A(0))F[[B(A) f]
< sw (A0 - AO)F| [ BT, (21)

zesupp F

where we have used the facts that B(A) > 0 and f > 0 in the second line. Now let € > 0.
Since A(A) — A(0) uniformly as A — 0 on compact sets, there exists A\; > 0 such that
SUDesupp | (A(A) — A(0))F| < e for A < Ay Similarly, since B(A\) — B(0) weakly as
A — 0, there exists Ay > 0 such that [(B(A) — B(0))f < € for all A < A\y. Thus, for all

A < min(A1, \y), we have

‘/(A()\) _ A(O))B(A)F' <e (/ B(0)f + e) , (25)
Thus the first term in (Z3) must be zero as well. 0

The vanishing of k.rq (see ([22)) is a direct consequence of this lemma. To see this, let

t* be an arbitrary timelike vector field in the metric gé?,). Then, we have

K'efabtatb = VV)\—II(I)H th()‘) (Tab()\)tatb) (26)

Since by condition (ii) on our one-parameter families, |g.,(A) — gi?,)| < ACi(z), on any fixed
compact region, we can find a Ay such that ¢* is timelike in the metric g,,(A) for all A < Ao.
Since T,,(\) satisfies the weak energy condition, the function B(A\) = T, (A\)t%’ is non-
negative for all A < \g. We previously showed that T,,(\) (and hence B) converges weakly.
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Assumption (ii) also directly tells us that Ag,(A\) = hep(N) converges uniformly on compact

sets. Thus, from the lemma, we immediately conclude that

Hefabtatb =0 (27)

for all timelike % in the metric g((lg). However, since Kegqp = Kef(ab), We have ki, fabtatb =0 for

all timelike ¢* if and only if K.tqp = 0, as we desired to show.
A similar argument establishes that the second term on the right side of (21I) also vanishes.
Thus, we obtain

aacbcef =0. (28>

Consequently, (I§) simplifies to
87Tt((l))) = aacbdcd . (29>

a

Taking the trace of this equation and again using (28) we obtain our first main result of this

section:

Theorem 1. Given a one-parameter family gap,(N\) satisfying assumptions (i)—(iv) above, the

(0) - (0)

effective stress energy tensor t, appearing in equation ([[D) for the background metric g,

18 traceless,

t0e, =0, (30)

We now show that tgz) satisfies the weak energy condition. Let ¢* be a timelike unit vector

field with respect to g((l(;) . We wish to show that tg%)t“tb > 0. It is convenient to choose an

orthonormal basis of gfl?)) with ¢* as the timelike vector. We will use Greek letters u, v, p, ...
to denote spacetime components in this basis and Latin letters i, j, k, . . . from mid-alphabet

to denote spatial components. Then

0)yasb _ P
87Ttabt t° = Q00
_ Jk
= Qyjok
i jk

= Qg

1 i gk ijk ijk
= 1 {Ni jkj _'_lujki] - 21ujikj } ) (31)

where in the second line we used the antisymmetry of cpeqer in the first two and the second

two indices, and in the third line we used (28). Thus, we have expressed tfg)t“tb entirely
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in terms of spatial components of figpeqer, Which will be useful for taking advantage of the
positive definiteness of the spatial metric.

Aside from the tensor symmetries that arise directly from its definition, the only restric-
tions on figpeqer that we have at our disposal come from (28). There is only one equation

that can be derived from (28) that involves only spatial components of fispedef, namel

0= O‘iumkl - O‘Ououkl : (32)
This yields
Nz’jwkz = ru’iljjkl . (33)
Using this relation, we may re-write (B1I) as
0),a i jk ijk ijk 1j k
87rtz(zb)t "= 1 {:uijk] = 24 T+ 2,%‘1“'] My j]k } : (34)

For the remainder of our argument, we will work in a small neighborhood of an arbitrary
point P € M. We will work in Riemannian normal coordinates x about P adapted to our
orthonormal basis. Let f§ be a one-parameter family of smooth, non-negative functions

with support contained in a d-ball centered at P such that

[ @) =gt =1, (35)

An explicit choice of f2 is
1

4 —
fp(x) = 52/

where F' is any smooth, non-negative function of compact support contained in a ball of

F(x/o), (36)

radius 1 satisfying [ F?d*z = 1, but there is no need to make this particular choice. Instead

of working with hg,(\), we introduce the quantity
Vap(6,N) = fohay(N) . (37)

Note that for any fixed 6 > 0 and A > 0, 1y is smooth and of compact support, so, in
particular, 1, and all of its spacetime derivatives are in L?. Furthermore, it follows directly

from the properties of hq(A) and f9 that all components of 1, converge uniformly to 0 as

4 Equation (X)) states that the weak limit of h.s times the linearized Ricci tensor vanishes, i.e., it has the
character of the linearized vacuum Einstein equation off of flat spacetme. The linearized Hamiltonian
constraint—i.e., the vanishing of the time-time component of the linearized Einstein tensor—is the only
component of Einstein’s equation that can be expressed entirely in terms of spatial derivatives of spatial

components of the perturbed metric. Equation ([B2) corresponds to this equation.
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A — 0 at fixed 0. Similarly, components of V 1), are uniformly bounded in A and x as A — 0
at fixed 0. Since vy, is of fixed compact support, it follows immediately that |[1g]/z2 — 0
and ||V cta||z2 is uniformly bounded as A — 0, where [[¢a||z2 = [ |Yu|*

Since flapedes 18 smooth, it is obvious from (BH) and the support properties and positivity

of (f2)? that
Huvapp(P) = (lgii%/ﬂuvaﬁw(x)(fgy\/__g d'z. (38)

On the other hand, since (f3)? is a test function, from the definition () of ptapedes, at each

fixed § we have

/ Huvasnp () (fp)*v/=g d'z = lim / Ouhap(N)Duhap(N)(f3)*v/=g d*x
= lim / D asOuibypy/—g d'z . (39)

Here, in the first line, we replaced the derivative operator V, associated with gl(l(;) with
the coordinate derivative operator J, associated with Riemannian normal coordinates at P,
making use of the fact that the definition of figpeqes is independent of derivative operator. In
the second line, we used 9,005 = f20,hap + hap0, f3 and the fact that the resulting terms
in (B9) with no derivatives on h,s vanish in the limit as A\ — 0. Taking the limit of ([B9) as

0 — 0, we obtain

Huvagryp(F) = (lsi_r)% /1\1_{% O bapOuihy, d'z, (40)

where we have used the fact that \/—g = 1 at P. Note that it is critical in this equation
that the limits be taken in the order specified.

The corresponding formula for t(()%) is

thy (P) = 32% limlim [ 4 {07 — 20,0, 007 + 20,0007 — 070",

(41)
where, in this equation, indices are raised and lowered with the flat Euclidean spatial metric
n;; = diag(1,1, 1) corresponding to the spatial components of gfl?)) at P. The major advantage
of (I is that we can apply usual Fourier transform techniques to evaluate the integral
appearing on the right side of this equation prior to taking the limit. If we had not “localized”
hay(X) by multiplying it by f%, the Fourier transform of h()\) could have been ill defined
and, even if it were well defined, it would contain global information about hg,(A) rather

than local information about the behavior of h,(\) near P.
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Our strategy now will be to prove that the quantity
lim / d'w {00 7" — 205" 007" + 20,0, 06" — 01 'y} (42)

can be expressed as a sum of terms which are either positive, or which converge to zero as
0 — 0. Positivity of t(()%) then follows immediately. We proceed by taking Fourier transforms

with respect to the spatial coordinates @ only, with the convention

A 1 )
Ui(t.k) = s [ Paug(ta)e e, (43

As previously noted, t;; and all of its derivatives are obviously in L?, since ;5. is smooth

and of compact support. Since the Fourier transform is norm preserving in L2, we have

1 . . i T N a i i
ti (P) = o limlim [ dtd’k {kk: Dinhih — ik it + 2k kb, ibIE — kik @bj]@bkk} .

(44)
We may decompose @j into its scalar, vector, and tensor parts as
@ij (t,k) = o(t, k)kik; — 20q;; + 2ku25)(t, k) + 345(t, k) , (45)

where k'Z; = 0 = k'S;;, and §, = 0. Here ¢;; is the projection orthogonal to k' of the
Euclidean metric on Fourier transform space. Since the various terms on the right side of (EH)
are orthogonal at each k, it follows immediately that, for example, |p(k)|? < %ﬁ”(kz)%](k)
Since ﬁij and all powers of k times @j are in L?, it follows immediately that ¢ and all
powers of k' times ¢ are in L?. Thus, we can freely take Fourier transforms of ¢ and all
powers of k' times ¢. Furthermore, since the L? norm of v;;—and, hence, the L? norm of
dij—goes to zero as A — 0, it follows immediately that the L? norm of ¢—and hence the L?
norm of p—also goes to zero as A — 0. Similarly, the L? norm of d;¢o must remain uniformly
bounded as A — 0. Similar results hold for the other terms appearing on the right side of
EH).

Substituting the decomposition (EH) in (@) and using the fact that 1);; is real (which
implies that g(t, k) = i(t, —k)), we obtain

1 — -
(0) _ . 3 i ik QL ZAA}
too (P) Iom (lsl_r)% }\1_% dtd’k {k‘lk 8,8 8kik'op ¢ . (46)

Thus, we see that the “tensor part”, §;;, of 1@-]- makes a positive contribution to the effective

gravitational energy density t(()%). This may be interpreted as saying that, at leading order
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within this framework, gravitational radiation carries positive energy density. The scalar
¢ and the vector part Z; do not contribute at all, as might be expected from the fact that
these quantities should correspond to “pure gauge”. Finally, the scalar ¢ makes the negative
contribution
2F, = —ﬁ / dt d*kk; k' pp (47)
to the effective energy density.
In order to interpret the meaning of ¢ and E,,, we note that by ), ¢ satisfies

Ak = —k'k’; + KRy (48)
In position space, ([8) becomes

To put the right side of this equation in a more recognizable form, we return to Einstein’s
equation () and consider its normal-normal component relative to a ¢ = const surface.
This corresponds to the Hamiltonian constraint equation, which has the property that the
only terms containing second spacetime derivatives of h,, involve only spatial derivatives
of spatial components of h,. To obtain this equation from (IZ), we raise both indices
with ¢?(\) and then take the 00 component. Since we are working in Riemannian normal

coordinates about P we also express the background metric as
1
0 «
g((xﬁ) = g — gRauﬁ,,x 27 4+ 0(2?). (50)

The terms in the resulting equation that are purely linear in h,,, contain second derivatives
of hay, and do not depend on the background curvature are of the form $0°9;h7; — $0'97 hy;,
i.e. the same combination of derivatives of componentsH as appears in (). There are also
terms which are linear in h,, and contain second derivatives of hy,, which depend on the
difference between the exact background metric g((l(;) and 74, and these can be expressed in
the form U ,0,hy;, where U7 = O(x?). The terms in the equation which are nonlinear
in hg, that contain second derivatives of hg, can be expressed in the form 9;WW* + Z; where

W converges to zero uniformly on compact sets as A — 0 and Z; is uniformly bounded on

compact sets as A — 0. The remaining terms in this equation then take the form 877 + Z,,

5 These terms correspond to the linearization of the scalar curvature of the spatial metric, as would be

expected from the general form of the “Hamiltonian constraint equation”.
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where Z, is uniformly bounded on compact sets as A — 0. Now multiply this equation by

f3. Using (@), we see that the resulting equation takes the form

D'0;p(N) = 4w FSTO(N) + 0w’ (\) + C(\) + %Uijklaiajwklu) , (51)

where W’

= % oW is of fixed compact support and converges to zero uniformly as A — 0,
and ( is of fixed compact support and is uniformly bounded as A — 0. Thus, ¢ satisfies a

Poisson-like equation. Furthermore, the position space version of (7)) can be written as

1 .
2E, = _E/ dt >z 0 | (52)

which is just the usual formula for (twice) the gravitational potential energy in Newtonian
gravity! Note that we have not made any Newtonian approximations, nor have we made a
special choice of “time vector” t°.

Thus, we see that the resolution of the issue of whether t(()%) > 0 depends on a competition
between the positive contribution from the tensor modes and the negative contribution, F,
arising from a Newtonian-like gravitational potential energy. We will now show that if
Too(A) > 0, then, in fact, £, — 0 as A — 0 and 6 — 0. Thus, the scalar modes make no
contribution in this limit, and the tensor modes always “win”.

To prove this, we use (&Il to rewrite E, as

E,= 8%/ dt dB3xpd' 0,

1

= _/ dt d>zp(N) [f;fTOO()\) + %&-wi()\) + i(()\) + L

U0 | - (53)

2

The second term can be written as the time integral of
/d?’acgp@iwi = —/ d*x;pw’ . (54)

By the Schwartz inequality, we have

‘/ dPx0;pw’

However, ||w®||z2 — 0 as A — 0, and we have already noted that ||0;¢||z> remains uniformly

< 10l callw’l 2 - (55)

bounded as A — 0. Therefore, we see that the second term vanishes in the limit as A goes
to zero.
To analyze the remaining terms on the right side of (E3), suppose we could show that

() converges uniformly to 0 on compact sets as A — 0. Then since ((A) is of fixed compact
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support and is uniformly bounded as A — 0, it follows immediately that [ dt d*ze(N)¢(N) —
0 as A — 0, so the third term in (B3)) vanishes in the limit as A — 0. On the other hand,
if p(\) converges uniformly and 7% ()\) > 0, then the first term is exactly of the form to
which the above Lemma of this section applies, with A = o, B =T, and f{ being the test
function with which A(X)B(\) is being smeared. The Lemma then states that the first term
in (B3) vanishes in the limit as A — 0. Finally, the last term of (B3)) may be re-written as

L [t o 00 ] 60

If () converges uniformly to zero, then the second of these two terms vanishes in the limit
as A — 0 because UY* is independent of A\ and 9;1y(A) is uniformly bounded as A — 0
and is of fixed compact support. In contrast to all the others, the first term above does not
converge to zero as A — 0. However, it will still vanish once we subsequently take 6 — 0.

To see this, use the fact that on the support of f3, U* is bounded by a constant times §2

(see (B)) to write
'/ dt deU ™ 0;p(N)0s(N) | < CO°|10spl| 2 1050mal 2 < C'6° 105wl 7 - (57)

where the last inequality follows from the fact that [|0;¢]|7. < £[|9;9u/3.. However, by ()

we have

lim Jim [|9;9puall7 = 7, (P) - (58)

Consequently, the right hand side of (B1) vanishes when the limits as A — 0 and § — 0
are taken. Thus, we will have proven that t((]%) > 0 provided only that we show that p(\)
converges uniformly to 0 on compact sets as A — 0.

To prove uniform convergence to 0 of ¢(\) on compact sets, we note that it follows

immediately from (@9) that

dp =" +x (59)
where

Dy = 0"y . (60)

As already noted above, 1;;(A\)—and hence 1*;(\)—converges to 0 uniformly as A — 0.
Thus, ¢(A) will converge to 0 uniformly on compact sets if and only if x(\) converges to 0

uniformly on compact sets. We will now prove this by “brute force”.
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The solution to (1) is

_ 1 5, 00,0V (t, ')

Changing integration variables to y = &’ — x and integrating by parts, we obtain

_ L[ Byoe i
wta) =~ [ @yaviia s (62)

For any ry > 0, we can break up the integral appearing on the right side of this equation
into an integral over |y| < ro and an integral over |y| > ro. We leave the first integral alone

but do another integration by parts on the second integral. We thereby obtain

1 . Y, 1 S Ui N "
)= [ eyowitery i L [ aonl (W(t,ww)—
ATyl <ro 7] RO [ 1o re
1 . 8iilyl? = vy,
+— Ay i (t, @ + y)M . (63)
dm ly|>ro |y|

Now let F(\) = Sup(, 4 [¢i;] and let Fy(A\) = sup, 4 [Oki;]. Then Fy — 0 and F; remains
bounded as A — 0. It follows straightforwardly from (G3)) that

IX(t, )| < 1 Fo(N)ro + coFi(A) + 3 F1(A) | In(C/ro)| (64)

where ¢y, 9, c3, and C are constants (i.e., independent of A, g, ¢, and ). This bound holds
for all rq and all A\. Therefore, as we let A — 0, we are free to choose ry to vary with A in

any way that is convenient. Choosing

ro(A) = exp[—1/v/ F1(\)], (65)

we obtain the bound

IX(t, ®)| < Cyexp[=1/v/ Fi(A)] + C2F1(A) + Csv/ F1(A) (66)

from which it follows immediately that y — 0 uniformly as A — 0, as we desired to show.

We have thus proven

Theorem 2. Given a one-parameter family gap,(N\) satisfying assumptions (i)—(iv) above, the

(0) ' (0)

effective stress energy tensor t, appearing in equation (D) for the background metric g,

satisfies the weak energy condition, i.e.,
1Ot >0 (67)

a T ' (0)
for all t* that are timelike with respect to g, .
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It should be emphasized that all of the results of this section apply to an arbitrary
one-parameter family g,,(\) satisfying assumptions (i)—(iv). In particular, no symmetry or

other assumptions concerning the background metric, g((l?,), were made. However, if FLRW

symmetry is assumed for g((lg) as well as for the (weak limit of) the matter stress-energy
tensor, T a(g), then tfl?,) must also have this symmetry. It then follows immediately from
Theorems 1 and 2 that tg%) must have the form of a perfect fluid with P = %p and p > 0.
In particular, the effective stress-energy tensor arising from nonlinear terms in Einstein’s

equation associated with short-wavelength inhomogeneities cannot produce effects similar

to those of dark energy.

III. PERTURBATION THEORY

In the previous section, we obtained the equation satisfied by the background metric,

g((l?,), derived key properties of the effective stress-energy tensor tﬁf}), and thereby proved that
small scale inhomogeneities cannot mimic the effects of dark energy on large scale dynamics.

However, in cosmology and other contexts, we wish to know not only the dynamical behavior
(0)

b » as this is needed to de-

of g((lg) but also the dynamical behavior of the deviations from g
scribe the formation and growth of structures in the universe. In particular, we would like to
obtain the equations satisfied by hg,(A) to sufficient accuracy that hq,(A) can be determined
to first order in A, i.e., any deviations from an exact solution (over a compact spacetime
region) go to zero faster than A as A\ — 0. As already mentioned in the introduction, if we

were in the context of ordinary perturbation theory where gq, (A, ) is jointly differentiable

in A and z, we would define

ab(A .
’Yélly) = Lg o() = lim

ON |y A0 A (68)

)

To derive the equation satisfied by %S) , we differentiate the Einstein equation with respect

to A, at A = 0. The result is an equation that sets the linearized Einstein operator acting on

1
%gb)

We would then take hq,(A) = )\7((1},). However, in the context of our framework, gq,(A, x) is

equal to the derivative of the stress energy tensor with respect to A, evaluated at A = 0.

not differentiable in A at A = 0, so we cannot even define a notion of a “metric perturbation”
by differentiating gq,(\, ).
Of course, the (exact) equation satisfied by hqp(N) is simply the equation obtained by
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substituting g.,(\) = g((lg) + hap(N) into Einstein’s equation (). However, this is not any
more useful in practice than simply asserting that g,,(A) must be a solution of Einstein’s
equation for all \; if we could solve Einstein’s equation exactly, there would be no need to
develop a perturbative formalism. The key idea needed to obtain a more useful version of
Einstein’s equation is that, although nonlinearities may be important on small scales, there
should be a simpler, linear description on large scales. The key idea needed to implement
this description is the observation that although the ordinary (pointwise or uniform) limit of
[gan(N) — gl(l(l]))] /A does not exist in the context of our framework—g,,() is not differentiable—
there is no reason why the weak limit of this quantity cannot exist.

Thus, a natural generalization of the conventional linearized metric perturbation is
gar(N) — 98
A

Here we have replaced the ordinary limit of (E8) with a weak limit, which “averages away”

Yo = W-lim (69)
the small scale inhomogeneities. This quantity thereby corresponds closely to the notion of
the “long wavelength part” of the metric perturbation that appears in other analyses (see,
e.g., [21]). We will discuss this further in section V below. The remainder of the perturbation
will be denoted
B () = ha(N) = MYy (70)
and will be referred to as the “short wavelength part” of the deviationH of the metric from
gé(;). In subsection IVB, we will argue that, under suitable Newtonian assumptions in cos-
mology, to leading order in A, hg) depends only locally on the matter distribution and is
well approximated by a Newtonian gravity solution. We emphasize that, within our frame-
work, short and long wavelength perturbations have a very different character. The long
wavelength part of a perturbation has a well-defined description in the A\ — 0 limit, namely
%(15). On the other hand, the short wavelength part, hg)()\), is defined only for A > 0 and
has no description in terms of a limit as A\ — 0.
We can obtain an equation for 725) by taking the difference of the exact Einstein equation
([2) for gap(N) and the background Einstein equation ([[H) for 91(12)7 dividing by A, and taking

(L)
b

. 1s well defined and satisfies

the weak limit as A — 0. However, in order to ensure that ~

6 If we were to consider higher order perturbation theory, then we would also subtract from hg, higher
order in A “long wavelength” contributions to define hfj)()\). However, we shall only be concerned with

first order perturbation theory in this paper.
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a well-defined equation, we must append to assumptions (i)—(iv) of section II the following

additional assumptions on our one-parameter family gq,(\):

(v) There exist smooth tensor fields 7((15), ug?cdef, V[(zzlpide and wéi)cde fon 00 M such that

(a)

welim oy (3) = (71)

(b)
w-lim + ;) [V(ah\aq()\)vb hiy (A — ,Uabcdef} = Mg?cdefa (72)

(©)
welm (12 )R O] = w41 (73)

(d)
welim £ [ ()b 0TS O] = e (74)

In the following, we shall assume that our one-parameter family g,,(\) satisfies assumptions
(i)—(iv) of section II together with assumption (v) above. In this section we will make no
additional assumptions about gq,(\), so all of the results obtained in this section should hold,
e.g., for self-gravitating gravitational radiation in a background without any symmetries. In
section IV, we shall specialize to the case of Newtonian-like cosmological perturbations off of
a background metric with FLRW symmetry, and will make numerous additional assumptions
and simplifications.

The newly defined first order backreaction tensors, ,u(%)cde o V(S,ll)Zde and wfj}cde fghs DOSSESS
certain tensor symmetries as a direct consequence of their definitions. Clearly, as with the
zeroth order quantity figpeder, We have N&)(c def) = ng)cde s and ué?cdef = Nz()i)e fea- However,

in contrast with fispcqef, the symmetry under interchange of the first two indices had to be

built directly into the definition of ug,)cdef, rather than derived. Indeed,

W;Eén A [Va hcd(}‘)vbhef(A) - Mabcdef]

.1
= Habeaes + W lim Xv[ah\au (M) Vihes (M)
= 1 3haey + w2 (Vi (Bea ) Vigher () = hea) VT (V)]

1
= Iu’t(zb)cdef + v[CLVb]cdef — 2w-lim Xth()‘>Rab(eghf)g(>\)

A—0
= luc(zb)cdef + v[ayb]cdef (75)
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What this calculation also illustrates is that, because of the factor of 1/\, we may no longer
freely drop total derivative terms when taking weak limits, and in general we will pick up

terms of the form vdylgic)le s- It follows also that 1/&1))0) (de) = Vélljlde and I/élljide = —uéb)ebc. Finally,

(1) _ ., (1) _ @
wab(cd)(ef)(gh) - wabcdefgh’ wabcdefgh wbacdghef’ and

1) (1) _ ., @ 1)
wabcdefgh - wbacdefgh - wbaefcdgh - wabefcdgh ' (76)

We also note that definitions (b) and (c¢) would be unchanged if hf{g) were replaced by hgp,
and (d) would be unchanged if any hfj) which is being differentiated were replaced by hgp.

We now subtract the background Einstein equation ([[H) from the exact Einstein equation
(@), divide by A, and then take the weak limit as A — 0. A very lengthy calculation,
performed with the help of the zAct tensor manipulation package [29] for Mathematica,
yields

C

1
VCV(G’)/IE)) vCvc ab - _v vb”)/ - §ga <chd’yc VCVC,V(L)dd>

0) pe L 1 1 cde cd e
+§gz(zb)R d(g © )fyéd) - §R(g(0))’yab + A’yab + 87c(ub) (IU“ cdd e + /"L c de 2:“ dc de)

(L)ed 1 e 1 e 1 e 3 e 1 e e e
+7 §lu“abc de — §Mc(ab)d e 5:“ (ab)ecd + Zlu“cdab e §:ucda be — Me abde T He e(ab)d

3 e 1 e 1 0 e e e e e
+ZIU“ eabed 5:“ eachd + ggc(ub) {_:ucd eff — Heg fef + 4!““0 dfef - 2!““ ecdff + 2,U fcedf})

= 87TTLEI:)1) + g { :u e de - :U“(l)ccddee + 2:u(1 Cdcede} + /"L dacbd

1 e d 1 1) cd 1 1)c d 3 c d 1 1)ed
Qlu()ca bd+4:u( )ab cd_ilu’()(ab)cd—i_zﬂ()cabd_i:u() abed

1 Cc ae Cc ae C e C e ca e cae
+§9[(z?7) {QW( ) cd de f T 2w cd dfef +w® dcd eff +w® dcd fef — 4w®™ dc dfef — e fdecf}
1 1) cde 1 1) ¢ d e 1 1) cde 1 e de 1 e de 3 1)c de
—§W( Jon e 2“’( )(a el byd e T §W( )(a bede gw( i gw( e — ZW( € abie
1 (1)c de 1 (1)ed e 3 (1)cd (1)cd e (1)cd e

e (1)ed e
+§w ¢ adbe + 4(4) abd ce iw cdab e + 5("} cda be + iw c abde iw ¢ adbe

]' ca e ]' ca e c e c e ]' c d
+§w(1) dd abce 5&)( ) dd aebc + gab {Qv V d + v cdd - Zv(ay(l) b)e d
d

1 . 1 1 c
_'_Zvcy(l)(ab) dd o §VCV(1)cabdd - VdV (ab _'_ de abcd + §VdV(1) c(ab) - (77>

Here, we have written

T\ —TY
Ta(;) _W—lm—b( ) ab_

A—0 A (78>

This weak limit exists by virtue of assumption (v) and the fact that g,,(\) satisfies Einstein’s

equation.
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(ﬁ) takes the form of a modified linearized Einstein equation. The

(f) and, in addition to the usual terms appearing in the

Our equation () for -,

a

terms on the left side are linear in ~,
linearized Einstein tensor, contain terms proportional to figpeder. The right side contains, in

addition to the matter source T(Eb), numerous “effective source terms” arising from ug))cdef,
M) )

Vabede and Wabcde fagh

Some relations between ug,)cdef, V[(zzlpide and wc(z%)idef on can be derived from Einstein’s equa-

tion. We previously derived the relation o, ., = 0 (see (8)) by starting with Einstein’s
equation in “Ricci form” (Id), multiplying it by h.s(\) and taking the weak limit as A — 0.
In a similar manner, if we multiply ([d) by h&g) ()\)hg) (A)/A, we obtain the following equation

satisfied by wé},)cde Foht

1 1 1 1
w( )gacdefbg + w( )gbcdefag - w( )ggcdefab - w( )abcdefgg

1 1 1 1
_H’u( )gaefcdbg + (U( )gbefcdag - w( )ggefcdab - (U( )abefcdgg =0. (79)

In deriving this, we used the fact that

1
welim < ) ()i (AT () = 0, (80)

which follows from our lemma from section 2 and the assumption that Tp,(\) satisfies the
weak energy condition, in the same way that we showed kg = 0 (see ([21)).

Similarly, if we subtract the background Einstein equation in “Ricci form” from (I9),
multiply by hig)()\) /A, and take the A — 0 weak limit, we can derive an analog of (28)
satisfied by ,ufj))cde f

1 e 1 e e
§M(1)abcd e T 5:““(1) cdab — /"L(l) (alcd|b)e

1 1 e
= 87TH(1)cdab — 4ﬂg£(;)/$(1)cdee + iv(L)ef (,uabefcd + Uefabed — Q,Me(ab)fcd) + Zw(l)abcd fef
L) ef 11ef e f Lwe ¢ Lome ¢ 1 qyer
+§w( )ab cdef — §w( )(a led|b)e f W )(a le| b)fed + Zw( ) ecdab f §w( ) ccda bf §W( ) cdafbe
1 e 1 e 1 e
+§w(1) fefabcd + iv(au )Cd e v becd T 5 V U (ab) ol — §V6y(1) e - (81)

In this equation we have defined the quantity
= wlim B ()T, (82)

The existence of this limit is guaranteed by Einstein’s equation together with our other

assumptions. Note that since hf{?(k) /A does not converge uniformly to zero as A\ — 0
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(although it is uniformly bounded), the weak energy condition does not imply the vanishing

of H((I?Cd as it did for Kgpeq.

We can simplify the above equations as follows. As with the background case, define

ozg))cdef = ,ufcl‘)[ab“ def and lelyidef = ,ugi?md)e I and express the equations in terms of these

fj}cdefgh. First, split it into the parts

with are symmetric and antisymmetric in the first two indices, wé})’c”z)efgh = w((il)))c defgn and

quantities. A similar breakup is also possible for w

(1,A) NS
Wabede fgh = Plabjedefgn: BY (), we have

(L4 (1,4)
wabcdefgh - _wabefcdgh : (83>

The symmetric part is then decomposed into wgfd)@fgh = w&’ifc dlb)| floh and wg};cf;fgh =
w((il’i) dlef)gh? with inverse transformation
ws) A e (1,a) (1,0)
wabcdefgh - _g we(a\cd|b)fgh + wg(a\cd|b)hef - wg(e|cd\f)hab
(1.8) (1.8) (1.8)
_H‘dabcdefgh + wabcdghef - wefcdghab : (84>
Substituting for our new quantities, ([[{d) can be rewritten as
1, 1, _
w( a)agcdbgef + w( a)agefbgcd - 07 (85)

whereas (BIl) becomes

1

1 . 1 .
AW peq = 47K o, — 27T9¢(12)’f(1)cdee + agepeay P + —wtY Fo_Zma e f

4 (a blecd f 2 (a b) cdef
L ayer La)e f La) ¢ f La) e f L (ayer
_Zw( A aebfcd + §W( 7 )a cdb ef +w( 7 )(a |cde| b)f +w( 7 )a e bfdc ZW( ) baefdc
1 e 1 ’ 1 e 1 e
+iv(ay(l)b)cd e + EV(GV(I) b)ecd + EVGV(I)(ab) cd 1v6y(1) abed - (86>

Finally we can use (BH) and (Bf) to simplify our version of the linearized Einstein equation,
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(D), resulting in

1
VU (0 ISL - —vcvc A v Vi, = Sl (VCV%? - ch(ﬁ(”dd)
c L 1 ¢ e
2 R d( >f>/£ : QR(g(O))fyab + Afyab) + 27([/) da(a b)cde
= 87rTa(b) +aWd  —oxg® c 8%/{(1)(;@0 + 27rg£) {/ﬁ(l)ccdd — n(l)CdCd}
L qay cde L g4 cde L 1, 4yca 1,A)ed e
_Zw( ’ )(a b) cde+§w( ’ )(a b) cde_'_gw( 4 abc de—i_iw(7 ) acbd e
1 (0) 1,A)cd e f 1Acdef 1,a) ced 1l.a) ¢ de l.a) ce d
+16g {w( 4) cde f +2w( A f} - 2w( 7 )(a b)dce _w( 7 )(a b)d ce _w( 7 )(a b) cde
1 1 1 c e a)e e
+§W(17Q)Cdabcdee + Zw(l’a)Cdbacede + 89((12) {w(La) dec dff - 2(‘0(17 ) dec fdf}
1 e 1 c 3
_§V(a7/(1) b)cdd + _V(al/(l) b)dcd + —Vcl/(l) - —le/ ‘4 de -
]' c ]' c ae c e
_§de(1) (adb) g((l(; {le/ cd e + V d } : (87)

Equations (8H), (8d) and (87) describe the long wavelength perturbations. It should be
noted that, just as Bupedes Was absent from our background equations, Bapeder, andef, and
((lbfi)e fon are all absent from our perturbation equations.

Equations (8H), (86) and (81) have been written down in an arbitrary gauge. We will make
a specific choice of gauge in subsection IVA below, but for now we note that we can apply
any one-parameter family of diffecomorphisms, ¢y, to gu(A) that preserves conditions (i)—
(v). Burnett [26] has analyzed the properties of gauge transformations associated with one-
parameter families of diffeomorphisms that are not smooth in A. Here, we simply note that
any smooth, one-parameter group of diffeomorphisms ¢, generates gauge transformations
that are easily seen to preserve conditions (i)—(v). Under such gauge transformations, it is
not difficult to see that 7&) — 7&) —i-[,gg((lg), where £% is the vector field that generates ¢, and
L denotes the Lie derivative. Thus, fyéf) has the same gauge freedom arising from smooth
¢y as in ordinary linearized perturbation theory. This freedom can be used to impose the
same types of gauge conditions on 7((15) as in ordinary linearized perturbation theory. It
is also not difficult to see that hfj)()\) — qﬁf\hfj)()\) + Jan(A), where jup(A) = O(A?) and is
jointly smooth in A and the spacetime point. By using this gauge transformation property

of h((l“g)()\), it is possible to show that fiapeder, V(S)Zde’ w(%ldefgh, and mfj))cd are gauge invariant

under gauge transformations arising from smooth ¢,, whereas ,ufj))cdef — u&)cdef + Leltabedef
and Ta(;) — Ta(;) + ;CgTLEI?).

We turn our attention now to the short wavelength perturbations. Without making any
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approximations it is straightforward to write down an equation satisfied by hfj)(k): Simply
substitute g.(\) = gfl?)) + A%%) + hfj)(k) into the exact Einstein equation. We may write

this equation in the form
Gl (9, KO N) + AR (V) = 87T(N) = Garl9?) = Agly) — 2GS (99,41

My = 3G 0 P+ RS, (88)
n=2

where we have grouped linear terms in hf{g)()\) on the left hand side. Here, G[(;z;) (g, Ay B+
R () denotes the nth order Einstein tensor expanded about gl(l?)) of the perturbation
M+ iy (V).

Unfortunately, it does not appear possible to simplify (B8] to obtain suitable approximate
solutions without introducing additional assumptions. Of course, if we do not simplify
([BY), then we have not made any progress beyond asserting that we must solve Einstein’s
equation. In the next section, we will introduce additional assumptions relevant to the case
of cosmological perturbations and argue that to obtain an accurate description of the metric
to order A, we may replace (B¥) by the equations of Newtonian gravity with local matter
sources.

For the remainder of this section, we shall compare our general analysis to that given
by Isaacson [23, 24] and others (see, e.g., [24]), who were interested in describing the self-
gravitating effects of gravitational radiation. We therefore restrict attention to the vacuum
case (T,p(A) = 0). These authors work with the quantity h.(A) rather than introducing
Habedef- Suppose one is merely interested in determining the background metric g((lg), ie.,
one is not interested in obtaining an accurate (to order \) description of the deviation of
the metric from gc(bg). Then one would need only to calculate hq,,(A) to sufficient accuracy
that one could determine fi4pcqer and, thereby, tfl?,) (see ([H)). In particular, one would not

be interested in computing ﬂyflf), so one could ignore the equations we have derived above

for 725) )

that one could make O(1) modifications to (B8) as A — 0 and still determine hfj)(k) to

Furthermore, in order to obtain hf{?(k) to sufficient accuracy, it appears plausible

sufficient accuracy, provided that these O(1) modifications have vanishing weak limit. Here,
by the phrase “it appears plausible” we mean that we believe it is likely that one could
introduce additional reasonable assumptions on the one-parameter family g, (\) so that
these modifications to (B8) could be made without affecting 91(12)- The reason for this belief

is that O(1) error terms in (88) should—under suitable further assumptions similar to ones
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indicated at the end of subsection IVB below—give rise to O(\?) errors in hg)(}\), which
should not affect ftapcder-

A candidate modification of (BS) in the vacuum case would be to drop the entire right
side of this equation (together with the term Ahg)()\) on the left side), to obtain simply the

linearized Einstein equation for hf;z) off of gg;),
o (9, (V) = 0. (89)

However, if G,(g(?)) # 0, the linearized Einstein equation off of gl(l?)) does not appear to have
an initial value formulation, so this modification of (88) is probably not suitable. (Note that
the linearized Einstein equation off of a non-solution is not gauge invariant, so one cannot
employ a choice of gauge to simplify the equation and/or put it in hyperbolic form.) A
better candidate modification would be an equation of the same form that the linearized
Einstein equation would take in the Lorenz gauge if perturbed off of a vacuum spacetime.
Since the linearized Einstein equation off of a non-vacuum spacetime is inconsistent with the
Lorenz gauge condition, there is no unique choice of such an equation—in particular, one
can add new terms involving the background Ricci tensor—and, indeed, Isaacson [23, 24]
and Misner, Thorne, and Wheeler [21] give slightly different forms of the proposed equation
(compare Eq. (5.12) of [23] with Eq. (35.68) of [25]). In fact, since terms involving the
product of the background curvature with hfj) are O(A), it would appear simplest to drop

all of these terms and work with the wave equation
VeV =0, (90)

where Eﬁj) = hf;z) -1 gi?,)h(s)cc. As with the equations used in [23] and [27], this equation
is inconsistent with the Lorenz gauge condition V“ﬁgi) = 0. However, if one constrains the
initial data for ij’ for solutions to (@) so that vai}fj’ and its first time derivative vanish
initially, then the Lorenz gauge condition should hold to O()\) at later times (in compact
regions of spacetime). Thus, the solutions to (@) with these initial data restrictions should
satisfy Einstein’s equation (88) to the desired O(1) accuracy. It should also be possible to
impose the gauge condition A9, = 0 to O(\) accuracy.

If the above arguments are correct, then in order to obtain the possible background

metrics ggz), it should suffice to simultaneously solve ([[H) and (@) (or equivalently, Eq. (5.12)

of [23] or Eq. (35.68) of [25]) with appropriate restrictions on initial data, to obtain 922) and a
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one-parameter family hg)()\) satisfying our conditions (ii)—(iv), where, in (IH), tfl%) is given by
([[8) and ftapedes is given by ([B) with he,(A) replaced by our one-parameter family of solutions
to ([@). One could then attempt to establish properties of tl(l%)—in particular, the vanishing
of its trace and the positivity of its energy density—by working with the expressions for
it in terms of hfj)()\) in a particular gauge. Needless to say, numerous extremely murky
mathematical issues arise if one proceeds in this manner. Our analysis of section II, as well
as the work of Burnett [26] in the vacuum case, proved rigorous results about tg%) without
introducing any approximate equations satisfied by hg‘z)()\), and thus completely bypassed
these murky issues.

Finally, we note that if one wished to know the deviation of the metric from gffg) to
O(A)—as would not necessarily be of interest in studying gravitational radiation but is of
considerable interest in cosmology—then, of course, it would be necessary to know 725).
Although we argued above that one has considerable freedom in modifying the equation
satisfied by hf;z) without affecting gg;), it is clear that one cannot make any modification to
the equation (B7) satisfied by 7}15) without introducing O(1) errors in 7((15) and thus O(\)
errors in gu(A). Furthermore, in order to calculate the effective source term a® ¢4, in
[®D), it appears that one would need to know h((;z) to O(A?), in which case one could not
drop the quadratic terms in h((;z) in (BY). Thus, in the case of self-gravitating gravitational
radiation, if one wished to know the deviation of the metric from gg;) to O(\), one would
have to solve (), (87), and some suitable simplification of (8). This would comprise an
extremely complicated system. Fortunately, in the case of cosmology, we will now argue

that, under additional assumptions, significant simplifications occur.

IV. COSMOLOGICAL PERTURBATION THEORY

Up to this point we have not assumed any symmetries or other special properties of
the background metric gg;). We also have not made any restrictions on the matter con-
tent, T,,(\), other than that it satisfy the weak energy condition, nor have we imposed
any restrictions on the perturbations. In this section, we will be concerned with the case
of main interest in cosmology, where gi(;) has FLRW symmetry, there is negligible gravita-
tional radiation content (in particular, tg%) = 0), and the matter content satisfies suitable

Newtonian assumptions. We will argue that, under these assumptions, to leading order in
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A, hg)()\) is given by local Newtonian gravity, i.e., in a neighborhood of any point x, hfj)
can be calculated to sufficient accuracy using Newtonian gravity, taking into account only
the matter distribution within a suitable neighborhood of x. (The effects of more distant
matter are taken into account by %(15).) With our “no gravitational radiation” assumption

(L)
b

for the background and our Newtonian approximation for hg), our equation (§7) for v,

simplifies considerably, yielding the linearized Einstein equation with an additional effective
source that agrees with recent results of [27] (see also [21]).

In our analysis, it will be important to make a convenient choice of gauge. Since we are
taking nonlinear effects at small scales into account, we cannot simply impose the usual
cosmological gauge choices for perturbations, i.e., we must make our gauge choice at the
nonlinear level. When studying non-linear perturbations off of a flat background it is often
convenient to work with “wave map coordinates” (usually called “harmonic coordinates”
in the literature), particularly in the context of the post-Newtonian expansion [3(]. Since
our background metric gl(l?)) is not flat, the usual definition of wave-map coordinates is not
convenient, but we may instead impose a generalized wave-map gauge condition with respect
to the background metric 9[(1?7) [31].

Our gauge choice will be introduced in subsection A in the context of a general background
metric gg;) (i.e., without assuming FLRW symmetry). In subsection B, we restrict to a
FLRW background, we make our Newtonian assumptions, and argue that h((l“z) is given by
local Newtonian gravity. It should be emphasized that the arguments of section B have the
character of plausibility arguments rather than proofs. Finally, the simplifications to the

equation for 7((15) will be obtained in subsection C.

A. Generalized wave map (harmonic) gauge

Given a one-parameter family of metrics g,»(A) on our spacetime manifold M that satisfies
our assumptions (i)—(v), we may apply any one-parameter family of diffeomorphisms, ¢(\) :
M — M, which preserve these conditions, where without loss of generality, we may assume
that ¢(0) is the identity map. As already noted in the paragraph below (&), it is clear
that any ¢(\) that is jointly smooth in A and the spacetime point = will preserve conditions
(i)—=(v), but there also should exist a wide class of ¢(\) that are not smooth in A that

preserve these conditions. The properties of such ¢(\) and the transformations that they
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induce on figpedes Were analyzed by [26] (under his assumptions, which differ slightly from
our assumptions (i)—(iv)). Unfortunately, although Burnett’s analysis can be used to prove
important properties of gauge transformations, such as the invariance of $0 b ) under all allowed
gauge transformations, it is very difficult to prove any existence results that establish that
specific gauge conditions can be imposed on an arbitrary one parameter family of metrics
gap(N) satisfying our conditions.

In this section, we will assume that we can impose the “generalized wave-map gauge

condition” on the metric g4 (), namely
9" (NC% () =0, (91)

where C°,()\) is given by (). Note that this condition depends upon the background

metric, gg;), since the derivative operator, V,, of g((lg) appears in the definition of C°,, (). We
can impose the gauge condition (@) on g, () by applying the diffeomorphism z# — ¢*(\, x)

to gu(A), where x# are arbitrarily chosen coordinates on M and ¢* satisfie

1 0 Op* - ol
T (VMWL) AT NG <0 o

This equation is a (nonlinear) wave equation, so we can always find (local) solutions. To

see that solutions to this equation give rise to the condition (@Tl), we note that if we use
@*(\, x) as coordinates for the Ath spacetime, then we may replace 9¢/9z° by §%4, and
@2) reduces to

1 « 0)a uv
0= — =0, (V=9 g™ () + TV (V)
= g™ (N5, (V) — ¢ (T,
= —g’“’()\)CaW. (93)

We will refer to the coordinates ¢*(\, x) as generalized wave map coordinates for gq(\)
relative to the coordinates x# for g((lg). Note that in the case where g((l?,) = Na and z* are
Minkowski coordinates, the generalized wave map gauge condition reduces to the condi-
tion g (AL, (A) = 0, and the coordinates ¢*(A, x) satisfy a linear wave equation. Such

coordinates are usually referred to as “harmonic coordinates” in the literature.

" The diffeomorphisms defined by () do not depend on the choice of coordinates z*, since this equation

can be derived from the coordinate invariant action

067 0
Elel :/MgH (Vg afu aiv Voo

35



Although we can always (locally) solve (@) and thus (locally) put each gu(\) in our
one-parameter family in wave map gauge, we have no guarantee that the resulting new one-
parameter family of metrics will satisfy our conditions (i)—(v). In the following, we shall
simply assume that this is the case, i.e., that we have a one-parameter family of metrics
gab(A) that satisfies conditions (i)—(v) as well as our gauge condition (@T]). This corresponds
to a strengthening of our assumptions.

When the generalized wave map gauge condition is satisfied, it is very convenient to work

with the variable

B(A) = g0 %gabw. (01)

instead of hgp(A) = gap(N) — gab (Note that v/g(\)/g© is the proportionality factor between
the volume elements of g, (\) and gab , so this quantity does not depend on any choice of

coordinates z* on M.) We have

Vi (\) = \/ (o Vb \/ (o 9

=2 e,

PO
=0, (95)

where on the first line we used the fact that

1 g(A
b, = 5 Valog (%) : (96)

Note that in linearized gravity, h® reduces to the the trace-reversed metric perturbation,
ie., h(N) = h®(X) = h**(X) — gD (X), and ([@3) reduces to the Lorenz gauge condition
V,h® = 0. One should keep in mind, though, that beyond lowest order in A, h?®()\) is not
the trace-reversed metric perturbation.

We now express the exact Einstein equation in wave-map gauge in terms of h® and the
background derivative operator. Starting with (), we use the background equation ([[H),
the gauge condition V,h® = 0, as well as the fact that

be g((]) be 1 be de
Vg ) = [ 25 (b - S V) (97)
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to show (after a long computation) that
VEVh™ = 2R7, (g)h + 2R, (9”87 = R(g™ )b — g Rea(g" o
1
—2G(g@) g\t + 2A (b”b - 59(0)“b9§3)b°’d)

g )\ a al a a
— —167r% (T (N) — TO® 4 20 (N) — ¢Oab) (98)

Here, the terms that are non-linear in h?» have been absorbed into the quantity,

A A a epc
165250000 = —26% (1= 5 105 ) 4 Rl 2,6

_bcdvcvdbab + vdbcavcbdb + gef(A)gcd()\)vebcavfbdb
1
+59"(N)gea(N) VbV 15 — 2g.4(X)g"“(A) VeV £

2
1
+3 (29" (M) g™ (A) — g™ (N g™ (N)) (29ea(N) ger(N) = gea(N)ger (X)) VbV b
A 1
—2A (—gg ((0)) (9™(N) = g0%) + b - 59(0’“bg§3)b“l) : (99)
Equation (@) is of the form
L) = —167S*. (100)

where 2% takes the form of a linear wave operator acting on h®. Consequently, re-
introducing our (arbitrarily chosen) coordinates z* of the background spacetime, we may

rewrite (O8) in the following equivalent integral form:

baﬁ()U l’) - 4/ G taﬁ,u’u’(x> lj)su’u’()\’ l’,) _g(O) (IJ) d4$, + baﬁ ()‘7 l’) ) (101)

re hom
M

where Gmtaﬁ v (T,2') 18 the retarded Green’s function for £% and f)ﬁgm is a solution to
Z(brom) = 0. We emphasize that () is not a solution to ([@8) since the source S
depends on h*?. Rather, it is simply a re-writing of (@) in an integral form.

B. Local Newtonian gravity

For the remainder of this section, we restrict attention to the case where the background
spacetime g((lg) has FLRW symmetry. It will be useful to work in coordinates where the
metric components are nonsingular. Thus, instead of the more common choice of polar-type

coordinates, we will write the background metric in the form
dsV? = —d7® + a2(r) (1 + k(2® + % + 22)/4) 7 [da® + dy? + d=?) (102)
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where k = 0, £1, depending on the spatial curvature.
The “long wavelength part” of the leading order in A part of h()\) is given by
ab

1
= VV)\—E(I)II T _ ,y(L)ab o §g(O)QbV(L)Cc ) (103)

,7(L) ab

It follows directly from (FH) that 5(%)% satisfies the Lorenz gauge condition
Ve =0. (104)
The “short wavelength part” of h()\) is given by
P (N) = () — A (105)

By (@), it satisfies (in the notation of (T00))

L2 (N\) = —167 <S“b()\) ~ Awlim 2 ab(X)) : (106)

N—=0 )\/

where the weak limit appearing in this equation exists by virtue of assumption (v) of section
I1I. Note that S ()) still depends on the full perturbation, i.e., h® cannot be replaced by

h($)ab in the expression for S%. Equation (I0H) can be rewritten in integral form as,

1,0 /J/V/ ! '
b(S)aﬁ()\’x) _ 4/ Grotaﬁ‘u’y’('xax/) (Suv ()\,LU/> — >\V&>7\71116[1 W) _g(o) (,j(:/) diy’
M —
oA 7). o)

Our aim for the remainder of this subsection is to argue that—in the absence of grav-
itational radiation and under suitable assumptions concerning the behavior of the matter
distribution T,,(\)—to leading order in A, h®)%(\) near point x is described by Newtonian
gravity, taking into account only the matter distribution in a suitable local neighborhood of
x. However, in order to derive this conclusion, we must make significant additional assump-
tions about our one-parameter family gq,(\), and severe difficulties arise if one attempts
to formulate these assumptions in a mathematically precise manner. The reason is that,
although there are simple, precise limits that one can take of general relativistic spacetimes
to obtain Newtonian gravity [32], these limits would not be compatible with retaining the
cosmological background spacetime gg;), and thus would not be suitable for our use. We

believe that it should be possible to concoct a mathematically consistent set of assumptions

that would enable us to rigorously justify our conclusions below, but we do not see a simple
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and/or elegant way of formulating such assumptions, and we do not feel that it would be
illuminating to attempt to derive our results from a complicated list of technical assump-
tions whose intrinsic plausibility is not much greater than that of the conclusions we wish
to draw. Thus, in the discussion below in this subsection, although we will clearly indicate
the nature of the assumptions that are needed, we will not attempt to formulate all of our
assumptions in a mathematically precise manner, and we will thereby resort to plausibility
arguments to obtain our conclusions.

We are interested in obtaining h¥)%°()\) near a point x at a time roughly correspond-
ing to the present time in the actual universe. We first argue that although the retarded
Green’s function integral extends all the way back to the “big bang”, it should suffice to
integrate only over the “recent universe” (corresponding, say, to z < 1000 in the present,
actual universe). There are two reasons why this should be so: (1) The universe is ex-
pected to be very nearly homogeneous and isotropic in the distant past, so the source term
(5% — Aw-limy_g [S®/XN]) should be negligibly small. (2) The nature of the retarded
Green’s function in an expanding universe is such as to make the influence of distant sources
small (on account of redshift and intensity diminution). Similarly, we assume that the grav-
itational radiation content of the present universe arising from the “big bang” is negligible.
Consequently, we discard the last term, bﬁiilaﬁ , in ([[0@). Thus, our integral relation for

h$ becomes

' _SEVI(N )
(S)as _ af / v N _ ) o (0) (e A4
b A\, z) = 4/ Grot (T, 27) (S“ (A, 2") )\V\)I\IEIOH — ) \/ —gO(a')d*a’,

v (108)
where W is the (compact) region corresponding to the “recent universe” (i.e., z < 1000 in
the present, actual universe).

Next, we argue that, in order to calculate h¥)*% to O()\) at x, it suffices to perform the
integral in (I0R) only over a small neighborhood V of . In other words, we argue that—for
any fixed neighborhood, V, of x—as A — 0, the contribution to the integral in (1) from
the region 2 € W\ V should vanish faster than A as A — 0, i.e.,

w'v' / W' (NIt
/ Gmtaﬁwy, (z,2") (M — w-lim w) —gO(z)d*’ — 0.  (109)
W\ A A

N —0

To see this, we note that if Gretaﬁ M,V,(:c,x’ ) were smooth (and if the sharp boundaries of

the region of integration were replaced by smooth cut-off functions), then we would be
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integrating the quantity (S* /X —w-limy_,o[S*/X\']) with a test function. Since, clearly, the
weak limit as A — 0 of this quantity is 0, it follows immediately that (I0%) would hold. Of
course, G, *" (@, @) is not smooth, so ([IJ) cannot be expected to hold without further

restrictions on S%. However, in a normal neighborhood of z, the retarded Green’s function

Gretaﬁ (T, 2") for the linear operator & b takes the form
Gretaﬁu’u’ (LU, ZL’/) = Uaﬁ;ﬂu’ (LU, ;1,’/)5+(O') + Vaﬁ;/u’ (.flf, LE‘,)¢9+<—U) ) (110)

where U o (T,2") and ves i (2,2') are smooth bitensors and o is the squared geodesic
distance between x and z’ (see [33] for details). Thus, apart from the singularity at 2’ = x
(which is excluded from the region of integration in (), the singularities of G _,*’ (T, 2)
are of the form of a restriction to the past lightcone (i.e., . (o)) and a cutoff at the past
lightcone (i.e., 8, (—0c)). If S% is not rapidly varying with time (as should be the case under
our Newtonian assumptions below), these singularities should be quite benign, so it seems
not unreasonable that ([[09) will hold under suitable assumptions.

We have argued that ([09) should hold for an arbitrary neighborhood V of z. However,
the vanishing of the contribution to h®)*3(\ z) from outside of V to O()\) holds only in the
limit as A — 0, and the smaller we take V, the smaller we must take A in order to get a
good approximation to h¥*#()\, x) by integrating only over V. At any finite A, we cannot
take V to be arbitrarily small and still get a good approximation to h¥*#(\, z). How large
must we take )V at finite \?

To propose an answer to this question, we restrict consideration to the case where the
matter content satisfies suitable Newtonian behavior (at least in the “recent universe”). We
shall assume that as A — 0 we have Tpo(\) = O(1/)), Toi(A) = O(1/AY2) and T;;(\) = O(1),
so that, for small A\, the energy density is much greater than the momentum density, and
the momentum density is much greater than the stress. In addition we shall assume that
spatial differentiation of components of the stress-tensor results in blow-up as A — 0 that is
a factor of A™! faster than the undifferentiated components (so, e.g., 9;Too(A) = O(1/\?)),
but that time differentiation results in a blow-up of only a factor of A=%/2 faster (so, e.g.,
OoToo(A) = O(1/X3/2)).

We now introduce the notion of the scale of homogeneity, (X, 7o) at cosmic time 7y as
follows. First, we define a fiducial window function which is to be used for averaging. Fix

a time interval A7 < 7 and let Vg ,, to be the “cylinder”, centered at z(, of “height” At
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and proper spatial radius R. Let x g4, (2) be a smooth non-negative function which is equal
to one on Vg ,,, and falls rapidly to zero outside of this region. Let H denote the “Hubble

volume” relative to x at time 7, i.e., the ball of proper radius equal to the Hubble radius,

0
/ TO(O)XR,TO@O

In other words [ is the smallest radius such that averaging over a ball of radius [ centered at

Ry, centered at point x. We define

<

I\ 7o) = inf{R: ‘ / (Too() = T8 ) X

Vg € H} . (111)

any point z, lying within the Hubble volume relative to = always yields |6p|/p® < 1. Note
that our definition of I(\, 7) depends on our choice of “window function” xpg ., ().

We now claim that [(\,79) — 0 as A — 0 (and thus, in particular, [ is always finite at
sufficiently small \). To prove this, we note that if this result did not hold, we could find
an lp > 0 and a sequence {\, : n € N} converging to zero, such that [(\,, ) > [y for all

n € N. Consequently, there would exist a sequence of points {x,} C H such that

‘/ (TOO(ArJ - T()(((]])> Xlo,70,%n > ’/TO((()))XIO,TO@n

(112)

Since H is compact, there exists a subsequence—which we also denote as {x, }—converging

to some z € H. By the triangle inequality, we have

‘/ (TOO(An) - TO((()))) Xlo,70,2

+ '/ <T00(>\n) - ()((()])> [Xlo,To,mn - Xloﬂ'o,z]

> ' / T30 Xto o

(113)
Taking the limit as n — oo, we see that the first term on the left side vanishes because
Too(A) converges weakly to T 0(8) and the second term vanishes by the lemma of section II.
On the other hand, the right side is bounded away from 0, thus yielding a contradiction,
thereby proving the desired result that I(\, 70) — 0 as A — 0.

Returning to the question posed four paragraphs above, since Tyo(A) provides the dom-
inant contribution to the source term S%, it seems clear that if, at finite A, V(\) is chosen
to be so small that it does not include all source contributions lying within a homogeneity
scale (A, 7p) about point x, then we cannot expect the source contributions from outside of
V()) to consistently average to zero to a good approximation. On the other hand, if V(\)
is of order of the homogeneity scale or larger, then it seems plausible that (with suitable

additional assumptions) a good approximation to h¥*#(\, z) will be obtained. Thus, we
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have argued that h3*#(\, z) should be well approximated by

, w'v' (Nt
hSB(\ z) = 4 Gretaﬁwy,(m, ') <S“ (A 2') — Aw-lim ST,

5y N0 Y ) 0@ d'’,
V(A -

(114)
where V(A) may be taken to be a “cylinder” centered at x of proper spatial radius L and
proper time “height” 2L, where L 2 (A, 75). Note that in order to obtain the conclusion
that we need only integrate over the local region V(\), it is essential that we have removed
the “long wavelength part” of ho”,

We now assume that [(\, 79) < R¢ so that we can choose L such that L < R¢, where Re
denotes the length scale of curvature of the background metric gi(;) (i.e., the Hubble radius,
assuming spatial curvature is negligible). In the actual universe at the present time, we have
R¢ ~ 3000 Mpc and (A, ) < 100 Mpec, so we should easily satisfy all required criteria with
L ~ 100 Mpc. In that case, it should suffice to take only the leading order terms in the
Hadamard expansion for U p L and Vs ., s well as the leading order approximation to o

in the Green’s function expression ([I0). This yields
(7" =7+ a(r)r)

Gretaﬁu’u’ (T7 07 T/7 CC/) = 5;(;55’) CL(T)T/
—l—Vaﬁu,V,(T, 0,7,0)0 (-7 + 71 —a(r)r), (115)

where we have now put the field evaluation point x at the spatial origin of our coordinate
system (I02). Since Vs i (7,0, 7,0) is proportional to the curvature of gi?,), it is clear that
the contribution of the second term will be down by a factor of (L/R¢)? from the first term,
so we neglect this contribution. We also neglect “retardation effects”, i.e., the difference
between evaluating the source at time 7 — a(7)r’ and time 7. Our formula (IT4) for h)*8

then reduces to

L

a(T 1 Oéﬁ >\/ /
f)(s)aﬁ()\,T, 0) ~ 4/ dQ’/ . - (Saﬁ(A,T, x') — )\vg—liron —S ( )\’/T’w )) a®(t)r'dr’.
o T =

(116)

Next, we assume that [(\, 79) not only goes to zero as A — 0 (as we have proven above)
but is O(A) as A — 0, i.e., [(A, 1) /A remains boundedH as A — 0. Thus, if we choose L such
that L/ remains bounded as A\ — 0, by inspection of ([[TH), it is then clear that terms in S

that are o(1/A) as A — 0 will make only o()\) contributions to h®)**. However, we assumed

8 This precludes behavior wherein, e.g., Too(\) is O(1) as A — 0 but its scale of spatial variation goes as

A/2 rather than A. Such behavior would not be excluded by our previous assumptions.
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above that as A — 0, we have Too(\) = O(1/)), Toi(A) = O(1/AY2) and T;;(\) = O(1). We
now make a final, additional assumption that terms of the form V.V4h? are O(1/)). In
that case, it follows immediately that t* is O(1) as A — 0 (see ([@)). It then follows that
to obtain h®)% to O()\) accuracy, we need only take into account the contribution to S

from Tpy. Thus, to O(X) accuracy, we obtain

L
a(m) 1
B0\ 1, 0) = 4 / 4o /0 7 LI ) - TON () AT, &) ()
(117)

and h» = 0 for all other components of H5)% We write
1
= —Zr)(S)OO. (118)

Then ¢(z) differs from the familiar formula for the gravitational potential arising in ordinary
Newtonian gravity due to the matter lying within a ball of proper radius L about z only in
the following ways: (a) There is a factor of a?(7) in (), which arises from the trivial scaling
difference between the spatial coordinates of (I02) and ordinary Cartesian coordinates. (b)
TOY is subtracted in the integrand of (IT7) because the FLRW time slicing differs from
a locally Minkowskian time slicing (see section IA of [1]); equivalently, the effects of 7?0
have already been taken into account via the dynamics of the FLRW background. (c)
AT is subtracted in the integrand of () because its effects were already taken into

account by 7}15) .

As discussed above, this subtraction of NXTM gives the integral much
better convergence properties. Thus, we conclude that the leading order short wavelength
deviation from the FLRW background g((l(;) is described by Newtonian gravity, taking into
account only the matter distribution lying within a region about x whose size is of order the
homogeneity lengthscale.

The motion of matter is given by
0=V, NT\) = VTN + C% . (NTN) + C(N)T*(N). (119)

We may write

C%(A) = O (A) +ACD,, (120)

where, to leading order in wave map gauge, we have

C¥0, = Vo, (121)
O(S)ioo =V'o, (122)
OO = gV — 25 Vo, (123)
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(with other components zero), and

1
CWe, = 29O VAP + Vil =Vl } (124)

The dominant terms in ([[T) arise from C)i (\)T(\) and correspond to the ordinary
Newtonian gravitational effects on the motion of matter. Although, for small A\, the contri-
butions from C'M?,  will be much smaller than those arising from ¢, it is important not to
discard the terms in CV%,  since they can produce large scale, coherent motions.

C. Behavior of 'YC%J) with dust source

In this subsection, we will simplify the rather complicated equations for fyéf) derived in

section III under the assumption that h®)®(\) is of “Newtonian form”. More precisely, we

assume that the following quantities are uniformly bounded as A — 0:

%b(S)OO ’ ﬁvob(smo ’ Vib(S)OO ’
%VOU(S)Oju Al—l/Qvib(S)Oj7 (125)
%vib(s)jk.

The remaining components (%, (5 and Voh5)¥) are assumed to be o(A). These
assumptions can be justified by generalizations of the arguments made in the previous sub-
section, but here we will simply assume that they are valid.

We will also assume that the matter stress-energy takes the form of “dust”
Tu(A) = p(Nua(Nup(A) , (126)

where u%(\) has norm —1 with respect to the metric g.,(\), and p(A) > 0. (Recall that we
have incorporated a cosmological constant into Einstein’s equation, so the possible presence
of “dark energy” of that form has already been taken into account. This assumption of the
dust form of the stress-energy tensor as opposed to a more general form of non-relativistic
matter is made here mainly for the purpose of obtaining definite equations involving familiar
quantities.) We further assume that as A — 0, u, () converges uniformly to u(?%, where in
the coordinates of ([[0Z), we have u¥* = (1,0,0,0). Note that since u,()\) — ul? uniformly
as A — 0, it follows by