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Abstract

We develop a new, mathematically precise framework for treating the effects of nonlinear phe-

nomena occurring on small scales in general relativity. Our approach is an adaptation of Burnett’s

formulation of the “shortwave approximation”, which we generalize to analyze the effects of mat-

ter inhomogeneities as well as gravitational radiation. Our framework requires the metric to be

close to a “background metric”, but allows arbitrarily large stress-energy fluctuations on small

scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak

energy condition (i.e., positivity of energy density in all frames), then the only effect that small

scale inhomogeneities can have on the dynamics of the background metric is to provide an “ef-

fective stress-energy tensor” that is traceless and has positive energy density—corresponding to

the presence of gravitational radiation. In particular, nonlinear effects produced by small scale

inhomogeneities cannot mimic the effects of dark energy. We also develop “perturbation theory”

off of the background metric. We derive an equation for the “long-wavelength part” of the lead-

ing order deviation of the metric from the background metric, which contains the usual terms

occurring in linearized perturbation theory plus additional contributions from the small-scale in-

homogeneities. Under various assumptions concerning the absence of gravitational radiation and

the non-relativistic behavior of the matter, we argue that the “short wavelength” deviations of the

metric from the background metric near a point x should be accurately described by Newtonian

gravity, taking into account only the matter lying within a “homogeneity lengthscale” of x. Finally,

we argue that our framework should provide an accurate description of the actual universe.
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I. INTRODUCTION

It is generally believed that our universe is very well described on large scales by a

Friedmann-Lemâıtre-Robertson-Walker (FLRW) model. However, on small scales, ex-

tremely large departures of the mass density from FLRW models are commonly observed,

e.g., on Earth1, we have δρ/ρ ∼ 1030. Nevertheless, common sense estimates [1, 2] suggest

that (a) the deviation of the metric (as opposed to mass density, which corresponds to

second derivatives of the metric) from a FLRW metric are globally very small on all scales

except in the immediate vicinity of strong field objects such as black holes and neutron

stars, and (b) the terms in Einstein’s equation that are nonlinear in the deviation of the

metric from a FLRW metric are negligibly small as compared with the linear terms in the

deviation from a FLRW metric except in the immediate vicinity of strong field objects.

These common sense estimates together with the fact that the motion of matter relative

to the rest frame of the cosmic microwave background is non-relativistic strongly suggest

that (1) the large scale structure of the universe is well described by a FLRW metric, (2)

when averaged on scales sufficiently large that |δρ/ρ| ≪ 1—i.e., scales of order 100 Mpc in

the present universe—the deviations from a FLRW model are well described by ordinary

FLRW linear perturbation theory, and (3) on smaller scales, the deviations from a FLRW

model (or, for that matter, from Minkowski spacetime) are well described by Newtonian

gravity—except, of course, in the immediate vicinity of strong field objects.

The above assumptions underlie the standard cosmological model, which has been re-

markably successful in accounting for essentially all cosmological phenomena. Thus, there is

good empirical evidence that assumptions (1)–(3) are at least essentially correct. Neverthe-

less, the situation is quite unsatisfactory from the perspective of having a mathematically

consistent theory wherein the assumptions and approximations are justified in a systematic

manner. Indeed, it is not even obvious that assumptions (1)–(3) are mathematically consis-

tent [3, 4]. In particular, nonlinear effects play an essential role in Newtonian dynamics, e.g.,

the fact that the Earth orbits the Sun arises from Einstein’s equation as a nonlinear effect

in the deviation of the metric from flatness. It is clear that one would get an extremely poor

description of small-scale structure in the universe if one neglected the nonlinear terms in

Einstein’s equation in the deviation of the metric from a FLRW model; for example, galaxies

1 If we go to scales of atomic nuclei, then δρ/ρ ∼ 1043.
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would not be bound. But if one cannot neglect nonlinear terms in Einstein’s equation on

small scales, how can one justify neglecting them on large (i.e., ∼ 100 Mpc or larger) scales?

In addition, since it is not clear exactly what approximations are needed for assumptions

(1)–(3) to be valid, it is far from clear as to how one could go about systematically improving

these approximations.

Indeed, it is far from obvious, a priori, that nonlinearities associated with small-scale

inhomogeneities could not produce important effects on the large-scale dynamics of the

FLRW model itself, as has been suggested by a number of authors [5–17] as a possible

way to account for the effects of “dark energy” without invoking a cosmological constant,

a new source of matter, or a modification of Einstein’s equation. In fact, the example of

gravitational radiation of wavelength much less than the Hubble scale illustrates that it is

possible, in principle, for small-scale inhomogeneities in the metric and curvature to affect

large-scale dynamics. The dynamics of a FLRW model whose energy content is dominated

by gravitational radiation will be very different from one with a similar matter content but no

gravitational radiation. It is the nonlinear terms in Einstein’s equation associated with the

short-wavelength gravitational radiation that are responsible for producing this difference

in the large-scale dynamics. Although common-sense estimates indicate that similar effects

on large-scale dynamics should not be produced by nonlinear effects of small-scale matter

inhomogeneities in our universe, it would be very useful to have a systematic and general

approach that can determine exactly what effects small-scale inhomogeneities can and cannot

produce on large-scale dynamics.

The main approach that has been taken to investigate the effects of small-scale inhomo-

geneities on large-scale dynamics has been to consider inhomogeneous models, take spatial

averages to define corresponding FLRW quantities, and derive equations of motion for these

FLRW quantities [18, 19]. Since, in particular, the spatial average of the square of a quan-

tity does not equal the square of its spatial average, the effective FLRW dynamics of an

inhomogeneous universe will differ from that of a homogeneous universe. However, a ma-

jor difficulty with this approach is that, when the deviations of the metric from that of

a FLRW background are not very small, it is not obvious how to interpret the averaged

quantities in terms of observable quantities. For example, if the total volume of a spatial

region is found to increase with time, this certainly does not imply that observers in this

region will find that Hubble’s law appears to be satisfied. Further serious difficulties with
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this approach arise from the fact that the notion of averaging is slicing dependent and the

average of tensor quantities over a region in a non-flat spacetime is intrinsically ill defined.

In addition, the equations for averaged quantities that have been derived to date are only

a partial set of equations—they contain quantities whose evolution is not determined—so it

is difficult to analyze what dynamical behavior of the averaged quantities is actually possi-

ble. This difficulty is well illustrated by a recent paper of Buchert and Obadia [20], where

they suggest that inflationary dynamics may be possible in vacuum spacetimes. However,

this conclusion is drawn by simply postulating that a particular functional relation holds

between certain averaged quantities under dynamical evolution. In fact, Einstein’s equation

controls the dynamical evolution of these quantities—so one is not free to postulate addi-

tional relations—but the restrictions imposed by Einstein’s equation are not considered.

The main purpose of this paper is to develop a framework that allows us to consider space-

times where there can be significant inhomogeneity and nonlinear dynamics on small scales,

yet the framework2 is capable of describing “average” large-scale behavior in a mathemati-

cally precise manner. We seek a framework wherein the approximations are “controlled” in

the sense that they can be shown to hold with arbitrarily good accuracy in some appropriate

limit. The results obtained within this framework will thereby be theorems, and the only

issue that can arise with regard to the applicability of these results to the physical universe

is how close the physical universe is to the limiting behavior of the theorems, in which the

results hold exactly.

The situation that we wish to describe via our framework is one in which there is a

“background spacetime metric”, g
(0)
ab , that is supposed to correspond to the metric “aver-

aged” over small scale inhomogeneities. In the case of interest in cosmology, g
(0)
ab would be

taken to be a metric with FLRW symmetry, but our framework does not require this choice,

and no restrictions will be placed upon g
(0)
ab until section IV. The difference, hab ≡ gab − g

(0)
ab ,

between the actual metric gab and the background metric is assumed to be small everywhere.

This precludes the existence of strong field objects such as black holes and neutron stars,

but even if such objects are present, by replacing these objects with weak field objects of

the same mass, our framework should give a good description of the universe except in the

2 Our framework will have some significant similarities to the approach of [21] (see also [22]), but our

assumptions will be considerably more general and our results will have considerably wider applicability.

Our assumptions also will be stated much more precisely. In addition, we will develop perturbation theory

within our framework.
4



immediate vicinity of these objects. However, even though our framework requires hab to be

small, derivatives of hab (say, with respect to the derivative operator ∇a of the background

metric g
(0)
ab ) are not assumed to be small. Specifically, quadratic products of ∇chab are al-

lowed to be of the same order as the curvature of g
(0)
ab . Thus, a priori, such terms are allowed

to make a significant contribution to the dynamics of g
(0)
ab itself. Finally, no restrictions are

placed upon second derivatives of hab. In particular, if matter is present, the framework

allows δρ/ρ ≫ 1.

How can one formulate a mathematically precise framework where approximations such

as the smallness of hab = gab−g(0)
ab are “controlled” in the sense that limits can be taken where

they hold with arbitrarily good accuracy? The basic idea is to consider a one-parameter

family of metrics gab(λ) that has appropriate limiting behavior as λ → 0. To illustrate this

idea, consider the much simpler case of ordinary perturbation theory, wherein one wishes to

describe a situation where not only is gab −g(0)
ab small, but all of its spacetime derivatives are

correspondingly small. To describe this in a precise way, we can consider a one-parameter

family of metrics gab(λ, x) that is jointly smooth in the parameter λ and the spacetime

coordinates x. The limit as λ → 0 of this family of metrics clearly exists and defines the

background metric g
(0)
ab (x) = gab(0, x). If we assume that gab(λ) satisfies Einstein’s equation

for all λ > 0, it follows immediately that g
(0)
ab also satisfies Einstein’s equation. The first

order perturbation, γab, of g
(0)
ab is defined to be the partial derivative of gab(λ) with respect

to λ, evaluated at λ = 0. It satisfies the linearized Einstein equation, which is derived by

taking the partial derivative with respect to λ of Einstein’s equation for gab(λ), evaluated

at λ = 0. More generally, the nth order perturbation, γ
(n)
ab , of g

(0)
ab is defined to be the nth

partial derivative of gab(λ) with respect to λ evaluated at λ = 0, and the equation it satisfies

is derived by taking the nth partial derivative with respect to λ of Einstein’s equation. The

perturbative equations for the metric perturbation at each order hold rigorously and exactly.

Of course, the issue remains as to how accurately an nth order Taylor series approximation

in λ describes a particular metric gab(λ) for some small but finite value of λ. This issue

may not be easy to resolve in any specific case. Nevertheless, even if the accuracy of the

Taylor approximation cannot be fully resolved, it is far more satisfactory mathematically to

derive rigorous results for the perturbative quantities than to make crude arguments about

gab based on the assumption that hab = gab − g
(0)
ab is “small.”

To obtain a mathematically precise framework that can be applied to describe situations
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relevant for cosmology, we also wish to consider a one-parameter family of metrics gab(λ)

that approaches a smooth background metric g
(0)
ab as λ → 0. However, we do not want to

require that first spacetime derivatives of

hab(λ) ≡ gab(λ) − g
(0)
ab (1)

go to zero as λ → 0. Indeed, in order to capture the effects we are interested in, it is

essential that, a priori, the framework allow quadratic products of derivatives of hab(λ) to

be of the same order as the curvature of g
(0)
ab in the limit as λ → 0. This suggests that

we should consider a one-parameter family wherein, as λ → 0, the deviations of gab(λ)

from g
(0)
ab simultaneously become of smaller amplitude and shorter wavelength, in such a

way that first spacetime derivatives of hab(λ) remain bounded but do not necessarily go to

zero. If hab(λ) → 0 as λ → 0 but spacetime derivatives of hab(λ) do not go to zero, then it

is easy to see that spacetime derivatives of hab(λ) cannot converge pointwise (i.e., at fixed

spacetime points) as λ→ 0. However, spacetime derivatives of hab(λ) will automatically go

to zero when suitably averaged over a spacetime region; more precisely, their “weak limit”

exists and vanishes. Similarly, although we cannot require that quadratic products of first

spacetime derivatives of hab(λ) approach a limit at fixed spacetime points as λ → 0, it is

mathematically consistent to require that the weak limit of these quantities exists. As we

shall see in the next section, a certain combination of weak limits of quadratic products of

first spacetime derivatives of hab(λ) acts as an “effective stress energy tensor”, which affects

the dynamics of the background metric g
(0)
ab . In this way, the possible effects on FLRW

dynamics of small-scale inhomogeneities—which are required to be of small amplitude in

the metric but may be of unbounded amplitude in the mass density—can be studied in a

mathematically precise manner.

In fact, the issues we confront in attempting to treat the effects of small-scale mass density

fluctuations in cosmology are very similar to the issues arising when one attempts to treat

the self-gravitating effects of short-wavelength gravitational radiation. In the latter case, one

is interested in considering a situation where the amplitude of the gravitational radiation

relative to some background metric g
(0)
ab is small, but the “effective stress-energy tensor” of

the gravitational radiation—i.e., products of first spacetime derivatives of (gab − g
(0)
ab )—is

comparable to the curvature of g
(0)
ab . A “shortwave approximation” formalism was developed

by Isaacson [23, 24] (see also pp. 964–966 of [25]) to treat this situation. The shortwave
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approximation was put on a rigorous mathematical footing by Burnett [26], who derived

the equations satisfied by g
(0)
ab by considering a one-parameter family of metrics gab(λ) with

suitable limiting behavior. In this paper, we shall generalize Burnett’s formulation of the

shortwave approximation by allowing for the presence of a nonvanishing matter stress-energy

tensor Tab. By following Burnett’s approach, we shall derive an equation for the “background

metric”, g
(0)
ab , which takes the form of Einstein’s equation with an “averaged” matter stress-

energy tensor and an additional “effective stress-energy” contribution arising from the small-

scale inhomogeneities.

One of the main results of our paper, proven in the analysis of section II, is that if the

true matter stress-energy tensor Tab satisfies the weak energy condition (i.e., if the energy

density is positive in all frames), then the effective stress-energy tensor appearing in the

equation for g
(0)
ab must be traceless and must have positive energy density—just as in the

vacuum case3. In other words, no new effects on large-scale dynamics can arise from small-

scale matter inhomogeneities; the only effects that small-scale inhomogeneities of any kind

can have on large-scale dynamics corresponds to having gravitational radiation present. Our

analysis makes no assumptions of symmetries of the background metric g
(0)
ab and makes no

assumptions about the matter stress-energy tensor Tab other than that it satisfies the weak

energy condition. However, if g
(0)
ab is assumed to have FLRW symmetry, then our results

establish that, within our framework, the only effect that small-scale inhomogeneities can

have on FLRW dynamics corresponds to the additional presence of an effective P = 1
3
ρ fluid

with ρ ≥ 0. In particular, within our framework, small-scale inhomogeneities cannot provide

an effective source of “dark energy”.

In cosmology, in addition to analyzing the dynamics of the background FLRW spacetime,

one is interested in analyzing the deviations from the FLRW background. In section III,

we undertake a general analysis of perturbation theory within our framework. It is not

straightforward to do this because gab(λ) is not differentiable in λ at λ = 0, so there is no

notion of a “linearized metric perturbation” in our framework. However, the weak limit as

λ → 0 of [gab(λ) − g
(0)
ab ]/λ may exist, and, under the assumption that it does, this limit

defines a quantity γ
(L)
ab , which corresponds closely to what is called the “long wavelength

3 Our result on the positivity of energy density within this framework is new, i.e., it was not previously

shown to hold in the vacuum case by Burnett [26]. Positivity of the effective energy density in the vacuum

case was shown by Isaacson [24] only under an additional WKB ansatz.
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part” of the metric perturbation in other analyses (see, e.g., [27]). We also write

h
(S)
ab (λ) ≡ hab(λ) − λγ

(L)
ab (2)

and refer to h
(S)
ab as the “short wavelength part” of the deviation of the metric from a FLRW

model. (Note that in our framework, h
(S)
ab and γ

(L)
ab have precise mathematical definitions.)

Our goal is to derive the equations satisfied by γ
(L)
ab as well as to determine h

(S)
ab (λ) to accuracy

O(λ). This will yield the spacetime metric to accuracy O(λ).

In section III, we will systematically derive the equations satisfied by γ
(L)
ab and h

(S)
ab (λ) in

a completely general context. By taking the weak limit of 1/λ times the difference between

the exact Einstein equation for gab(λ) and the effective Einstein equation for g
(0)
ab , we ob-

tain an equation for γ
(L)
ab corresponding to that arising in ordinary linearized perturbation

theory. However, in addition to the familiar terms appearing in ordinary linearized per-

turbation theory, this equation contains additional “source terms” arising from h
(S)
ab and, if

gravitational radiation is present in the background spacetime, this equation also contains

additional terms linear in γ
(L)
ab and quadratic in h

(S)
ab . We also obtain additional relations

between quantities appearing in this equation by taking weak limits of Einstein’s equation

multiplied by h
(S)
ab /λ and by h

(S)
ab h

(S)
cd /λ. These relations are used to simplify the perturbation

equation for γ
(L)
ab . Finally, we write down Einstein’s equation for h

(S)
ab (λ). In the vacuum

case, we consider the simplifications that can be made to this equation if one is interested

only in determining h
(S)
ab (λ) to sufficient accuracy to obtain g

(0)
ab . We compare our approach

to that of Isaacson [23, 24] and subsequent works (see, e.g., [25]).

In section IV, we apply our general perturbative analysis to cosmology. We introduce the

“generalized wave map gauge” in subsection IVA. In subsection IVB, we make additional

assumptions concerning initial conditions and the Newtonian nature of the deviation, δTab ≡
Tab(λ) − T

(0)
ab , of the stress-energy tensor from a FLRW model. We argue that, for small

λ, h
(S)
ab (λ) should be well approximated (in the wave map gauge) by the Newtonian gravity

solution, whereby one needs only take into account the “nearby” matter. In contrast to

the rest of the paper—where all of the assumptions are stated in a mathematically precise

manner, and all of the results are theorems—in subsection IVB we provide only a sketch

of the assumptions needed, and many of our arguments have the character of plausibility

arguments rather than proofs. In subsection IVC, we simplify the equation for γ
(L)
ab derived

in section III by using our Newtonian assumptions. We show that this equation reduces to
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the ordinary cosmological perturbation equation with an additional effective source arising

from h
(S)
ab (λ), in agreement with a result recently obtained by [27].

In summary, in this paper we introduce a new framework for treating spacetimes whose

metric is close to that of a background metric g
(0)
ab but is such that nonlinear departures

from g
(0)
ab are dynamically important on small scales. We proceed by introducing a suitable

one-parameter family of metrics gab(λ) and deriving results in the limit as λ→ 0. We prove

that the small-scale inhomogeneities cannot affect the dynamics of the background metric

g
(0)
ab except by the addition of an effective stress-energy tensor with positive energy density

and vanishing trace, which can be interpreted as arising from gravitational radiation. We

derive an equation for the “long-wavelength part” of the leading order deviation of the metric

from g
(0)
ab , which contains the usual terms occurring in linearized perturbation theory plus

additional contributions from the small-scale inhomogeneities. Finally, we argue that the

small-scale deviations of the metric from g
(0)
ab should be accurately described by Newtonian

gravity.

Of course, the real universe is not the limit as λ becomes arbitrarily small of the type

of a one-parameter family of metrics gab(λ) considered here. Thus, our results do not ap-

ply exactly to the real universe—any more than the results of an analysis using ordinary

linearized perturbation theory would apply to a real situation. However, in section V we

will argue that since the scales in which nonlinear dynamics are important in the present

universe (i.e., scales much less than ∼ 100 Mpc) are much smaller than the scale of the back-

ground curvature (i.e., the Hubble radius ∼ 3 Gpc), it seems reasonable to expect that the

real universe will be accurately described by a “small λ” approximation to gab(λ) within our

formalism. We believe that our analysis thereby goes a long way toward providing a mathe-

matically sound framework that can be used to justify the assumptions and approximations

used in cosmology. At the end of section V, we will discuss how these approximations can

be improved.

Our notation and sign conventions follow that of [28]. Lower case Latin indices from early

in the alphabet (a, b, c, . . . ) denote abstract spacetime indices. Greek indices denote com-

ponents of tensors. Latin indices from mid-alphabet (i, j, k, . . . ) denote spatial components

of tensors.
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II. DYNAMICS OF THE BACKGROUND METRIC

In this section, we will give a precise statement of the assumptions that underlie our

framework. We will then analyze the dynamics of the background metric g
(0)
ab and prove that

if the matter stress-energy tensor, Tab, satisfies the weak energy condition, then the “effective

stress-energy” contributed by small-scale inhomogeneities must have positive energy density

and vanishing trace.

As explained in the Introduction, we wish to consider a situation wherein we have a one-

parameter family of metrics gab(λ) that approaches a background metric g
(0)
ab , but spacetime

derivatives of gab(λ) do not approach the corresponding spacetime derivatives of g
(0)
ab . An

example of the type of behavior that we have in mind is for components of hab(λ) ≡ gab(λ)−
g

(0)
ab to behave like λ sin(x/λ). In this situation, if we let ∇a denote the derivative operator

associated with g
(0)
ab , we cannot have ∇chab(λ) → 0 pointwise as λ → 0. However, suitable

spacetime averages of ∇chab(λ) will go to zero. More precisely, if f cab is any smooth tensor

field of compact support, we have
∫

f cab∇chab(λ) = −
∫

(∇cf
cab)hab(λ)

→ 0 as λ→ 0 (3)

provided only that hab(λ) → 0 locally in L1, where the volume element in this integral is

that associated with g
(0)
ab . If (3) holds for all “test” (i.e., smooth and compact support)

tensor fields, f cab, we say that ∇chab(λ) → 0 weakly. More generally, if Aa1...an(λ) is a one-

parameter family of tensor fields defined for λ > 0, we say that Aa1...an(λ) converges weakly

to Ba1...an as λ→ 0 if for all smooth fa1...an of compact support, we have

lim
λ→0

∫

fa1...anAa1...an(λ) =

∫

fa1...anBa1...an . (4)

Roughly speaking, the weak limit performs a local spacetime average of Aa1...an(λ) before

letting λ→ 0.

As noted above, if gab(λ) converges to g
(0)
ab in a suitably strong sense—locally in L1

suffices—then spacetime derivatives of hab(λ) automatically converge weakly to zero. How-

ever, there is no reason why products of spacetime derivatives of hab(λ) must converge weakly

at all, and, if they do converge, one would not expect them to converge to zero. (This latter

observation is closely related to the fact that averages of products of quantities are not nor-

mally equal to the product of their averages.) As discussed in the Introduction, we wish to
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consider a situation where first spacetime derivatives of hab(λ) remain bounded but do not

necessarily go to zero as λ → 0. However, in order to have well defined averaged behavior

in the limit as λ → 0 we want the weak limit of the nonlinear terms in Einstein’s equation

to exist. As we shall see below, this will be the case if the weak limit of quadratic products

of first spacetime derivatives of hab(λ) exists.

All of the above considerations lead us to consider a one-parameter family of metrics

gab(λ), defined for all λ ≥ 0, satisfying the following conditions, which are straightforward

generalizations to the non-vacuum case of the conditions considered by Burnett [26] in his

formulation of the shortwave approximation. In these conditions, ∇a denotes an arbitrary

fixed (i.e., λ-independent) derivative operator on the spacetime manifoldM . For convenience

in stating these conditions, we choose an arbitrary Riemannian metric eab on M and for any

tensor field ta1...an on M we define |ta1...an |2 = ea1b1 . . . eanbnta1...antb1...bn .

(i) For all λ > 0, we have

Gab(g(λ)) + Λgab(λ) = 8πTab(λ) , (5)

where Tab(λ) satisfies the weak energy condition, i.e., for all λ > 0 we have

Tab(λ)ta(λ)tb(λ) ≥ 0 for all vectors ta(λ) that are timelike with respect to gab(λ).

(ii) There exists a smooth positive function C1(x) on M such that

|hab(λ, x)| ≤ λC1(x) , (6)

where hab(λ, x) ≡ gab(λ, x) − gab(0, x).

(iii) There exists a smooth positive function C2(x) on M such that

|∇chab(λ, x)| ≤ C2(x) . (7)

(iv) There exists a smooth tensor field µabcdef on M such that

w-lim
λ→0

[∇ahcd(λ)∇bhef(λ)] = µabcdef , (8)

where “w-lim” denotes the weak limit.

It follows immediately that µab(cd)(ef) = µabcdef and µabcdef = µbaefcd, and it is not difficult

to show [26] that µ(ab)cdef = µabcdef . It also is not difficult to see that if gab(λ) satisfies the
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above conditions for any choice of ∇a and eab, then it satisfies these conditions for all choices

of ∇a and eab. In our calculations, it will be convenient to choose ∇a to be the derivative

operator associated with the background metric g
(0)
ab ≡ gab(0), and in the following, we shall

make this choice. We shall also raise and lower indices with g
(0)
ab .

As discussed in the Introduction, the key idea is that our actual spacetime, with all of its

inhomogeneities, is described by an element of such a one-parameter family, at some small

but finite value of λ. By analyzing the limiting behavior of such one-parameter families at

small λ, we hope to attain an excellent approximate description of our universe. However,

unlike ordinary perturbative analyses, our one-parameter family gab(λ) is not differentiable

in λ at λ = 0, so we cannot define perturbative quantities or obtain useful equations by

differentiation with respect to λ.

Our first task is to derive an equation satisfied by the background metric g
(0)
ab = gab(0).

This equation will follow directly from Einstein’s equation (5) for gab(λ), using the general

relationship between the Ricci curvature of g
(0)
ab and gab(λ), namely

Rab(g
(0)) = Rab(g(λ)) + 2∇[aC

c
c]b − 2Cd

b[aC
c
c]d , (9)

where

Cc
ab =

1

2
gcd(λ) {∇agbd(λ) + ∇bgad(λ) −∇dgab(λ)} (10)

and, again, we remind the reader that ∇a denotes the derivative operator associated with

g
(0)
ab , so that ∇cg

(0)
ab = 0. It follows immediately from (9) that

Rab(g
(0)) − 1

2
gab(λ)gcd(λ)Rcd(g

(0)) + Λgab(λ)

= Gab(g(λ)) + Λgab(λ) + 2∇[aC
e
e]b − 2Cf

b[aC
e
e]f

−gab(λ)gcd(λ)∇[cC
e
e]d + gab(λ)gcd(λ)Cf

d[cC
e
e]f , (11)

and invoking the Einstein equation for λ > 0,

Rab(g
(0)) − 1

2
gab(λ)gcd(λ)Rcd(g

(0)) + Λgab(λ)

= 8πTab(λ) + 2∇[aC
e
e]b − 2Cf

b[aC
e
e]f

−gab(λ)gcd(λ)∇[cC
e
e]d + gab(λ)gcd(λ)Cf

d[cC
e
e]f . (12)

We now take the weak limit of both sides of (12) as λ→ 0. It is easy to see that the weak limit

of the left side exists and is equal toGab(g
(0))+Λg

(0)
ab . Aside from the term 8πTab(λ), the terms

12



on the right side of (12) all contain a total of precisely two derivatives of hab(λ). These terms

can be classified into the following types: (a) Terms linear in hab(λ), corresponding to the

linearized Einstein operator acting on hab(λ); (b) terms quadratic in hab(λ), corresponding

to the second order Einstein operator acting on hab(λ); (c) terms cubic and higher order in

hab(λ). The weak limit of terms of type (a) vanish by the type of argument leading to (3).

The terms of type (b) depend upon hab(λ) either in the form ∇ahcd(λ)∇bhef(λ)—which has

weak limit µabcdef—or in the form hcd(λ)∇a∇bhef(λ). However, since

hcd(λ)∇a∇bhef (λ) = ∇a [hcd(λ)∇bhef(λ)] −∇ahcd(λ)∇bhef(λ) (13)

and the weak limit of ∇a [hcd(λ)∇bhef(λ)] vanishes, we see that the weak limit of hcd(λ)∇a∇bhef (λ)

also exists and is equal to −µabcdef . Finally, it is easily seen that the weak limit of all terms

of type (c) vanish.

Since the weak limit of all terms in (12) apart from Tab(λ) exist, it follows that the

weak limit of Tab(λ) itself also must exist, without the necessity to impose any additional

assumptions on our one-parameter family. We write

T
(0)
ab ≡ w-lim

λ→0
Tab(λ) , (14)

and we may interpret T
(0)
ab as representing the matter stress-energy tensor averaged over

small scale inhomogeneities. Since Tab(λ) satisfies the weak energy condition for all λ > 0

and since gab(λ) converges uniformly (on compact sets) to g
(0)
ab , it is not difficult to show

that T
(0)
ab also satisfies the weak energy condition, i.e., T

(0)
ab t

atb ≥ 0 for all timelike vectors ta

with respect to g
(0)
ab . The weak limit of (12) then takes the form

Gab(g
(0)) + Λg

(0)
ab = 8πT

(0)
ab + 8πt

(0)
ab , (15)

where the “effective gravitational stress-energy tensor” t
(0)
ab arises from the weak limit of terms

of type (b) above and can be expressed entirely in terms of µabcdef . A lengthy calculation

(see [26]) yields

8πt
(0)
ab =

1

8

{

−µc de
c de − µc d e

c d e + 2µcd e
c de

}

+
1

2
µcd

acbd −
1

2
µc d

ca bd

+
1

4
µ cd

ab cd −
1

2
µ

c d
(ab)c d +

3

4
µc d

cab d −
1

2
µcd

abcd . (16)

Note that t
(0)
ab corresponds to the “Isaacson average” of the second order Einstein tensor of

hab(λ). It can be shown to be gauge invariant [26].
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Following Burnett [26], we decompose µabcdef into two tensors αabcdef ≡ µ[c|[ab]|d]ef and

βabcdef ≡ µ(abcd)ef , so that

µabcdef = −4

3
(αc(ab)def + αe(ab)fcd − αe(cd)fab)

+βabcdef + βabefcd − βcdefab . (17)

Then, we have

8πt
(0)
ab = α c d

a b cd +
3

2
αcd

cdab − 2α
cd

(a |cd|b) −
1

4
g

(0)
ab

{

αcd e
cd e − 2αcde

cde

}

. (18)

Note that the right hand side is independent of βabcdef .

The remainder of this section will be devoted to establishing two key properties of t
(0)
ab ,

namely, t(0)aa = 0 and t
(0)
ab t

atb ≥ 0 for any timelike vector ta of the background metric g
(0)
ab .

To prove these results, we need to obtain further information about αabcdef from Einstein’s

equation (12). To do so, it is convenient to re-write this equation in “Ricci form” as

Rab(g
(0)) − Λgab(λ) = 8πTab(λ) − 4πgab(λ)gcd(λ)Tcd(λ) + 2∇[aC

c
c]b − 2Cd

b[aC
c
c]d . (19)

We now multiply this equation by hef(λ) and take the weak limit as λ → 0. The left side

clearly goes to zero. The weak limit of hef (λ)Cd
b[aC

c
c]f is also easily seen to vanish. On the

other hand, we have

w-lim
λ→0

hef(λ)∇[aC
c
c]b = −w-lim

λ→0
∇[ah|ef |(λ)Cc

c]b

= −µ[b|[ac]|d]efg
(0)cd

= −α c
acb ef . (20)

Thus, we obtain

α c
a bcef = 4πw-lim

λ→0
hef(λ)

(

Tab(λ) − 1

2
gab(λ)gcd(λ)Tcd(λ)

)

. (21)

In particular, the weak limit of the right side of this equation must exist. By similar

arguments starting with Einstein’s equation in the form (12), it also follows that the weak

limit as λ→ 0 of hef(λ)Tab(λ) exists. We write

κefab = w-lim
λ→0

hef(λ)Tab(λ) . (22)

We will now show that the right side of (21) vanishes. We first prove the following lemma.
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Lemma. Let A(λ) be a one-parameter family of smooth tensor fields (with indices sup-

pressed) converging uniformly on compact sets to A(0), and let B(λ) be a one-parameter

family of non-negative smooth functions converging weakly to B(0). Then A(λ)B(λ) →
A(0)B(0) weakly as λ→ 0.

Proof. Let F be a test tensor field—i.e., a smooth tensor field of compact support—with

index structure dual to that of A. Let f be a smooth, non-negative function of compact

support with f = 1 on the support of F . Then F = fF . We have

lim
λ→0

∫

(A(λ)B(λ) −A(0)B(0))F

= lim
λ→0

∫

[(A(λ) − A(0))B(λ) + A(0)(B(λ) − B(0))]F . (23)

The second term is zero because B(λ) → B(0) weakly and A(0)F is a test function. On the

other hand, we have
∣

∣

∣

∣

∫

(A(λ) −A(0))B(λ)F

∣

∣

∣

∣

≤
∫

|(A(λ) −A(0))F ||B(λ)f |

≤ sup
x∈supp F

|(A(λ) − A(0))F |
∫

B(λ)f , (24)

where we have used the facts that B(λ) ≥ 0 and f ≥ 0 in the second line. Now let ǫ > 0.

Since A(λ) → A(0) uniformly as λ → 0 on compact sets, there exists λ1 > 0 such that

supx∈supp F |(A(λ) − A(0))F | < ǫ for λ < λ1. Similarly, since B(λ) → B(0) weakly as

λ → 0, there exists λ2 > 0 such that
∫

(B(λ) − B(0))f < ǫ for all λ < λ2. Thus, for all

λ < min(λ1, λ2), we have
∣

∣

∣

∣

∫

(A(λ) −A(0))B(λ)F

∣

∣

∣

∣

< ǫ

(
∫

B(0)f + ǫ

)

, (25)

Thus the first term in (23) must be zero as well.

The vanishing of κefab (see (22)) is a direct consequence of this lemma. To see this, let

ta be an arbitrary timelike vector field in the metric g
(0)
ab . Then, we have

κefabt
atb = w-lim

λ→0
hef (λ)(Tab(λ)tatb) (26)

Since by condition (ii) on our one-parameter families, |gab(λ)− g
(0)
ab | ≤ λC1(x), on any fixed

compact region, we can find a λ0 such that ta is timelike in the metric gab(λ) for all λ ≤ λ0.

Since Tab(λ) satisfies the weak energy condition, the function B(λ) ≡ Tab(λ)tatb is non-

negative for all λ ≤ λ0. We previously showed that Tab(λ) (and hence B) converges weakly.
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Assumption (ii) also directly tells us that Aab(λ) ≡ hab(λ) converges uniformly on compact

sets. Thus, from the lemma, we immediately conclude that

κefabt
atb = 0 (27)

for all timelike ta in the metric g
(0)
ab . However, since κefab = κef(ab), we have κefabt

atb = 0 for

all timelike ta if and only if κefab = 0, as we desired to show.

A similar argument establishes that the second term on the right side of (21) also vanishes.

Thus, we obtain

α c
a bcef = 0 . (28)

Consequently, (18) simplifies to

8πt
(0)
ab = α c d

a b cd . (29)

Taking the trace of this equation and again using (28) we obtain our first main result of this

section:

Theorem 1. Given a one-parameter family gab(λ) satisfying assumptions (i)–(iv) above, the

effective stress energy tensor t
(0)
ab appearing in equation (15) for the background metric g

(0)
ab

is traceless,

t(0)aa = 0 . (30)

We now show that t
(0)
ab satisfies the weak energy condition. Let ta be a timelike unit vector

field with respect to g
(0)
ab . We wish to show that t

(0)
ab t

atb ≥ 0. It is convenient to choose an

orthonormal basis of g
(0)
ab with ta as the timelike vector. We will use Greek letters µ, ν, ρ, . . .

to denote spacetime components in this basis and Latin letters i, j, k, . . . from mid-alphabet

to denote spatial components. Then

8πt
(0)
ab t

atb = α µν
0µ0ν

= α jk
0j0k

= α i jk
ij k

=
1

4

{

µ i jk
i jk + µ ijk

jki − 2µ ijk
jik

}

, (31)

where in the second line we used the antisymmetry of αabcdef in the first two and the second

two indices, and in the third line we used (28). Thus, we have expressed t
(0)
ab t

atb entirely
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in terms of spatial components of µabcdef , which will be useful for taking advantage of the

positive definiteness of the spatial metric.

Aside from the tensor symmetries that arise directly from its definition, the only restric-

tions on µabcdef that we have at our disposal come from (28). There is only one equation

that can be derived from (28) that involves only spatial components of µabcdef , namely4

0 = α iµ
iµ kl − α0µ

0µ
kl . (32)

This yields

µ ij
ij kl = µ i j

i j kl . (33)

Using this relation, we may re-write (31) as

8πt
(0)
ab t

atb =
1

4

{

µ i jk
i jk − 2µ ijk

jik + 2µ ijk
jki − µ i j k

i j k

}

. (34)

For the remainder of our argument, we will work in a small neighborhood of an arbitrary

point P ∈ M . We will work in Riemannian normal coordinates x about P adapted to our

orthonormal basis. Let f δ
P be a one-parameter family of smooth, non-negative functions

with support contained in a δ-ball centered at P such that
∫

[

f δ
P (x)

]2 √−g d4x = 1 . (35)

An explicit choice of f δ
P is

f δ
P (x) =

1

δ2
√−gF (x/δ) , (36)

where F is any smooth, non-negative function of compact support contained in a ball of

radius 1 satisfying
∫

F 2d4x = 1, but there is no need to make this particular choice. Instead

of working with hab(λ), we introduce the quantity

ψab(δ, λ) ≡ f δ
Phab(λ) . (37)

Note that for any fixed δ > 0 and λ > 0, ψab is smooth and of compact support, so, in

particular, ψab and all of its spacetime derivatives are in L2. Furthermore, it follows directly

from the properties of hab(λ) and f δ
P that all components of ψab converge uniformly to 0 as

4 Equation (28) states that the weak limit of hef times the linearized Ricci tensor vanishes, i.e., it has the

character of the linearized vacuum Einstein equation off of flat spacetme. The linearized Hamiltonian

constraint—i.e., the vanishing of the time-time component of the linearized Einstein tensor—is the only

component of Einstein’s equation that can be expressed entirely in terms of spatial derivatives of spatial

components of the perturbed metric. Equation (32) corresponds to this equation.
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λ→ 0 at fixed δ. Similarly, components of ∇cψab are uniformly bounded in λ and x as λ→ 0

at fixed δ. Since ψab is of fixed compact support, it follows immediately that ‖ψab‖L2 → 0

and ‖∇cψab‖L2 is uniformly bounded as λ→ 0, where ‖ψab‖L2 ≡
∫

|ψab|2.
Since µabcdef is smooth, it is obvious from (35) and the support properties and positivity

of (f δ
P )2 that

µµναβγρ(P ) = lim
δ→0

∫

µµναβγρ(x)(f
δ
P )2√−g d4x . (38)

On the other hand, since (f δ
P )2 is a test function, from the definition (8) of µabcdef , at each

fixed δ we have

∫

µµναβγρ(x)(f
δ
P )2√−g d4x = lim

λ→0

∫

∂µhαβ(λ)∂νhγρ(λ)(f δ
P )2√−g d4x

= lim
λ→0

∫

∂µψαβ∂νψγρ

√
−g d4x . (39)

Here, in the first line, we replaced the derivative operator ∇a associated with g
(0)
ab with

the coordinate derivative operator ∂a associated with Riemannian normal coordinates at P ,

making use of the fact that the definition of µabcdef is independent of derivative operator. In

the second line, we used ∂µψαβ = f δ
P∂µhαβ + hαβ∂µf

δ
P and the fact that the resulting terms

in (39) with no derivatives on hαβ vanish in the limit as λ→ 0. Taking the limit of (39) as

δ → 0, we obtain

µµναβγρ(P ) = lim
δ→0

lim
λ→0

∫

∂µψαβ∂νψγρ d4x , (40)

where we have used the fact that
√−g = 1 at P . Note that it is critical in this equation

that the limits be taken in the order specified.

The corresponding formula for t
(0)
00 is

t
(0)
00 (P ) =

1

32π
lim
δ→0

lim
λ→0

∫

d4x
{

∂iψjk∂
iψjk − 2∂jψ

i
k ∂iψ

jk + 2∂jψ
i

i ∂kψ
jk − ∂iψ

j
j ∂

iψ k
k

}

.

(41)

where, in this equation, indices are raised and lowered with the flat Euclidean spatial metric

ηij = diag(1, 1, 1) corresponding to the spatial components of g
(0)
ab at P . The major advantage

of (41) is that we can apply usual Fourier transform techniques to evaluate the integral

appearing on the right side of this equation prior to taking the limit. If we had not “localized”

hab(λ) by multiplying it by f δ
P , the Fourier transform of hab(λ) could have been ill defined

and, even if it were well defined, it would contain global information about hab(λ) rather

than local information about the behavior of hab(λ) near P .
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Our strategy now will be to prove that the quantity

lim
λ→0

∫

d4x
{

∂iψjk∂
iψjk − 2∂jψ

i
k ∂iψ

jk + 2∂jψ
i

i ∂kψ
jk − ∂iψ

j
j ∂

iψ k
k

}

(42)

can be expressed as a sum of terms which are either positive, or which converge to zero as

δ → 0. Positivity of t
(0)
00 then follows immediately. We proceed by taking Fourier transforms

with respect to the spatial coordinates x only, with the convention

ψ̂ij(t,k) =
1

(2π)3/2

∫

d3xψij(t,x)e−ik·x . (43)

As previously noted, ψjk and all of its derivatives are obviously in L2, since ψjk is smooth

and of compact support. Since the Fourier transform is norm preserving in L2, we have

t
(0)
00 (P ) =

1

32π
lim
δ→0

lim
λ→0

∫

dt d3k
{

kik
iψ̂jkψ̂jk − 2kikjψ̂

i
k ψ̂

jk + 2kjkkψ̂
i

i ψ̂
jk − kik

iψ̂ j
j ψ̂

k
k

}

.

(44)

We may decompose ψ̂ij into its scalar, vector, and tensor parts as

ψ̂ij(t,k) = σ̂(t,k)kikj − 2ϕ̂qij + 2k(iẑj)(t,k) + ŝij(t,k) , (45)

where kiẑi = 0 = kiŝij, and ŝi
i = 0. Here qij is the projection orthogonal to ki of the

Euclidean metric on Fourier transform space. Since the various terms on the right side of (45)

are orthogonal at each k, it follows immediately that, for example, |ϕ̂(k)|2 ≤ 1
8
ψ̂ij(k)ψ̂ij(k).

Since ψ̂ij and all powers of ki times ψ̂ij are in L2, it follows immediately that ϕ̂ and all

powers of ki times ϕ̂ are in L2. Thus, we can freely take Fourier transforms of ϕ̂ and all

powers of ki times ϕ̂. Furthermore, since the L2 norm of ψij—and, hence, the L2 norm of

ψ̂ij—goes to zero as λ→ 0, it follows immediately that the L2 norm of ϕ̂—and hence the L2

norm of ϕ—also goes to zero as λ→ 0. Similarly, the L2 norm of ∂iϕ must remain uniformly

bounded as λ → 0. Similar results hold for the other terms appearing on the right side of

(45).

Substituting the decomposition (45) in (44) and using the fact that ψij is real (which

implies that ψ̂(t,k) = ψ̂(t,−k)), we obtain

t
(0)
00 (P ) =

1

32π
lim
δ→0

lim
λ→0

∫

dt d3k
{

kik
iŝjkŝjk − 8kik

iϕ̂ϕ̂
}

. (46)

Thus, we see that the “tensor part”, ŝij, of ψ̂ij makes a positive contribution to the effective

gravitational energy density t
(0)
00 . This may be interpreted as saying that, at leading order
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within this framework, gravitational radiation carries positive energy density. The scalar

σ̂ and the vector part ẑi do not contribute at all, as might be expected from the fact that

these quantities should correspond to “pure gauge”. Finally, the scalar ϕ̂ makes the negative

contribution

2Eϕ = − 1

4π

∫

dt d3kkik
iϕ̂ϕ̂ (47)

to the effective energy density.

In order to interpret the meaning of ϕ̂ and Eϕ, we note that by (45), ϕ̂ satisfies

4kikiϕ̂ = −kikiψ̂
j
j + kikjψ̂ij . (48)

In position space, (48) becomes

4∂i∂iϕ = −∂i∂iψ
j
j + ∂i∂jψij . (49)

To put the right side of this equation in a more recognizable form, we return to Einstein’s

equation (12) and consider its normal-normal component relative to a t = const surface.

This corresponds to the Hamiltonian constraint equation, which has the property that the

only terms containing second spacetime derivatives of hab involve only spatial derivatives

of spatial components of hab. To obtain this equation from (12), we raise both indices

with gab(λ) and then take the 00 component. Since we are working in Riemannian normal

coordinates about P we also express the background metric as

g
(0)
αβ = ηαβ − 1

3
Rαµβνx

αxβ +O(x3) . (50)

The terms in the resulting equation that are purely linear in hab, contain second derivatives

of hab, and do not depend on the background curvature are of the form 1
2
∂i∂ih

j
j − 1

2
∂i∂jhij,

i.e. the same combination of derivatives of components5 as appears in (49). There are also

terms which are linear in hab and contain second derivatives of hab, which depend on the

difference between the exact background metric g
(0)
ab and ηab, and these can be expressed in

the form U ijkl∂i∂jhkl, where U ijkl = O(x2). The terms in the equation which are nonlinear

in hab that contain second derivatives of hab can be expressed in the form ∂iW
i + Z1 where

W i converges to zero uniformly on compact sets as λ → 0 and Z1 is uniformly bounded on

compact sets as λ→ 0. The remaining terms in this equation then take the form 8πT 00+Z2,

5 These terms correspond to the linearization of the scalar curvature of the spatial metric, as would be

expected from the general form of the “Hamiltonian constraint equation”.
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where Z2 is uniformly bounded on compact sets as λ → 0. Now multiply this equation by

f δ
P . Using (49), we see that the resulting equation takes the form

∂i∂iϕ(λ) = 4πf δ
PT

00(λ) + ∂iω
i(λ) + ζ(λ) +

1

2
U ijkl∂i∂jψkl(λ) , (51)

where ωi ≡ 1
2
f δ

PW
i is of fixed compact support and converges to zero uniformly as λ → 0,

and ζ is of fixed compact support and is uniformly bounded as λ → 0. Thus, ϕ satisfies a

Poisson-like equation. Furthermore, the position space version of (47) can be written as

2Eϕ = − 1

4π

∫

dt d3x∂iϕ∂iϕ , (52)

which is just the usual formula for (twice) the gravitational potential energy in Newtonian

gravity! Note that we have not made any Newtonian approximations, nor have we made a

special choice of “time vector” ta.

Thus, we see that the resolution of the issue of whether t
(0)
00 ≥ 0 depends on a competition

between the positive contribution from the tensor modes and the negative contribution, Eϕ,

arising from a Newtonian-like gravitational potential energy. We will now show that if

T00(λ) ≥ 0, then, in fact, Eϕ → 0 as λ → 0 and δ → 0. Thus, the scalar modes make no

contribution in this limit, and the tensor modes always “win”.

To prove this, we use (51) to rewrite Eϕ as

Eϕ =
1

8π

∫

dt d3xϕ∂i∂iϕ

=
1

2

∫

dt d3xϕ(λ)

[

f δ
pT

00(λ) +
1

4π
∂iω

i(λ) +
1

4π
ζ(λ) +

1

8π
U ijkl∂i∂jψkl(λ)

]

. (53)

The second term can be written as the time integral of
∫

d3xϕ∂iω
i = −

∫

d3x∂iϕω
i . (54)

By the Schwartz inequality, we have
∣

∣

∣

∣

∫

d3x∂iϕω
i

∣

∣

∣

∣

≤ ‖∂iϕ‖L2‖ωi‖L2 . (55)

However, ‖ωi‖L2 → 0 as λ→ 0, and we have already noted that ‖∂iϕ‖L2 remains uniformly

bounded as λ → 0. Therefore, we see that the second term vanishes in the limit as λ goes

to zero.

To analyze the remaining terms on the right side of (53), suppose we could show that

ϕ(λ) converges uniformly to 0 on compact sets as λ→ 0. Then since ζ(λ) is of fixed compact
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support and is uniformly bounded as λ→ 0, it follows immediately that
∫

dt d3xϕ(λ)ζ(λ) →
0 as λ → 0, so the third term in (53) vanishes in the limit as λ → 0. On the other hand,

if ϕ(λ) converges uniformly and T 00(λ) ≥ 0, then the first term is exactly of the form to

which the above Lemma of this section applies, with A = ϕ, B = T 00, and f δ
P being the test

function with which A(λ)B(λ) is being smeared. The Lemma then states that the first term

in (53) vanishes in the limit as λ→ 0. Finally, the last term of (53) may be re-written as

− 1

16π

∫

dt dx
[

U ijkl∂iϕ(λ)∂jψkl(λ) + ∂iU
ijklϕ(λ)∂jψkl(λ)

]

. (56)

If ϕ(λ) converges uniformly to zero, then the second of these two terms vanishes in the limit

as λ → 0 because U ijkl is independent of λ and ∂jψkl(λ) is uniformly bounded as λ → 0

and is of fixed compact support. In contrast to all the others, the first term above does not

converge to zero as λ → 0. However, it will still vanish once we subsequently take δ → 0.

To see this, use the fact that on the support of f δ
P , U ijkl is bounded by a constant times δ2

(see (50)) to write

∣

∣

∣

∣

∫

dt dxU ijkl∂iϕ(λ)∂jψkl(λ)

∣

∣

∣

∣

≤ Cδ2‖∂iϕ‖L2‖∂jψkl‖L2 ≤ C ′δ2 ‖∂jψkl‖2
L2 . (57)

where the last inequality follows from the fact that ‖∂iϕ‖2
L2 ≤ 1

8
‖∂jψkl‖2

L2. However, by (40)

we have

lim
δ→0

lim
λ→0

‖∂jψkl‖2
L2 = µj kl

j kl(P ) . (58)

Consequently, the right hand side of (57) vanishes when the limits as λ → 0 and δ → 0

are taken. Thus, we will have proven that t
(0)
00 ≥ 0 provided only that we show that ϕ(λ)

converges uniformly to 0 on compact sets as λ→ 0.

To prove uniform convergence to 0 of ϕ(λ) on compact sets, we note that it follows

immediately from (49) that

4ϕ = −ψi
i + χ , (59)

where

∂i∂iχ = ∂i∂jψij . (60)

As already noted above, ψij(λ)—and hence ψi
i(λ)—converges to 0 uniformly as λ → 0.

Thus, ϕ(λ) will converge to 0 uniformly on compact sets if and only if χ(λ) converges to 0

uniformly on compact sets. We will now prove this by “brute force”.
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The solution to (60) is

χ(t,x) = − 1

4π

∫

d3x′ ∂i∂jψ
ij(t,x′)

|x − x′| . (61)

Changing integration variables to y = x′ − x and integrating by parts, we obtain

χ(t,x) = − 1

4π

∫

d3y ∂iψ
ij(t,x + y)

yj

|y|3 . (62)

For any r0 > 0, we can break up the integral appearing on the right side of this equation

into an integral over |y| < r0 and an integral over |y| ≥ r0. We leave the first integral alone

but do another integration by parts on the second integral. We thereby obtain

χ(t,x) = − 1

4π

∫

|y|<r0

d3y ∂iψ
ij(t,x + y)

yj

|y|3 +
1

4π

∫

|y|=r0

dΩ r2
0

yi

r0

(

ψij(t,x + y)
yj

r3
0

)

+
1

4π

∫

|y|>r0

d3y ψij(t,x + y)
δij |y|2 − yiyj

|y|5 . (63)

Now let F1(λ) ≡ sup(t,x) |ψij| and let F2(λ) ≡ sup(t,x) |∂kψij|. Then F1 → 0 and F2 remains

bounded as λ→ 0. It follows straightforwardly from (63) that

|χ(t,x)| ≤ c1F2(λ)r0 + c2F1(λ) + c3F1(λ)| ln(C/r0)| , (64)

where c1, c2, c3, and C are constants (i.e., independent of λ, r0, t, and x). This bound holds

for all r0 and all λ. Therefore, as we let λ → 0, we are free to choose r0 to vary with λ in

any way that is convenient. Choosing

r0(λ) = exp[−1/
√

F1(λ)] , (65)

we obtain the bound

|χ(t,x)| ≤ C1 exp[−1/
√

F1(λ)] + C2F1(λ) + C3

√

F1(λ) , (66)

from which it follows immediately that χ→ 0 uniformly as λ→ 0, as we desired to show.

We have thus proven

Theorem 2. Given a one-parameter family gab(λ) satisfying assumptions (i)–(iv) above, the

effective stress energy tensor t
(0)
ab appearing in equation (15) for the background metric g

(0)
ab

satisfies the weak energy condition, i.e.,

t
(0)
ab t

atb ≥ 0 (67)

for all ta that are timelike with respect to g
(0)
ab .
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It should be emphasized that all of the results of this section apply to an arbitrary

one-parameter family gab(λ) satisfying assumptions (i)–(iv). In particular, no symmetry or

other assumptions concerning the background metric, g
(0)
ab , were made. However, if FLRW

symmetry is assumed for g
(0)
ab as well as for the (weak limit of) the matter stress-energy

tensor, T
(0)
ab , then t

(0)
ab must also have this symmetry. It then follows immediately from

Theorems 1 and 2 that t
(0)
ab must have the form of a perfect fluid with P = 1

3
ρ and ρ ≥ 0.

In particular, the effective stress-energy tensor arising from nonlinear terms in Einstein’s

equation associated with short-wavelength inhomogeneities cannot produce effects similar

to those of dark energy.

III. PERTURBATION THEORY

In the previous section, we obtained the equation satisfied by the background metric,

g
(0)
ab , derived key properties of the effective stress-energy tensor t

(0)
ab , and thereby proved that

small scale inhomogeneities cannot mimic the effects of dark energy on large scale dynamics.

However, in cosmology and other contexts, we wish to know not only the dynamical behavior

of g
(0)
ab but also the dynamical behavior of the deviations from g

(0)
ab , as this is needed to de-

scribe the formation and growth of structures in the universe. In particular, we would like to

obtain the equations satisfied by hab(λ) to sufficient accuracy that hab(λ) can be determined

to first order in λ, i.e., any deviations from an exact solution (over a compact spacetime

region) go to zero faster than λ as λ → 0. As already mentioned in the introduction, if we

were in the context of ordinary perturbation theory where gab(λ, x) is jointly differentiable

in λ and x, we would define

γ
(1)
ab ≡ ∂gab(λ)

∂λ

∣

∣

∣

∣

λ=0

= lim
λ→0

gab(λ) − g
(0)
ab

λ
. (68)

To derive the equation satisfied by γ
(1)
ab , we differentiate the Einstein equation with respect

to λ, at λ = 0. The result is an equation that sets the linearized Einstein operator acting on

γ
(1)
ab equal to the derivative of the stress energy tensor with respect to λ, evaluated at λ = 0.

We would then take hab(λ) = λγ
(1)
ab . However, in the context of our framework, gab(λ, x) is

not differentiable in λ at λ = 0, so we cannot even define a notion of a “metric perturbation”

by differentiating gab(λ, x).

Of course, the (exact) equation satisfied by hab(λ) is simply the equation obtained by
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substituting gab(λ) = g
(0)
ab + hab(λ) into Einstein’s equation (12). However, this is not any

more useful in practice than simply asserting that gab(λ) must be a solution of Einstein’s

equation for all λ; if we could solve Einstein’s equation exactly, there would be no need to

develop a perturbative formalism. The key idea needed to obtain a more useful version of

Einstein’s equation is that, although nonlinearities may be important on small scales, there

should be a simpler, linear description on large scales. The key idea needed to implement

this description is the observation that although the ordinary (pointwise or uniform) limit of

[gab(λ)−g(0)
ab ]/λ does not exist in the context of our framework—gab(λ) is not differentiable—

there is no reason why the weak limit of this quantity cannot exist.

Thus, a natural generalization of the conventional linearized metric perturbation is

γ
(L)
ab ≡ w-lim

λ→0

gab(λ) − g
(0)
ab

λ
. (69)

Here we have replaced the ordinary limit of (68) with a weak limit, which “averages away”

the small scale inhomogeneities. This quantity thereby corresponds closely to the notion of

the “long wavelength part” of the metric perturbation that appears in other analyses (see,

e.g., [27]). We will discuss this further in section V below. The remainder of the perturbation

will be denoted

h
(S)
ab (λ) ≡ hab(λ) − λγ

(L)
ab , (70)

and will be referred to as the “short wavelength part” of the deviation6 of the metric from

g
(0)
ab . In subsection IVB, we will argue that, under suitable Newtonian assumptions in cos-

mology, to leading order in λ, h
(S)
ab depends only locally on the matter distribution and is

well approximated by a Newtonian gravity solution. We emphasize that, within our frame-

work, short and long wavelength perturbations have a very different character. The long

wavelength part of a perturbation has a well-defined description in the λ→ 0 limit, namely

γ
(L)
ab . On the other hand, the short wavelength part, h

(S)
ab (λ), is defined only for λ > 0 and

has no description in terms of a limit as λ→ 0.

We can obtain an equation for γ
(L)
ab by taking the difference of the exact Einstein equation

(12) for gab(λ) and the background Einstein equation (15) for g
(0)
ab , dividing by λ, and taking

the weak limit as λ → 0. However, in order to ensure that γ
(L)
ab is well defined and satisfies

6 If we were to consider higher order perturbation theory, then we would also subtract from hab higher

order in λ “long wavelength” contributions to define h
(S)
ab (λ). However, we shall only be concerned with

first order perturbation theory in this paper.
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a well-defined equation, we must append to assumptions (i)–(iv) of section II the following

additional assumptions on our one-parameter family gab(λ):

(v) There exist smooth tensor fields γ
(L)
ab , µ

(1)
abcdef , ν

(1)
abcde and ω

(1)
abcdefgh on M such that

(a)

w-lim
λ→0

1

λ
hab(λ) = γ

(L)
ab , (71)

(b)

w-lim
λ→0

1

λ

[

∇(ah
(S)
|cd|(λ)∇b)h

(S)
ef (λ) − µabcdef

]

= µ
(1)
abcdef , (72)

(c)

w-lim
λ→0

1

λ

[

h
(S)
bc (λ)∇ah

(S)
de (λ)

]

= ν
(1)
abcde , (73)

(d)

w-lim
λ→0

1

λ

[

h
(S)
cd (λ)∇ah

(S)
ef (λ)∇bh

(S)
gh (λ)

]

= ω
(1)
abcdefgh . (74)

In the following, we shall assume that our one-parameter family gab(λ) satisfies assumptions

(i)–(iv) of section II together with assumption (v) above. In this section we will make no

additional assumptions about gab(λ), so all of the results obtained in this section should hold,

e.g., for self-gravitating gravitational radiation in a background without any symmetries. In

section IV, we shall specialize to the case of Newtonian-like cosmological perturbations off of

a background metric with FLRW symmetry, and will make numerous additional assumptions

and simplifications.

The newly defined first order backreaction tensors, µ
(1)
abcdef , ν

(1)
abcde and ω

(1)
abcdefgh, possess

certain tensor symmetries as a direct consequence of their definitions. Clearly, as with the

zeroth order quantity µabcdef , we have µ
(1)
(ab)(cd)(ef) = µ

(1)
abcdef and µ

(1)
abcdef = µ

(1)
baefcd. However,

in contrast with µabcdef , the symmetry under interchange of the first two indices had to be

built directly into the definition of µ
(1)
abcdef , rather than derived. Indeed,

w-lim
λ→0

1

λ
[∇ahcd(λ)∇bhef (λ) − µabcdef ]

= µ
(1)
abcdef + w-lim

λ→0

1

λ
∇[ah|cd|(λ)∇b]hef(λ)

= µ
(1)
abcdef + w-lim

λ→0

1

λ

[

∇[a

(

h|cd|(λ)∇b]hef(λ)
)

− hcd(λ)∇[a∇b]hef(λ)
]

= µ
(1)
abcdef + ∇[aν

(1)
b]cdef − 2 w-lim

λ→0

1

λ
hcd(λ)R

g
ab(e hf)g(λ)

= µ
(1)
abcdef + ∇[aν

(1)
b]cdef . (75)
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What this calculation also illustrates is that, because of the factor of 1/λ, we may no longer

freely drop total derivative terms when taking weak limits, and in general we will pick up

terms of the form ∇aν
(1)
bcdef . It follows also that ν

(1)
a(bc)(de) = ν

(1)
abcde and ν

(1)
abcde = −ν(1)

adebc. Finally,

ω
(1)
ab(cd)(ef)(gh) = ω

(1)
abcdefgh, ω

(1)
abcdefgh = ω

(1)
bacdghef , and

ω
(1)
abcdefgh − ω

(1)
bacdefgh = ω

(1)
baefcdgh − ω

(1)
abefcdgh . (76)

We also note that definitions (b) and (c) would be unchanged if h
(S)
ab were replaced by hab,

and (d) would be unchanged if any h
(S)
ab which is being differentiated were replaced by hab.

We now subtract the background Einstein equation (15) from the exact Einstein equation

(12), divide by λ, and then take the weak limit as λ → 0. A very lengthy calculation,

performed with the help of the xAct tensor manipulation package [29] for Mathematica,

yields

∇c∇(aγ
(L)
b)c − 1

2
∇c∇cγ

(L)
ab − 1

2
∇a∇bγ

(L)c
c −

1

2
g

(0)
ab

(

∇c∇dγ
(L)
cd −∇c∇cγ

(L)d
d

)

+
1

2
g

(0)
ab R

cd(g(0))γ
(L)
cd − 1

2
R(g(0))γ

(L)
ab + Λγ

(L)
ab +

1

8
γ

(L)
ab

(

µc d e
c d e + µc de

c de − 2µcd e
c de

)

+γ(L)cd

(

1

2
µ e

abc de −
1

2
µ

e
c(ab)d e −

1

2
µe

(ab)ecd +
3

4
µ e

cdab e −
1

2
µ e

cda be − µ e
c abde + µ e

c e(ab)d

+
3

4
µe

eabcd −
1

2
µe

eacbd +
1

8
g

(0)
ab

{

−µ e f
cd e f − µ ef

cd ef + 4µ e f
c d ef − 2µe f

ecd f + 2µef
cedf

}

)

= 8πT
(1)
ab +

1

8
g

(0)
ab

{

−µ(1)c de
c de − µ(1)c d e

c d e + 2µ(1)cd e
c de

}

+
1

2
µ(1)cd

acbd

−1

2
µ(1)c d

ca bd +
1

4
µ(1) cd

ab cd −
1

2
µ(1)c d

(ab)c d +
3

4
µ(1)c d

cab d −
1

2
µ(1)cd

abcd

+
1

8
g

(0)
ab

{

2ω(1)c de f
c de f + 2ω(1)c de f

c d ef + ω(1)cd e f
cd e f + ω(1)cd ef

cd ef − 4ω(1)cd e f
c d ef − 2ω(1)cdef

decf

}

−1

2
ω(1) cd e

ab c de +
1

2
ω(1) c d e

(a |c| b)d e +
1

2
ω(1) cde

(a b)cde −
1

8
ω(1)c d e

cab d e −
1

8
ω(1)c de

cab de −
3

4
ω(1)c de

c abde

+
1

2
ω(1)c de

c adbe +
1

4
ω(1)cd e

abd ce −
3

4
ω(1)cd e

cdab e +
1

2
ω(1)cd e

cda be +
1

2
ω(1)cd e

c abde −
1

2
ω(1)cd e

c adbe

+
1

2
ω(1)cd e

d abce −
1

2
ω(1)cd e

d aebc +
1

4
g

(0)
ab

{

2∇dν
(1)c de

c e + ∇eν
(1)c d e

c d

}

− 1

4
∇(aν

(1)c d
b)c d

+
1

4
∇cν

(1) cd
(ab) d −

1

2
∇cν

(1)c d
ab d −∇dν

(1) c d
(ab) c + ∇dν

(1)c d
abc +

1

2
∇dν

(1)c d
c(ab) . (77)

Here, we have written

T
(1)
ab ≡ w-lim

λ→0

Tab(λ) − T
(0)
ab

λ
. (78)

This weak limit exists by virtue of assumption (v) and the fact that gab(λ) satisfies Einstein’s

equation.
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Our equation (77) for γ
(L)
ab takes the form of a modified linearized Einstein equation. The

terms on the left side are linear in γ
(L)
ab and, in addition to the usual terms appearing in the

linearized Einstein tensor, contain terms proportional to µabcdef . The right side contains, in

addition to the matter source T
(1)
ab , numerous “effective source terms” arising from µ

(1)
abcdef ,

ν
(1)
abcde and ω

(1)
abcdefgh.

Some relations between µ
(1)
abcdef , ν

(1)
abcde and ω

(1)
abcdefgh can be derived from Einstein’s equa-

tion. We previously derived the relation α e
aeb cd = 0 (see (28)) by starting with Einstein’s

equation in “Ricci form” (19), multiplying it by hef (λ) and taking the weak limit as λ→ 0.

In a similar manner, if we multiply (19) by h
(S)
cd (λ)h

(S)
ef (λ)/λ, we obtain the following equation

satisfied by ω
(1)
abcdefgh:

ω(1)g
acdefbg + ω(1)g

bcdefag − ω(1)g
gcdefab − ω(1) g

abcdef g

+ω(1)g
aefcdbg + ω(1)g

befcdag − ω(1)g
gefcdab − ω(1) g

abefcd g = 0 . (79)

In deriving this, we used the fact that

w-lim
λ→0

1

λ
h

(S)
ab (λ)h

(S)
cd (λ)Tef(λ) = 0 , (80)

which follows from our lemma from section 2 and the assumption that Tab(λ) satisfies the

weak energy condition, in the same way that we showed κabcd = 0 (see (27)).

Similarly, if we subtract the background Einstein equation in “Ricci form” from (19),

multiply by h
(S)
cd (λ)/λ, and take the λ → 0 weak limit, we can derive an analog of (28)

satisfied by µ
(1)
abcdef ,

1

2
µ(1) e

abcd e +
1

2
µ(1)e

cdab − µ(1)e
(a|cd|b)e

= 8πκ(1)
cdab − 4πg

(0)
ab κ

(1) e
cd e +

1

2
γ(L)ef

(

µabefcd + µefabcd − 2µe(ab)fcd

)

+
1

4
ω(1) ef

abcd ef

+
1

2
ω(1) ef

ab cdef −
1

2
ω(1) e f

(a |cd|b)e f − ω(1) e f
(a |e| b)fcd +

1

4
ω(1)e f

ecdab f −
1

2
ω(1)e f

ecda bf +
1

2
ω(1)ef

cdafbe

+
1

2
ω(1)ef

efabcd +
1

2
∇(aν

(1) e
b)cd e +

1

2
∇(aν

(1)e
b)ecd +

1

2
∇eν

(1) e
(ab) cd −

1

2
∇eν

(1)e
abcd . (81)

In this equation we have defined the quantity

κ
(1)
abcd = w-lim

λ→0

1

λ
h

(S)
ab (λ)Tcd(λ) . (82)

The existence of this limit is guaranteed by Einstein’s equation together with our other

assumptions. Note that since h
(S)
ab (λ)/λ does not converge uniformly to zero as λ → 0
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(although it is uniformly bounded), the weak energy condition does not imply the vanishing

of κ
(1)
abcd as it did for κabcd.

We can simplify the above equations as follows. As with the background case, define

α
(1)
abcdef = µ

(1)
[c|[ab]|d]ef and β

(1)
abcdef = µ

(1)
(abcd)ef , and express the equations in terms of these

quantities. A similar breakup is also possible for ω
(1)
abcdefgh. First, split it into the parts

with are symmetric and antisymmetric in the first two indices, ω
(1,S)
abcdefgh = ω

(1)
(ab)cdefgh and

ω
(1,A)
abcdefgh = ω

(1)
[ab]cdefgh. By (76), we have

ω
(1,A)
abcdefgh = −ω(1,A)

abefcdgh . (83)

The symmetric part is then decomposed into ω
(1,α)
abcdefgh = ω

(1,S)
[e|[a|cd|b]|f ]gh and ω

(1,β)
abcdefgh =

ω
(1,S)
(ab|cd|ef)gh, with inverse transformation

ω
(1,S)
abcdefgh = −4

3

(

ω
(1,α)
e(a|cd|b)fgh + ω

(1,α)
g(a|cd|b)hef − ω

(1,α)
g(e|cd|f)hab

)

+ω
(1,β)
abcdefgh + ω

(1,β)
abcdghef − ω

(1,β)
efcdghab . (84)

Substituting for our new quantities, (79) can be rewritten as

ω(1,α) g
a cdbgef + ω(1,α) g

a efbgcd = 0 , (85)

whereas (81) becomes

α(1) e
a becd = 4πκ(1)

cdab − 2πg
(0)
ab κ

(1) e
cd e + αaebfcdγ

(L)ef +
1

4
ω(1,A) e f

(a b)ecd f − 1

2
ω(1,A) e f

(a b) cdef

−1

4
ω(1,A)ef

aebfcd +
1

2
ω(1,α) e f

a cdb ef + ω(1,α) e f
(a |cde| b)f + ω(1,α) e f

a e bfdc −
1

4
ω(1,α)ef

baefdc

+
1

4
∇(aν

(1) e
b)cd e +

1

4
∇(aν

(1)e
b)ecd +

1

4
∇eν

(1) e
(ab) cd −

1

4
∇eν

(1)e
abcd . (86)

Finally we can use (85) and (86) to simplify our version of the linearized Einstein equation,
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(77), resulting in

∇c∇(aγ
(L)
b)c − 1

2
∇c∇cγ

(L)
ab − 1

2
∇a∇bγ

(L)c
c −

1

2
g

(0)
ab

(

∇c∇dγ
(L)
cd −∇c∇cγ

(L)d
d

)

+
1

2
g

(0)
ab R

cd(g(0))γ
(L)
cd − 1

2
R(g(0))γ

(L)
ab + Λγ

(L)
ab + 2γ(L)cdα

e
(a b)cde

= 8πT
(1)
ab + α(1) c d

a b cd − 2πκ(1) c
ab c − 8πκ(1) c

(a b)c + 2πg
(0)
ab

{

κ(1)c d
c d − κ(1)cd

cd

}

−1

4
ω(1,A) c d e

(a b) cd e +
1

2
ω(1,A) c d e

(a b) c de +
1

8
ω(1,A)cd e

abc de +
1

4
ω(1,A)cd e

acbd e

+
1

16
g

(0)
ab

{

ω(1,A)cd e f
c de f + 2ω(1,A)cd e f

c d ef

}

− 2ω(1,α) ced
(a b)dce − ω(1,α) c de

(a b)d ce − ω(1,α) ce d
(a b) cde

+
1

8
ω(1,α)cd e

abcd e +
1

4
ω(1,α)cd e

bac de +
1

8
g

(0)
ab

{

ω(1,α)c edf
dec f − 2ω(1,α)c efd

dec f

}

−1

2
∇(aν

(1)c d
b)c d +

1

4
∇(aν

(1)c d
b) cd +

1

4
∇cν

(1)c d
ab d −

3

4
∇dν

(1) c d
(ab) c +

1

4
∇dν

(1)c d
abc

−1

2
∇dν

(1)c d
(a b)c +

1

4
g

(0)
ab

{

∇dν
(1)c de

c e + ∇eν
(1)c d e

c d

}

. (87)

Equations (85), (86) and (87) describe the long wavelength perturbations. It should be

noted that, just as βabcdef was absent from our background equations, βabcdef , β
(1)
abcdef , and

ω
(1,β)
abcdefgh are all absent from our perturbation equations.

Equations (85), (86) and (87) have been written down in an arbitrary gauge. We will make

a specific choice of gauge in subsection IVA below, but for now we note that we can apply

any one-parameter family of diffeomorphisms, φλ, to gab(λ) that preserves conditions (i)–

(v). Burnett [26] has analyzed the properties of gauge transformations associated with one-

parameter families of diffeomorphisms that are not smooth in λ. Here, we simply note that

any smooth, one-parameter group of diffeomorphisms φλ generates gauge transformations

that are easily seen to preserve conditions (i)–(v). Under such gauge transformations, it is

not difficult to see that γ
(L)
ab → γ

(L)
ab +Lξg

(0)
ab , where ξa is the vector field that generates φλ and

L denotes the Lie derivative. Thus, γ
(L)
ab has the same gauge freedom arising from smooth

φλ as in ordinary linearized perturbation theory. This freedom can be used to impose the

same types of gauge conditions on γ
(L)
ab as in ordinary linearized perturbation theory. It

is also not difficult to see that h
(S)
ab (λ) → φ∗

λh
(S)
ab (λ) + jab(λ), where jab(λ) = O(λ2) and is

jointly smooth in λ and the spacetime point. By using this gauge transformation property

of h
(S)
ab (λ), it is possible to show that µabcdef , ν

(1)
abcde, ω

(1)
abcdefgh, and κ

(1)
abcd are gauge invariant

under gauge transformations arising from smooth φλ, whereas µ
(1)
abcdef → µ

(1)
abcdef + Lξµabcdef

and T
(1)
ab → T

(1)
ab + LξT

(0)
ab .

We turn our attention now to the short wavelength perturbations. Without making any
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approximations it is straightforward to write down an equation satisfied by h
(S)
ab (λ): Simply

substitute gab(λ) = g
(0)
ab + λγ

(L)
ab + h

(S)
ab (λ) into the exact Einstein equation. We may write

this equation in the form

G
(1)
ab (g(0), h(S)(λ)) + Λh

(S)
ab (λ) = 8πTab(λ) −Gab(g

(0)) − Λg
(0)
ab − λG

(1)
ab (g(0), γ(L))

−λΛγ
(L)
ab −

∞
∑

n=2

G
(n)
ab (g(0), λγ(L) + h(S)(λ)) , (88)

where we have grouped linear terms in h
(S)
ab (λ) on the left hand side. Here, G

(n)
ab (g(0), λγ(L) +

h(S)(λ)) denotes the nth order Einstein tensor expanded about g
(0)
ab of the perturbation

λγ
(L)
ab + h

(S)
ab (λ).

Unfortunately, it does not appear possible to simplify (88) to obtain suitable approximate

solutions without introducing additional assumptions. Of course, if we do not simplify

(88), then we have not made any progress beyond asserting that we must solve Einstein’s

equation. In the next section, we will introduce additional assumptions relevant to the case

of cosmological perturbations and argue that to obtain an accurate description of the metric

to order λ, we may replace (88) by the equations of Newtonian gravity with local matter

sources.

For the remainder of this section, we shall compare our general analysis to that given

by Isaacson [23, 24] and others (see, e.g., [25]), who were interested in describing the self-

gravitating effects of gravitational radiation. We therefore restrict attention to the vacuum

case (Tab(λ) = 0). These authors work with the quantity hab(λ) rather than introducing

µabcdef . Suppose one is merely interested in determining the background metric g
(0)
ab , i.e.,

one is not interested in obtaining an accurate (to order λ) description of the deviation of

the metric from g
(0)
ab . Then one would need only to calculate hab(λ) to sufficient accuracy

that one could determine µabcdef and, thereby, t
(0)
ab (see (16)). In particular, one would not

be interested in computing γ
(L)
ab , so one could ignore the equations we have derived above

for γ
(L)
ab . Furthermore, in order to obtain h

(S)
ab (λ) to sufficient accuracy, it appears plausible

that one could make O(1) modifications to (88) as λ → 0 and still determine h
(S)
ab (λ) to

sufficient accuracy, provided that these O(1) modifications have vanishing weak limit. Here,

by the phrase “it appears plausible” we mean that we believe it is likely that one could

introduce additional reasonable assumptions on the one-parameter family gab(λ) so that

these modifications to (88) could be made without affecting g
(0)
ab . The reason for this belief

is that O(1) error terms in (88) should—under suitable further assumptions similar to ones
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indicated at the end of subsection IVB below—give rise to O(λ2) errors in h
(S)
ab (λ), which

should not affect µabcdef .

A candidate modification of (88) in the vacuum case would be to drop the entire right

side of this equation (together with the term Λh
(S)
ab (λ) on the left side), to obtain simply the

linearized Einstein equation for h
(S)
ab off of g

(0)
ab ,

G
(1)
ab (g(0), h(S)(λ)) = 0 . (89)

However, if Gab(g
(0)) 6= 0, the linearized Einstein equation off of g

(0)
ab does not appear to have

an initial value formulation, so this modification of (88) is probably not suitable. (Note that

the linearized Einstein equation off of a non-solution is not gauge invariant, so one cannot

employ a choice of gauge to simplify the equation and/or put it in hyperbolic form.) A

better candidate modification would be an equation of the same form that the linearized

Einstein equation would take in the Lorenz gauge if perturbed off of a vacuum spacetime.

Since the linearized Einstein equation off of a non-vacuum spacetime is inconsistent with the

Lorenz gauge condition, there is no unique choice of such an equation—in particular, one

can add new terms involving the background Ricci tensor—and, indeed, Isaacson [23, 24]

and Misner, Thorne, and Wheeler [25] give slightly different forms of the proposed equation

(compare Eq. (5.12) of [23] with Eq. (35.68) of [25]). In fact, since terms involving the

product of the background curvature with h
(S)
ab are O(λ), it would appear simplest to drop

all of these terms and work with the wave equation

∇c∇ch̄
(S)
ab = 0 , (90)

where h̄
(S)
ab = h

(S)
ab − 1

2
g

(0)
ab h

(S)c
c. As with the equations used in [23] and [25], this equation

is inconsistent with the Lorenz gauge condition ∇ah̄
(S)
ab = 0. However, if one constrains the

initial data for h̄
(S)
ab for solutions to (90) so that ∇ah̄

(S)
ab and its first time derivative vanish

initially, then the Lorenz gauge condition should hold to O(λ) at later times (in compact

regions of spacetime). Thus, the solutions to (90) with these initial data restrictions should

satisfy Einstein’s equation (88) to the desired O(1) accuracy. It should also be possible to

impose the gauge condition h(S)a
a = 0 to O(λ) accuracy.

If the above arguments are correct, then in order to obtain the possible background

metrics g
(0)
ab , it should suffice to simultaneously solve (15) and (90) (or equivalently, Eq. (5.12)

of [23] or Eq. (35.68) of [25]) with appropriate restrictions on initial data, to obtain g
(0)
ab and a
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one-parameter family h
(S)
ab (λ) satisfying our conditions (ii)–(iv), where, in (15), t

(0)
ab is given by

(16) and µabcdef is given by (8) with hab(λ) replaced by our one-parameter family of solutions

to (90). One could then attempt to establish properties of t
(0)
ab —in particular, the vanishing

of its trace and the positivity of its energy density—by working with the expressions for

it in terms of h
(S)
ab (λ) in a particular gauge. Needless to say, numerous extremely murky

mathematical issues arise if one proceeds in this manner. Our analysis of section II, as well

as the work of Burnett [26] in the vacuum case, proved rigorous results about t
(0)
ab without

introducing any approximate equations satisfied by h
(S)
ab (λ), and thus completely bypassed

these murky issues.

Finally, we note that if one wished to know the deviation of the metric from g
(0)
ab to

O(λ)—as would not necessarily be of interest in studying gravitational radiation but is of

considerable interest in cosmology—then, of course, it would be necessary to know γ
(L)
ab .

Although we argued above that one has considerable freedom in modifying the equation

satisfied by h
(S)
ab without affecting g

(0)
ab , it is clear that one cannot make any modification to

the equation (87) satisfied by γ
(L)
ab without introducing O(1) errors in γ

(L)
ab and thus O(λ)

errors in gab(λ). Furthermore, in order to calculate the effective source term α(1) c d
a b cd in

(87), it appears that one would need to know h
(S)
ab to O(λ2), in which case one could not

drop the quadratic terms in h
(S)
ab in (88). Thus, in the case of self-gravitating gravitational

radiation, if one wished to know the deviation of the metric from g
(0)
ab to O(λ), one would

have to solve (15), (87), and some suitable simplification of (88). This would comprise an

extremely complicated system. Fortunately, in the case of cosmology, we will now argue

that, under additional assumptions, significant simplifications occur.

IV. COSMOLOGICAL PERTURBATION THEORY

Up to this point we have not assumed any symmetries or other special properties of

the background metric g
(0)
ab . We also have not made any restrictions on the matter con-

tent, Tab(λ), other than that it satisfy the weak energy condition, nor have we imposed

any restrictions on the perturbations. In this section, we will be concerned with the case

of main interest in cosmology, where g
(0)
ab has FLRW symmetry, there is negligible gravita-

tional radiation content (in particular, t
(0)
ab = 0), and the matter content satisfies suitable

Newtonian assumptions. We will argue that, under these assumptions, to leading order in
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λ, h
(S)
ab (λ) is given by local Newtonian gravity, i.e., in a neighborhood of any point x, h

(S)
ab

can be calculated to sufficient accuracy using Newtonian gravity, taking into account only

the matter distribution within a suitable neighborhood of x. (The effects of more distant

matter are taken into account by γ
(L)
ab .) With our “no gravitational radiation” assumption

for the background and our Newtonian approximation for h
(S)
ab , our equation (87) for γ

(L)
ab

simplifies considerably, yielding the linearized Einstein equation with an additional effective

source that agrees with recent results of [27] (see also [21]).

In our analysis, it will be important to make a convenient choice of gauge. Since we are

taking nonlinear effects at small scales into account, we cannot simply impose the usual

cosmological gauge choices for perturbations, i.e., we must make our gauge choice at the

nonlinear level. When studying non-linear perturbations off of a flat background it is often

convenient to work with “wave map coordinates” (usually called “harmonic coordinates”

in the literature), particularly in the context of the post-Newtonian expansion [30]. Since

our background metric g
(0)
ab is not flat, the usual definition of wave-map coordinates is not

convenient, but we may instead impose a generalized wave-map gauge condition with respect

to the background metric g
(0)
ab [31].

Our gauge choice will be introduced in subsection A in the context of a general background

metric g
(0)
ab (i.e., without assuming FLRW symmetry). In subsection B, we restrict to a

FLRW background, we make our Newtonian assumptions, and argue that h
(S)
ab is given by

local Newtonian gravity. It should be emphasized that the arguments of section B have the

character of plausibility arguments rather than proofs. Finally, the simplifications to the

equation for γ
(L)
ab will be obtained in subsection C.

A. Generalized wave map (harmonic) gauge

Given a one-parameter family of metrics gab(λ) on our spacetime manifoldM that satisfies

our assumptions (i)–(v), we may apply any one-parameter family of diffeomorphisms, φ(λ) :

M → M , which preserve these conditions, where without loss of generality, we may assume

that φ(0) is the identity map. As already noted in the paragraph below (87), it is clear

that any φ(λ) that is jointly smooth in λ and the spacetime point x will preserve conditions

(i)–(v), but there also should exist a wide class of φ(λ) that are not smooth in λ that

preserve these conditions. The properties of such φ(λ) and the transformations that they

34



induce on µabcdef were analyzed by [26] (under his assumptions, which differ slightly from

our assumptions (i)–(iv)). Unfortunately, although Burnett’s analysis can be used to prove

important properties of gauge transformations, such as the invariance of t
(0)
ab under all allowed

gauge transformations, it is very difficult to prove any existence results that establish that

specific gauge conditions can be imposed on an arbitrary one parameter family of metrics

gab(λ) satisfying our conditions.

In this section, we will assume that we can impose the “generalized wave-map gauge

condition” on the metric gab(λ), namely

gab(λ)Cc
ab(λ) = 0 , (91)

where Cc
ab(λ) is given by (10). Note that this condition depends upon the background

metric, g
(0)
ab , since the derivative operator, ∇a, of g

(0)
ab appears in the definition of Cc

ab(λ). We

can impose the gauge condition (91) on gab(λ) by applying the diffeomorphism xµ → φµ(λ, x)

to gab(λ), where xµ are arbitrarily chosen coordinates on M and φµ satisfies7

1
√

−g(λ)

∂

∂xµ

(

√

−g(λ)gµν(λ)
∂φᾱ

∂xν

)

+ Γ(0)ᾱ
µ̄ν̄g

µν(λ)
∂φµ̄

∂xµ

∂φν̄

∂xν
= 0 . (92)

This equation is a (nonlinear) wave equation, so we can always find (local) solutions. To

see that solutions to this equation give rise to the condition (91), we note that if we use

φµ(λ, x) as coordinates for the λth spacetime, then we may replace ∂φα/∂xβ by δα
β , and

(92) reduces to

0 =
1

√

−g(λ)
∂µ

(

√

−g(λ)gµα(λ)
)

+ Γ(0)α
µνg

µν(λ)

= gµν(λ)Γα
µν(λ) − gµν(λ)Γ(0)α

µν

= −gµν(λ)Cα
µν . (93)

We will refer to the coordinates φµ(λ, x) as generalized wave map coordinates for gab(λ)

relative to the coordinates xµ for g
(0)
ab . Note that in the case where g

(0)
ab = ηab and xµ are

Minkowski coordinates, the generalized wave map gauge condition reduces to the condi-

tion gµν(λ)Γα
µν(λ) = 0, and the coordinates φµ(λ, x) satisfy a linear wave equation. Such

coordinates are usually referred to as “harmonic coordinates” in the literature.

7 The diffeomorphisms defined by (92) do not depend on the choice of coordinates xµ, since this equation

can be derived from the coordinate invariant action

E[φ] =

∫

M

gµν(λ)g
(0)
µ̄ν̄

∂φµ̄

∂xµ

∂φν̄

∂xν

√

−g(λ) d4x .
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Although we can always (locally) solve (92) and thus (locally) put each gab(λ) in our

one-parameter family in wave map gauge, we have no guarantee that the resulting new one-

parameter family of metrics will satisfy our conditions (i)–(v). In the following, we shall

simply assume that this is the case, i.e., that we have a one-parameter family of metrics

gab(λ) that satisfies conditions (i)–(v) as well as our gauge condition (91). This corresponds

to a strengthening of our assumptions.

When the generalized wave map gauge condition is satisfied, it is very convenient to work

with the variable

hab(λ) ≡ g(0)ab −
√

g(λ)

g(0)
gab(λ) . (94)

instead of hab(λ) = gab(λ)−g(0)
ab . (Note that

√

g(λ)/g(0) is the proportionality factor between

the volume elements of gab(λ) and g
(0)
ab , so this quantity does not depend on any choice of

coordinates xµ on M .) We have

∇bh
ab(λ) = −

√

g(λ)

g(0)
∇bg

ab(λ) −
√

g(λ)

g(0)
gab(λ)Cc

cb

= −
√

g(λ)

g(0)

(

∇bg
ab(λ) +

1

2
gab(λ)gcd(λ)∇bgcd(λ)

)

=

√

g(λ)

g(0)
gbc(λ)Ca

bc

= 0 , (95)

where on the first line we used the fact that

Cb
ba =

1

2
∇a log

(

g(λ)

g(0)

)

. (96)

Note that in linearized gravity, hab reduces to the the trace-reversed metric perturbation,

i.e., hab(λ) → h̄ab(λ) = hab(λ)− 1
2
g(0)abhc

c(λ), and (95) reduces to the Lorenz gauge condition

∇ah̄
ab = 0. One should keep in mind, though, that beyond lowest order in λ, hab(λ) is not

the trace-reversed metric perturbation.

We now express the exact Einstein equation in wave-map gauge in terms of hab and the

background derivative operator. Starting with (12), we use the background equation (15),

the gauge condition ∇bh
ab = 0, as well as the fact that

∇ag
bc(λ) = −

√

g(0)

g(λ)

(

∇ah
bc − 1

2
gbc(λ)gde(λ)∇ah

de

)

, (97)
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to show (after a long computation) that

∇c∇ch
ab − 2Ra b

cd (g(0))hcd + 2R (a
c (g(0))hb)c − R(g(0))hab − g(0)abRcd(g

(0))hcd

−2Gab(g(0))g
(0)
cd hcd + 2Λ

(

hab − 1

2
g(0)abg

(0)
cd hcd

)

= −16π
g(λ)

g(0)

(

T ab(λ) − T (0)ab + tab(λ) − t(0)ab
)

. (98)

Here, the terms that are non-linear in hab have been absorbed into the quantity,

16π
g(λ)

g(0)
tab(λ) ≡ −2Gab

(

1 − g(λ)

g(0)
− g

(0)
cd hcd

)

+Rcd(g
(0))hcdhab − 2R

(a
ced (g(0))hb)ehcd

−hcd∇c∇dh
ab + ∇dh

ca∇ch
db + gef(λ)gcd(λ)∇eh

ca∇fh
db

+
1

2
gab(λ)gcd(λ)∇eh

fc∇fh
ed − 2gcd(λ)gf(a(λ)∇eh

b)c∇fh
ed

+
1

8

(

2gag(λ)gbh(λ) − gab(λ)ggh(λ)
)

(2gcd(λ)gef(λ) − ged(λ)gcf(λ))∇hh
ed∇gh

cf

−2Λ

(

g(λ)

g(0)

(

gab(λ) − g(0)ab
)

+ hab − 1

2
g(0)abg

(0)
cd hcd

)

. (99)

Equation (98) is of the form

L
ab(h) = −16πSab . (100)

where L ab takes the form of a linear wave operator acting on hab. Consequently, re-

introducing our (arbitrarily chosen) coordinates xµ of the background spacetime, we may

rewrite (98) in the following equivalent integral form:

hαβ(λ, x) = 4

∫

M

G αβ
ret µ′ν′(x, x

′)Sµ′ν′

(λ, x′)
√

−g(0)(x′) d4x′ + h
αβ
hom(λ, x) , (101)

where G αβ
ret µ′ν′(x, x′) is the retarded Green’s function for L ab and h

αβ
hom is a solution to

L ab(hhom) = 0. We emphasize that (101) is not a solution to (98) since the source Sαβ

depends on hαβ. Rather, it is simply a re-writing of (98) in an integral form.

B. Local Newtonian gravity

For the remainder of this section, we restrict attention to the case where the background

spacetime g
(0)
ab has FLRW symmetry. It will be useful to work in coordinates where the

metric components are nonsingular. Thus, instead of the more common choice of polar-type

coordinates, we will write the background metric in the form

ds(0)2 = −dτ 2 + a2(τ)
(

1 + k(x2 + y2 + z2)/4
)−2

[dx2 + dy2 + dz2] , (102)
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where k = 0,±1, depending on the spatial curvature.

The “long wavelength part” of the leading order in λ part of hab(λ) is given by

γ̄(L)ab ≡ w-lim
λ→0

hab

λ
= γ(L)ab − 1

2
g(0)abγ(L)c

c . (103)

It follows directly from (95) that γ̄(L)ab satisfies the Lorenz gauge condition

∇aγ̄
(L)ab = 0 . (104)

The “short wavelength part” of hab(λ) is given by

h(S)ab(λ) = hab(λ) − λγ̄(L)ab . (105)

By (98), it satisfies (in the notation of (100))

L
ab(h(S)(λ)) = −16π

(

Sab(λ) − λw-lim
λ′→0

Sab(λ′)

λ′

)

, (106)

where the weak limit appearing in this equation exists by virtue of assumption (v) of section

III. Note that Sab(λ) still depends on the full perturbation, i.e., hab cannot be replaced by

h(S)ab in the expression for Sab. Equation (106) can be rewritten in integral form as,

h(S)αβ(λ, x) = 4

∫

M

G αβ
ret µ′ν′(x, x

′)

(

Sµ′ν′

(λ, x′) − λw-lim
λ′→0

Sµ′ν′

(λ′, x′)

λ′

)

√

−g(0)(x′) d4x′

+h
(S)
hom

αβ(λ, x) . (107)

Our aim for the remainder of this subsection is to argue that—in the absence of grav-

itational radiation and under suitable assumptions concerning the behavior of the matter

distribution Tab(λ)—to leading order in λ, h(S)ab(λ) near point x is described by Newtonian

gravity, taking into account only the matter distribution in a suitable local neighborhood of

x. However, in order to derive this conclusion, we must make significant additional assump-

tions about our one-parameter family gab(λ), and severe difficulties arise if one attempts

to formulate these assumptions in a mathematically precise manner. The reason is that,

although there are simple, precise limits that one can take of general relativistic spacetimes

to obtain Newtonian gravity [32], these limits would not be compatible with retaining the

cosmological background spacetime g
(0)
ab , and thus would not be suitable for our use. We

believe that it should be possible to concoct a mathematically consistent set of assumptions

that would enable us to rigorously justify our conclusions below, but we do not see a simple
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and/or elegant way of formulating such assumptions, and we do not feel that it would be

illuminating to attempt to derive our results from a complicated list of technical assump-

tions whose intrinsic plausibility is not much greater than that of the conclusions we wish

to draw. Thus, in the discussion below in this subsection, although we will clearly indicate

the nature of the assumptions that are needed, we will not attempt to formulate all of our

assumptions in a mathematically precise manner, and we will thereby resort to plausibility

arguments to obtain our conclusions.

We are interested in obtaining h(S)ab(λ) near a point x at a time roughly correspond-

ing to the present time in the actual universe. We first argue that although the retarded

Green’s function integral extends all the way back to the “big bang”, it should suffice to

integrate only over the “recent universe” (corresponding, say, to z ≤ 1000 in the present,

actual universe). There are two reasons why this should be so: (1) The universe is ex-

pected to be very nearly homogeneous and isotropic in the distant past, so the source term
(

Sab − λw-limλ′→0

[

Sab/λ′
])

should be negligibly small. (2) The nature of the retarded

Green’s function in an expanding universe is such as to make the influence of distant sources

small (on account of redshift and intensity diminution). Similarly, we assume that the grav-

itational radiation content of the present universe arising from the “big bang” is negligible.

Consequently, we discard the last term, h
(S)
hom

αβ, in (107). Thus, our integral relation for

h(S)ab becomes

h(S)αβ(λ, x) = 4

∫

W

G αβ
ret µ′ν′(x, x

′)

(

Sµ′ν′

(λ, x′) − λw-lim
λ′→0

Sµ′ν′

(λ′, x′)

λ′

)

√

−g(0)(x′) d4x′ ,

(108)

where W is the (compact) region corresponding to the “recent universe” (i.e., z ≤ 1000 in

the present, actual universe).

Next, we argue that, in order to calculate h(S)αβ to O(λ) at x, it suffices to perform the

integral in (108) only over a small neighborhood V of x. In other words, we argue that—for

any fixed neighborhood, V, of x—as λ → 0, the contribution to the integral in (108) from

the region x′ ∈ W \ V should vanish faster than λ as λ→ 0, i.e.,

∫

W\V

G αβ
ret µ′ν′(x, x

′)

(

Sµ′ν′

(λ, x′)

λ
− w-lim

λ′→0

Sµ′ν′

(λ′, x′)

λ′

)

√

−g(0)(x′) d4x′ → 0 . (109)

To see this, we note that if G αβ
ret µ′ν′(x, x′) were smooth (and if the sharp boundaries of

the region of integration were replaced by smooth cut-off functions), then we would be
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integrating the quantity (Sµν/λ−w-limλ′→0[S
µν/λ′]) with a test function. Since, clearly, the

weak limit as λ→ 0 of this quantity is 0, it follows immediately that (109) would hold. Of

course, G αβ
ret µ′ν′(x, x′) is not smooth, so (109) cannot be expected to hold without further

restrictions on Sab. However, in a normal neighborhood of x, the retarded Green’s function

G αβ
ret µ′ν′(x, x′) for the linear operator L ab takes the form

G αβ
ret µ′ν′(x, x

′) = Uαβ
µ′ν′(x, x

′)δ+(σ) + V αβ
µ′ν′(x, x

′)θ+(−σ) , (110)

where Uαβ
µ′ν′(x, x′) and V αβ

µ′ν′(x, x′) are smooth bitensors and σ is the squared geodesic

distance between x and x′ (see [33] for details). Thus, apart from the singularity at x′ = x

(which is excluded from the region of integration in (109)), the singularities of G αβ
ret µ′ν′(x, x′)

are of the form of a restriction to the past lightcone (i.e., δ+(σ)) and a cutoff at the past

lightcone (i.e., θ+(−σ)). If Sab is not rapidly varying with time (as should be the case under

our Newtonian assumptions below), these singularities should be quite benign, so it seems

not unreasonable that (109) will hold under suitable assumptions.

We have argued that (109) should hold for an arbitrary neighborhood V of x. However,

the vanishing of the contribution to h(S)αβ(λ, x) from outside of V to O(λ) holds only in the

limit as λ → 0, and the smaller we take V, the smaller we must take λ in order to get a

good approximation to h(S)αβ(λ, x) by integrating only over V. At any finite λ, we cannot

take V to be arbitrarily small and still get a good approximation to h(S)αβ(λ, x). How large

must we take V at finite λ?

To propose an answer to this question, we restrict consideration to the case where the

matter content satisfies suitable Newtonian behavior (at least in the “recent universe”). We

shall assume that as λ→ 0 we have T00(λ) = O(1/λ), T0i(λ) = O(1/λ1/2) and Tij(λ) = O(1),

so that, for small λ, the energy density is much greater than the momentum density, and

the momentum density is much greater than the stress. In addition we shall assume that

spatial differentiation of components of the stress-tensor results in blow-up as λ→ 0 that is

a factor of λ−1 faster than the undifferentiated components (so, e.g., ∂iT00(λ) = O(1/λ2)),

but that time differentiation results in a blow-up of only a factor of λ−1/2 faster (so, e.g.,

∂0T00(λ) = O(1/λ3/2)).

We now introduce the notion of the scale of homogeneity, l(λ, τ0) at cosmic time τ0 as

follows. First, we define a fiducial window function which is to be used for averaging. Fix

a time interval ∆τ ≪ τ0 and let VR,x0 to be the “cylinder”, centered at x0, of “height” ∆τ
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and proper spatial radius R. Let χR,x0(x) be a smooth non-negative function which is equal

to one on VR,x0, and falls rapidly to zero outside of this region. Let H denote the “Hubble

volume” relative to x at time τ0, i.e., the ball of proper radius equal to the Hubble radius,

RH , centered at point x. We define

l(λ, τ0) = inf

{

R :

∣

∣

∣

∣

∫

(

T00(λ) − T
(0)
00

)

χR,τ0,x0

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

T
(0)
00 χR,τ0,x0

∣

∣

∣

∣

, ∀x0 ∈ H
}

. (111)

In other words l is the smallest radius such that averaging over a ball of radius l centered at

any point x0 lying within the Hubble volume relative to x always yields |δρ|/ρ(0) < 1. Note

that our definition of l(λ, τ0) depends on our choice of “window function” χR,x0(x).

We now claim that l(λ, τ0) → 0 as λ → 0 (and thus, in particular, l is always finite at

sufficiently small λ). To prove this, we note that if this result did not hold, we could find

an l0 > 0 and a sequence {λn : n ∈ N} converging to zero, such that l(λn, τ0) > l0 for all

n ∈ N. Consequently, there would exist a sequence of points {xn} ⊂ H such that

∣

∣

∣

∣

∫

(

T00(λn) − T
(0)
00

)

χl0,τ0,xn

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫

T
(0)
00 χl0,τ0,xn

∣

∣

∣

∣

. (112)

Since H is compact, there exists a subsequence—which we also denote as {xn}—converging

to some z ∈ H. By the triangle inequality, we have

∣

∣

∣

∣

∫

(

T00(λn) − T
(0)
00

)

χl0,τ0,z

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(

T00(λn) − T
(0)
00

)

[χl0,τ0,xn − χl0,τ0,z]

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫

T
(0)
00 χl0,τ0,xn

∣

∣

∣

∣

.

(113)

Taking the limit as n → ∞, we see that the first term on the left side vanishes because

T00(λ) converges weakly to T
(0)
00 and the second term vanishes by the lemma of section II.

On the other hand, the right side is bounded away from 0, thus yielding a contradiction,

thereby proving the desired result that l(λ, τ0) → 0 as λ→ 0.

Returning to the question posed four paragraphs above, since T00(λ) provides the dom-

inant contribution to the source term Sab, it seems clear that if, at finite λ, V(λ) is chosen

to be so small that it does not include all source contributions lying within a homogeneity

scale l(λ, τ0) about point x, then we cannot expect the source contributions from outside of

V(λ) to consistently average to zero to a good approximation. On the other hand, if V(λ)

is of order of the homogeneity scale or larger, then it seems plausible that (with suitable

additional assumptions) a good approximation to h(S)αβ(λ, x) will be obtained. Thus, we
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have argued that h(S)αβ(λ, x) should be well approximated by

h(S)αβ(λ, x) = 4

∫

V(λ)

G αβ
ret µ′ν′(x, x

′)

(

Sµ′ν′

(λ, x′) − λw-lim
λ′→0

Sµ′ν′

(λ′, x′)

λ′

)

√

−g(0)(x′) d4x′ ,

(114)

where V(λ) may be taken to be a “cylinder” centered at x of proper spatial radius L and

proper time “height” 2L, where L & l(λ, τ0). Note that in order to obtain the conclusion

that we need only integrate over the local region V(λ), it is essential that we have removed

the “long wavelength part” of hαβ .

We now assume that l(λ, τ0) ≪ RC so that we can choose L such that L≪ RC , where RC

denotes the length scale of curvature of the background metric g
(0)
ab (i.e., the Hubble radius,

assuming spatial curvature is negligible). In the actual universe at the present time, we have

RC ∼ 3000 Mpc and l(λ, τ0) . 100 Mpc, so we should easily satisfy all required criteria with

L ∼ 100 Mpc. In that case, it should suffice to take only the leading order terms in the

Hadamard expansion for Uαβ
µ′ν′ and V αβ

µ′ν′ as well as the leading order approximation to σ

in the Green’s function expression (110). This yields

G αβ
ret µ′ν′(τ, 0, τ

′,x′) = δ
(α
µ′ δ

β)
ν′

δ (τ ′ − τ + a(τ)r′)

a(τ)r′

+V αβ
µ′ν′(τ, 0, τ, 0)θ (−τ ′ + τ − a(τ)r′) , (115)

where we have now put the field evaluation point x at the spatial origin of our coordinate

system (102). Since V αβ
µ′ν′(τ, 0, τ, 0) is proportional to the curvature of g

(0)
ab , it is clear that

the contribution of the second term will be down by a factor of (L/RC)2 from the first term,

so we neglect this contribution. We also neglect “retardation effects”, i.e., the difference

between evaluating the source at time τ − a(τ)r′ and time τ . Our formula (114) for h(S)αβ

then reduces to

h(S)αβ(λ, τ, 0) ≈ 4

∫

dΩ′

∫ L
a(τ)

0

1

r′

(

Sαβ(λ, τ,x′) − λw-lim
λ′→0

Sαβ(λ′, τ,x′)

λ′

)

a2(τ)r′2 dr′ .

(116)

Next, we assume that l(λ, τ0) not only goes to zero as λ → 0 (as we have proven above)

but is O(λ) as λ→ 0, i.e., l(λ, τ0)/λ remains bounded8 as λ→ 0. Thus, if we choose L such

that L/λ remains bounded as λ→ 0, by inspection of (116), it is then clear that terms in Sab

that are o(1/λ) as λ→ 0 will make only o(λ) contributions to h(S)αβ . However, we assumed

8 This precludes behavior wherein, e.g., T00(λ) is O(1) as λ → 0 but its scale of spatial variation goes as

λ1/2 rather than λ. Such behavior would not be excluded by our previous assumptions.
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above that as λ→ 0, we have T00(λ) = O(1/λ), T0i(λ) = O(1/λ1/2) and Tij(λ) = O(1). We

now make a final, additional assumption that terms of the form ∇c∇dh
ab are O(1/λ). In

that case, it follows immediately that tab is O(1) as λ → 0 (see (99)). It then follows that

to obtain h(S)αβ to O(λ) accuracy, we need only take into account the contribution to Sab

from T00. Thus, to O(λ) accuracy, we obtain

h(S)00(λ, τ, 0) = 4

∫

dΩ′

∫ L
a(τ)

0

1

r′
(

T 00(λ, τ,x′) − T (0)00(τ,x′) − λT (1)00(τ,x′)
)

a2(τ)r′2 dr′

(117)

and h(S)µν = 0 for all other components of h(S)ab. We write

φ ≡ −1

4
h(S)00 . (118)

Then φ(x) differs from the familiar formula for the gravitational potential arising in ordinary

Newtonian gravity due to the matter lying within a ball of proper radius L about x only in

the following ways: (a) There is a factor of a2(τ) in (117), which arises from the trivial scaling

difference between the spatial coordinates of (102) and ordinary Cartesian coordinates. (b)

T (0)00 is subtracted in the integrand of (117) because the FLRW time slicing differs from

a locally Minkowskian time slicing (see section IA of [1]); equivalently, the effects of T (0)00

have already been taken into account via the dynamics of the FLRW background. (c)

λT (1)00 is subtracted in the integrand of (117) because its effects were already taken into

account by γ
(L)
ab . As discussed above, this subtraction of λT (1)00 gives the integral much

better convergence properties. Thus, we conclude that the leading order short wavelength

deviation from the FLRW background g
(0)
ab is described by Newtonian gravity, taking into

account only the matter distribution lying within a region about x whose size is of order the

homogeneity lengthscale.

The motion of matter is given by

0 = ∇a(λ)T ab(λ) = ∇aT
ab(λ) + Ca

ac(λ)T cb(λ) + Cb
ac(λ)T ac(λ) . (119)

We may write

Ca
bc(λ) = C(S)a

bc(λ) + λC(1)a
bc , (120)

where, to leading order in wave map gauge, we have

C(S)0
0i = ∇iφ , (121)

C(S)i
00 = ∇iφ , (122)

C(S)i
jk = g

(0)
jk ∇iφ− 2δi

(j∇k)φ , (123)
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(with other components zero), and

C(1)a
bc =

1

2
g(0)cd

{

∇aγ
(L)
bd + ∇bγ

(L)
ad −∇dγ

(L)
ab

}

. (124)

The dominant terms in (119) arise from C(S)i
00(λ)T 00(λ) and correspond to the ordinary

Newtonian gravitational effects on the motion of matter. Although, for small λ, the contri-

butions from C(1)a
bc will be much smaller than those arising from φ, it is important not to

discard the terms in C(1)a
bc since they can produce large scale, coherent motions.

C. Behavior of γ
(L)
ab with dust source

In this subsection, we will simplify the rather complicated equations for γ
(L)
ab derived in

section III under the assumption that h(S)ab(λ) is of “Newtonian form”. More precisely, we

assume that the following quantities are uniformly bounded as λ→ 0:

1
λ
h(S)00 , 1

λ1/2∇0h
(S)00 , ∇ih

(S)00 ,

1
λ
∇0h

(S)0j , 1
λ1/2∇ih

(S)0j ,

1
λ
∇ih

(S)jk .

(125)

The remaining components (h(S)0i, h(S)ij, and ∇0h
(S)ij) are assumed to be o(λ). These

assumptions can be justified by generalizations of the arguments made in the previous sub-

section, but here we will simply assume that they are valid.

We will also assume that the matter stress-energy takes the form of “dust”

Tab(λ) = ρ(λ)ua(λ)ub(λ) , (126)

where ua(λ) has norm −1 with respect to the metric gab(λ), and ρ(λ) ≥ 0. (Recall that we

have incorporated a cosmological constant into Einstein’s equation, so the possible presence

of “dark energy” of that form has already been taken into account. This assumption of the

dust form of the stress-energy tensor as opposed to a more general form of non-relativistic

matter is made here mainly for the purpose of obtaining definite equations involving familiar

quantities.) We further assume that as λ→ 0, ua(λ) converges uniformly to u(0)a, where in

the coordinates of (102), we have u(0)µ = (1, 0, 0, 0). Note that since ua(λ) → u
(0)
a uniformly

as λ→ 0, it follows by our lemma of section II and the positivity of ρ(λ) that

T
(0)
ab = ρ(0)u(0)

a u
(0)
b , (127)
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where ρ(0) = w-limλ→0 ρ(λ).

Let va(λ) denote the peculiar velocity of the dust relative to the “Hubble flow” u(0)a, i.e.,

va(λ) is the projection of ua(λ) orthogonal to u(0)a in the metric g
(0)
ab . In accord with usual

Newtonian limits, we assume that va(λ)/λ1/2 is uniformly bounded as λ→ 0. It follows that

ua(λ) =

(

1 +
1

2
hcd(λ)u(0)cu(0)d +

1

2
vc(λ)vc(λ)

)

u(0)a + va(λ) + o(λ) , (128)

or, equivalently,

ua(λ) = gab(λ)ub(λ) =

(

1 +
1

2
hcd(λ)u(0)cu(0)d +

1

2
vc(λ)vc(λ)

)

u(0)
a +va(λ)+hab(λ)u(0)b+o(λ) .

(129)

The results we shall now derive in this subsection will be rigorous consequences of the

assumptions that have been stated above. We shall first show that, under the above as-

sumptions9, the quantities µabcdef , ω
(1,α)
abcdefgh, and ν

(1)
abcde all vanish, so all of the “backreaction

tensors” that appear in the equations for γ
(L)
ab of section III vanish, except for µ

(1)
abcdef and

κ
(1)
abcd.

Taking the weak limit of hcd times (98) (or, equivalently, using (28) directly) we find that

our Newtonian assumptions imply

w-lim
λ→0

∂iφ∂
iφ = 0 , (130)

where φ was defined by (118). Since the spatial metric g
(0)
ij is positive definite, this im-

plies that for any test function f , we have ‖∂i(fφ)‖L2 → 0 as λ → 0. Now, h
(S)
ab =

h
(S)
ab − 1

2
g

(0)
ab h(S)c

c + O(hh), so the only possible contributions to ω
(1)
abcdefgh come from terms

proportional to

w-lim
λ→0

1

λ
φ∂iφ∂jφ . (131)

Let f be any test function, and let g be a non-negative test function which is equal to 1 on

9 In fact, we can show, without any Newtonian assumptions or gauge choice, that if t
(0)
ab = 0, then αabcdef = 0

and ω
(1,α)
abcdefgh = 0. However, this is not enough to tell us anything about ν

(1)
abcde or the other components

of µabcdef or ω
(1)
abcdefgh.
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the support of f . Then we have

∣

∣

∣

∣

∫
(

w-lim
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1

λ
φ∂iφ∂jφ

)

f d4x

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
λ→0

∫

1

λ
φ∂iφ∂jφf d4x

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
λ→0

∫

1

λ
φ∂iφ∂jφfg

2 d4x

∣

∣

∣

∣

≤ C lim
λ→0

∫

|∂i(gφ)∂j(gφ)| d4x

≤ C lim
λ→0

‖∂i(gφ)‖L2‖∂j(gφ)‖L2

= 0 . (132)

Thus, we have ω
(1)
abcdefgh = 0. Similar arguments show that µabcdef = 0. Finally, ν

(1)
abcde can

only depend on terms proportional to

w-lim
λ→0

1

λ
φ∂iφ = w-lim

λ→0
∂i

(

φ2

2λ

)

= 0 , (133)

so it vanishes as well, as we desired to show. With this simplification, (87) reduces to

−1

2
∇c∇cγ̄

(L)
ab +R cd

a b(g
(0))γ̄

(L)
cd +Rd

(a(g
(0))γ̄

(L)
b)d +

1

2
g

(0)
ab R

cd(g(0))γ̄
(L)
cd − 1

2
R(g(0))γ̄

(L)
ab

+Λ

(

γ̄
(L)
ab − 1

2
g

(0)
ab γ̄

(L)c
c

)

= 8πT
(1)
ab + α(1) c d

a b cd − 2πκ(1) c
ab c − 8πκ(1) c

(a b)c + 2πg
(0)
ab

{

κ(1)c d
c d − κ(1)cd

cd

}

. (134)

where γ̄
(L)
ab = γ

(L)
ab − 1

2
g

(0)
ab γ

(L)c
c, and where we have used the wave map gauge condition,

∇aγ̄
(L)
ab = 0 (see (104)).

Next, we evaluate κ
(1)
abcd. With our above assumptions of slowly moving dust matter, we

have

κ
(1)
abcd = w-lim

λ→0

1

λ
h

(S)
ab (λ)ρ(λ)ua(λ)ub(λ) = u(0)

c u
(0)
d w-lim

λ→0

1

λ
h

(S)
ab (λ)ρ(λ) . (135)

The second equality follows from our lemma of section II because
[

uc(λ) − u
(0)
c

]

h
(S)
ab (λ)/λ→

0 uniformly as λ→ 0 and ρ(λ) ≥ 0. Using the Newtonian assumption that all components,

except for the time-time component, of h
(S)
ab (λ)/λ converge uniformly to zero as λ → 0, the

lemma of section II tells us furthermore that the only non-vanishing components of κ
(1)
abcd are

κ
(1)
0000 = −2 w-lim

λ→0

1

λ
ρ(λ)φ(λ) , (136)

κ
(1)
ij00 = −2g

(0)
ij w-lim

λ→0

1

λ
ρ(λ)φ(λ) . (137)
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To evaluate µ
(1)
abcdef , it is more convenient to work with the quantity

µ̄(1) cdef
ab ≡ w-lim

λ→0

1

λ

[

∇(ah
(S)cd∇b)h

(S)ef − w-lim
λ′→0

[

∇(ah
(S)cd∇b)h

(S)ef
]

]

= w-lim
λ→0

1

λ

[

∇ah
(S)cd∇bh

(S)ef
]

, (138)

where the second line follows by the same type of argument as used above to show the

vanishing of ω
(1)
abcdefgh. Since h

(S)
ab = h

(S)
ab − 1

2
g

(0)
ab h(S)c

c + O(hh), it is not difficult to see that

µ̄
(1)
abcdef can be expressed straightforwardly in terms of µ

(1)
abcdef and vice-versa. Our Newtonian

assumptions (125) directly imply that the only potentially non-zero components of µ̄
(1)
abcdef

are

µ̄
(1)
000000 , µ̄

(1)
0i0000 , µ̄

(1)
0i000j , µ̄

(1)
ij0000 ,

µ̄
(1)
ij000k , µ̄

(1)
ij00kl , µ̄

(1)
ij0k0l ,

(139)

together with the components related to these by symmetries. However, it also follows that

µ̄
(1)
ij00kl = 0, since

∣

∣

∣

∣

∫

fµ̄
(1)
ij00kl d

4x

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
λ→0

∫

f
1

λ
∇ih

(S)
00 ∇jh

(S)
kl d4x

∣

∣

∣

∣

≤ C lim
λ→0

∫

∣

∣

∣
f∇ih

(S)
00

∣

∣

∣
d4x

≤ C ′ lim
λ→0

‖∇i(fφ)‖L2

= 0 . (140)

where in the second line we used that fact that ∇jh
(S)
kl /λ is uniformly bounded as λ→ 0.

To further simplify µ̄
(1)
abcdef , we now appeal to (86). With the simplifications arising from

the vanishing of µabcdef , ω
(1,α)
abcdefgh, and ν

(1)
abcde together with the wave map gauge condition

∇ah
(S)ab = 0 (see (95)), we obtain

1

4
µ̄(1)e

eabcd = 4πκ
(1)
cdab − 2πg

(0)
cd κ

(1)e
eab . (141)

From the form we have derived above for κ
(1)
abcd, it follows immediately that

µ̄(1)i
i0j0k = µ̄(1)a

a0j0k = 0 . (142)

Again by the positive definiteness of the spatial metric, it follows that ‖∇i(fh
(S)
0j )/λ1/2‖L2 →

0 as λ → 0, which implies µ̄
(1)
ij0k0l = 0 as well. By using similar Schwartz inequality-type

arguments, it also follows that µ̄
(1)
ij000k = 0. The wave map gauge condition ∇ah

(S)ab = 0
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then yields

µ̄
(1)
0i000j = µ̄(1)k

i0k0j = 0 ,

µ̄
(1)
0i0000 = µ̄(1)j

i0j00 = 0 ,

µ̄
(1)
000000 = µ̄(1)i

00i00 = 0 . (143)

The only nonvanishing components which remain are

µ̄
(1)
ij0000 = 16Ξij , (144)

where

Ξij ≡ w-lim
λ→0

1

λ
∇iφ∇jφ . (145)

Furthermore, by (141) and our previous expression for κ
(1)
abcd, we obtain

Ξi
i = −4πw-lim

λ→0

1

λ
ρ(λ)φ(λ) . (146)

Finally, expressing µ
(1)
abcdef in terms of µ̄

(1)
abcdef , we find that the nonvanishing components of

µ
(1)
abcdef are

µ
(1)
ij0000 = 4Ξij , (147)

µ
(1)
ijkl00 = 4g

(0)
kl Ξij , (148)

µ
(1)
ijklmn = 4g

(0)
kl g

(0)
mnΞij . (149)

Next, we consider T
(1)
ab . We have,

T
(1)
ab = w-lim

λ→0

1

λ

(

Tab(λ) − T
(0)
ab

)

= w-lim
λ→0

1

λ

(

ρ(λ)ua(λ)ub(λ) − ρ(0)u(0)
a u

(0)
b

)

= w-lim
λ→0

1

λ

(

[

ρ(λ) − ρ(0)
]

u(0)
a u

(0)
b + ρ(λ)va(λ)vb(λ) + 2ρ(λ)u

(0)
(a vb)(λ)

+ρ(λ)u(0)
a u

(0)
b

[

hcd(λ)u(0)cu(0)d + vc(λ)vc(λ)
]

+ 2ρ(λ)u(0)cu
(0)
(a hb)c(λ)

)

= ρ(1)u(0)
a u

(0)
b + p

(1)
ab + 2u

(0)
(a P

(1)
b) + u(0)

a u
(0)
b κ(1)cd

cd + ρ(0)u(0)
a u

(0)
b u(0)cu(0)dγ

(L)
cd

+u(0)
a u

(0)
b p(1)c

c + 2κ(1)c
(ab)c + 2ρ(0)u(0)cu

(0)
(a γ

(L)
b)c

= ρ(1)u(0)
a u

(0)
b + 2u

(0)
(a P

(1)
b) + p

(1)
ab + u(0)

a u
(0)
b p(1)c

c + u(0)
a u

(0)
b κ(1)cd

cd + 2κ(1)c
(ab)c

+u(0)
a u

(0)
b T (0)cdγ̄

(L)
cd + 2T (0)c

(aγ̄
(L)
b)c − 1

2
T

(0)
ab γ̄

(L)c
c . (150)
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Here, we have introduced the quantities

ρ(1) ≡ w-lim
λ→0

[ρ(λ) − ρ(0)] /λ , (151)

P (1)
a ≡ w-lim

λ→0
ρ(λ)va(λ)/λ , (152)

and

p
(1)
ab ≡ w-lim

λ→0
ρ(λ)va(λ)vb(λ)/λ . (153)

Now, for a pressureless fluid, ρua is a conserved current, whose integrated flux through

a spacelike hypersurface can be interpreted as (proportional to) the “number of particles”

(often referred to as the “number of baryons”) in the fluid. The perturbation, ρ
(1)
M , of the

density (relative to the background metric g
(0)
ab ) of particles on a τ = const. hypersurface is

given by

ρ
(1)
M ǫ

(0)
abc ≡ w-lim

λ→0

1

λ

[

Tde(λ)ud(λ)ne(λ)ǫabc(λ) − T
(0)
de u

(0)dn(0)eǫ
(0)
abc

]

, (154)

where na(λ) and ǫabc(λ) are the unit normal and 3-volume of the hypersurface in the metric

gab(λ) and n(0)a and ǫ
(0)
abc are the corresponding quantities for g

(0)
ab . We obtain

ρ
(1)
M = ρ(1) +

1

2
p(1)i

i +
3

4π
Ξi

i +
1

2
ρ(0)

(

γ̄
(L)
00 − 1

2
γ̄(L)c

c

)

. (155)

We now return to our perturbation equation (134) for γ̄
(L)
ab . We use the above explicit

expressions for κ
(1)
abcd and µ

(1)
abcdef , we use (150) to substitute for T

(1)
ab , and we use (155) to

eliminate ρ(1) in favor of ρ
(1)
M . Bringing all terms explicitly involving γ̄

(L)
ab to the left side, we

obtain

−1

2
∇c∇cγ̄

(L)
ab +R cd

a b(g
(0))γ̄

(L)
cd +Rd

(a(g
(0))γ̄

(L)
b)d +

1

2
g

(0)
ab R

cd(g(0))γ̄
(L)
cd − 1

2
R(g(0))γ̄

(L)
ab

+Λ

(

γ̄
(L)
ab − 1

2
g

(0)
ab γ̄

(L)c
c

)

− 4πT
(0)
ab γ̄

(L)
cd u

(0)cu(0)d − 16πT (0)c
(aγ̄

(L)
b)c + 2πT

(0)
ab γ̄

(L)c
c

≡ 8πΘab , (156)

where the components of Θab are explicitly given by

Θ00 = ρ
(1)
M +

1

2
p(1)i

i −
1

8π
Ξi

i , (157)

Θ0i = P
(1)
i , (158)

Θij = p
(1)
ij +

1

4π
Ξij −

1

8π
g

(0)
ij Ξk

k . (159)

This expression for the “effective perturbed stress-energy” of matter agrees with the expres-

sion obtained by [27] (see also [21]).
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All of the terms on the left side of (156) together with the terms ρ
(1)
M and P

(1)
i appearing

in Θab would be present in ordinary linearized perturbation theory. We previously showed in

section II that, in the absence of gravitational radiation, small scale inhomogenities cannot

affect the dynamics of the background metric. We now see that, under the assumptions

stated at the beginning of this subsection, the only effect that small scale inhomogeneities

have on long wavelength perturbations is to add the terms involving p
(1)
ij and Ξij to the

effective perturbed stress-energy Θab. These additional terms provide precisely the contri-

butions to the energy density and stresses that one would expect from kinetic motions and

Newtonian gravitational potential energy and stresses. In particular, for the energy den-

sity, these terms have the effect of shifting the proper mass density appearing in the FLRW

background to an “ADM mass density” (to first order in λ). Although the presence of these

terms is very important as a matter of principle, they should be extremely small compared

with ρ
(1)
M (and even with P

(1)
i ).

Finally, we note that although we have written (156) in wave map gauge (104), we may

use the gauge freedom with respect to smooth, one-parameter groups of diffeomorphisms

discussed in the paragraph below (87) to impose any other desired gauge condition on γ
(L)
ab .

Since the left side of (156) together with the terms ρ
(1)
M and P

(1)
i in Θab have the same gauge

transformation properties as in ordinary linearized perturbation theory, these terms will take

the same form as in ordinary linearized perturbation theory when transformed to the new

gauge. On the other hand, the terms in Θab involving Ξij and p
(1)
ij are gauge invariant under

the transformations induced by a smooth, one-parameter group of diffeomorphisms. This

enables one to write down the form of (156) in other gauges.

V. APPLICABILITY OF OUR FORMALISM TO THE REAL UNIVERSE

In this paper, we have developed a formalism that enables one to take full account of small

scale non-linearities in Einstein’s equation. This formalism is, in essence, an adaptation of

Burnett’s formulation of the “shortwave approximation” for analyzing the self-gravitating

effects of short-wavelength gravitational radiation. The key idea of our formalism is to

consider an idealized, one-parameter family of metrics, gab(λ), with the property that, as

λ→ 0, the deviation of gab(λ) from a “background metric” g
(0)
ab goes to zero in proportion to

λ, but the scales over which the metric and stress-energy vary also go to zero in proportion
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to λ. In principle, this allows the small-scale nonlinear terms in Einstein’s equation to have

a significant effect on the large scale dynamics of g
(0)
ab . However, we proved in section II that

the only such effects that can actually arise correspond to the presence of an effective stress-

energy associated with gravitational radiation. No new effects can arise from the presence

of matter (provided that the matter satisfies the weak energy condition), and no effects can

arise that in any way mimic “dark energy”.

In sections III and IV, we applied our formalism to analyze the leading order deviations

of gab(λ) from g
(0)
ab . Within our formalism, these deviations can naturally be split into

“long wavelength” and “short wavelength” parts. The long wavelength part satisfies a

modified version of the usual linearized perturbation equation. We argued that, in the case

of cosmological perturbations with nearly Newtonian sources, the short wavelength part of

the leading order deviation of gab(λ) from g
(0)
ab is described by Newtonian gravity, taking into

account only the local matter distribution.

However, our actual universe is not an idealized limit of spacetimes with inhomogeneities

on arbitrarily small scales, but is a particular spacetime with finite amplitude, finite wave-

length deviations from a FLRW model. Quantities in our formalism like the “long wavelength

perturbation,” γ
(L)
ab , are defined by taking weak limits as λ→ 0. How do quantities like γ

(L)
ab

that arise in our formalism correspond to quantities observed in the actual universe? Fur-

thermore, to what extent are we justified in applying our results to the actual universe, i.e.,

how do we know whether the actual universe is sufficiently “close” to the idealized limit

considered in our formalism that results derived using our formalism should hold to a good

approximation?

The above questions can also be asked in the context of ordinary linearized perturbation

theory. In this context, one also deals with a limit of a one-parameter family of metrics

gab(λ, x) (now assumed to be jointly smooth in (λ, x)) and the formalism obtains results for

idealized quantities like ∂gab(λ, x)/∂λ|λ=0. Nevertheless, in the case of ordinary perturbation

theory, the above questions can be answered in a relatively straightforward manner. In an

actual (“finite λ”) spacetime with metric gab, one may introduce a background metric g
(0)
ab and

identify the difference, hab = gab−g(0)
ab , with λ∂gab(λ, x)/∂λ|λ=0. A fundamental criterion for

the validity of ordinary perturbation theory is that |hµν | ≪ 1 in some orthonormal basis of

g
(0)
ab . However, we also need to satisfy conditions that state that first and second spacetime

derivatives of hµν are sufficiently “small,” since these quantities appear in the nonlinear

51



terms that are being neglected in Einstein’s equation. In particular, the criteria for the

applicability of ordinary linear perturbation theory cannot be satisfied in a cosmological

spacetime with |δρ| > ρ0, as occurs in the real universe. Indeed, it is for this reason that

we have developed the formalism of this paper. It should be noted that even in the case of

spacetimes that do satisfy the basic criteria for the validity of ordinary linear perturbation

theory, it would be very difficult to obtain precise error estimates for this approximation.

If one wishes to apply the formalism of this paper to a particular spacetime, such as

our universe, it also is necessary to introduce a background metric g
(0)
ab . As in ordinary

perturbation theory, it is essential that the difference, hab = gab − g
(0)
ab , satisfy |hµν | ≪ 1

in some orthonormal basis of g
(0)
ab . The main advantage of our formalism over ordinary

perturbation theory is that it imposes much weaker restrictions on spacetime derivatives

of hµν . In particular, for cosmological spacetimes, it allows |δρ| ≫ ρ0 on small scales.

However, it is clear that some further restrictions in addition to |hµν | ≪ 1 must hold for

the results derived using our formalism to be a good approximation. Although it would be

extremely difficult to formulate mathematically precise criteria for the validity of applying

our formalism to a given spacetime—much more difficult than for ordinary perturbation

theory—we now shall propose a rough criterion for its validity.

In essence, taking the weak limit as λ → 0 of quantities that arise in our formalism

corresponds to taking spacetime averages of these quantities over arbitrarily small regions

of spacetime before letting λ → 0. For a given, fixed spacetime, such as our universe, the

weak limits in our formalism should thus be identified with spacetime averages over small

regions. Thus, for example, the quantity λγ
(L)
ab (x) [where γ

(L)
ab ≡ w-limλ→0 hab(λ)/λ] should

be identified with the spacetime average of hab over a suitable region, Rx, centered on x.

In order that the spacetime under consideration be be “sufficiently close” to the idealized

limit λ→ 0 of our formalism that our results should apply, it is necessary that Rx be small

compared with the curvature scale, RC , of g
(0)
ab ; indeed, the notion of “averaging” would be

highly ambiguous if this were not the case. However, it also is necessary that Rx be large

enough that our perturbative approximations should apply. In particular, λγ
(L)
ab must satisfy

the same “smallness” conditions as required in ordinary linearized perturbation theory, i.e.,

its spacetime derivatives must be appropriately small. Similarly, the perturbative quantity

λT
(1)
00 (see (78)) should correspond to the spacetime average of T00 − T

(0)
00 . In order that our

approximations should apply, we must choose Rx large enough that |λT (1)
00 | ≪ T

(0)
00 .
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The condition that the spacetime average of T00 − T
(0)
00 be less than T

(0)
00 was considered

in section IVB above and used to define the homogeneity scale, l (see (111)). Similar

“homogeneity scales” can be defined for all other “long wavelength” quantities arising in

the analysis of section III. Since our averaging region must be large compared with these

homogeneity scales but small compared with the scale of the curvature of the background

metric, it is clear that a necessary condition for the applicabiliity of our formalism is that

these homogeneity scales be small compared with the curvature of the background metric.

We believe that this condition, together with |hµν | ≪ 1, should also be sufficient for the

applicability of our formalism, since it should guarantee the appropriate “smallness” of all

long wavelength perturbative quantities.

In the case of our universe, it seems reasonable to assume that the only relevant homo-

geneity scale is the density homogeneity scale, l, defined by (111). In the present universe,

we have l . 100 Mpc whereas the scale of the curvature of the background metric (i.e., the

present Hubble radius) is of order RC ∼ 3000 Mpc. Thus l ≪ RC . In addition, common

sense estimates indicate that, except in the immediate vicinity of black holes or neutron

stars, we have |hµν | ≤ 10−5. Thus, if we define “long wavelength perturbations” by averag-

ing on scales of order L ∼ 100 Mpc, the criteria we have proposed for the validity of our

approximations should be satisfied. Consequently, we believe that the results of this paper

should be applicable to our universe to an excellent approximation.

If this is the case, then the following conclusions can be drawn: (1) As shown in section

II, the only effect that small scale inhomogeneities can have on the leading (i.e., zeroth)

order large scale dynamics of our universe is that of a P = 1
3
ρ fluid, corresponding to the

presence of gravitational radiation. In particular, small scale inhomogeneities cannot mimic

the effects of “dark energy.” (2) The deviation, hab, of the metric from a FLRW model can

be broken up into “long wavelength” and “short wavelength” parts. The long wavelength

part corresponds in our universe to averaging hab over a spatial scale of order L ∼ 100 Mpc.

As analyzed fully in section III and subsection IVC, it satisfies a linear equation with an

additional source term due to the short wavelength part. As argued in subsection IVB, the

short wavelength part should be described by Newtonian gravity, taking into account only

the matter within a proper distance of order L ∼ 100 Mpc of the point under consideration.

Thus, the analysis of this paper goes a long way towards justifying many of the key as-

sumptions made in cosmology. In particular, if the matter in the universe is non-relativistic,
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it suggests that to calculate structure formation in the universe on all scales—from the Hub-

ble radius or larger down to arbitrarily small scales—it should be a good approximation to

evolve the long wavelength part of the deviation of the metric from a FLRW model by (156),

to calculate the short wavelength part by (117), and to calculate the motion of the matter

by (119) together with (120)–(124).

In addition, our analysis suggests how further improvements can be made to get more

accurate approximations. To improve upon the description of the “long wavelength” part of

the deviation of the metric from a FLRW model one could go to higher order perturbation

theory. In particular, the second order correction to γ
(L)
ab would be defined in our framework

by

γ
(2)
ab = w-lim

λ→0

gab(λ) − g
(0)
ab − λγ

(L)
ab

λ2
, (160)

assuming, of course, that this weak limit exists. The equations satisfied by γ
(2)
ab —taking

full account of the small scale inhomogeneities—could be derived by the methods used in

section III. The description of the short wavelength part of the deviation of the metric from

a FLRW model could be improved by a more accurate treatment of the integral relation

(108). However, the investigation of such improvements is beyond the scope of this paper.
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