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Abstract

In this report we construct a phenomenological model in which the time variation of the fine

structure constant, α, is induced by a parity and charge-parity (PCP) violating interaction. Such

a PCP violation in the photon sector has a distinct physical origin from that in the conventional

models of this kind. We calculate the cosmological birefringence so induced in our model and

show that it in turn produces a new non-vanishing multipole moment correlation between the

temperature and the polarization anisotropies in the CMB spectrum. We have also calculated the

amount of optical rotation due to a strong background magnetic field and the effect of our new

PCP violating term on the variation of α during the cosmic evolution. We found that only in the

radiation dominated era can the contribution of the new PCP violating term to the variation of α

be non-vanishing.
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I. INTRODUCTION

Both inflation and late-time cosmic acceleration have been puzzling physicists for a long

time. It has become clear that the final solutions to these may require new physics be-

yond general relativity and the standard model of particle physics in order to explain those

observation. A priori, however, we do not have any clear idea how to proceed unless we

can identify some new guiding principles. Although several new principles, such as the

holographic principle, have been introduced to explain cosmological phenomena, these are

nonetheless still at preliminary stage. An alternative would be the more conservative path

of drawing analogy from known physics.

As is well-known, in parity (P) and charge-parity (CP) symmetries are violated in the

electroweak sector of the standard model particle physics. Considering this as a guiding

principle, construction of P and CP violating extension has been considered in the new

physics models that produce inflation as well as late-time acceleration. For the last several

years, many different parity violating models have been put forward [1–5]. The very basic

idea of all those models is to add explicit parity violating term in the Lagrangian. Because

of its nature, this parity violating term leads to cosmic birefringence [1, 2] and left-right

asymmetry in the gravitational wave dynamics [3, 4]. String inspired models with non-

standard parity-violating interactions have also been discussed [5]. Various observable effects

of these new parity violating models have been extensively investigated in order to put

constrains on the corresponding parameters.

In this note we construct a parity and charge-parity (PCP) violating model in the frame-

work of “varying alpha theory”. Some aspects of our model are similar to that proposed by

Carroll [1]. But as we will see, our model has the advantage over that of Carroll’s in that

the origin of the parity violation may be more physically motivated.

Cosmological variation of fundamental constants in nature has gained considerable inter-

ests in the recent past because of two fundamental reasons. Firstly, triggered by the string

theory there has been a resurgence of motivation to reconsider the variation of fundamental

constants in cosmology as well as particle physics model building. As is well known, string

theory gives us a consistent framework, where the effective four dimensional fundamental

constants depend on the compactifications of the extra dimensions. In principle, therefore,

all the so-called fundamental constants in our four dimensional world could actually be
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spacetime varying functions. The dynamics of such varying ‘constants’ actually depends

on the the specific compactification that we make. Secondly, increasingly high precession

cosmological as well as laboratory experiments give us hope that signature of new physics,

including those that give rise to variation of fundamental constants, may emerge in the near

future.

In spite of the long history of the speculation of the variation of fine structure constant

[6], the first consistent, gauge invariant and Lorentz invariant, framework of α variability was

proposed by Bekenstein [7]. Subsequently this subject has attracted many attentions and

it was extensively studied in [8–10], mainly due to the first observational evidence from the

quasar absorption spectra that the fine structure ‘constant’ might change with cosmological

time [11–13]. The observation suggests that the value of α may be lower in the past in

cosmological time scale, with ∆α/α = −0.72 ± 0.18 × 10−5 for redshift z ≈ 0.5 − 3.5.

We organize this paper as follows: in Section II, we construct the PCP violating model

in the photon sector after briefly reviewing the basic concept of “varying alpha theory”.

Then we discuss about the theoretical implication and prediction of our model in different

cosmological phenomena. In Section III, we study the cosmic birefringence phenomena. we

calculate the rotation angle of the polarization of the electromagnetic wave in a leading-order

approximation. We then discuss its effect on the parity violating correlation function in the

CMB polarization spectrum. In Section IV, we discuss the effect of background magnetic

field on the rotation of the plane of polarization. As we know, there exists magnetic fields

at cosmic scales that may affect the CMB polarization due to some scalar field coupling.

There exists several laboratory-based experiments that aim at measuring the change of

polarization of electromagnetic wave induced by such a non-trivial (pseudo) scalar-photon

coupling in a background magnetic field. Motivated by all these, we calculate the amount of

optical rotation induced in a background cosmic magnetic field, which has a direct contact

with experiments. In the subsequent Section V, we first briefly review the varying alpha

cosmology and then calculate the alpha variation induced by the PCP violating term. In

general, it is very difficult to solve the type of equation of motion appeared in our model.

This was done in our calculation by using the matched approximation adopted from [9].

Concluding remarks and future prospects are provided in Section VI.
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II. PARITY VIOLATING VARYING-ALPHA THEORY

In this section we will start with a general discussion on the varying fine structure constant

theory from the standard literatures [7–9] . In the framework of the varying alpha theory,

the simplest way to induce the variation of α is by requiring that the electric charge varies as

e = e0e
φ(x), where e0 denotes the coupling constant of a particle and φ(x) is a dimensionless

scalar field. The fine-structure constant is therefore α = e2
0e

2φ(x). There is an arbitrariness

involved in the definition of φ(x) due to the shift invariance, i.e. φ → φ + c. Important

point to mention here is that well known charge conservation is violated. But in order to

be consistent with the quantum field theory, new modified electromagnetic theory should be

gauge invariant. Since e is the electromagnetic coupling, the φ(x) field couples to the gauge

field as eφ(x)Aµ in the Lagrangian and the gauge transformation which leaves the action

invariant is

eφAµ → eφAµ + χ,µ. (1)

So from the above considerations, the unique gauge-invariant and shift symmetric La-

grangian for the modified electromagnetic field can be written as

Sem = −1

4

∫

d4x
√
−ge−2φFµνF

µν , (2)

where the new electromagnetic field strength tensor is defined as

Fµν = (eφAν),µ − (eφAµ),ν . (3)

In the above action and for the rest of this paper we set e0 = 1 for convenience. As one can

see, the above action reduces to the usual form when φ is constant. The dynamics of the

φ(x) field is controlled by the kinetic term

Lφ = −ω

2

∫

d4x
√
−gφ,µφ

,µ, (4)

which is clearly invariant under the shift symmetry of φ. Here the coupling constant ω can

be written as ~c/l2, where l is the characteristic length scale of the theory above which the

Coulomb force law is valid for a point charge. From the present experimental constraints

the energy scale, ~c/l, has to be above a few tens of MeV to avoid conflict with experiments.

One of the natural assumptions in constructing the above Lagrangian is time-reversal

invariance. But we will relax this assumption and try to analyse its implications. An obvious
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term that is consistent with the varying alpha framework yet violates PCP is F̃µνF
µν , where

F̃ µν = ǫµνσρFσρ is the Hodge dual of the Electromagnetic field tensor. In the conventional

electromagnetism this does not contribute to the classical equation of motion. But in the

present framework this is no longer true because of its coupling with the scalar field φ(x).

As we have explained in the introduction, at the present level of experimental accuracy PCP

violation in the electromagnetic sector may not be ruled out, and if the PCP in this EM

sector is indeed violated, then there should have some interesting consequences. Motivated

by this, we write down a parity violating Lagrangian

L = M2
p R − ω

2
∂µφ∂µφ − 1

4
e−2φFµνF

µν +
β

4
e−2φFµνF̃

µν + Lm, (5)

where R is the curvature scalar and β is a free coupling parameter in our model. As we can

see, the scalar field φ plays a similar role as that of the dilaton in the low-energy limit of

string and M-theories, with the important difference that it induces a PCP violating elec-

tromagnetic interaction. For our purpose, we assume β as a free but small parameter. Here

we want to emphasize that the model can be thought of as a unified framework for deal-

ing with different cosmological phenomena. At the present level of experimental accuracy,

investigations of parity or charge-parity violation, beyond-standard model may shed some

new light about the fundamental laws of physics. With the interest of phenomenological

impacts on the present cosmological observations, subsequently we will discuss about some

consequences of our model.

Before this let us write down the full set of equations of motion

Gµν =
1

M2
p

(

Tmat
µν + TΦ

µν + e−2φT em
µν

)

, (6)

where the energy-momentum tensors are

(a) Tmat
µν =

1

2
gµνLm − ∂Lm

∂gµν

, (7)

(b) T em
µν =

1

2
e−2φ

{

FµαF α
ν − 1

4
gµνFµνF

µν

}

, (8)

(c) TΦ
µν =

ω

2

{

∂µφ∂νφ − 1

2
gµν∂αφ∂αφ

}

. (9)

The electromagnetic field equation then becomes

1√−g
∂µ(

√
−gF µν) + ∂µφ(−F µν + βF̃ µν) = 0. (10)
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Varying it with respect to φ, we get

1√−g
∂µ(

√
−gφ) =

e−2φ

2ω

[

−FµνF
µν + βFµνF̃

µν
]

. (11)

In the subsequent sections we will study some cosmic phenomena which may be relevant to

the future precision cosmological measurements.

III. COSMOLOGICAL BIREFRINGENCE

Cosmological birefringence (CB) is a wavelength-independent rotation of photon polar-

ization vector after traversing a long cosmic distance. It has long been the subject of interest

in the context of cosmic microwave background (CMB) phenomena [1, 2, 14, 15] where its

polarization properties crucially depend on CB. The origin of this effect may come from

either cosmic inhomogeneities or some non-trivial coupling of photon with other fields. In

this section, we will study this effect and show that the main contribution to CB comes

from our PCP violating term in the Lagrangian in Eq.5. In order to calculate this effect,

we assume the background spacetime as the spatially flat FRW expanding background. On

that background we will compute the cosmic optical rotation which is the measure of CB.

For this it useful to take the background FRW metric in the conformal time that is

ds2 = a(η)2(−dη2 + dx2 + dy2 + dz2), (12)

where η is the conformal time and a(η) is the conformal scale factor. Since electromagnetic

theory is conformal invariance in four dimension, the Maxwell equations turn out to be of

standard type with the modifications coming from non-trivial scalar field φ coupling .

∇ · E = 2∇φ ·E − 4β∇φ · B,

∂η(E) −∇× B = 2(φ̇E −∇φ ×B) − 4β(φ̇B + ∇φ × E),

∇ · B = 0,

∂ηB + ∇× E = 0. (13)

The wave equation for the B then becomes,

B̈ −∇2B = 2φ̇(Ḃ + 2β∇×B). (14)
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Now, important point to keep in mind here is that the definition of physical electromagnetic

field strength we use are Fi0 = Ei and Fij = ǫijkBk. Where, i = 1, 2, 3 and ǫ is the three

spatial dimensional Levi-Civita tensor density.

We assume general wave solutions of the form B = B0(η)e−ik·z, and take the z direction

as the propagation direction of the electromagnetic waves, i.e.,k = kêz, The equations for

the polarization states, viz., b±(η) = B0x(η) ± iB0y(η) turns out to be

b̈± − 2φ̇ḃ± +
(

k2 ∓ 4kβφ̇
)

b± = 0, (15)

while the equation of motion for the scalar field is

φ̈ − 2
ȧ

a
φ̇ =

1

ωa2
[−(E2 −B2) + 4βB ·E]. (16)

It is in general difficult to solve the above non-linear coupled equations exactly. We therefore

look for an approximate solution to the leading order in the large ω limit. In this limit, the

solution for the scalar field would be

φ = B

∫

dη

a(η)2
+ C + O(ω) ; φ̇ =

B

a(η)2
(17)

where B and C are the integration constants. We also assume the coupling constant β and

the value of the scalar field to be vary small based on the various observational constraints.

From the above expressions, we see that the energy density of the scalar field is proportional

to B. We therefore know that this constant must be very small in order for it not to

backreact to the background cosmological evolution.

Since the change of b± is expected to be small, we estimate the optical activity using

the WKB method [16]. In the long wavelength limit and for small coupling constant β, we

assume the solution of the above equation for b± to be

b± = eikS±(η) ; S±(η) = S0
± +

1

k
S1
± + . . . (18)

Therefore the solution based on the above ansatz is

S0
± = η ; S1

± = −1

2
(2i ± 4β)

∫

φ̇dη. (19)

It is clear from the above solution that the expression for the optical rotation of the plane

of polarization is

∆ = 4β

∫ ηf

ηi

φ̇dη = 4β|φ(ηf) − φ(ηi)|, (20)
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where ηi and ηf are the initial and final conformal time for the electromagnetic field to

be detected. As expected, the leading contribution to the cosmic optical rotation comes

from the PCP violating term. In order to connect with observations, we rewrite the above

expression for the optical rotation to the leading order in ω as

∆ = 2
hβ

H0

∫ z

0

(1 + z)dz
√

(Ωm + Ωdm)(1 + z)3 + Ωde

, (21)

where h is the energy density of the scalar field, z is the redshift factor, and Ω’s are the

cosmological density parameters. In terms of the density of the scalar field we can write

down the expression for the optical rotation as

∆ ≃ Mp

ωβ

√
ρ × 5.6 × 1043 ; ρ =

ω2h2(1 + z)6

2
(22)

where Mp is the Planck constant. In the above expression we consider z = 0.4 just because

observational data for radio galaxies and quasars have been analyzed in great detail for the

redshift z ≥ 0.4. As one can see from the above expression that the optical rotation is

crucially dependent upon the scale of alpha variation, coupling constant β and the energy

density of the new scalar field. In the next subsection we will investigate its impact on the

CMB polarization and constrain the value of the parameter β in our model.

A. Effect of birefringence on CMB anisotropy

As we have already discussed, the CMB is one of the primary windows to peek into the

early universe. Recent CMB observations have reached remarkable precision and proved to

be consistent with the so-called standard model of cosmology. With such high precision

we can expect that the CMB may provide additional information to constrain new physics

beyond the standard model. A positive answer is expected from the study of CMB po-

larization. In the context of parity violating effects, there have already been many studies

[17]. These violations might also have a measurable imprint on the observed CMBP pattern,

whose statistical properties are constrained by the assumption of symmetry conservation.

It has been noted by several authors [2, 18] that certain non-vanishing multipole moment

correlations between the temperature anisotropy and polarization of the CMB could appear,

if there exists parity violating interaction in the photon sector. Such an interaction appears

in our proposal in the framework of varying alpha theory. As is well-known, the angular

8



distribution of the temperature anisotropy of the CMB can be expressed in terms of the

expansion in spherical harmonics [19]

∆T

T
(n) =

∑

l,m

aT
lm Y T

lm(n) . (23)

The polarization of the CMB is expressed in terms of a 2 × 2 traceless symmetric tensor

Pab(n) whose components are the Stokes parameters. This tensor can be decomposed into

its irreducible ‘gradient’ (or E) and ‘curl’ (or B) parts that have opposite spatial parities.

The angular distribution of this polarization tensor can thus be expressed in terms of the

matrix spherical harmonics as [2, 18]

PE
ab(n) =

∑

aE
lm Y E

lm,ab(n)

PB
ab(n) =

∑

aE
lm Y B

lm,ab(n) . (24)

One defines the correlation of the multipole moment coefficients, aX
lm , X = T, E, B, as

CXX′

l ≡ 〈aX
lm aX′

lm〉 . (25)

Clearly, correlations such as CXX
l as well as CTE

l all preserve P, while correlations such

as CTB
l and CEB

l are obviously P-violating, the appearance of which requires an explicitly

P-violating interaction as mentioned earlier. The optical activity described earlier implies

that if a correlation like CTE
l does indeed arise due to reionization or otherwise, then the

passage of the Thompson scattered photons through the scalar field φ background would

produce the P-violating correlation term CTB
l through the rotation [2, 18]:

C ′TB
l = CTE

l sin 2∆ (26)

C ′EB
l =

1

2
(CEE

l − CBB
l ) sin 4∆ (27)

where the primed quantities are rotated and ∆ is the rotation of the plane of polarization

of light. We clearly see that the effect of cosmic birefringence, which is parity violating in

nature, in our model can lead to some nonvanishing correlations.

The recent high precession cosmological observations put a tight constraints on the pos-

sible amount of optical rotation compare to the previous studies [20–22]. The polarization

data from radio galaxies and quasars for the redshift between z = 0.425 and z = 2.012 gives

9



the average value of ∆ = −.60 ± 1.50. On the other hand, the WMAP 7-years data [22]

suggests the rotation angle of the polarization plane would be ∆ = −1.10 ± 1.30. That is,

according to the WMAP polarization data there is no clear indication for the parity violating

interaction in the photon sector. However, as we have mentioned above, the most stringent

constraint would come from the nonvanishing TB and EB correlations, whose values, as our

model predicts, are different by a factor sin 2∆ ∼ 8βδφ. Since β is a free parameter to be

fixed in our model, we need additional observational constraints to fix it. In the next section

we will discuss about the variation of α induced by our PCP violating term. In principle

this will help us fix the β.

IV. EFFECT OF BACKGROUND ELECTROMAGNETIC FIELD

Apart from the cosmological or astrophysical observations, there exist various laboratory-

based experiments such as BFRT [23], PVLAS [24], Q&A [25], BMV [26], etc., which make

use of the photon-to-scalar-field conversion in the presence of a strong background magnetic

or electric field for the indirect detection of new scalar fields. In this regard different theo-

retical models based on the dilaton-photon type coupling, e−2φFabF
ab, or the standard QCD

axion-photon type coupling, φFabF̃
ab, mediated by the background magnetic or electric field

have been considered extensively. In our present model we have employed both these terms

in a single varying alpha framework. As a first step, in this section we will try to do a

qualitative analysis of our model under background magnetic field. We want to empha-

size here that this study is important in the cosmological context as well. As we know, at

cosmological scales there exist background magnetic fields. These cosmic magnetic fields

may have a significant effect on the CMB polarization in addition to the scalar coupling

effect that we describe in this paper. The polarization of CMB is known to have encoded

the information of early universe specifically that of the inflationary epoch. The possibility

of additional CMB polarizations induced by some other external field would undoubtedly

complicates the issue and it must be clarified. With this motivation in mind, we calculate

the effect of background electromagnetic field on the rotation plane of polarization. In terms
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of the vector potential, the main equations of our interests are

(∇2 + ̟2)Ax = 4iβB0̟φ, (28)

(∇2 + ̟2)Ay = −2B0∂zφ, (29)

(∇2 + ̟2)Az = 2B0∂yφ, (30)

(∇2 + ̟2)φ =
2B2

0

ω
φ − 2B0

ω
(∂yAz − ∂zAy) −

4iβB0̟

ω
Ax, (31)

in the presence of background magnetic field B0 in the x-direction. Because of the smallness

of the effect, we consider only the linear order equations for the scalar-photon system. In the

above derivation we used the gauge condition, ∇ ·A = 0, and specified the scalar potential:

A0 = 0. ̟ is the frequency of the fields. Let the propagation direction of the electromagnetic

wave be orthogonal to the external magnetic field B0, say in z-direction. We then write

A(z, t) = A0e−i̟t+ikz ; φ(z, t) = φ0e−i̟t+ikz. (32)

As is clear from the above ansatz, the equation for Az is no longer coupled with φ. From

the other three equations for Ax, Ay, φ, consistency condition leads to three roots for the

frequency ̟ as follows

̟2 = k2 , ̟2
± = k2 + δ± (33)

δ± =
B2

0

ω
(1 + 8β2) ±

√

B4
0

ω2
(1 + 8β2)2 +

4B2
0k

2

ω
(1 + 4β2). (34)

To establish the connection with the experimental set up, we can consider the initial (t =

0, x = 0) electromagnetic field to be linearly polarized and making an angle with the external

magnetic field B0 , so that

Ax(z = 0, t = 0) = α1 = cos α ; Ay(z = 0, t = 0) = α2 = sin α ; φ(z = 0, t = 0) = 0.(35)

With this boundary conditions, we can have a unique solution like

Ax = (axe
−i̟t + bxe

−i̟+t + cxe
−i̟−t)eikz

Ay = (aye
−i̟t + bye

−i̟+t + cye
−i̟−t)eikz

φ = φ0(e
−i̟+t − e−i̟−t)eikz, (36)
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where

bx = −2β̟+

k
by =

2β̟+

k

(−k2 + ̟2
−)

(−k2 + ̟2
+)

cy = −̟+

̟−

(−k2 + ̟2
−)

(−k2 + ̟2
+)

cx =
4iβB0̟+

(−k2 + ̟2
+)

φ0

ay =
2β̟

k
ax = α2 +

k

2β̟−

[

̟2
+ − ̟2

−

−k2 + ̟2
+

]

cx

cx =
1

F

(

α1 −
kα2

2β̟

)

F =
4β2(̟̟−(−k2 + ̟2

+) − ̟̟+(−k2 + ̟2
−)) + k2(̟2

+ − ̟2
−)

4β2̟̟−(−k2 + ̟2
+)

(37)

While traversing through the region of external magnetic field, after t = L the resulting

interaction causes the wave solution to have a modified amplitude of the form

Ax = axe
−i̟L + bxe

−i̟+L + cxe
−i̟−L, (38)

Ay = aye
−i̟L + bye

−i̟+L + cye
−i̟−L, (39)

From the above set of expressions, we see that the vector potential describes an ellipse with

the major axis at an angle

θ ≃ tan−1

(

α2

α1

)

+
sin(2α)

4

( L
cos2(α)

− Γ

sin2(α)

)

(40)

where

L = 2axbx sin2(
∆+

2
) + 2axcx sin2(

∆−

2
) + 2cxbx sin2(

∆

2
),

Γ = 2ayby sin2(
∆+

2
) + 2aycy sin2(

∆−

2
) + 2cyby sin2(

∆

2
),

∆+ = (̟+ − ̟)L ; ∆− = (̟− − ̟)L ; ∆ = (̟+ − ̟−)L (41)

Now, eq.40 yields the expression for the optical rotation of the plane of polarization as

δ =
sin(2α)

4

( L
cos2(α)

− Γ

sin2(α)

)

(42)

This is the quantity that establishes the direct connection with the experimental data.

The similar analysis can also be made for the background electric field as well. In our

forthcoming paper we will consider more detail analysis of the background electromagnetic

field effect on the scalar-photon mixing and its effect on the various laboratory as well as

cosmological experiments. So far we have studied the effect of scalar field on the polariza-

tion of the electromagnetic wave under various conditions that may arise in laboratory or

cosmological settings. In the next section we will consider the change of the scalar field or

fine structure constant under the background cosmological evolutions.
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V. VARYING α COSMOLOGY

The effect of cosmic evolution on the variation of fine structure constant in the framework

of the variation of a scalar field φ(x) has been extensively studied [8–10]. This has has

been referred to as the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory. Here we only

analyse the variation of α induced by the PCP violating effect. As we have already mentioned

before, the effective time varying fine structure constant is

α(t) = e2φ(t) . (43)

In the subsequent analysis we will switch over to the usual cosmic time. The fractional

variation of α then becomes

∆α

α(t0)
=

α(t0) − α(t)

α(t0)
= 1 − e2[φ(t)−φ(t0)] ≈ 2 [φ(t0) − φ(t)] = 2∆φ(t), (44)

where t0 refers to the present epoch. The observational upper limit of the time variation of

the fine structure constant [12] then puts a constraint on the variation of the scalar field,

|∆α|
α(t0)

≃ 10−5. (45)

In order to further constrain our model parameters we need to know the nature of solution

for the scalar field φ(t). We will do so in the subsequent subsections.

A. General analysis

In this section we study the cosmological evolution of the scalar field during the various

phases of the universe evolution history. In the cosmological setting the equation of motion

is

Gµν =
1

M2
p

(

〈Tmat
µν 〉 + TΦH

µν + e−2φ〈T em
µν 〉

)

. (46)

The average 〈· · · 〉 denotes a statistical average over the current state of the universe. The

electromagnetic field equation becomes

∇µ[e−2φ(〈F µν〉 + β〈F̃ µν)〉] = 0, (47)

while variation with respect to the φ field gives the cosmological evolution for the field:

�φ =
e−2φ

2ω

[

− 〈FµνF
µν〉 + β 〈FµνF̃

µν〉
]

. (48)
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For our future convenience we use the notation Lem = −1
4
FµνF

µν .

In the standard electrodynamics both terms on the RHS of Eq.(48) vanish. The PCP-

violating time variation of φ, and therefore that of α, causes the cosmic birefringence which

in turn breaks the orthogonality properties of electromagnetic field, and as a result the

term 〈FµνF̃
µν〉 ≃ 〈E · B〉 can in principle be nonvanishing during the radiation epoch.

We emphasize that this particular effect on the α variation was not present in the original

BSBM theory. The other known contribution to the variation of α comes from nearly pure

electrostatic or magneto-static energy of the matter field. As has been extensively discussed

in references [7–9], the nonrelativistic matter contributes to the RHS of Eqn. (48) through

the spatial variation of the Coulombic mass. This contribution is parametrized by the ratio

ζm = Lem/ρ, where ρ is the energy density and Lem ≈ E2/2 for baryonic matter. BBN

infers an approximate value for the baryon density of ΩB ≈ 0.03 with a Hubble parameter

h0 ≈ 0.6, implying ΩCDM ≈ 0.3. So, ζm depends strongly on the nature of the dark matter

and can be either positive or negative with modulus between 0 and 1.

Assuming a spatially-flat, homogeneous and isotropic Friedmann metric with expansion

scale factor a(t),

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (49)

we obtain the Friedmann equation

(

ȧ

a

)2

=
1

3M2
p

[

ρm

{

1 + e−2φζm

}

+ e−2φρr + ρφ

]

+
Λ

3
(50)

where Λ is a constant cosmological vacuum energy density and ρφ = 1
2
[φ̇2 + V (φ)]. For the

scalar field we get

φ̈ + 3Hφ̇ =
e−2φ

ω
[−2ζmρm +

4

a3
〈E ·B〉], (51)

where H ≡ ȧ/a. The conservation equations for the noninteracting radiation and matter

densities ρr and ρm, respectively, are

˙̃ρm + 3Hρ̃m = 0, (52)

∂t(e
−2φρr) + 4He−2φρr = 0, (53)

where ρr is the radiation energy density. From the last equation one finds ρ̃r ≡ e−2φρr ∝ a−4,

while the solution for the matter density is ρ̃m = {1 + e−2φ}ρm ∝ a−3. Eqns. (50-53) govern

the Friedmann universe with a time-varying fine-structure constant α(t). They depend

14



on the choice of the parameters ζm/ω and β/ω2. In general it is difficult to solve the

Eqs.(50,51). Since the effect of the new scalar field is expected to be very small on the

background cosmological evaluation, we will try to solve the scalar field evolution equation

in the leading order approximation with standard Hubble expansion included.

B. Evolution of scalar field in different cosmological era

In this section we analyze the evolution of the scalar field in the various cosmological

eras. For simplicity as well for analytical purpose, we will ignore the potential term of the

field.

1. The Radiation dominated era

We here show that during the radiation era there exists a contribution to the variation of

α through PCP violating term as opposed to the usual Bekenstein theory. In this era The

Friedmann equation is

(

ȧ

a

)2

=
1

3M2
p

[

e−2φρr +
1

2
φ̇2

]

, (54)

while the equation for the scalar field becomes

d

dt
(φ̇a3) = e−2φ 4β

ω
〈E · B〉. (55)

As we have discussed before, the average value of radiation kinetic Lagrangian in pure

radiation does not contribute to the α evolution. In order to solve the above equation for

the scalar field, we need to know the average value of the PCP violating term in the action.

However, we observe from Eq.(47) that in the plane wave limit the essential equation for

our study is

∂0(aE · B) = aE · (∇ · E) +
1

a
B · (∇ ·B) + φ̇(2aE · B − 4βB · B). (56)

It is clear from the above equation that E and B are not perpendicular to each other due to

varying fine structure constant. In the plane wave limit, we can ignore the first two terms

because κ · B = κ · E = 0, where κ is the wave propagation direction. We then find

a〈E · B〉 = 〈B · B〉
(

2β + θe2φ
)

, (57)

15



where θ is the integration constant. Eq.(56) is a first order differential equation in time.

Therefore we can chose the initial condition to be orthogonal i.e. E · B = 0 such that

θ = −2βe−2φ0 , where initial value of φ is taken to be φ(ti) = φ0. The parameter β of our

model therefore plays the main role in breaking the orthogonality of the electromagnetic

field. The evolution equation for φ now becomes

d

dt
(φ̇a3) =

8β2〈B · B〉
aω

(

e−2φ − e−2φ0
)

. (58)

We see that the variation of α depends quadratically in β. As we have mentioned before,

in order to solve the above set of equations analytically, we invoke a self-consistent approx-

imation which has been employed in [8]. The basic strategy of this approximation is that

it invokes the background solution for the cosmological scale factor in the equation that

governs the scalar field evolution. This is justified since at late stage in the radiation era,

the energy of the scalar field should fall faster than that of the radiation.

Specifically, we assume that the scale factor a(t) = t1/2 for the radiation era. Changing

the variable to x = 1
2
ln(t), we find that Eq.(58) becomes

φ′′ + φ′ = A
(

e−2φ − e−2φ0
)

, (59)

where ′ ≡ d/dx and

A =
8β2〈B · B〉

ω
≥ 0.

The above equation is very difficult to solve analytically. In order to get an analytic expres-

sion, let us assume that field variation is very small. Under this apporximation we can write

down

φ′′ + φ′ + 2A(φ − φ0) = 0, (60)

The above equations Eq.(60) can be solved exactly for the varying fine structure constant:

φ = φ0 + C1x
−α+ + C2x

−α− ; α± =
1

4

(

1 ±
√

1 − 8A
)

. (61)

In the above discussion for the orthogonality, we chose the initial value of the scalar field

to be φ0, which fixes C2 = −C1x
δα
i , where δα = α− − α+. Other constant can be fixed

by matching the value of fine structure constant at the matter-radiation equality epoch.

With the above solution, the expression for the fine structure constant during the radiation

dominated era is

α ∼ exp
[

φ0 + 2C1t
−α+ + 2C2t

−α−

]

. (62)
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As we have already mentioned before, in the above solution the back reaction of the scalar

field has not been considered in the background evolution. The standard radiation domi-

nated cosmic expansion is therefore unperturbed. To check the validity of this approxima-

tion, we compare the leading order behavior of the energy densities of the radiation and the

scalar field:

e−2φρr ∝ a4 =
1

t2
, ρφ =

ω

2
φ̇2 ∝ C1

2

t2
1

ln(t)2α++2
,
C2

2

t2
1

ln(t)2α−+2
(63)

As is clear from the above two expressions for the energy densities, the φ̇2 term falls off

faster than the radiation energy density as t → ∞. From Eq.(62) we see that depending on

the boundary condtions α can decreasing or increase with time in the radiation dominated

epoch. The change of α, on the other hand, is controlled by the average energy density of

the radiation, A, as well as the PCP violating coupling, β.

In the context of the subsequent cosmic expansion, the new PCP violating term in our

Lagrangian does not contribute to the evolution of the scalar field φ. Therefore the cor-

responding variation of alpha has the same evolution in the subsequent matter and dark

energy dominated eras. This has been extensively discussed in several references [8–10].

VI. CONCLUSIONS

We have constructed a parity and charge-parity (PCP) violation model within the frame-

work of the varying alpha theory, popularly known as BSBM theory [7, 9]. The origin of

this violation in our model is the time variation of the charge, which is the basic assumption

of this framework. One of the main motivations for this model is to search for new physics

constrained by the present-day high precession data from cosmological observations. After

constructing our model, we have calculated various relevant effects such as the cosmological

birefringence, which has already become a standard observational parameter in CMB as well

as in radio galaxy and quasar spectra observations. Although until now there is no positive

observational evidence of this parity-violating effect, future experiments with ever improved

precession may hopefully help us identify this notion beyond standard model. Our model

also predicts that this new contribution to the fine structure constant variation is effective

mainly in the radiation dominant era. In other eras, the variation is essentially the same

as those extensively discussed in the literature [8–10]. Because of that, BBN (Big Bang

17



Nucleosynthesis) becomes the main observational window to constrain the evolution of PCP

violating varying fine structure constant. The electromagnetic coupling constant plays a

very significant role in the nuclear abundance of our universe. It happens that in our model

the fine structure constant has a power law time variation during the radiation dominant

era, whereas in the standard BSBM model it remains almost constant. So BBN should give

us a strong constraint on the parity violating parameter.

As is well known, BBN needs three essential input parameters which are the neutron-

proton mass difference, ∆m, the neutrino life time, τn, and the nuclear reaction rates. All

of these parameters are directly or indirectly depending upon the fine structure constant.

There have been extensive studies on constraining the fine structure constants through

the light element abundance. The most updated bound on the total variation of alpha

is −0.007 ≤ δα/α0 ≤ 0.017 at 95% C.L. [27]. In order to constrain the parity violating

parameter β, we need to know the amount of variation of fine structure constant after the

radiation dominated epoch. To accomplish this, we need one more constraint deduced from

a later time in cosmic evolutiont

CMB anisotropy is another powerful tool to constrain the possible variation of fine struc-

ture constant from the matter dominated epoch to the present epoch. Variation of alpha

during the matter dominated epoch before CMB would change the time of recombination

and the acoustic horizon associated with the photon-electron decoupling. Most updated

bound on the variation of fine structure constant has been reported in [28] by using the

latest WMAP 7-year data, and that is −0.005 ≤ δα/α0 ≤ 0.008 at 95% C.L. By comparing

the above mentioned two different bounds on alpha variation deduced from two different

cosmological time scales, it may be possible to constraint the PCP violating parameter β

of our model. As a rough estimate, we take the difference between these two constraints

and find the bound for the radiation-dominant era: −0.002 ≤ δαrad/α0 ≤ 0.009, where

δαrad ≈
(

2C1t
−α+

eq + 2C2t
−α−

eq

)

; teq is time of radiation-matter equality during the cosmic

evolution.

Apart from the constraints deduced from cosmological and astrophysical observations,

we have also done some qualitative analysis on the amount of the optical rotation due to

background electromagnetic fields. Because of the existence of cosmic-scale magnetic fields

in our universe, polarization of the CMB photons may be sizable due to their coupling to

the scalar field. With these considerations in mind, we believe that there exist experimental
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windows through which the validity of our model or the constraints of its parameters can

be verified. As a first step, we have focused on establishing the qualitative behavior of our

model in the present paper, but we did not investigate the observational constraints on its

parameters. We hope to study this in more details in the future.
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