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Abstract

Little Higgs models often feature spontaneously broken extra global symmetries, which must

also be explicitly broken in order to avoid massless Goldstone modes in the spectrum. We show

that a possible conflict with collective symmetry breaking then implies light modes coupled to the

Higgs boson, leading to interesting phenomenology. Moreover, spontaneous CP violation is quite

generic in such cases, as the explicit breaking may be used to stabilize physical CP odd phases in

the vacuum. We demonstrate this in an SU(2)×SU(2)×U(1) variant of the Littlest Higgs, as well

as in an original SU(6)/SO(6) model. We show that even a very small explicit breaking may lead

to large phases, resulting in new sources of CP violation in this class of models.
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I. INTRODUCTION

Despite its impressive experimental success, the Standard Model (SM) is known to have

several theoretical puzzles. One of these, the “hierarchy problem”, is the apparent fine

tuning associated with the electroweak scale. This paradigm has led to numerous hypotheses,

such as supersymmetry, technicolor, extra-dimensions, and more. In order to eliminate the

hierarchy problem, models based on these hypotheses often introduce new physics at the

TeV scale. Unfortunately, such low scale new physics seem to generally spoil the success

of the SM by introducing low energy effects which are tightly constrained by experimental

data.

The tension between the need to solve the hierarchy problem and the above experimental

constraints is known as the “little hierarchy problem”. It may be solved by using the Little

Higgs framework [1], where physics beyond the SM appears only at Λ ∼ 10 TeV instead

of the generically expected 1 TeV. The SM Higgs field remains naturally light by serving

as a pseudo Goldstone boson of multiple approximate global symmetries. Explicit breaking

of this set of symmetries is “collective”, i.e., apparent only in the presence of at least two

terms in the Lagrangian. This ensures that the only one-loop diagrams contributing to the

Higgs mass are logarithmically divergent at most, thereby allowing for a cutoff at Λ ∼ (4π)2v

instead of the generic Λ ∼ 4πv.

In Little Higgs models, the electroweak gauge group is extended to a partially gauged

global symmetry. The gauged generators are broken spontaneously to the electroweak gauge

group. Some of the global generators are broken spontaneously too, but in a realistic model

they must be also broken explicitly in order to avoid exact Goldstone bosons. Then, one

has to make sure that the set of global symmetries which protect the Higgs is not broken

non-collectively. Such non-collective breaking would destabilize the electroweak scale.

In this paper we discuss cases, such as the SU(2)2×U(1) Littlest Higgs variant [2], where

there is a tension between lifting the mass of the pseudo-Goldstone bosons and retaining

collective symmetry breaking. A consequence of this is the presence of light particles with

direct couplings to the SM Higgs, leading to interesting phenomenology. For example, there

is a range of parameters for which a new decay channel for the Higgs opens up.

Another possible consequence is the appearance of spontaneous CP violation, i.e., physi-
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cal phases in the VEV. Such phases are rotated by field redefinitions. The generators of these

transformations must obey some conditions if the vacuum indeed breaks CP invariance [3].

In particular, in order for a phase to be physical, the related generator must be both explic-

itly and spontaneously broken. In case there is a conflict between this requirement and that

of collective symmetry breaking, one may expect that the effect of spontaneous CP violation

is suppressed - from the same reason that the related pseudo-Goldstone bosons are light.

However, as we will show, the CP violating phase may be O(1), even in the limit of small

explicit breaking.

We begin by reviewing the Littlest Higgs model and its SU(2)2×U(1) variant, showing

that it includes an exact Goldstone due to a spontaneously broken global U(1) which would

be gauged in the original SU(2)2×U(1)2 version of the littlest Higgs. We then show that

lifting the exact Goldstone requires spoiling collective symmetry breaking, hence leading to

a suppression of its mass. Once collective symmetry breaking is spoiled, even by a small

parameter, it becomes possible for the vacuum to align with an O(1) CP-odd phase. We

discuss how such CP violation arises in the low energy limit. In the SU(2)2×U(1) model it

turns out to be suppressed, but we argue that this is a peculiarity of the minimal nature

of the SU(5) structure, rather than a generic feature in Little Higgs models. In order to

support this statement, we construct an original SU(6)/SO(6) model which accommodates

an O(1) physical phase in the low energy limit.

II. SAVING THE SU(2)×SU(2)×U(1) MODEL

Here we will discuss the SU(2)×SU(2)×U(1), and how to make its Goldstone boson

massive without destabilizing the electroweak scale. But before that, let us briefly review

the original Littlest Higgs.

A. The Littlest Higgs

A very elegant implementation of the Little Higgs idea is the Littlest Higgs [4], whose

lagrangian is described as an approximate SU(5)/SO(5) effective field theory. The vacuum

manifold SU(5)/SO(5) may be parametrized as Σ0 = UUT , where U is a broken SU(5) trans-
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formation. The global SU(5) is explicitly broken by gauging an [SU(2) × U(1)]2 subgroup,

where the gauged generators are embedded in SU(5) as

T i
1 =







σi/2

01×1

02×2






, Y1 = diag(3, 3,−2,−2,−2)/10;

T i
2 =







02×2

01×1

−σa∗/2






, Y2 = diag(2, 2, 2,−3,−3)/10. (1)

Once this explicit SU(5) breaking is included, the degeneracy is partially lifted, as a minimum

energy vacuum appears at

Σ0 =







eiδV

e−4iδ

eiδV T






. (2)

Here, V is a 2 × 2 special unitary matrix and δ is a real parameter. Gauging the [SU(2) ×
U(1)]2 subgroup breaks explicitly all the SU(5) generators which are not gauged. The

vacuum breaks the [SU(2) × U(1)]2 gauge group to the electroweak group, SU(2)L×U(1)Y .

One can then use the spontaneously broken generators to rotate the vacuum into the form

Σ0 =







1
11 




. (3)

By doing so, we have chosen a basis in which the electroweak gauge group is given by the

diagonal subgroup of the full Little Higgs gauge group.

We follow the common formalism for chiral lagrangians [5] and arrange the Goldstone

bosons in a matrix,

Σ = eiΠ/fΣ0e
iΠT /f , Π = ΠaXa, (4)

where Xa are the 14 broken generators of SU(5). We can always choose a basis where

XaΣ0 = Σ0X
aT . (5)

In this basis, Eq.(4) simplifies to

Σ = e2iΠ/fΣ0. (6)
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Four of the above fourteen degrees of freedom become the longitudinal components of the

W
′±, Z ′ and γ′, which correspond to the spontaneously broken gauged generators. The

remaining ten pseudo-Goldstone bosons can be classified according to their SM quantum

numbers as one complex doublet H , which we identify with the SM Higgs, and one com-

plex triplet, φ, which carries one unit of hypercharge. These pseudo-Goldstone bosons are

parametrized as follows:

Π =







eaten H/
√

2 φ

H†/
√

2 eaten HT /
√

2

φ† H∗/
√

2 eaten






. (7)

From the transformation law Σ → UΣUT , it follows that the Higgs transforms non-

linearly under SU(3)1 and SU(3)2, which act on the (123) and (345) blocks, respectively.

Note that the SU(2)1×U(1)1 gauge interactions break SU(3)1 and conserve SU(3)2, whereas

SU(2)2×U(1)2 gauge interactions conserve SU(3)1 and break SU(3)2. However, the two

(overlapping) groups SU(3)1 and SU(3)2 are fully broken only when both sets of gauge cou-

plings are turned on, namely, they are collectively broken. Therefore, any diagram which

contributes to the Higgs mass must involve both ‘1’ and ‘2’ gauge interactions. However, the

only one-loop diagrams contributing to the Higgs mass involve two gauge boson propagators,

leading to only a logarithmic dependence: δm2
H ∼

(

gf
4π

)2
log(Λ/f).

In order to maintain collective symmetry breaking also in the top quark sector, we

introduce a new vector-like quark pair (t′L, t′R) which is SU(2)L singlet, and we define

χi
L = (iσ2QL, t′L), where i = 1, 2, 3 and QL is the SM third generation quark doublet.

The top quark sector is taken to be

L = λfχLiΩ
itR + λ′f t̄′Lt′R + c.c., (8)

where

Ωi = ǫijkǫxyΣjxΣky. (9)

Here, i, j, k run over 1, 2, 3 and x, y over 4, 5. The first term is invariant under SU(3)1, but

breaks SU(3)2, whereas the second term breaks SU(3)1 and preserves SU(3)2. That this is

the case can be seen by taking χi
L to be an SU(3)1 triplet. Diagrams which contribute to the

Higgs mass must involve both couplings, and are only logarithmically divergent at one-loop.
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B. The Hypercharge Model

The Littlest Higgs model suffers from large corrections to electroweak precision observ-

ables, mainly due to the heavy gauge boson related to U(1)′. One solution to this problem

is to impose T-parity [6], under which SM fields are even and new heavy fields are odd. This

removes all the single heavy field exchange diagrams, effectively pushing many dangerous

contributions to the electroweak precision observables to the loop level. In the same time,

T-parity provides a WIMP dark matter which naturally gives the correct thermal relic abun-

dance. Nevertheless, the multitude of new fields makes it potentially vulnerable to flavor

problems [7]. Moreover, it becomes difficult to find a simple UV completion to match it

onto [8].

Another solution was to gauge only one of the U(1) generators [2]. It is this solution

that we are considering here, although our lessons for model building and spontaneous CP

violation are rather generic, and we expect them to hold whether or not T-parity is imposed.

Let us define the following two combinations of U(1) generators:

Y =
Y1 + Y2

2
=

1

2
diag(1, 1, 0,−1,−1),

Y ′ =
Y1 − Y2

2
=

1

10
diag(1, 1,−4, 1, 1). (10)

In this model which we denote as the hypercharge model, only the the SM hypercharge Y

is gauged while Y ′ generates a global symmetry, which we denote as U(1)′. The pseudo-

Goldstone bosons matrix now becomes (in terms of the uneaten fields)

Π =







η/
√

201 H/
√

2 φ

H†/
√

2 −2η/
√

5 HT/
√

2

φ† H∗/
√

2 η/
√

201 . (11)

While gauging U(1)Y alone eliminates the troublesome heavy gauge boson, it spoils col-

lective symmetry breaking, since unlike U(1)1 or U(1)2 gauge interactions which conserve

one SU(3) each, the hypercharge gauge interaction breaks explicitly both SU(3)1 and SU(3)2

via a single term in the Lagrangian. As was shown in [2], this effect is suppressed by the

smallness of the hypercharge coupling g′, and we will not discuss it further.1

1 Radiative corrections break SU(3)1 already in the original [SU(2) × U(1)]
2

model [9]. Here we will consider

only tree-level breaking.
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Another, more acute problem of the hypercharge model is that it introduces a new mass-

less Goldstone boson η, which corresponds to the spontaneously broken U(1)′. Note that so

far, U(1)′ is an exact symmetry which is only broken spontaneously. In the Littlest Higgs,

this Goldstone boson is eaten by the corresponding gauge boson, which is absent in the

hypercharge model. Therefore, in order for this model to be phenomenologically viable,

the new Goldstone must acquire mass, requiring explicit breaking of U(1)′. This has been

recognized previously, but without providing explicit realization. For example, in [10], the

phenomenology of η was studied, assuming a range of masses up to mη ∼ v. Below we

show that any operator that gives mass to η is bound to introduce further non-collective

symmetry breaking, thus constraining mη to be roughly below the SM Higgs mass. The

assumption on mη in [10] is therefore consistent with our results.

C. A Realistic Hypercharge Model

Before proving that collective symmetry breaking must be spoiled by any term that

breaks U(1)′, let us state a generic condition any explicitly broken generator has to satisfy

in order not to spoil collective symmetry breaking, namely, in order not to break the full set

of symmetries which protect the Higgs by a single term in the lagrangian. In order to do

that, denote the collection of groups under which the Higgs transforms non-homogeneously

by {Ci}. Each of these groups should be minimal in the sense that it does not contain a

subgroup which protects the Higgs. The Ci may be disjoint (as in the Minimal Moose [11]

or in the Simplest Little Higgs [12]) or overlapping (as in the Littlest Higgs, where we have

C1 = SU(3)1 and C2 = SU(3)2).

Consider a generator X. First note that if X is a linear combination of gauged genera-

tors and a generator of Ci for a particular i, then breaking X explicitly requires breaking Ci

explicitly too (since gauge invariance must be an exact symmetry). If this is true for all i,

then any term in the lagrangian which breaks X explicitly would inevitably spoil collective

symmetry breaking. We thus arrive at the following condition:

In order that a generator can be broken explicitly without spoiling collective symmetry

breaking, it must not be expressible as any kind of the linear combinations above.
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Failing to satisfy this condition would lead to non-collective breaking of the set {Ci},
which may be allowed provided that the breaking is small enough, such that it does not

destabilize the weak scale.

Applying the condition above to Y ′, we see that the generator Y ′ cannot be broken

without spoiling collective symmetry since it can be expressed as:

5Y ′ = −Y + 2
√

3T 8
SU(3)1 = Y + 2

√
3T 8

SU(3)2 . (12)

Thus any term which breaks U(1)′ and is allowed by gauge invariance must break both

SU(3)1 and SU(3)2. A spurion which qualifies is s = (0, 0, 1, 0, 0)T , transforming (formally)

in the fundamental of SU(5). Its symmetry breaking pattern is SU(5) →SU(4) which acts on

the (3, 3) minor. The 9 broken generators include Y ′ and generators which are also broken

by the gauging. In particular, any function of Σ33 = s†Σs would break Y ′ while maintaining

gauge invariance. For example, consider

δL = εf 4Σ33 + c.c., (13)

where ε is dimensionless. Expanding Σ, we obtain

δL = 4εf 2

[

4

5
η2 + H†H + . . .

]

, (14)

where we took ε to be real, such that no extra explicit CP violation is implied. As expected,

mH gets a tree-level contribution, since δL breaks explicitly both SU(3)1 and SU(3)2. In

order not to destabilize the electroweak scale, we require ε ∼ (1/4π)2.

It follows that mass of η can be as large as the Higgs mass, but it seems equally reasonable

(or equally unreasonable) to have a much lighter η.

A light η which couples directly to the Higgs [via both a renormalizable term ∼ εη2H†H

and derivative couplings such as ∼ 1
f2 (η∂µη)(H†∂µH)] would open a new decay channel

h → ηη for the SM Higgs (see fig. 1). Due to its sizable couplings, η would decay promptly at

the collider, but depending on its dominant decay modes, it could lead to unusual signatures.

For example, η can decay into a pair of light particles: e+e−, or bb̄, as studied in [10]. In

this case, the Higgs can decay into two pairs of boosted objects, such as H → ηη →
(jj) + (ℓ+ℓ−), where the objects in the parentheses are collimated due to the large boost

factor γ ∼ mH/2mη. Another possibility is that the singlet η decays mainly via off-shell top
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FIG. 1. Contours of the branching ratio BR(h → ηη) in the mη − mH plane, for f = 1.2 TeV (left) and

f = 2.4 TeV (right). While the dominant mode in this mass range is still bb̄, the new mode ηη becomes

significant throughout the parameter space.

quarks. Then, the Higgs will decay into two pairs of boosted tops. The viability of such

unusual Higgs phenomenology deserves careful study, which we leave for future work.

The explicit breaking could as well be introduced in the Yukawa term, in which case the

bound on ε comes from one-loop. For example, consider the following Yukawa term:

LY = fχ̄LiΩ
i (λ + εΣ33) tR + c.c., (15)

inducing a one-loop contribution of the form

κε2f 2

(

Λ

4π

)2

Ω†Ω
(

λ2 + 2λεReΣ33 + ε2 |Σ33|2
)

, (16)

where κ is an order one number depending on physics near the UV cutoff, and ε is real

valued. This gives rise to

mη ∼ mH ∼ ελf. (17)

Therefore ε may be as large as ∼ 1/4π.

In the next section we discuss how such explicit breaking of U(1)′, when properly intro-

duced, may give rise to spontaneous CP violation, by stabilizing the phase δ in Eq.(3), such
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that the VEV assumes the form

Σ0 = eiϕ







eiδ1
e−4iδ

eiδ1 




. (18)

III. SPONTANEOUS CP VIOLATION IN THE HYPERCHARGE MODEL

A. Spontaneous CP Violation from Breaking U(1)′

We saw that the Hypercharge model has an explicitly broken U(1)′. One might expect

that once this U(1)′ is broken (for example, by Σ33 insertions, like in the previous section),

the related pseudo-Goldstone η acquires a VEV that breaks CP spontaneously. It turns out

that there must be at least two terms which break U(1)′ explicitly, in order for spontaneous

CP violation to occur [3]. It can be shown generically that as long as a U(1) is broken by

one single term involving a single field, the U(1)-related phase in the VEV can be removed,

by using a particular U(1) transformation. Because of the explicit breaking, the coupling

flips its sign, but the phase is removed.2 Once two explicit breaking terms are introduced,

the phase gets generically stabilized at a non-zero value. Of course, more terms would be

induced by loops, but the resulting phase would be also loop suppressed.

It is interesting to notice that the CP-odd phase may be O(1), even in the limit ε → 0,

where the explicit breaking vanishes. The reason for this non-analytical behavior of the

phase as function of ε is that however small ε may be, it is the leading effect in lifting the

degeneracy associated with the Goldstone direction. Nevertheless, any physical consequence

of effect related to the phase is associated with some momentum scale p (for example, the

mass of a particle whose decay exhibits direct CP violation). The effect will be negligible

for p > εf ∼ mη, since for such large characteristic momenta, the pseudo-Goldstone boson

is effectively massless. 3

In the hypercharge model, there is one exact global U(1)′ generated by

Y ′ = diag(1, 1,−4, 1, 1)/10, which is spontaneously broken. A single term is sufficient to lift

the Goldstone boson mass, as we have discussed in the previous section. However, only in

2 We thank H. Haber for pointing out such a possibility. See more examples in [3].
3 We thank Richard Hill for raising this puzzle, and Ben Grinstein for his physical interpreation.
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the presence of at least two different terms, a physical CP-odd phase would arise. A simple

choice would then be the following:

δLSCPV = εf 4
(

aΣ33 + bΣ2
33

)

+ c.c., (19)

where we take ε, a, b to be real, and a, b are O(1) whereas ε must be loop suppressed, as we

have discussed in the previous section. This results in the following tree-level potential for

η:

Vη = 2εf 4

(

a cos
2η√
5f

+ b cos
4η√
5f

)

+ . . . (20)

This potential is minimized for

〈η〉 =

√
5f

2
arccos

(−a

4b

)

if
∣

∣

∣

a

4b

∣

∣

∣
< 1, (21)

which is of order one if we assume no hierarchy between a and b.

Two final comments are in order before we show how the above CP-odd phase shows

up among SM fields. First, we note that η is odd under T-parity, and therefore a non-zero

δ in the T-parity version of the model would have to be further suppressed, as it implies

spontaneous breaking of T-parity. The second comment is about the possibility of CP

violation from an overall phase, Σ0 → eiαΣ0. This phase is related to an overall U(1) which

commutes with SU(5). Therefore, none of the SU(5) Goldstone bosons transform and we

conclude that the overall U(1) is not relevant as a symmetry transformation. This also

means that there is no dynamical field whose VEV is related to that phase. CP violation

from such phases is usually considered explicit, not spontaneous. Once we include the

related Goldstone boson, η′ ≡ TrΠ, the overall phase becomes related to spontaneous CP

violation. This amounts to adding a U(1) factor, along with its Goldstone boson to the

chiral lagrangian. We will not consider this issue further, since we find it unrelated to the

rest of the discussion.

B. CP Violation in Non-renormalizable Couplings

Having found possible modifications of the Littlest Higgs which allow for spontaneous

CP violation, it is worth asking what would be the effect of CP violation beyond the SM

on the SM sector. Following [13], we will focus on CP violation in dimension-six couplings
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of the SM Higgs to quarks, ignoring other manifestations of CP violation on the SM sector.

Assuming that the low energy effective theory is that of the SM, new CP violation involving

the SM Higgs and quarks would arise predominantly in the dimension-six operators [13]

∆L =
Zu

ij

f 2
Q̄iH̃ujH

†H +
Zd

ij

f 2
Q̄iHdjH

†H +
Zℓ

ij

f 2
L̄iHℓjH

†H,

+
ZH

f 2
(DµH)†Dµ(H H†H) + c.c., (22)

where f is the new physics scale, i.e., the spontaneous symmetry breaking scale of the Little

Higgs non-linear sigma model.4

The lagrangian (22) arises from Eq.(8) once we expand Σ in terms of the SM Higgs field.

In this framework, new CP violation (i.e., CP violation beyond the CKM phase) appears

as relative phases between the new couplings and the SM Yukawas. In the Littlest Higgs,

the expansion of Σ alone in the Yukawa term does not give rise to relative phases between

the coefficients of H and HH†H . Therefore the only way a phase will show up, would be

from two different Yukawa terms differing in both the expansion coefficients and an overall

phase. However, as we show in appendix A, the Littlest Higgs model does not allow for

different expansion coefficients, using any Yukawa term which preserves SU(3)1. It follows

that having a different expansion requires a Yukawa term which does not respect collective

symmetry breaking. A qualifying Yukawa term is the standard one with a Σ33 insertion,

just like the one discussed in the previous section. Such Yukawa term would have to be

suppressed in order to keep the SM Higgs light.

We conclude that although we have shown how to get an O(1) physical phase δ in the

Hypercharge model, the phase appearing in Higgs - SM fermions interactions is suppressed,

of order εδ. This is a consequence of the constrained nature of the SU(5) structure, and is by

no means generic. In order to confirm that, in the next section we present an SU(6)/SO(6)

version of the Littlest Higgs.

4 Note that the last term in Eq.(22) can always be shifted away by a non-linear field redefinition H →

H
(

1 − ZH

f2 H†H
)

. To leading order, such field redefinition mimics replacing Zf with Zf −ZH . Since the

authors in [13] assume ZH = 0, one has to replace Zf by Zf − ZH in their results in order to use them

correctly.
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IV. AN SU(6)/SO(6) VARIANT

We have found that in SU(5)/SO(5) Little Higgs models, spontaneous CP violation re-

quires spoiling collective symmetry breaking, However, this seems to be due to the minimal

nature of the SU(5)/SO(5) Littlest Higgs. Once we consider a larger group, it becomes

easier to find more global generators satisfying the two conditions. We illustrate this with

an SU(6)/SO(6) version of the Littlest Higgs. Note that we do not attempt to give a full

description of this model and its phenomenology. Rather, we give a preliminary analysis

aimed at the basic features, namely, a successful mechanism for suppressing the electroweak

scale, lifting all the Goldstone bosons, and a possible O(1) spontaneous CP violation.

We gauge an [SU(2)1×U(1)]2 subgroup of SU(6), generated by

T i
1 =







σi/2

02×2

02×2






, Y1 = diag(2, 2,−1,−1,−1,−1)/6;

T i
2 =







02×2

02×2

−σa∗/2






, Y2 = diag(1, 1, 1, 1,−2,−2)/6. (23)

This gauging leaves an exact global SU(2)M symmetry which acts on the (3,4) block. A

vacuum which minimizes the effective potential generated by gauge interactions takes the

form

Σ0 =







0 0 1
0 V 01 0 0






, (24)

where V may be parametrized as

V =

(

eiα cos θ i sin θ

i sin θ e−iα cos θ

)

= V1/2V
T
1/2, V1/2 = eiασ3/2eiθσ1/2. (25)

This VEV breaks spontaneously the exact global SU(2)M to SO(2)M . The pseudo-Goldstone

bosons are parametrized using

Σ = e2iΠ/fΣ0, (26)

where

Π =







H φ

H† V1/2EV †

1/2 V HT

φ† H∗V †






, H =

1√
2

(H|K) , E =

(

σ ρ

ρ −σ

)

. (27)
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Note that both H and K carry the quantum numbers of the SM Higgs, whereas σ and

ρ are SM singlets, and φ is a complex triplet. The gauge interactions break collectively

SU(4)1 and SU(4)2, which protect both doublets H and K from quadratically divergent

mass parameters. They also leave SU(2)M unbroken, such that the SM singlets ρ and σ

remain massless at this stage.

Note that a quartic coupling (H†H)2 is not forbidden by collective symmetry breaking,

since the field φ transforms in such a way that Tr
∣

∣φ + i/(2f) HHT + . . .
∣

∣

2
remains invaraint.

We compute the quadratic divergent part of the CW potential to verify this in Appendix C.

In the fermion sector, we introduce the following lagrangian:

−Lf = fχ̄Li

(

λ1Ω
i
1 + λ2Ω

i
2

)

tR + λ′f t̄′Lt′R,

Ωi
1 = Σ̄i4Σ44, Ωi

2 = ǫjkℓǫxyΣ̄
ijΣ̄kxΣ̄ℓy, (28)

where i, j, k, ℓ run through 1,2,3 and x, y from 5 to 6, and χi includes both the left handed

quark doublet and t′L, as usual - see section II. The Yukawa terms and the mass term break

SU(3)1 and SU(4)2 collectively, such that one doublet, H , remains light. The other doublet,

K, becomes heavy since it is only protected by SU(4)1,2 which are broken non-collectively

by the Yukawa terms. The Yukawa terms also break SU(2)M which protects the SM singlet

ρ, thus lifting its mass to O(f). Since there are two different spurions which break this

symmetry, we expect spontaneous CP violation from θ ∼ O(1).

Note, however, that Eq.(28) cannot break the SU(2)M generator diag(0, 0, 1,−1, 0, 0),

since this generator violates the condition from the previous section: it is an SU(4)2 generator

which is also in the span of
{

T 8
SU(3)1

, Y, Y ′
}

. This is also manifest in the one-loop effective

potential, whose quadratically divergent term is given by

VCW(Σ) =
κΛ2

16π2
TrMM †, (29)

where

M = M(Σ) = f (λ1Ω1 + λ2Ω2) . (30)

Here, the precise value of κ depends on unknown physics near the cutoff, and we have

assumed real values for λ1,2 in order to study the case of purely spontaneous CP violation.

Using the explicit form of Σ0 in Eq.(24), this yields

VCW = κf 4 cos2 θ
(

λ2
1 + 4λ2

2 − λ2
1 cos2 θ

)

. (31)
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We can distinguish between two cases:

1. For κ > 0, the minimum lies at θ = ±π/2. In that case there is no CP violation, since

the phase can be removed by the field redefinition

Σ → exp
(

∓T 1
SU(2)M

π/2
)

, (32)

where T 1
SU(2)M

≡ diag (0, σ1/2, 0). The potential becomes

VCW →∓κf 4 sin2 θ
[

λ2
1 + 4λ2

2 ± λ2
1 sin2 θ

]

= ∓κf 4
(

1 − cos2 θ
) [

λ2
1 + 4λ2

2 ± λ2
1

(

1 − cos2 θ
)]

. (33)

Since this field redefinition is not a symmetry, the potential have changed, but using

the same variable (cos2 θ), its coefficients remain real valued, while the minimum is

now at θ = 0, hence the field redefinition has removed the phase successfully from the

lagrangian and it cannot be physical.

2. For κ < 0, the potential is minimized at

cos θ = ±
√

λ2
1 + 4λ2

2

2λ2
1

if |λ1| ≥ 2 |λ2| ,

θ = 0, π if |λ1| ≤ 2 |λ2| . (34)

In the former case, there is a physical CP-odd phase in the vacuum, while in the latter,

the phase can be removed by a field redefinition.

We conclude that if the UV completion is such that κ < 0, the loop effects are sufficient to

generate a generically large CP-odd phase. In any case, a phase may be generated also at

tree level by introducing a term of the same form as Eq.(29) with a negative coefficient.

As expected, the potential does not stabilize α and this will persist for all the terms in the

effective potential, due to the unbroken U(1) symmetry generated by diag(0, 0, 1,−1, 0, 0).

Stabilizing α can be done easily, by introducing a small non-collective breaking term, such

as

LX = εf 4Σ̄33Σ44 + c.c.. (35)

Similar to the hypercharge model, we will have to take ε <∼ 1/(4π)2, which fixes the mass

of σ to be around or below the Higgs mass. The light singlet σ could alter the Higgs phe-
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FIG. 2. Contours of the branching ratio BR(h → σσ) in the mσ − mH plane, for f = 1.2 TeV (left) and

f = 2.4 TeV (right). Again, the dominant mode in this mass range is still bb̄, but the new mode σσ becomes

significant throughout the parameter space.

nomenology, by playing a role which is similar to the role of the singlet η in the hypercharge

model, although the branching ratio for h → σσ at low Higgs mass is slightly lower than

the corresponding branching ratio in the hypercharge model (see Fig. 2).

Unlike the hypercharge model, here an O(1) phase would show up in the dimension-six

couplings. Expanding Eq.(28) in terms of H yields

√
2e−iα cos θ(2i − sin θ)

[

1 +

(

1

3

2i + sin θ

2i − sin θ

)

H†H

]

Q3LH̃tR. (36)

Note that only θ is manifested in the SM sector as a relative phase in the Z couplings, and

moreover, the resulting phase in the low energy lagrangian is not suppressed by the small

parameter ε. We conclude that the SU(6)/SO(6) model admits spontaneous CP violation

from phases in the VEV. Unlike in the SU(5)/SO(5) hypercharge model, the resulting phase

between H̃ and H̃H†H can be O(1).

V. CONCLUSIONS AND FURTHER IMPLICATIONS

In this work we have discussed the tension between lifting Goldstone bosons and collective

symmetry breaking. We showed that such tension is present in the SU(2)×SU(2)×U(1)

model. This model has a Goldstone mode which acquires mass only via terms that spoil
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collective symmetry breaking. Such terms must be suppressed in order to keep the SM Higgs

boson light, implying that the related pseudo-Goldstone bosons must be light too. This may

lead to interesting collider phenomenology, such as non-standard Higgs decays.

Once collective symmetry breaking is spoiled, even by a small parameter, CP invariance

may be broken spontaneously, inducing a large CP-odd phase. However, due to the minimal

nature of the SU(5) structure, the phase which appears in interactions among SM fields is

suppressed. We have shown that this difficulty is lifted in an SU(6)/SO(6) model, where

an O(1) phase may give rise to observable effects in non-renormalizabe couplings of the SM

Higgs to quarks.

The O(1) spontaneous CP violating phase in Eq.(36) would contribute to electric dipole

moments (EDMs) and will be detectable in the next-generation of electric dipole moments

experiments [13].

At this level of discussion, we did not suggest experimental ways to distinguish between

spontaneous and explicit CP violation. In the case of continuous symmetry breaking, there

are Goldstone bosons associated with the continuous set of vacua. Since CP is a Z2, its

spontaneous breaking implies the existence of two equivalent vacua. 5 Indeed, it is evident

from Eq.(34) that there are two values for θ which lead to the same phase in Eq.(36).

The doubling of vacua might imply the existence of domain walls in the universe, once

the temperature had dropped below the breaking scale f . This poses a problem for the

cosmology of the model, which can be avoided if the reheating temperature after inflation is

lower than f , or if there is additional explicit CP violation - which would tilt the potential,

making one of the vacua the true vacuum.

A related issue is whether the phase from spontaneous CP violation can contribute to

successful electroweak baryogenesis. This depends on other features of the model, such

as the scale f and the sign and size of higher dimension terms in the effective potential.

Note that unlike Nelson-Barr models which are renormalizable, in Little Higgs models the

proximity of the UV completion does not permit predictive statements regarding this issue.

The investigation of the above issues, as well as a detailed analysis of collider phenomenology,

is left for future work.

5 The two vacua cease to be equivalent once explicit CP violation is added. In our case, this is introduced

by the usual Kobayashi-Maskawa phase.
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Appendix A: Expansion Coefficients of Ω in Littlest Higgs and SU(3)1

Here we will show that any two Yukawa terms which are invariant under SU(3)1 have the

same expansion coefficients for H† vs. H†HH† (up to an overall constant). The expression

for Ωi is given by

ΩI = δi3

[

a0 +
a1

f
η +

a2

f 2
η2 +

a3

f 2
H†H +

a4

f 2
Tr(φ†φ) + . . .

]

+δiα

[

b1

f
H† +

b2

f 2
ηH† +

b3

f 2
H†ω +

b4

f 2
hT φ† +

b5

f 3
(H†H)H† + . . .

]α

, (A1)

where i = 1, 2, 3 and α = 1, 2. Now we will show that the coefficient b1 and b5 are completely

determined by a0. Consider an SU(3)1 transformation generated by

Λ =







0 λ 0

λ† 0 0

0 0 0






(A2)

The Goldstone bosons transform nonlinearly under Λ. Let us define

δΠ = δΠ(0) + δΠ(1) + δΠ(2) + . . . , (A3)

where

δΠ(0) =
f

2

(

Λ + Σ0Λ
TΣ0

)

,

δΠ(1) =
i

2

(

ΛΠ − ΠΛ + ΠΣoΛ
T Σ0 − Σ0Λ

TΣ0Π
)

,

δΠ(2) =
1

6f

(

−Π2Λ + 2ΠΛΠ − Λπ2 − Π2Σ0Λ
T Σ0 + 2ΠΣ0Λ

T Σ0Π − Σ0Λ
T Σ0Π

2
)

. (A4)

In terms of the component fields we have

δH =
1√
2
fλ +

i√
2

(

−ωλ + φλ† +
5√
20

ηλ

)

+
1

6
√

2f

[

(H†λ + λ†H)H − 2(H†H)λ
]

+ . . . ,
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δφ =
i

2
√

2

(

λHT + HλT
)

+ . . . , δη = −i
√

10

4

(

H†λ − λ†H
)

+ . . . ,

δω =
i

2
√

2

(

λH† − Hλ†
)

− i

4
√

2

(

H†λ − λ†H
)

+ . . . (A5)

Applying SU(3) transformation to Ω yields

δΩi = −iδiα

[

a0 +
a1

f
η +

a2

f 2
η2 +

a3

f 2
H†H +

a4

f 2
Tr(φ†φ)

]

λ†α

−iδi3

[

b1

f
H† +

b2

f 2
ηH† +

b3

f 2
H†ω +

b4

f 2
HT φ† +

b5

f 3
(H†H)H†

]

λ (A6)

This must be the same as applying Eq.(A5) to Eq.(A1)

δOi = δiα b1√
2
λ†α +

1

f

{

δi3

[

−a1i
√

10

4

(

H†λ − λ†H
)

+
a3√
2

(

H†λ + λ†H
)

]

+ δiα

[

−i
b1√
2
(−λ†ω +

5√
20

ηλ† + λT φ†) +
b2√
2
ηλ† +

b3√
2
λ†ω +

b4√
2
λT φ†

]α}

+
1

f 2
δiα

{

b1

6
√

2

[

(H†λ + λ†H)H† − 2(H†H)λ†
]

− i
b2

√
10

4

(

H†λ − λ†H
)

H†

+ i
b3

4
√

2
H†
(

2λH† − 2Hλ† − H†λ + λ†H
)

− i
b4

2
√

2
HT

(

λ∗H† + H∗λ†
)

+
b5√
2

[

(H†H)λ† + (λ†H + H†λ)H†
]

}α

. (A7)

Matching the coefficients in Eq.(A6) and Eq.(A7), we get

b1 = −a0, b5 =
i2
√

2

3
a0. (A8)

Thus any two Yukawa operators Ω1 and Ω2 will have the same ratio of the coefficients of H†

and H†HH†.

Appendix B: Tree-level Decay Rate for h → ηη

The kinetic term for the Σ field includes the interaction

1

f 2

[

aη∂µη
(

H†∂µH + ∂µH
†H
)

− b (∂µη)2 H†H
]

→ v

f 2

[

aη∂µη∂µh − b(∂µη)2h
]

, (B1)

where v is the Higgs vev. The explicit breaking term, e.g. Eq.(13), includes the interaction

cM2
η

f 2
ηηH†H →

cvM2
η

f 2
. (B2)
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The decay amplitude due to these two terms is

iM(h → ηη) = i
v

f 2

[

ap2 + 2b(q1 · q2) + cM2
η

]

, (B3)

where p is the momentum of the incoming h and qi are momenta of the outgoing η’s. In the

Higgs rest frame, the amplitude reduces to

iM(h → ηη) = i
v

f 2
M2

H

[

a + b +
M2

η

M2
H

(c − 2b)

]

. (B4)

Thus the rate for h → ηη is

Γ(h → ηη) =
1

32π

√

1 − 4M2
η /M2

H

MH

M4
H

f 4
v2

[

a + b +
M2

η

M2
H

(c − 2b)

]2

. (B5)

We include the tree-level decay rate for h → bb̄ for completeness. The amplitude is

iM(h → bb̄) = 3
m2

b

v2
Tr
(

/p1
+ mb

)(

/p2
− mb

)

= 3
m2

b

v2
M2

H

(

1 − 4m2
b

M2
H

)

. (B6)

Thus the decay rate is

Γ(h → bb̄) =
1

16π

6m2
b

v2
MH

(

1 − 8m2
b

M2
H

)3/2

. (B7)

In the hypercharge model a = b = 5/12 and c = 25
√

2/48. For the SU(6)/SO(6) model

with α = θ = 0, we get a = b = 1/3 and c = 17/24.

Appendix C: 1-loop Effective Potential in SU(6)/SO(6) Model

Here we give the one-loop effective potential in the case θ = α = 0 and retain only

terms relevant for the quartic potential of the Higgs doublet. The contributions from gauge

interactions are

Vgauge = a(g2
1 + g′2

1 )f 2 Tr

∣

∣

∣

∣

φ +
i

2f

(

HHT + KKT
)

∣

∣

∣

∣

2

+a(g2
2 + g′2

2 )f 2 Tr

∣

∣

∣

∣

φ − i

2f

(

HHT + KKT
)

∣

∣

∣

∣

2

+ . . . , (C1)

where a is an order one constant whose precise value depends on the UV completion. The

contributions form the top quark loop are

Vtop = −κf 4
[

λ2
1|Ω1|2 + λ2

2|Ω2|2 + 2λ1λ2Re(Ω†
1Ω2)

]

,
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|Ω1|2 =
2

f 2

(

2ρ2 + K†K
)

− 2i

f 3

(

ρH†K − ρK†H + KT φ†K − K†φK∗
)

+ O
(

1

f 4

)

, (C2)

|Ω2|2 =
8

f 2

(

2Trφφ† + 2ρ2 + K†K
)

+
8i

f 3

(

ρH†K − ρK†H − HTφ†H + H†φH∗
)

+ O
(

1

f 4

)

, (C3)

Re(Ω†
1Ω2) = O

(

1

f 5

)

, (C4)

where κ is the order one constant depends on the UV completion.
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