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A new approach to building models of generalized parton distributions (GPDs) is discussed that
is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The
latter was not used before, because reconstructing GPDs from the forward limit one should start
in this case with a very singular function f(β)/β rather than with the usual parton density f(β).
This results in a non-integrable singularity at β = 0 exaggerated by the fact that f(β)’s, on their
own, have a singular β−a Regge behavior for small β. It is shown that the singularity is regulated
within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through
a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated
that using proper softening of the quark-hadron vertices in the regions of large parton virtualities
results in model GPDs H(x, ξ) that are finite and continuous at the “border point” x = ξ. Using
a simple input forward distribution, we illustrate implementation of the new approach for explicit
construction of model GPDs. As a further development, a more general method of regulating the
β = 0 singularities is proposed that is based on the separation of the initial single DD f(β, α) into the
“plus” part [f(β, α)]+ and the D-term. It is demonstrated that the “DD+D” separation method
allows to (re)derive GPD sum rules that relate the difference between the forward distribution
f(x) = H(x, 0) and the border function H(x, x) with the D-term function D(α).

PACS numbers: 11.10.-z,12.38.-t,13.60.Fz

I. INTRODUCTION

The ongoing and future experimental studies of Gen-
eralized Parton Distributions (GPDs) [1–4] require theo-
retical models for GPDs which satisfy several nontrivial
requirements, such as polynomiality [5], positivity [6–8]
hermiticity [1], time reversal invariance [5], etc., following
from the most general principles of quantum field the-
ory. In particular, the polynomiality requirement, which
states that the xn moment of a GPD H(x, ξ; t) is a poly-
nomial in ξ of the order not higher than n+ 1, is a con-
sequence of the Lorentz invariance. The polynomiality
condition is automatically satisfied when GPDs are con-
structed from Double Distributions (DDs) [1, 3, 8, 9],
(see also [10]), thus the problem of constructing a model
for a GPD converts into a problem of building a model
for the relevant DD F (β, α; t).

Since a DD F (β, α; t) has hybrid properties: it behaves
like a usual parton distribution function (PDF) with re-
spect to β, as a meson distribution amplitude (DA) with
respect to α, and as a form factor with respect to the
invariant momentum transfer t, it was proposed [8, 11]
(in the simplified formal t = 0 limit) to build a model
DD F (β, α) as a product of the usual PDF f(β) and
a profile function h(β, α) that has an α-shape of a me-
son DA. This construction allows one to get an intuitive
feeling about the shape of GPDs and their change with
the change of the skewness parameter ξ. It was noticed
[12], however, that in the case of isosinglet GPDs, such
a Factorized DD Ansatz (FDDA) does not produce the
highest, (n+1)st power of ξ in the xn moment of H(x, ξ).
To cure this problem, a “two-DD” parameterization was
proposed [12], with the second DD G(β, α) capable of

generating, among others, the required ξn+1 power. It
was also proposed [12] to use a “DD plus D” parameter-
ization in which the second DD G(β, α) is reduced to a
function D(α) of one variable, the D-term , that is solely
responsible for the ξn+1 contribution. The importance of
the D-term and its physical interpretation was studied in
further works (see Ref. [13] and references therein).

Later, it was found out that it is still possible to write a
“single-DD” parameterization [14] that incorporates just
one function, but produces all the required powers up to
ξn+1. This representation also has a remarkable property
that it allows, in principle, to invert the GPD/DD rela-
tion, i.e., to obtain DD if GPD is known. So far, however,
the single-DD representation was not used for building
models for GPDs using the factorized DD Ansatz. The
reason is that one should use much more singular func-
tion f(β)/β rather than just the usual PDF f(β) for the
GPD reconstruction from the forward limit. The combi-
nation f(β)/β, being an even function in the singlet case,
has a non-integrable singularity at β = 0, even if f(β) is
finite at β = 0. Furthermore, the fact that PDFs f(β)
have a singular β−a Regge behavior makes the problem
even worse.

In an independent development [15], an attempt was
made to implant the Regge behavior into a GPD model
constructed in the spirit of the covariant parton model
[16], with the hadron-parton transition amplitude writ-
ten in the dispersion relation representation capable of
generating the desired sa Regge behavior through an ap-
propriately chosen spectral density. To handle a > 0, the
subtracted dispersion relation was used. The outcome
was the claim [15] that the GPDs H(x, ξ) in this model
have a singular (x − ξ)−a behavior in the vicinity of the
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“border” point x = ξ, which, if true, would ruin the ap-
plicability of the perturbative QCD formalism employing
GPDs, since the latter works only when the GPDs are fi-
nite and continuous across the border point x = ξ.

Our starting goal was to examine the model of Ref. [15]
and to pinpoint the physical assumptions that resulted
in the prediction of the singular (x − ξ)−a behavior (for
an earlier analysis, see Ref. [17]). As our analysis shows,
the singularity follows from the use of the point-like ap-
proximation for the hadron-parton vertices. For bound
states, however, one expects that the hadron wave func-
tion would generate an additional power-like (or even ex-
ponential) suppression in the regions where the parton
virtuality k2 is large. We found, that if such a suppression
is properly included in the model, the resulting GPDs are
finite and continuous for x = ξ.

In our study, we also observed that the expression for
GPDs derived from the model of Ref. [15] corresponds to
a single-DD representation. Moreover, it has the struc-
ture of a factorized DD Ansatz, but with the singularity
at β = 0 regularized by the subtraction made in the
dispersion relation for the quark-hadron scattering am-
plitude. Thus, the model of Ref. [15] (corrected for an
appropriate softening of the hadron-parton vertices) gives
a framework for building GPD models within the single-
DD scheme. Using a simple, but rather realistic model
for the input forward distribution (i.e., usual PDF), we
illustrate, step by step, how to use this framework for the
construction of GPDs.

In particular, we found that the model produces a
D-term contribution, despite the fact that it uses only
the forward distribution as an input. The formal rea-
son is that the subtraction introduced in the dispersion
relation differs from the subtraction that converts the
original DD f(β, α) into a (mathematical) “plus” distri-
bution [f(β, α)]+, which, by definition, cannot generate
a D-term. This observation raises the questions of a gen-
eral nature about the separation of the D-term from the
initial DD f(β, α) of the single-DD formalism.

We found that the separation of f(β, α) into the “plus”
part [f(β, α)]+ and the D-term can be used to rederive
the sum rule [18–22] related to the dispersion relation
for the real part of the DVCS amplitude [18–22], and we
also gave the derivation of another sum rule [19] proposed
as the ξ → 0 limit of that generic sum rule, and which
relates the difference between the forward distribution
f(x) = H(x, 0) and the border function H(x, x) with the
D-term function D(α).

The paper is organized as follows. To make it self-
contained, we start, in Sect. II, with a short review
of the basic facts about DDs and GPDs. In Sect. III,
we describe the model [15] with implanted Regge behav-
ior, and give our derivation of expressions for GPDs and
DDs that follow from this model. We stress the neces-
sity of a profile function that eliminates the singularities
for x = ξ and present explicit results for models with
two simplest non-flat profiles. In Sect. IV, we perform
a model-independent study of GPD sum rules, using the

FIG. 1. Structure of the handbag diagram for deeply virtual
Compton scattering.

procedure of separating the initial DD into its “plus”
part and the D-term. We emphasize that H(x, 0)/x and
H(x, x)/x, due to their singular nature, should be treated
as (mathematical) distributions rather than functions.
Finally, we summarize the paper.

II. PRELIMINARIES

A. Double distributions

Generalized parton distributions (GPDs) [1–4] natu-
rally appear in the perturbative QCD description of the
deeply virtual Compton scattering (DVCS) [23],[3] (for
reviews see [5, 13, 24–27]), the process in which a highly
virtual photon with momentum q, upon scattering on
a hadron converts into a real photon with momentum
q′ = q + r. Basic features of GPD construction, in fact,
are not specific to QCD, and may be illustrated on exam-
ples of simpler theories [28]. In a toy scalar model (scalar
quarks ψ interacting with a scalar photon φ through ψψφ
vertex), the lowest-order (handbag) diagram (see Fig.1)
may be written, in the coordinate representation, as

C(q, P, r) =

∫

D(z)e−i(qz)/2−i(q′z)/2

×〈P − r/2|ψ(z/2)ψ(−z/2)|P + r/2〉 d4z , (1)

where z is the separation between the “photon” vertices,
and P = (p+ p′)/2 is the average of the initial p and the
final p′ momenta of the struck hadron, and D(z) is the
quark propagator.

The matrix element may depend on the coordinate
difference z through invariants (Pz), (rz) and z2 only.
For large Q2 = −q2, the higher terms of the z2 expan-
sion have 1/Q2 suppression, thus the leading power term
is generated from the matrix element taken at z2 = 0.
The extraction of the z2 = 0 part of the matrix element
may be performed in the standard way: through Taylor
expansion in z followed by taking only the symmetric-
traceless part (denoted by { })

ψ(0){
↔

∂µ1
. . .

↔

∂ µn
}ψ(0)
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of the resulting local operators. For a scalar target, one
may write

〈P + r/2|ψ(0){
↔

∂ µ1
. . .

↔

∂ µn
}ψ(0)|P − r/2〉

=
∞
∑

n=0

[n−1
∑

l=0

Anl{Pµ1
. . . Pµn−l

rµn−l+1
. . . rµn

}

+Ann{rµ1
. . . rµn

}

]

. (2)

In the momentum representation, the derivative
↔

∂ µ con-
verts into the average k̄µ = (kµ + k′µ)/2 of the initial k
and final k′ quark momenta. After integration over k,
(k̄)n should produce the P and r factors in the r.h.s. of
the equation above. In this sense, one may treat (k̄)n

as (βP +αr/2)n and define the double distribution (DD)
[1, 3, 8, 9]

n!

(n− l)! l! 2l

∫

Ω

F (β, α)βn−lαl dβ dα = Anl (3)

as a function whose βn−lαl moments are proportional to
the coefficients Anl. It can be shown [1, 3, 11] that the
support region Ω is given by the rhombus |α| + |β| ≤ 1.
These definitions result in the “DD parameterization”

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉

=

∫

Ω

F (β, α) e−iβ(Pz)−iα(rz)/2 dβ dα+ O(z2) . (4)

of the matrix element.

B. Generalized parton distributions

Substituting the DD parameterization of the matrix
element into the expression for the Compton amplitude,
one obtains

C(q, P, r) =

∫

Ω

F (β, α)D

[

q + βP +
1 + α

2
r

]

dβ dα ,

(5)

whereD[l] is the quark propagator in the momentum rep-
resentation. Thus, the leading-twist term corresponds to
a parton picture in which the initial quark carries mo-
mentum βP + (1 + α)r/2. Neglecting P 2, (Pr) and r2,
we get

(q+ βP + (1 +α)r/2)2 = −Q2 + 2β(Pq′) + (1 +α)(rq′) ,

i.e., β and α appear in the propagator in the combina-
tion β(Pq′) + α(rq′)/2 only. The latter may be written
as x(Pq′), with x = β+ξα, where ξ = (rq′)/2(Pq′). This
redefinition leads to the parton picture in which the ini-
tial quark carries momentum (x + ξ)P . Introducing the
generalized parton distribution (GPD) [1, 2, 9]

FIG. 2. Parton picture in terms of DDs and in terms of GPDs.

H(x, ξ) =

∫

Ω

F (β, α) δ(x − β − ξα) dβ dα , (6)

one can write the handbag contribution as

T (q, P, r) =

∫ 1

−1

H(x, ξ)D
(

q + (x + ξ)P
)

dx . (7)

One may try to define GPDs directly:

〈P + r/2|ψ(−z/2)ψ(z/2)|P − r/2〉

=

∫ 1

−1

e−ix(Pz)H(x, ξ) dx + O(z2) . (8)

However, an immediate question is what is the skewness
ξ in this definition? It cannot be treated as the ratio
of (rz)/2 and (Pz), since the ratio (rz)/2(Pz) cannot
be the same for all points z. Hence, it is impossible to
straightforwardly use such a definition in the expression
(1) involving a 4-dimensional integration over z. But,
if one uses the DD parametrization and integrates over
z, then the scalar products (Pz) and (rz) convert into
the scalar products (Pq′) and (rq′), respectively, since
all other invariants, P 2, r2, (Pr) are neglected when they
appear in the ratios with (Pq′), (rq′) or Q2 [29]. In this
sense, only the q′ part of z is visible in the final result,
and one may define GPDs by the formula (8) in which z
is substituted by a light-like vector n proportional to q′,
say, by nµ = q′µ/2(Pq′).

Still, the appearance of process-dependent quantities
like (rq′) and (Pq′) in the definition of GPDs confronts
the basic idea of the factorization approach that the par-
ton distributions are process-independent functions. The
standard “escape” is that (rq′)/(Pq′) in the GPD defi-
nitions is substituted by an apparently “process-neutral”
ratio r+/P+, supplied by information that P basically
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defines the “plus direction” and that some vector n de-
fines the “minus direction” (for DVCS, n ∼ q′). But this
procedure creates a wrong impression that the definition
of GPDs requires a reference to a particular frame. As
shown above, one can define GPDs H(x, ξ) through for-
mulas (4), (6), which do not refer to any particular frame
or process, and ξ is just some parameter. Of course, for
each particular process, ξ should be adjusted to the kine-
matics of the process, e.g., ξ = (rq′)/2(Pq′) for DVCS.
Also, the parton interpretation of GPDs has the most
natural form in the frame, where P for a massless hadron
(and t = 0) defines the plus direction.

C. D-term

1. Scalar quarks

Parameterizing the matrix element (2), one may wish
to separate the Ann terms that are accompanied by ten-
sors built from the momentum transfer vector r only
(and, thus, invisible in the forward r = 0 limit), and
introduce the D-term [12]

∫ 1

−1

D(α) (α/2)n dα = Ann (9)

as a function whose (α/2)n moments give Ann. Within
the DD-parameterization, the separation of the D-term
can be made by simply using e−iβ(Pz) = [e−iβ(Pz)−1]+1.
The D-term is then given by

D(α) =

∫ 1−|α|

−1+|α|

F (β, α) dβ , (10)

and the DD-parameterization converts into a
“DD plus D” parameterization

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉

=

∫

Ω

[F (β, α)]+ e
−iβ(Pz)−iα(rz)/2 dβ dα

+

∫ 1

−1

D(α) e−iα(rz)/2 dα+ O(z2) , (11)

where

[F (β, α)]+ = F (β, α) − δ(β)

∫ 1−|α|

−1+|α|

F (γ, α) dγ . (12)

is the DD with subtracted D-term. Mathematically,
[F (β, α)]+ is a “plus distribution” with respect to β. It
satisfies the condition

∫ 1−|α|

−1+|α|

[F (β, α)]+ dβ = 0 , (13)

guaranteeing that no D-term can be constructed from
[F (β, α)]+.

2. Spin-1/2 quarks: two-DD representation

In the simple model with scalar quarks discussed
above, one may just use the original DD F (β, α) with-
out splitting it into the “plus” part and the D-term. In
models with spin-1/2 quarks, it is more difficult to avoid
an explicit introduction of extra functions producing a
D-term. The basic reason [12] is that the matrix element
of the bilocal operator in that case [30] should have two
parts

〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉|twist−2

= 2Pµf
(

(Pz), (rz), z2
)

+ rµg
(

(Pz), (rz), z2
)

. (14)

This suggests to introduce a parametrization with two
DDs corresponding to f and g functions [12]. For the
matrix element (14) multiplied by zµ – which is exactly
what one obtains doing the leading-twist factorization for
the Compton amplitude [31] – this gives

zµ〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉

=

∫

Ω

e−iβ(Pz)−iα(rz)/2

[

2(Pz)F (β, α)

+ (rz)G(β, α)

]

dβ dα + O(z2). (15)

The separation into F - and G-parts in this case is not
unique: expanding the exponential in powers of (Pz)
and (rz), one may obtain the same (Pz)m(rz)l term both
from the F -type and G-type parts. This leads to possi-
bility of “gauge transformations” [32]: one can change

F (β, α) → F (β, α) + ∂χ(β, α)/∂α , (16)

G(β, α) → G(β, α) − ∂χ(β, α)/∂β , (17)

using a gauge function χ(β, α) that is odd in α. Still, the
terms (Pz)0(rz)l cannot be produced from the F -type
contribution. The maximum of what can be done is to
absorb all m 6= 0 contributions into the F -type term.
As a result, Eq. (15) is converted into a “DD plus D”
parameterization [12] in which the term in the square
brackets is substituted by the

2(Pz)FD(β, α) + (rz)δ(β)D(α) (18)

combination, with D(α) given by the β-integral of
G(β, α) and FD(β, α) related to the original DDs through
the gauge transformation with

χD(β, α) =
1

2

{

∫ β

−β

G(γ, α) dγ −

∫ 1−|α|

−1+|α|

G(γ, α) dγ

}

(19)

(cf. [32, 33]).

3. Spin-1/2 quarks: single-DD representation

In fact, since the Dirac index µ is symmetrized in

the local twist-two operators ψ̄{γµ

↔

∂ µ1
. . .

↔

∂ µn
}ψ with
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the µi indices related to the derivatives, one may ex-
pect that it also produces the factor βPµ + αrµ/2. As
shown by the authors of Ref. [14], this is precisely what
happens. In their construction, not only the expo-
nential produces the z-dependence in the combination
β(Pz)+α(rz)/2, but also the pre-exponential terms come
in the β(Pz) + α(rz)/2 combination, i.e., the result is a
representation in which

2(Pz)F (β, α) + (rz)G(β, α)

= [2β(Pz) + α(rz)]f(β, α) , (20)

that corresponds to F (β, α) = βf(β, α) and
G(β, α) = αf(β, α). Thus, formally, one deals with
just one DD f(β, α). In principle, though, this single
function may be a sum of several components, e.g.,
δ(α)f(β)/β + δ(β)D(α)/α (the result of the pioneering
D-term paper [12] for the pion DD in an effective chiral
model corresponds to f I=0(β, α) = δ(α)/|β| − δ(β)/|α|).

In the two-DD approach, GPDs are introduced
through

H(x, ξ) =

∫

Ω

[

F (β, α) + ξG(β, α)
]

δ(x− β − ξα) dβ dα ,

(21)

which converts into

H(x, ξ) =

∫

Ω

(β + ξα)f(β, α) δ(x − β − ξα) dβ dα

= x

∫

Ω

f(β, α) δ(x − β − ξα) dβ dα (22)

in the “single-DD” formulation. The D-term in the
single-DD case is given by

D(α) = α

∫ 1−|α|

−1+|α|

f(β, α) dβ , (23)

and one may write f(β, α) as a sum

f(β, α) = [f(β, α)]+ + δ(β)
D(α)

α
(24)

of its “plus” part

[f(β, α)]+ = f(β, α) − δ(β)

∫ 1−|α|

−1+|α|

f(γ, α) dγ (25)

and D-term part δ(β)D(α)/α.
Despite the fact that the “plus” part and the D-term

are obtained from the same DD f(β, α), they are inde-
pendent in the sense that the “plus” part does not con-
tribute in Eq. (23), and the D-term contribution drops
from Eq. (25).

4. Getting GPDs from DDs

The forward limit r = 0 corresponds to ξ = 0, and
GPD H(x, ξ) converts into the usual parton distribution

f(x). Using DDs, we may write

f(x) =

∫ 1−|x|

−1+|x|

F (x, α) dα = x

∫ 1−|x|

−1+|x|

f(x, α) dα . (26)

Thus, the forward distributions f(x) are obtained by in-
tegrating DDs over vertical lines β = x in the (β, α)
plane. For nonzero ξ, GPDs are obtained from DDs
through integrating them along the lines β = x − ξα
having 1/ξ slope, i.e. the family of H(x, ξ) functions for
different values of ξ is obtained by “scanning” the same
DD at different angles.

FIG. 3. Support region for double distributions and lines
producing f(x), H(x, ξ) (for x > ξ and x < ξ), H(ξ, ξ) and
H(−ξ, ξ).

For x > ξ > 0, the integration lines lie completely
inside the right half of the rhombus. The line producing
GPD at the “border” point x = ξ starts at its upper
corner, while the lines corresponding to |x| < ξ cross
the line β = 0. Thus, one deals with the “outer” regions
x > ξ and x < −ξ (in this case, the whole line is in the left
half of the rhombus) and the central region −ξ < x < ξ,
when the integration lines in the (β, α) plane lie in both
halves of the rhombus and intersect the β = 0 line.

In GPD variables (x, ξ), the momentum fraction x− ξ
carried by the final quark is positive for the right outer
region, and negative for the central region, i.e., in the lat-
ter case it should be interpreted as an outgoing antiquark
rather than incoming quark [3], i.e. GPD in the central
region describes emission of a quark-antiquark pair with
total plus momentum r+ shared in fractions (1 + x/ξ)/2
and (1 − x/ξ)/2, like in a meson distribution amplitude.

From this physical interpretation, one may expect that
the behavior of a GPD H(x, ξ) in the central region is
unrelated to that in the outer region. But, since the
GPD in both regions is obtained from the same DD, one
may expect, to the contrary, that the set of GPDs for
all “outer” x’s and all ξ’s contains the same information
as the set of GPDs for all central x’s and all ξ’s. This
“holographic” picture (cf. [20, 34]) may be violated by
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terms contributing to GPDs in the central region and
not contributing to GPDs in the outer regions: the terms
with support on the β = 0 line, i.e., those proportional to
δ(β) (and, in principle, its derivatives), in particular, the
D-term. For this reason, the usual approach is to build
separate models for the D-term and for the remaining
part of DD.

5. Factorized DD Ansatz

The reduction formula (26) suggests a model

f(β, α) =
f(β)

β
h(β, α) , (27)

where f(β) is the forward distribution, while h(β, α) de-
termines DD profile in the α direction and satisfies the
normalization condition

∫ 1−|β|

−1+|β|

h(β, α) dα = 1 . (28)

Since the plus component of the momentum transfer r
is shared between the quarks in fractions (1 + α)/2 and
(1 − α)/2, like in a meson distribution amplitude, it was
proposed [8, 11] to model the shape of the profile function
by

hN (β, α) ∼
[(1 − |β|)2 − α2]N

(1 − |β|)2N+1
, (29)

with N being a parameter governing the width of the
profile.

Such a factorized DD Ansatz (FDDA) was originally
[8, 11] applied to an analog of the F (β, α) function of
the two-DD formalism, which corresponds to a model
F (β, α) = f(β)h(β, α) and G(β, α) = 0. Later, it was
corrected by addition of the D-term [12], which formally
corresponds to the “gauge” (19) in which G(β, α) →
GD(β, α) = δ(β)D(α), and F (β, α) → FD(β, α). Note
that if F = βf and G = αf , the model FD(β, α) =
f(β)h(β, α) does not coincide with the model f(β, α) =
f(β)h(β, α)/β, since the gauge function χD(β, α) (see
Eq. (16)) is nontrivial.

Thus, there is a question whether the FDDA should
be applied to FD(β, α) (as it was done so far) or to
the DD f(β, α) of the single-DD formulation. It should
be confessed that no enthusiasm has been observed to
use FDDA in the form of the single-DD formula (27).
This observation has a simple explanation: the function
f(β)/β is not integrable for β = 0, even if f(β) is finite
for β = 0. The reason is that the DVCS amplitude con-
tains singlet GPDs, which are odd functions of β. Hence,
f(β)/β should be an even function, and the principal
value prescription does not work. Moreover, for small β
one would expect that the forward distribution f(β) has
a singular f(β) ∼ 1/βa Regge behavior, which makes the
problem even worse.

III. GPD MODEL WITH IMPLANTED REGGE

BEHAVIOR

A. Formulation

The assumptions used in the factorized DD Ansatz are
based on the experience with calculating DDs for trian-
gle diagrams [28] and form factors in the light-front for-
malism models with power-law dependence of the wave
function on transverse momentum [35] (see also [36]).

The simplest triangle diagram (see Fig.4) in the scalar
model corresponding to Eq. (2) may be used as an exam-
ple of a model for GPD

H(x, ξ) ∼

∫

d4k δ(x− (kn)/(Pn))

(m2
1 − k2

1)(m
2
2 − k2

2)(m
2
3 − (P − k)2)

.

(30)

Though the ξ-dependence is not immediately visible
here, it appears after integration over k through the
(rn)/2(Pn) ratio. The DD F (β, α) generated by this
diagram is just a constant [37], which corresponds to a
flat N = 0 profile h0(β, α) ∼ 1/(1 − β) and f(β) ∼ 1− β
forward distribution.

FIG. 4. Triangle diagram model for GPD.

The calculation [35] of overlap integrals for light-front
wave functions with a power-law behavior ψ(x, k⊥) ∼
1/(k2

⊥)1+κ resulted in expressions equivalent to using
DDs with N = κ profile in Eq. (29) and forward dis-
tributions behaving like (1 − β)2κ+1. The same profile
arises [35] if one differentiates a scalar triangle diagram
κ times with respect to masses (squared) of each active
quark.

The triangle diagrams, however, do not generate the
Regge f(β) ∼ 1/βa behavior for small β. The latter
may be obtained, in particular, by infinite summation of
higher-order t-channel ladder diagrams (see, e.g., [38]). A
simpler way was proposed in Ref. [15], where the specta-
tor propagator was substituted by a parton-hadron scat-
tering amplitude T (P, r, k) (see Fig.5) written in the dis-
persion relation representation. To avoid divergencies
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FIG. 5. Hadron-quark scattering amplitude.

generated by the Regge behavior, the subtracted disper-
sion relation

T (P, r, k) →T ((P − k)2) = T0

+

∫ ∞

0

dσρ(σ)

{

1

σ − (P − k)2
−

1

σ

}

(31)

was used. The spectral function ρ(σ) here should be
adjusted to produce a desired Regge-type behavior with
respect to s = (P − k)2 [39].

In the light-front formalism, the starting contribution
corresponds to a triangle diagram in which the hadron-
quark vertices are substituted by the light-front wave

functions ψ(x, k⊥) that bring in an extra fall-off of the
integrand at large transverse momenta k⊥. The authors
of Ref. [15] intended to reflect this physics in their covari-
ant model. To introduce form factors bringing in a faster
fall-off of the k-integrand with respect to quark virtual-
ities k2

1 and k2
2 , it was proposed to use higher powers of

1/(m2
i − k2

i ) instead of perturbative propagators, which
may be achieved by differentiating the triangle diagram
with respect to m2

i .

The model of Ref. [15] assumes spin-1/2 quarks. It
was argued that the Dirac structure of the hadron-parton
scattering amplitude in this case should be given by /k,
which provides EM gauge invariance of the DVCS ampli-
tude. Summarizing, the model scattering amplitude has
the following structure

/k T ((P − k)2

(m2
1 − k2

1)
N1+1(m2

2 − k2
2)

N2+1
. (32)

To treat the two quarks on equal footing, it makes sense
to take m1 = m2, but we will keep them different for a
while, to separate effects produced by nonzero N1 and
N2.

After /k is contracted with the /n factor from the oper-
ator vertex, one gets (kn), and the model GPD that will
be analyzed below is given by

H(x, ξ) =
1

π2

N1!N2!

(N1 +N2)!

∫

(kn)

(Pn)

d4k δ(x − (kn)/(Pn))

[m2
1 − (k + r)2]N1+1[m2

2 − (k − r)2]N2+1

[

T0 +

∫ ∞

0

dσρ(σ)

{

1

σ − (P − k)2
−

1

σ

}]

.

(33)

The overall factors were introduced here for future convenience. Using the α-representation

N !

(m2 − k2)N+1
=

∫ i∞

0

eα(k2−m2)αN dα ,
1

σ
=

∫ i∞

0

e−α3σ dα3 (34)

for propagators and also for the 1/σ subtraction term gives

x

(N1 +N2)!

∫ ∞

0

dσ ρ(σ)

∫ i∞

0

αN1

1 dα1 α
N2

2 dα2 dα3

{

δ

(

x−
α3 + (α2 − α1)(rn)/2(Pn)

α1 + α2 + α3

)

1

(α1 + α2 + α3)2

−δ

(

x−
(α2 − α1)(rn)/(Pn)

α1 + α2

)

1

(α1 + α2)2

}

e−α3σ−α1m2
1−α2m2

2 (35)

for the terms involved in the dispersion integral. The second delta-function corresponds to the 1/σ subtraction term of
the dispersion representation. It is accompanied by the 1/(α1 +α2)

2 factor because 1/σ does not have k-dependence.
Introducing the skewness variable ξ ≡ (rn)/2(Pn), changing αi ≡ xiλ and integrating over λ we obtain

x

∫ ∞

0

dσ ρ(σ)

∫ 1

0

xN1

1 dx1 x
N2

2 dx2 dx3 δ(1 − x1 − x2 − x3)

(x3σ + x1m2
1 + x2m2

2)
N1+N2+1

{

δ (x− x3 − (x2 − x1)ξ) −
δ (x− (x2 − x1)ξ)

(x1 + x2)2

}

. (36)

Taking equal masses m1 = m2 ≡ m, using x1 + x2 = (1 − x3) and introducing z through x1 = (1 − x3)z results in

x

∫ ∞

0

dσ ρ(σ)

∫ 1

0

dx3 dz
(1 − x3)

N1+N2+1zN1(1 − z)N2

[x3σ + (1 − x3)m2]N1+N2+1

{

δ
(

x− x3 − (x2 − x1)ξ
)

−
δ (x− (x2 − x1)ξ)

(1 − x3)2

}

. (37)
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The T0 subtraction term gives the D-term-type contribution

D0(x/ξ) =
T0

2N1+N2(N1 +N2)

(

x

|ξ|

) (

1 −
x

ξ

)N1
(

1 +
x

ξ

)N2

θ

(∣

∣

∣

∣

x

ξ

∣

∣

∣

∣

< 1

)

(38)

that vanishes outside the central region and, hence, is invisible in the forward limit. In what follows, we will concentrate
on the terms generated by the dispersion integral, but one should remember that the D0 term can always be added
to GPD H(x, ξ), i.e., in all formulas below one should be ready to change H(x, ξ) → H(x, ξ) +D0(x/ξ).

B. Forward case

The case ξ = 0 corresponds to the forward distribution

H(x, ξ = 0) = x

∫ ∞

0

dσ ρ(σ)

∫ 1

0

dx3 dz
(1 − x3)

N1+N2+1zN1(1 − z)N2

[x3σ + (1 − x3)m2]N1+N2+1

{

δ(x− x3) −
δ(x)

(1 − x3)2

}

. (39)

Taking xδ(x) = 0 for x 6= 0 gives

H(x, ξ = 0) =
N1!N2!

(N1 +N2 + 1)!
x (1 − x)N1+N2+1

∫ ∞

0

dσ ρ(σ)

(xσ + (1 − x)m2)N1+N2+1
≡ f(x) . (40)

Formally, we may also write

H(x, ξ = 0)

x
=
f(x)

x
− δ(x)

∫ 1

0

dx3
f(x3)

x3(1 − x3)2
(41)

The second term provides the subtraction regularizing the function f(x)/x at its singular point x = 0.

C. DD description

In the double distribution representation, we have x = β + αξ. So, turning back to Eq. (36) and changing there
1 − x1 − x2 ≡ β, x2 − x1 ≡ α, we obtain that

x1 =
1

2
(1 − β − α) , x2 =

1

2
(1 − β + α) , (42)

which gives for equal masses

x

2N1+N2+1

∫ ∞

0

dσ ρ(σ)

∫ 1

0

dβ

∫ 1−β

−1+β

dα
(1 − β − α)N1 (1 − β + α)N2

(βσ + (1 − β)m2)N1+N2+1

{

δ (x− β − αξ) −
δ (x− αξ)

(1 − β)2

}

. (43)

Thus, a faster decrease of the k-integrand with respect to the quark virtualities k2
1 or k2

2 results in a suppression of
the DD behavior by powers of (1 − β − α) or (1 − β + α) when α approaches the support boundary |α| = 1 − β. For
equal N1 = N2 = N , we obtain

x

22N+1

∫ ∞

0

dσ ρ(σ)

∫ 1

0

dβ

∫ 1−β

−1+β

dα
[(1 − β)2 − α2]N

(βσ + (1 − β)m2)2N+1

{

δ (x− β − αξ) −
δ (x− αξ)

(1 − β)2

}

. (44)

Using Eq.(40), one can substitute the σ-integral through forward distribution to get

H(x, ξ) =
x

22N+1

(2N + 1)!

(N !)2

∫ 1

0

dβ

∫ 1−β

−1+β

dα
[(1 − β)2 − α2]N

(1 − β)2N+1

f(β)

β

{

δ (x− β − αξ) −
δ (x− αξ)

(1 − β)2

}

. (45)

This trick allows one to by-pass the question about the specific form of the spectral density ρ(σ).
It is easy to notice that the factor

hN (β, α) ≡
1

22N+1

(2N + 1)!

(N !)2
[(1 − β)2 − α2]N

(1 − β)2N+1
(46)
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is precisely a normalized profile satisfying

∫ 1−β

−1+β

hN (β, α) dα = 1 . (47)

Since x1 + x2 ≤ 1 for the Feynman parameters x1, x2, we have β ≥ 0 in the expressions above. The β ≤ 0 part of
DD comes from the crossed diagram, in which the dispersion relation is written for T ((P + k)2). For the singlet case,
the full DD f(β, α) should be symmetric with respect to interchange β → −β (and also symmetric under α → −α),
which results in GPD H(x, ξ) that is an odd function of x. For this reason, we will proceed with the β ≥ 0 case,
keeping in mind to antisymmetrize the resulting H(x, ξ) at the very end.

Thus, we can rewrite Eq.(45) as

H(x, ξ)

x
=

∫ 1

0

dβ

∫ 1−β

−1+β

dα
f(β)

β
hN(β, α)

{

δ (x− β − αξ) −
δ (x− αξ)

(1 − β)2

}

. (48)

The first term

H(1)(x, ξ)

x
=

∫ 1

0

dβ

∫ 1−β

−1+β

dα
f(β)

β
hN (β, α) δ (x− β − αξ) (49)

coincides with the factorized DD Ansatz for H(x, ξ)/x in which it is reconstructed from its forward limit f(x)/x. The
relevant double distribution is given by f(β, α) = hN (β, α)f(β)/β. The second term may be rewritten as

H(2)(x, ξ)

x
= −

∫ 1

0

dβ

∫ 1−β

−1+β

dα δ (x− β − αξ) δ(β)

∫ 1−|α|

0

dγ
f(γ, α)

(1 − γ)2
, (50)

and it provides a regularization of the β-integral in Eq.
(45). The total contribution is given by

H(x, ξ)

x
=

∫ 1

0

dβ

∫ 1−β

−1+β

dα δ (x− β − αξ)

×

{

f(β, α) − δ(β)

∫ 1−|α|

0

dγ
f(γ, α)

(1 − γ)2

}

. (51)

Thus, the model of Ref. [15], first, corresponds to the
single-DD representation (22), and, second, it has the
structure of the factorized DD Ansatz (27). Furthermore,
due to the subtraction in the dispersion relation (31), one
deals with the regularized double distribution

f reg(β, α) = f(β, α) − δ(β)

∫ 1−|α|

0

dγ
f(γ, α)

(1 − γ)2
. (52)

Returning back to Eq.(48) and calculating integral over
α, we formally obtain

H(x, ξ) =
x

ξ
θ(x > ξ)

∫ β2

β1

dβ
f(β)

β
h(β, (x− β)/ξ)

+
x

ξ
θ(|x| < ξ)

∫ β2

0

dβ
f(β)

β
h(β, (x− β)/ξ)

−
x

ξ
θ(|x| < ξ)

∫ 1−|x|/ξ

0

dβ
f(β)

β(1 − β)2
h(β, x/ξ) , (53)

where (see Fig. 6)

β1 =
x− ξ

1 − ξ
, β2 =

x+ ξ

1 + ξ
. (54)

FIG. 6. Support region and integration lines producing
H(x, ξ) for x > ξ and x < ξ from a double distribution that
is nonzero for β > 0 only.

One should realize, however, that the second and the
third integrals diverge and should be combined together
to regularize their singularity at β = 0. This may be
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achieved by rewriting the |x| < ξ part in the form

H(x, ξ)||x<ξ =
x

ξ

∫ β2

0

dβ
f(β)

β

[

h(β, (x− β)/ξ) − h(β, x/ξ)
]

+
x

ξ

∫ β2

0

dβ
f(β)

β
h(β, x/ξ)

(

1 −
1

(1 − β)2

)

−
x

ξ

∫ 1−|x|/ξ

β2

dβ
f(β)

β(1 − β)2
h(β, x/ξ) (55)

explicitly showing the compensation of the 1/β factor.

D. Results

1. N = 1 profile

For the model forward distribution

fa(β) = (1 − β)3/βa (56)

and the profile function

h1(β, α) =
3

4

(1 − β)2 − α2

(1 − β)3
, (57)

we obtain, for x > ξ:

H(x, ξ)|x>ξ =
3

4

x

ξ

∫ β2

β1

dβ

βa+1

{

(1 − β)2 −

(

x− β

ξ

)2
}

.

(58)

Calculating H(ξ, ξ), i.e., the GPD at the border point
x = ξ, one gets here the [(1 − β)2 − (1 − β/ξ)2] ∼ β
factor from the profile function, and this factor changes
the strength of singularity for β = 0. As a result, the
integral over β converges as far as a < 1. This outcome
is a consequence of using a profile function that linearly
vanishes at the sides of the support rhombus. In its turn,
the N = 1 profile is generated by the assumed 1/(k2

1k
2
2)

2

dependence of the k-integrand for large parton virtual-
ities. If one takes the N = 0 profile, the factor in the
curly brackets should be substituted by 1/(1 − β)), and
the integral producing H(ξ, ξ) diverges. For small, but
nonzero x − ξ, one obtains the behavior proportional to
1/βa

1 ∼ (x− ξ)−a. This result is similar to that obtained
in Ref. [15]. However, since its authors explicitly declared
that they are going to soften the hadron-quark vertices
by differentiating the diagram over the quark masses, one
may wonder, how did it happen that they obtained a sin-
gular result?

The subtlety is that they took equal quark masses
m1 = m2 = m from the very beginning, and used dif-
ferentiation with respect to this common m2. Here it
should be noted that because

(

d

dm2

)2
1

(m2 − k2
1)(m

2 − k2
2)

=
1

(m2 − k2
1)

3(m2 − k2
2)

+
2

(m2 − k2
1)

2(m2 − k2
2)

2
+

1

(m2 − k2
1)(m

2 − k2
2)

3
, (59)

the first and the third term on the r.h.s. are not softened with respect to one of the virtualities, i.e., one of the
hadron-parton vertices remains pointlike. As we have seen above, imposing the 1/(k2

1)
N1+1(k2

2)
N2+1 dependence on

virtualities one would obtain the (1− β −α)N1(1− β +α)N2/2N1+N2 factor, i.e., every differentiation with respect to
m2

1 gives (1− β−α)/2, while every differentiation with respect to m2
2 gives the (1− β+α)/2 factor, both resulting in

a nontrivial profile in the α-direction. On the other hand, each differentiation with respect to the common m2 gives
the (1−β−α)/2 + (1−β+α)/2 = (1−β) factor that has no dependence on α. This kind of softening only increases
the power of (1 − β), but DD remains flat in the α-direction.

Note, that the use of 1/(k2
1)

N+1(k2
2)

N+1-dependence in the model D0-term contribution (38) results in the
(1 − x2/ξ2)N factor, which gives D0(1) = 0 for N > 0 case. This vanishing of D0(α) at the end-points α = ±1
has the same nature as the vanishing of the DDs at the sides of the support rhombus: both result from a faster than
perturbative decrease of the k-integrand at large quark virtualities.

Turning now to the |x| < ξ region, we use Eq. (55) to represent the relevant term for the N = 1 profile as

H(x, ξ)||x|<ξ =
3

4

x

ξ

[

1

ξ2

∫ β2

0

dβ

βa
(2x− β) +

∫ β2

0

dβ

βa

{

1 −
x2

ξ2(1 − β)2

}

(β − 2) −

∫ 1−|x|/ξ

β2

dβ

βa+1

{

1 −
x2

ξ2(1 − β)2

}

]

.

(60)

Note that as far as |x| is strictly less than ξ, the profile function does not vanish at the singularity point β = 0.
The mechanism of softening singularity to 1/βa strength is now provided by the 1/σ subtraction term of the original
dispersion relation.

To get a model for singlet GPDs, one should take the antisymmetric combination

HS(x, ξ) = H(x, ξ) −H(−x, ξ) . (61)
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FIG. 7. Model singlet GPD HS(x, ξ) with N = 1 DD profile for a = 0.5 and ξ = 0.05, 0.1, 0.15, 0.2, 0.25.

The resulting GPDs are shown in Fig. 2. For positive x, they are peaking at x = ξ. The functions HS(x, ξ) in this
model are continuous at x = ±ξ, but the derivative dHS(x, ξ)/dx is discontinuous at these points.

2. N = 2 Profile

Let us now take the N = 2 profile function

h2(β, α) =
15

16

[(1 − β)2 − α2]2

(1 − β)5
(62)

and the same model forward distribution

fa(β) =
(1 − β)3

βa
. (63)

For x > ξ this gives

H(x, ξ)|x>ξ =
15

16

x

ξ

∫ x2

x1

dβ

βa+1(1 − β)2

[

(1 − β)2 −

(

x− β

ξ

)2
]2

. (64)

Evidently, the N = 2 profile gives a ∼ β2 suppression, and H(ξ, ξ) is finite as far as a < 2.
Again, using Eq. (55), the |x| < ξ term can be represented in the form

H(x, ξ)||x|<ξ =
15

16

x

ξ5

∫ x2

0

dβ

βa
(2x− β)

[

x2 + (x− β)2

(1 − β)2
− 2ξ2

]

+
15

16

x

ξ

∫ x2

0

dβ

βa

[

1 −
x2

ξ2(1 − β)2

]2

(β − 2)

−
15

16

x

ξ

∫ 1−|x|/ξ

x2

dβ

βa+1

[

1 −
x2

ξ2(1 − β)2

]2

(65)

explicitly showing the cancellation of the 1/βa+1 singularity.
The resulting GPDs are shown in Fig. 8. For positive x, they are peaking at points close to x = ξ. In the model

with N = 2 profile, both the functions HS(x, ξ) and their derivatives dHS(x, ξ)/dx are continuous at x = ±ξ.

E. D-term

The δ(β) subtraction term in the regularized DD (extended now onto the whole support rhombus)

f reg(β, α) = f(β, α) − δ(β)

∫ 1−|α|

−1+|α|

dγ
f(γ, α)

(1 − γ)2
(66)
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FIG. 8. Model singlet GPD H(x, ξ) with N = 2 profile for a = 0.5 and ξ = 0.1, 0.3, 0.5, 0.7, 0.9.

softens the singularity of f(β, α) for β = 0, but it does not convert f(β, α) into a “plus distribution” [f(β, α)]+ whose
integral over β vanishes. Thus, f reg(β, α) contains a nonzero D-term contribution

D(α) =α

∫ 1−|α|

−1+|α|

f reg(β, α) dβ = α

∫ 1−|α|

−1+|α|

dβ
f(β)

β
h(β, α)

{

1 −
1

(1 − |β|)2

}

= 2α

∫ 1−|α|

0

dβ f(β) h(β, α)
β − 2

(1 − β)2
.

(67)

Taking the same model forward distribution f(β) = (1 − β)3/βa and N = 1 profile function gives

D{N=1}(α) =
3

2
α

∫ 1−|α|

0

dβ

βa

[

1 −
α2

(1 − β)2

]

(β − 2) . (68)

A similar expression for the D-term is obtained in the N = 2 profile model:

D{N=2}(α) =
15

8
α

∫ 1−|α|

0

dβ

βa

[

1 −
α2

(1 − β)2

]2

(β − 2) . (69)

As one can see in Fig. 9, the two curves are rather close
to each other.

FIG. 9. The D-terms in N = 1 and N = 2 profile models for
a = 0.5.

The comparison of the total GPD H(x, ξ) and its
D-term part is shown in Fig. 10.

The difference between GPD H(x, ξ) and D-term
D(x/ξ) corresponds to the term H+(x, ξ) obtained from

FIG. 10. GPD H(x, ξ) and D-term D(x/ξ) for ξ = 0.5 and
positive x.

the “plus” part [f(β, α)]+ of DD. The shape of the dif-
ference for ξ = 0.5 is shown in Fig. 11. Note that, de-
spite the fact that the forward distribution in this model
is positive, there is a region, where the contribution to
H(x, ξ) coming from [f(β, α)]+ is negative. This is due to
the δ(β) subtraction term contained in [f(β, α)]+. Also
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FIG. 11. Difference between GPD H(x, ξ) and D-term
D(x/ξ) in the case of the N = 1 profile for ξ = 0.5 and
positive x. The same function divided by x is also shown.

shown is the ratio H+(x, ξ)/x. Looking at the figure, one
may suspect that the x-integral of H+(x, ξ)/x vanishes.
In the next section, we show that this, indeed, is the case.

IV. GPD SUM RULES

A. Formulation

TheD-term determines the subtraction constant in the
dispersion relation for the DVCS amplitude [18–22]. In
particular, it was shown [19] that the original expres-
sion for the real part of the DVCS amplitude involving
H(x, ξ), and the dispersion integral involvingH(x, x) dif-
fer by a constant ∆ given by the integral of the D-term
function D(α):

P

∫ 1

−1

H(x, x) −H(x, ξ)

x− ξ
dx = ∆ ≡

∫ 1

−1

D(α)

1 − α
dα . (70)

Here, P denotes the principal value prescription. In
Ref. [19], this relation was derived using polynomiality
properties of GPDs. It was also pointed out there that it
can be obtained by incorporating representation of GPDs
in the two-DD formalism (which is basically again the use
of the polynomiality).

Taking ξ = 0, one formally arrives at the sum rule
∫ 1

−1

H(x, x) −H(x, 0)

x
dx =

∫ 1

−1

D(α)

1 − α
dα . (71)

Since both H(x, 0)/x and H(x, x)/x are even functions
of x, their singularities for x = 0 cannot be regular-
ized by the principle value prescription. Moreover, there
are no indications that singularities of these two func-
tions may cancel each other. On the contrary, as em-
phasized in Ref. [40], there are arguments that the ratio
H(x, x)/H(x, 0) does not tend to 1 for small x.

The solution given in Refs. [20, 34, 41] is based on the
analytic regularization of the x-integral. Namely, it is
assumed that the positive Mellin moments (or conformal
moments, see, e.g., [42])

Φ(j) ≡

∫ 1

−1

xj [H(x, x) −H(x, 0)] dx (72)

can be analytically continued to the point j = −1. The
result of such a procedure is equivalent to analytic reg-
ularization of the x-integral. However, the required an-
alyticity properties of Φ(j) may be violated by singular
or “invisible” terms (cf. [20]) in the integrand of Eq.(72)
(e.g., xδ(x) gives a non-analytic δj,−1 contribution into
Φ(j)). In the model construction described above, sin-
gular terms explicitly appear as a result of subtractions
in the dispersion relation, so our intention is to develop
a less restrictive approach to this problem.

Below, we give a derivation of the sum rule (71 ) based
on separation (25) of the DDs into the “plus” part and
the D-term. No assumptions about smoothness will be
made. In fact, the key element of the derivation is that
H(x, x)/x should be treated as a (mathematical) distri-
bution at the point x = 0 rather than a function. The
same applies to H(x, 0)/x.

B. Ingredients

To begin with, we remind the basic formulas: the ex-
pression

H(x, ξ)

x
=

∫

Ω

f(β, α) δ(x − β − ξα) dβ dα (73)

producing GPDs from DDs and the decomposition of DD

f(β, α) = [f(β, α)]+ + δ(β)
D(α)

α
(74)

into the “plus” part given by

[f(β, α)]+ = f(β, α) − δ(β)

∫ 1−|α|

−1+|α|

f(γ, α) dγ (75)

and the D-term part δ(β)D(α)/α.
Correspondingly, we split GPD into the part coming

from the “plus” part of DD

H+(x, ξ)

x
≡

∫

Ω

f(β, α)

[

δ(x − β − ξα) − δ(x− ξα)

]

dβ dα

(76)

and that generated by the D-term

HD(x, ξ)

x
≡

∫ 1

−1

D(α)

α
δ(x− ξα) dα . (77)

The latter integral gives an explicit expression

HD(x, ξ) = sign(ξ) θ(|x| < |ξ|)D(x/ξ) , (78)

but, as we will see, it is instructive to use the integral
representation as well. Another important relation

HD(x, 0)

x
=δ(x)

∫ 1

−1

D(α)

α
dα (79)
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is obtained by taking ξ = 0.
Note, that if we take x = ξ, Eq. (78) gives

HD(x, x) = sign(x)D(1) . (80)

If D(1) 6= 0, then the integral for ∆ in (70) di-
verges. However, as argued in the previous section,
D(1) = 0 for models with faster-than-perturbative de-
crease of the hadron-parton amplitude at large quark
virtualities. Thus, we assume that D(1) = 0, and fur-
thermore that the integral of D(α)/(1 − α) converges.
Then Eq. (77) gives

HD(x, x)

x
=δ(x)

∫ 1

−1

D(α)

α(1 − α)
dα . (81)

The important point is that if we would use this formula
to write an expression for HD(x, x) itself, we would get
xδ(x) on the r.h.s., which should be treated as zero for
integration with functions finite for x = 0, since the co-
efficient given by the α-integral is also finite. Thus, the
scenario with D(1) = 0 is self-consistent.

Note that both HD(x, 0)/x and HD(x, x)/x are pro-
portional to δ(x), with the coefficients given by integrals
of D(α). This means that, unlike the functions H(x, 0)
and H(x, x), which, for x 6= 0, are insensitive to changes
ofD(α) in the δ(β)D(α)/α term, the (mathematical) dis-
tributions H(x, 0)/x and H(x, x)/x contain information
about such a D-term.

Our next step is to study contributions from different
parts of the GPDs involved in the sum rule (71).

C. “Secondary” sum rule

1. “Plus” part

a. Forward function One can easily see from
Eq. (76) that

∫ 1

−1

H+(x, ξ)

x
dx = 0 (82)

for any ξ, including ξ = 0. Since the integrand is an even
function of x, the vanishing of this integral means that
we also have

∫ 1

0

H+(x, ξ)

x
dx = 0 . (83)

Thus, H+(x, ξ) should be negative in some part of the
central region, and this negative contribution should
exactly compensate the contribution from the regions,
where H+(x, ξ) is positive. In other words, on the (0, 1)
interval, H+(x, ξ)/x has the same property as a “plus
distribution” with respect to x. Note, that this does not
mean that H+(x, ξ)/x necessarily contains singular func-
tions like δ(x). For finite ξ, the function H+(x, ξ)/x is

pretty regular for all x values (see Fig.12). The negative
δ(x) function appears only in the ξ=0 limit, i.e.

H+(x, 0)

x
=
f(x)

x
− δ(x)

∫ 1

−1

f(y)

y
dy ≡

[

f(x)

x

]

+

.

(84)

(Here, it was taken into account that H+(x, 0) coincides
with the forward distribution f(x) for x 6= 0).

FIG. 12. Function H+(x, ξ)/x in the model with the N = 1
profile for ξ = 0.2, 0.3, 0.5 and positive x.

b. Border function For the integral involving the
border function, we get

∫ 1

−1

H+(x, x)

x
dx =

∫ 1

−1

dx

∫

Ω

dβ dα f(β, α)

× [δ (x(1 − α) − β) − δ(x(1 − α))] . (85)

Noting that equation α = 1 is satisfied in one point on
the support region Ω only, namely, in the upper corner
of the rhombus, we may treat δ(x(1−α)) as δ(x)/(1−α)
to get

∫ 1

−1

H+(x, x)

x
dx =

∫ 1

−1

dx

∫

Ω

dβ dα
f(β, α)

1 − α

×

[

δ

(

x−
β

1 − α

)

− δ(x)

]

. (86)

Since |β/(1 − α)| ≤ 1, the first δ-function always works.
As a result, the integrals coming from the two delta-
functions cancel each other, and we have

∫ 1

−1

H+(x, x)

x
dx = 0 , (87)

just like for H+(x, ξ)/x. Unlike H+(x, ξ), however, the
combination H+(x, x)/x explicitly contains the δ(x) sub-
traction term, i.e. it is a genuine “plus distribution” with
respect to x:

H+(x, x)

x
=
H(x, x)

x
− δ(x)

∫ 1

−1

H(y, y)

y
dy

≡

(

H(x, x)

x

)

+

. (88)
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Summarizing, the “plus” parts of both functions en-
tering into the sum rule (71) separately produce vanish-
ing contributions into the x-integral. Furthermore, these
zero contributions are due to the fact that H+(x, 0)/x
and H+(x, x)/x are “plus distributions”, which results
in zero integrals irrespectively of the form of the forward
distribution f(x) and the border function H(x, x).

2. D-part

Let us now turn to the D-parts. First, we have
∫ 1

−1

HD(x, ξ)

x
dx =

∫ 1

−1

D(α)

α
dα (89)

for any fixed ξ, including ξ = 0. This result may be
obtained by integrating over x the δ(x−ξα) factor in the
integral representation (77). For non-vanising ξ, one can
also use Eq. (78) in the x-integral and then change the
integration variable through x = αξ.

For the integral involving the border function, we use
Eq. (81), which gives

∫ 1

−1

HD(x, x)

x
dx=

∫ 1

−1

D(α)

α(1 − α)
dα . (90)

As a result,
∫ 1

−1

HD(x, x)

x
dx−

∫ 1

−1

HD(x, 0)

x
dx=

∫ 1

−1

D(α)

1 − α
dα .

(91)

Combining this outcome with zero contributions from the
“plus” parts, one obtains the sum rule (71).

Thus, our construction confirms the sum rule. But
our derivation shows that the “plus” parts of both terms
simply do not contribute to the sum rule whatever the
shapes of f(x) and H(x, x) are. Only the D-parts con-
tribute, so there is no surprise that the net result can be
expressed in terms of D(α).

An essential point is that both HD(x, 0)/x and
HD(x, x)/x are proportional to the δ(x)-function, with
the coefficients given by integrals of the D-term function
D(α). In this sense, H(x, 0)/x and H(x, x)/x “know”
about the D-term.

A simple consequence is that all xj moments of
HD(x, 0) and HD(x, x) with j ≥ 0 vanish and one cannot
get the D-part of the sum rule (71) by an analytic con-
tinuation of the xj moments of HD(x, 0) and HD(x, x)
to j = −1, i.e., using the procedure of Refs.[20, 34, 41].
In fact, xj moments of HD(x, 0) and HD(x, x) are pro-
portional to the Kronecker delta function δj,−1.

3. Formal derivation and need for renormalization

Since H(x, 0)/x is given by integrating the DD f(β, α)
over α along vertical lines β = x, a subsequent integra-
tion over all x gives DD f(β, α) integrated over the whole

rhombus:

∫ 1

−1

H(x, 0)

x
dx=

∫ 1

−1

dx

∫

Ω

dβ dαf(β, α)δ(x − β)

=

∫

Ω

f(β, α) dβ dα =

∫ 1

−1

D(α)

α
dα .

(92)

On the last step, we used that the β-integral of f(β, α)
formally gives D(α)/α. However, if f(β, α) ∼ 1/β1+a,
being even in β, one needs a regularization for the
β-integral. The “DD+D” separation (73), as we have
seen, provides such a regularization. It works like a renor-
malization: the divergent integral formally giving the D-
term is subtracted from the “bare” DD, and substituted
by a finite “observable” function D(α)/α.

In a similar way, we can treat the second integral:

∫ 1

−1

H(x, x)

x
dx=

∫ 1

−1

dx

∫

Ω

dβ dαf(β, α)δ(x − β − xα)

=

∫

Ω

f(β, α)

1 − α
dβ dα =

∫ 1

−1

D(α)

α(1 − α)
dα .

(93)

Again, the last step requires a subtraction of the infinite
part of the β-integral.

The advantage of using the “DD+D” separation as a
renormalization prescription is that it is applied directly
to the DD. Hence, it is universal, and may be used for
other integrals involving f(β, α).

4. Comparison of the “plus” prescription and analytic
regularization

Another possibility to renormalize the β-integral for
a singular DD is to use the analytic regularization em-
ployed in Refs.[20, 34, 41]. It works as follows. If we
need to integrate a function like λ(x)/xa+1 with λ(x) be-
ing finite and nonzero for x = 0, we subtract from λ(x) as
many terms of its Taylor expansion as needed to remove
the divergence

∫ y

(0)

λ(x)

xa+1
dx =

∫ y

0

dx
λ(x) − λ(0) − xλ′(0) − . . .

xa+1

+ λ(0)

∫ y

(0)

dx

xa+1
+ λ′(0)

∫ y

(0)

dx

xa
+ . . . , (94)

and then treat the compensating integrals of xn/xa+1 as
convergent, substituting them by yn−a/(n− a).

So, let us consider again a DD which is nonzero for
positive β only and has the form

f(β, α) =
λ(β, α)

βa+1
θ(β + |α| ≤ 1) θ(β ≥ 0)
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with a < 1. Then the analytic regularization of its inte-
gral with some reference function Φ(β) is defined by

∫ 1−|α|

(0)

Φ(β)λ(β, α)

βa+1
dβ (95)

=

∫ 1−|α|

0

Φ(β)λ(β, α) − Φ(0)λ(0, α)

βa+1
dβ −

Φ(0)λ(0, α)

a(1 − |α|)a
,

which may be rewritten as

∫ 1−|α|

(0)

Φ(β)
λ(β, α)

βa+1
dβ

=

∫ 1−|α|

0

[Φ(β) − Φ(0)]
λ(β, α)

βa+1
dβ (96)

+ Φ(0)

[

∫ 1−|α|

0

λ(β, α) − λ(0, α)

βa+1
dβ −

λ(0, α)

a(1 − |α|)a

]

.

Now, the first contribution on the r.h.s. is generated by
the “plus” part of the DD, while the second one comes
from a D-term. After adding the β < 0 part of the
DD, the D-term D(α)/α corresponding to the analytic
regularization is given by

D(α)

α
= 2

[

∫ 1−|α|

0

λ(β, α) − λ(0, α)

βa+1
dβ −

λ(0, α)

a(1 − |α|)a

]

.

(97)

Thus, the analytic regularization prescription unambigu-
ously fixes the D term, and in this sense it may be called
the “analytic renormalization”.

In the model considered in the previous section, we also
obtained a concrete result for the D-term. But the spe-
cific D-term contribution we obtained there came only
from the σ-integral part of the dispersion relation for
the hadron-parton scattering amplutude subtracted at
(P − k)2 = 0. As we pointed out, one should be always
ready to add to it the D0 term coming from the T0 con-
stant in the dispersion relation (31). In principle, we had
no reasons to require that T0 = 0. In this sense, the
D-term in that model is not fixed.

On the other hand, the statement, that xj moments
of H(x, ξ) are analytic functions of j, does not explic-
itly mention fixing any subtraction constants: it sounds
like a general principle, and may create an impression
that there are no ambiguities in the subtraction of the
β = 0 singularity. However, the analyticity assumption
was not shown so far to be a consequence of general prin-
ciples of quantum field theory. Moreover, as mentioned
in Ref. [43], it is not satisfied in the nonlocal chiral soliton
model. Still, one may hope that it is valid in QCD.

To see if the T0 = 0 model of the previous section
agrees with the analyticity assumption, we should just
check whether its D-term is different from that obtained
via analytic renormalization. In particular, for the N = 1
model, we have

λ(β, α) =
3

4

[

(1 − β)2 − α2
]

, (98)

FIG. 13. The D-terms in the model with N = 1 profile and
a = 0.5: D(α) was obtained using analytic regularization, and
D(α) was obtained for T0 = 0 in the model of the previous
section.

and, hence,

D(α)

α
=

3

2

[

(1 − |α|)2−a

2 − a
− 2

(1 − |α|)1−a

1 − a
−

1 − α2

a(1 − |α|)a

]

.

(99)

In Fig.13, we compare this result (for a = 0.5) with the
result obtained by single subtraction in the dispersion
relation (31) with T0 = 0.

Our main point is that representing H(x, ξ) as the sum
H+(x, ξ) + HD(x, ξ) one can derive the GPD sum rule
(71) without using the analyticity assumption. But since
our derivation, so to say, works for any D-term, it also
works for the D-term following from the analyticity as-
sumption.

D. Generic sum rule

Finally, let us apply the “DD+D” separation to the
generic relation (70).

1. “Plus” part

Representing

1

x− ξ
=

1

x
+

ξ

(x− ξ)x
(100)

and using Eqs. (83), (87), we have

P

∫ 1

−1

H+(x, x)

x− ξ
dx = P

∫ 1

−1

ξ
dx

x− ξ

∫

Ω

f(β, α) dβ dα

×

[

δ(x(1 − α) − β) − δ(x(1 − α))

]

(101)

= P

∫

Ω

f(β, α) dβ dα

[

ξ

β − ξ(1 − α)
+

1

(1 − α)

]

,
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and

P

∫ 1

−1

H+(x, ξ)

x− ξ
dx = P

∫ 1

−1

ξ
dx

x− ξ

∫

Ω

f(β, α) dβ dα

×

[

δ(x− β − ξα) − δ(x− ξα)

]

(102)

= P

∫

Ω

f(β, α) dβ dα

[

ξ

β − ξ(1 − α)
+

1

(1 − α)

]

.

Thus, seemingly different delta-functions have converted
1/(x−ξ) into identical expressions (cf. Ref. [21], where a
similar result was obtained for the FD part of the two-DD
representation). As a result,

P

∫ 1

−1

H+(x, x)

x− ξ
dx − P

∫ 1

−1

H+(x, ξ)

x− ξ
dx = 0 . (103)

In this case, we deal with the situation when the differ-
ence of two integrals vanishes, but each integral does not
necessarily vanish.

2. “D” part

For the integral involving the border function, we have

P

∫ 1

−1

HD(x, x)

x− ξ
dx = P

∫ 1

−1

HD(x, x)

x

x

x− ξ
dx

= P

∫ 1

−1

dx
x

x− ξ
δ(x)

∫ 1

−1

D(α)

α(1 − α)
dα = 0 . (104)

In simple words, the starting integrand in (104) vanishes
for x 6= 0 since then HD(x, x) = 0, while for x = 0 it
is given by the xδ(x) distribution which produces zero
after integration with a function that is finite for x = 0,
which is the case if ξ 6= 0. Comparing this result with
Eq. (90), we see that the nonzero value given by the latter
cannot be obtained by taking ξ = 0 in the final result of
Eq. (104) above.

The second piece is given by

P

∫ 1

−1

HD(x, ξ)

x− ξ
dx = P

∫ 1

−1

HD(x, ξ)

x

x

x− ξ
dx

= P

∫ 1

−1

xdx

x− ξ

∫ 1

−1

D(α)

α
δ(x− ξα) dα

=

∫ 1

−1

ξα

ξα− ξ

D(α)

α
dα = −

∫ 1

−1

D(α)

1 − α
dα . (105)

Again, the result above may be obtained by simply us-
ing HD(x, ξ) = sign(ξ) θ(|x| < |ξ|)D(x/ξ) and rescaling
x = αξ. Also, though the final result of Eq. (105) does
not depend on ξ, it does not coincide with the result of
the counterpart relation (89).

However, for the difference of the two integrals we ob-
tain

P

∫ 1

−1

HD(x, x)

x− ξ
dx− P

∫ 1

−1

HD(x, ξ)

x− ξ
dx =

∫ 1

−1

D(α)

1 − α
dα ,

(106)

the same result as in Eq. (91). Combining the results for
the “plus” and D-parts gives Eq. (70).

3. Some conclusions

Thus, our calculation confirms the generic GPD sum
rule (70) derived in Refs. [19, 21]. We were also able to
derive the ξ = 0 sum rule (71) suggested in Ref. [19]. It
should be emphasized that the integrals present in the
generic sum rule have a singularity for x = ξ, which
is inside the region of integration, so the integrals may
be taken using the principal value prescription. Since
H(x, 0)/x and H(x, x)/x are even functions of x, the
ξ = 0 sum rule may be written through an integral from
0 to 1, and its 1/x singularity is at the end-point of the
integration region, which means that the P -prescription
cannot regulate it. Just because of this fact alone, the
sum rule (71) cannot be a straightforward consequence
of the generic sum rule (70).

In our derivation, we managed to obtain finite expres-
sions for each term involved. In particular, we established
that though HD(x, x) and HD(x, ξ) contributions to the
generic sum rule (70) are ξ-independent, they do not co-
incide with their counterparts from the secondary sum
rule (71), i.e., the latter cannot be obtained by formally
continuing to ξ = 0 the ξ-independent results for each
term of the generic GPD sum rule.

In our derivation, we did not make an assumption
about analyticity of the Mellin moments of GPDs. We
have obtained GPD sum rules as a consequence of the
polynomiality of GPDs that follows from Lorentz invari-
ance and is encoded in the DD representation. The an-
alyticity is a much stronger restriction. One may try to
find out whether it can be tested experimentally and it
is also worth trying to prove it in QCD.

V. SUMMARY

In this paper, we discussed some basic aspects of build-
ing models for GPDs using the factorized DD Ansatz
(FDDA) within the “single-DD” formulation. The main
difficulty in the implementation of such a construction is
the necessity to deal with projection onto a more singu-
lar function f(β)/β (rather than just onto f(β)) in the
forward limit. This leads to two problems. First, one
encounters non-integrable singularities for β = 0 in the
integrals producing GPDs in the central region |x| < |ξ|.
The difficulty is exaggerated by necessity to consider for-
ward distributions f(β) that have a singular β−a Regge
behavior at small β. Second, if there are no factors sup-
pressing the β ∼ 0 region for the integration line cor-
responding to x = ξ, the combined 1/β1+a singularity
leads to a singular (x − ξ)−a behavior for GPDs in the
outer region x > ξ near the border point x = ξ. Such a
behavior was found in the model of Ref. [15].
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In our analysis, we found that this model gives the
single-DD-type representation for the model GPD, and
thus above reasoning is applicable to it. But we argued,
that a proper softening of the hadron-quark vertices pro-
duces a profile function hN (β, α) that results, for x = ξ,
in the O(βN ) suppression factor securing a finite value
of the GPD H(x, ξ) at the border point.

However, the profile factor has no impact on the com-
bined 1/β1+a singularity on the β = 0 line inside the sup-
port rhombus, which one faces when calculating GPDs
in the |x| < |ξ| region. The advantage of the model of
Ref. [15] is that it implants the Regge behavior through a
subtracted dispersion relation for the hadron-quark scat-
tering amplitude. We found that the subtraction pro-
vides the regularization necessary for the calculation of
GPDs in the central region, and illustrated the behavior
of resulting GPDs in models with N = 1 and N = 2
profiles.

We also observed that this model produces a D-term
contribution, despite the fact that it uses only the for-
ward distribution as an input. This D-term contribution
appears because the subtraction generated by the disper-
sion relation differs from the subtraction that converts
the original DD into a “plus” distribution [f(β, α)]+.
The latter, by definition, cannot generate a D-term. We
have shown that the GPD H+(x, ξ) generated by the
[f(β, α)]+ part of the original DD (i.e., GPD H(x, ξ)
with the D-term contribution D(x/ξ) subtracted) has a
remarkable property that the integral of H+(x, ξ)/x over
positive values 0 ≤ x ≤ 1 vanishes. As a result, H+(x, ξ)
must be negative in some part of the central region, a
feature that is absent in previous FDDA models based
on two-DD formulation.

Within the single-DD formalism, it is very natural to
separate the relevant DD f(β, α) into the “plus” part
[f(β, α)]+ and the D-term. We demonstrated that this
separation can be used to rederive the GPD sum rule
related to the dispersion relation for the real part of
the DVCS amplitude, and we also gave a derivation of
another sum rule proposed as the ξ → 0 limit of that
generic sum rule. Our derivation shows that this “sec-

ondary” sum rule is not a straightforward consequence
of the generic one. In particular, the principal value pre-
scription used in the generic sum rule needs to be substi-
tuted by another prescription, like the “plus” prescrip-
tion. The “plus” prescription, in fact, is automatically
generated by the separation of DDs into the “plus” part
and the D-term. We also demonstrated that the contri-
butions into the two sum rules generated by the same
functions are not in a one-to-one correspondence.

Summarizing, using (intentionally) simplified models,
we developed the basic tools that can be used in build-
ing realistic GPD models based on the factorized DD
Ansatz within the single-DD formalism. Future develop-
ments in this direction should include the extension of
the presented methods onto the cases with a > 1 Regge
behavior, which would require an extra subtraction in
the dispersion relation, and building models for nucleons
and other targets with a non-zero spin.
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Polyakov, A.Schäfer, M.A. Strikman, L.Szymanowski,
A.W.Thomas, B. C. Tiburzi, M. Vanderhaeghen and
C. Weiss for many inspiring discussions and communi-
cations that we had over the years, and which eventually
influenced this work.

This paper is authored by Jefferson Science Asso-
ciates, LLC under U.S. DOE Contract No. DE-AC05-
06OR23177.

[1] D. Mueller, D. Robaschik, B. Geyer, F. M. Dittes, and
J. Horejsi, Fortschr. Phys., 42, 101 (1994), arXiv:hep-
ph/9812448.

[2] X.-D. Ji, Phys. Rev. Lett., 78, 610 (1997), arXiv:hep-
ph/9603249.

[3] A. V. Radyushkin, Phys. Lett., B380, 417 (1996),
arXiv:hep-ph/9604317.

[4] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev.,
D56, 2982 (1997), arXiv:hep-ph/9611433.

[5] X.-D. Ji, J. Phys., G24, 1181 (1998), arXiv:hep-
ph/9807358.

[6] A. D. Martin and M. G. Ryskin, Phys. Rev., D57, 6692
(1998), arXiv:hep-ph/9711371.

[7] B. Pire, J. Soffer, and O. Teryaev, Eur. Phys. J., C8,

103 (1999), arXiv:hep-ph/9804284.
[8] A. V. Radyushkin, Phys. Rev., D59, 014030 (1999),

arXiv:hep-ph/9805342.
[9] A. V. Radyushkin, Phys. Lett., B385, 333 (1996),

arXiv:hep-ph/9605431.
[10] “Dual parameterization” [40, 41, 43–46] is another way

to impose the polynomiality condition onto model GPDs.
[11] A. V. Radyushkin, Phys. Lett., B449, 81 (1999),

arXiv:hep-ph/9810466.
[12] M. V. Polyakov and C. Weiss, Phys. Rev., D60, 114017

(1999), arXiv:hep-ph/9902451.
[13] K. Goeke, M. V. Polyakov, and M. Vanderhaeghen,

Prog. Part. Nucl. Phys., 47, 401 (2001), arXiv:hep-
ph/0106012.



19

[14] A. V. Belitsky, D. Mueller, A. Kirchner, and A. Schafer,
Phys. Rev., D64, 116002 (2001), arXiv:hep-ph/0011314.

[15] A. P. Szczepaniak, J. T. Londergan, and F. J.
Llanes-Estrada, Acta Phys. Polon., B40, 2193 (2009),
arXiv:0707.1239 [hep-ph].

[16] P. V. Landshoff, J. C. Polkinghorne, and R. D. Short,
Nucl. Phys., B28, 225 (1971).

[17] K. Kumericki, D. Mueller, and K. Passek-Kumericki,
(2007), arXiv:0710.5649 [hep-ph].

[18] O. V. Teryaev, (2005), arXiv:hep-ph/0510031.
[19] I. V. Anikin and O. V. Teryaev, Phys. Rev., D76, 056007

(2007), arXiv:0704.2185 [hep-ph].
[20] K. Kumericki, D. Mueller, and K. Passek-Kumericki,

Nucl. Phys., B794, 244 (2008), arXiv:hep-ph/0703179.
[21] M. Diehl and D. Y. Ivanov, Eur. Phys. J., C52, 919

(2007), arXiv:0707.0351 [hep-ph].
[22] O. Teryaev, PoS, DIS2010, 250 (2010).
[23] X.-D. Ji, Phys. Rev., D55, 7114 (1997), arXiv:hep-

ph/9609381.
[24] A. V. Radyushkin, (2000), arXiv:hep-ph/0101225.
[25] M. Diehl, Phys. Rept., 388, 41 (2003), arXiv:hep-

ph/0307382.
[26] A. V. Belitsky and A. V. Radyushkin, Phys. Rept., 418,

1 (2005), arXiv:hep-ph/0504030.
[27] S. Boffi and B. Pasquini, Riv. Nuovo Cim., 30, 387

(2007), arXiv:0711.2625 [hep-ph].
[28] A. V. Radyushkin, Phys. Rev., D58, 114008 (1998),

arXiv:hep-ph/9803316.
[29] DDs and GPDs depend on the momentum transfer

t = r2, but this dependence is not important for our pur-
poses. So, in what follows, we consider the formal t = 0
limit.

[30] Here and below we consider, for simplicity, spin-0
hadrons.

[31] I. I. Balitsky and V. M. Braun, Nucl. Phys., B311, 541
(1989).

[32] O. V. Teryaev, Phys. Lett., B510, 125 (2001), arXiv:hep-
ph/0102303.

[33] B. C. Tiburzi, Phys. Rev., D70, 057504 (2004),
arXiv:hep-ph/0405211.

[34] K. Kumericki, D. Mueller, and K. Passek-Kumericki,
Eur. Phys. J., C58, 193 (2008), arXiv:0805.0152 [hep-
ph].

[35] A. Mukherjee, I. V. Musatov, H. C. Pauli, and A. V.
Radyushkin, Phys. Rev., D67, 073014 (2003), arXiv:hep-
ph/0205315.

[36] D. S. Hwang and D. Mueller, Phys. Lett., B660, 350
(2008), arXiv:0710.1567 [hep-ph].

[37] A. V. Radyushkin, Phys. Rev., D56, 5524 (1997),
arXiv:hep-ph/9704207.

[38] A. Efremov and A. Radyushkin, Mod. Phys. Lett., A24,
2803 (2009), arXiv:0911.1195 [hep-ph].

[39] To get the sa Regge behavior with 1 < a < 2, one should
use a doubly subtracted dispersion relation, but in this
paper we will follow the original construction of Ref. [15],
leaving the generalization for a > 1 to a future work.

[40] M. V. Polyakov, Phys. Lett., B659, 542 (2008),
arXiv:0707.2509 [hep-ph].

[41] M. V. Polyakov and K. M. Semenov-Tian-Shansky, Eur.
Phys. J., A40, 181 (2009), arXiv:0811.2901 [hep-ph].

[42] K. Kumericki and D. Mueller, Nucl. Phys., B841, 1
(2010), arXiv:0904.0458 [hep-ph].

[43] K. M. Semenov-Tian-Shansky, Eur. Phys. J., A36, 303
(2008), arXiv:0803.2218 [hep-ph].

[44] M. V. Polyakov and A. G. Shuvaev, (2002), arXiv:hep-
ph/0207153.

[45] M. V. Polyakov, (2007), arXiv:0711.1820 [hep-ph].
[46] K. M. Semenov-Tian-Shansky, Eur. Phys. J., A45, 217

(2010), arXiv:1001.2711 [hep-ph].


