
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Ultraviolet properties of the Higgs sector in the Lee-Wick
standard model

José R. Espinosa and Benjamín Grinstein
Phys. Rev. D 83, 075019 — Published 29 April 2011

DOI: 10.1103/PhysRevD.83.075019

http://dx.doi.org/10.1103/PhysRevD.83.075019


DB10751

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

UCSD PTH/11-01

Ultraviolet Properties of the Higgs Sector

in the Lee-Wick Standard Model
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Abstract

The Lee-Wick (LW) Standard Model (SM) offers a new solution to the hier-

archy problem. We discuss, using effective potential techniques, its peculiar

ultraviolet (UV) behaviour. We show how quadratic divergences in the Higgs

mass Mh cancel as a result of the unusual dependence of LW fields on the

Higgs background (in a manner reminiscent of Little Higgses). We then ex-

tract from the effective potential the renormalization group evolution of the

Higgs quartic coupling λ above the LW scale. After clarifying an apparent

discrepancy with previous results for the LW Abelian Higgs model we focus

on the LWSM. In contrast with the SM case, for any Mh, λ grows monoton-

ically and hits a Landau pole at a fixed trans-Planckian scale (never turning

negative in the UV). Then, the perturbativity and stability bounds on Mh

disappear. We identify a cutoff ∼ 1016 GeV for the LWSM due to the hyper-

charge gauge coupling hitting a Landau pole. Finally, we also discuss briefly

the possible impact of the UV properties of the LW models on their behaviour

at finite temperature, in particular regarding symmetry nonrestoration.



1 Introduction

In an effort to tame the divergences of quantum field theory Dirac proposed a for-

mulation of quantum mechanics with indefinite metric in the Hilbert space [1]. Pauli

further studied Dirac’s proposal and found it to be effective in eliminating certain

divergences but failed to give a consistent interpretation of the theory [2]. Pauli and

Villars showed that Lagrangians with derivatives higher than of the second order

are equivalent to negative metric theories without higher derivatives [3]. They intro-

duced the now famous regulator procedure in which the negative metric states are

rendered arbitrarily heavy at the end of the computation. Two decades later, moti-

vated by their desire to eliminate infinities in QED, Lee and Wick (LW) proposed a

solution to the question of interpretation of negative metric quantization [4]. They

argued that under certain conditions a theory of this kind has a unitary S-matrix.

Physically their proposal is that states that in the absence of interactions are of

negative metric may well be unstable when interactions are present and sufficiently

strong. Since unstable states are not asymptotic, only the subspace of the Hilbert

space corresponding to positive metric contributes to the S-matrix.

The work of ’t Hooft and Veltman on renormalization of gauge theories shelved

the LW proposal for a decade, but it was dusted with growing interest in quantizing

gravity. In particular it was shown that a higher derivative version of Einstein’s

theory of relativity is renormalizable [5] and asymptotically free [6]. Jansen, Kuti

and Liu studied in the lattice a higher derivative version of the Higgs model, dis-

cussed the triviality problem and the unusual physical behavior associated with the

presence of negative metric resonances [7, 8]. More recently it was realized that

the Higgs mass in higher derivative versions of the Standard Model (SM) of elec-

troweak interactions does not suffer from a quadratic divergence [9]. Instead there

is only logarithmic sensitivity to the cut-off, and the shift in the Higgs mass is of

order M2/16π2, where M is the scale that characterizes the higher derivatives. The

result remains valid even if the model is extended to incorporate right handed neu-

trinos with masses much large thanM , that generate light Majorana masses via the

see-saw mechanism [10].

This “Lee-Wick Standard Model” (LWSM) is consistent with electroweak pre-

cision data [11] and with flavor physics constraints provided M is at least a few

TeV [12]. The electroweak data favors a light Higgs, mh ∼ 100 – 200 GeV, which

remarkably requires little if any finetuning for M a few TeV. Such low values for

M have observable effects in collider experiments. At the LHC one would expect

to see resonances [13] associated with would-be negative metric states, roughly one

per SM particle.

While this successful yet natural phenomenology is encouraging, there remain

many questions of principle with regard to the Lee-Wick proposal. Whether the
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LW proposal yields a unitary theory is unknown in general1. Cutkosky, Landshoff,

Olive and Polkinghorne sharpened the prescription of Lee and Wick and showed

that large classes of diagrams in perturbation theory satisfy the cutting relations

needed for perturbative unitarity [14]. Yet, for some specific models unitarity can

be shown to hold explicitly to all orders [15, 16]. Boulware and Gross have identified

difficulties with a path integral formulation of the theory [17], but van Tonder has

recently proposed a non-perturbative definition for the theory [18]. And, already

known to Lee and Wick, their quantization procedure gives non-local correlations

that are readily interpreted as non-causal effects.

These non-causality is readily seen as time advancement in certain scattering

processes. To be sure, in the LWSM, with the scale M of order of a few TeV, these

time advancements are unmeasurably short at present. A question immediately

arises as to whether a macroscopic sequence of non-causal effects could be contrived

to produce macroscopic violations of cause and effect, rendering these theories in-

consistent. Coleman argued that this is not possible, but gave no detailed argument

[19]. An attempt to address this question indirectly was made in Ref. [20], where the

behavior of LW models at high temperature was studied. The speed of sound was

found to increase with temperature but never to exceed the speed of light. However,

a somewhat surprising and discouraging effect was discovered. The energy density of

a LW gas of fermions was determined to decrease without bound as the temperature

is increased.

Intending to throw some light into this problem we propose as a first step to

investigate the effective potential of LW theories with scalars, fermions and gauge

bosons. In Sec. 2 we examine the UV behaviour of the Coleman-Weinberg effective

potential in such generic LW theories, using for simplicity the higher-derivative for-

mulation and Landau gauge (discussing in turn the contributions to the potential

of generic bosonic and fermionic degrees of freedom). In order to show the cancel-

lation of some UV divergences, we find convenient to regularize the potential using

a momentum cutoff. Similarities between Lee-Wick and Little-Higgs theories show

up most clearly in this language. We also investigate the finite part of the potential

and ask, for example, under what conditions it may have runaway directions.

As a by-product, from the effective potential we are able to determine some

renormalization group equations (RGEs) in specific models: making use of the

renormalization-scale independence of the effective potential (and the knowledge

of the scalar anomalous dimension) it is possible to extract from the one-loop effec-

tive potential the RGEs of the parameters of the tree level potential (mass terms

and quartic coupling). RGEs for Yang-Mills LW models with fermions and scalars

were determined in Ref. [21]. The models did not include scalar self-couplings and

1In this work we assume M is kept fixed as the momentum cut-off Λ → ∞. If M/Λ is kept

finite as Λ → ∞ one recovers the normal model and no new problems with unitarity arise. The

behavior of a Euclidean higher derivative O(N) scalar model at finite cut-off was studied in [7]
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the calculations were performed in Landau gauge. The LW Abelian-Higgs model for

arbitrary ξ-gauge, including a scalar self-coupling was computed in Ref. [22] with

the surprising result that the beta function of the scalar self-coupling vanishes. Our

computation of the effective potential gives results at odds with Ref. [22]. In partic-

ular, we find that the quartic self-coupling does run. To fully clarify and settle this

issue, we present four independent calculations of the RGEs of the model, to wit,

by computing green functions diagrammatically (Sec. 3) or by computing the effec-

tive potential (Sec. 4), and in both cases in the higher derivative and auxiliary-field

formulations. To show explicitly that calculations in different formulations agree

requires matching correctly the parameters of both formulations and dealing with a

subtlety in the treatment of anomalous dimensions in the auxiliary-field formulation

of the model. In the end, the discrepancy with [22] is only apparent and due to a

different renormalization prescription.

Finally, Sec. 5 discusses the implications of the softer UV behaviour of the LW

scalar sector in the context of the LW Standard Model. First, we derive in Sec. 5.1

the RGEs of the parameters of the Higgs sector in the LWSM, with particular

attention to the Higgs quartic coupling. We find that the running of this coupling

is better UV-behaved than in the normal SM: it does not get driven to negative

values at high energy if the Higgs mass is low nor does it blow-up below the Planck

mass if the Higgs mass is large. As a result, in the LWSM the lower stability bound

and the perturbativity bound on the Higgs mass disappear. Nevertheless, the RG

evolution of gauge couplings above the LW mass scale M is also modified [21] and

we find a Landau pole for the U(1)Y gauge coupling at a scale Λ′ ∼ 1016 GeV (for

M ∼ 1 TeV). This implies that the pure LWSM cannot be extrapolated up to the

Planck scale and new physics should appear at or below Λ′.

At finite temperature (Sec. 5.2) there is another reason why the ultraviolet behav-

ior of the LW effective potential is of interest. In Little Higgs models EW symmetry

can remain broken at high temperature. More generally, symmetry non-restoration

can occur in models for which quadratic divergences in the Higgs mass cancel among

states with same statistics [23]. Heuristically, this is because T 2m2 corrections to the

finite temperature effective potential, which are responsible for symmetry restora-

tion, are directly related to quadratic divergences to the Higgs mass at zero tem-

perature. Since in LW theories cancellation of divergences are among states with

same statistics we should then find that EW symmetry might not get restored at

high temperature. However, it is not immediately obvious how to extend the stan-

dard calculation of the finite temperature effective potential to LW models. At any

rate, the above argument indicates that the fate of symmetry at high temperature

is determined by the sensitivity of the effective potential to the ultraviolet.
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2 Structure of the LW Effective Potential

In order to compute the effective potential in LW theories, we choose to do the

computation using a simple momentum cutoff to regularize divergent integrals. This

makes the UV behavior, in particular the absence of quadratic divergences, more

readily apparent.

2.1 UV Behaviour of the Effective Potential

As preparation for the computation in LW theories, let us begin by revisiting the

normal (non-LW) case. Consider a theory of a single self-interacting scalar,

L =
1

2
(∂µφ)

2 − V0 , (1)

with a SM-like Higgs sector with tree-level potential

V0 =
1

2
µ2φ2 +

1

4
λφ4 . (2)

In the presence of a uniform background, φ(x) = v + h(x), the one-loop vacuum

diagrams are each infrared divergent. The divergence is, however, an artifact of

perturbation theory and the IR finite sum gives the effective potential:

V1 =
1

32π2

∫ Λ2

0

p2E dp2E log(p2E +m2) . (3)

Here m2 ≡ d2V0/dφ
2|φ=v is the mass in the non-vanishing uniform background. The

result is readily generalized to theories of many fields, including scalars, fermions

and gauge bosons:

V1 =
1

32π2

∑

α

Nα

∫ Λ2

0

p2E dp2E log(p2E +m2
α) , (4)

where the sum is over particle species α with Nα degrees of freedom (negative for

fermions) and mass mα (dependent in general on the Higgs field background) and

pE is the Euclidian momentum.

Although one could integrate (3) exactly, we can readily extract the dominant

UV behaviour simply by taking the derivative of V1 with respect to m2
α, doing the

momentum integral and then integrating in m2
α. In this way, one gets

V1 =
1

32π2

∑

α

Nα

[

Λ2m2
α − 1

2
m4

α log Λ
2 + ...

]

≡ 1

32π2

[

Λ2 StrM2 − 1

2
StrM4 log Λ2 + . . .

]

,

(5)
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where the dots stand for finite terms or terms suppressed by inverse powers of the

cutoff. We have used the super-trace, Str, to denote the trace of a matrix weighted

by the number of degrees of freedom, and M stands for a matrix of masses of all

fields in the background of the Higgs fields. As usual, the logarithmic dependence

on the cutoff tracks the RG evolution of the parameters of the model. In section 4

we will use effective potential expressions like these to derive RGEs in LW models.

2.2 Bosonic Contributions to the LW Effective Potential

We now turn to the case of LW theories. Take for definiteness the case of scalar

fields. The Lagrangian is now

L =
1

2
(∂µφα)

2 − 1

2M2
(∂2φα)

2 − V0 . (6)

The Feynman rules now have quadratic polynomials in p2 in propagator denomina-

tors. Repeating the steps that lead to Eq. (3) one finds instead:

V1 =
1

32π2

∑

α

Nα

∫ Λ2

0

p2E dp2E log(p2E +m2
α + p4E/M

2) . (7)

The Wick-rotation to Euclidean momentum is justified by the Lee-Wick prescription

for the contour of integration in the complex energy plane. That is, first, in the

theory with interactions switched off, take the usual Feynman contour, just above

or below the real axis as determined by the iǫ prescription. Then deform it to avoid

crossing the poles that migrate into the complex energy plane as the interactions in

the LW model are switched on.

This generic form is also applicable to gauge bosons in Landau gauge. In LW

theory, for each gauge field, supplement the Lagrangian with a term 1
2M2 [(D

µFµν)
a]2.

In a later section we discuss the more general case with a renormalizable gauge-fixing.

The main points presented in this section are not affected by sticking to the simpler

Landau gauge.

Just as above, the integral is most easily performed by differentiating and inte-

grating with respect to masses. One gets the following UV behaviour

V1 =
1

32π2

∑

α

Nα

[

m2
α M

2 log Λ2 + ...
]

. (8)

Comparing with (5), we immediately see striking dissimilarities: there is no quadratic

divergence and the structure of the logarithmic divergence is quite different. The

latter has the structure of the quadratic divergence of the normal case if M were

the cutoff. This is expected since in a scalar theory the higher derivatives could be

used as a regulator.

In order to better understand this result it is useful to look at the LW theory

in terms of new auxiliary LW degrees of freedom added to a standard theory. In
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this formulation terms higher than quadratic in derivatives are absent from the

Lagrangian. Instead, these extra LW fields are responsible for the additional poles

of the modified propagator. That is, the masses of the normal and auxiliary LW

fields correspond to the solutions of the pole equation:

p4 − p2 M2 +M2 m2
α = 0 , (9)

and the LW field is identified by the pole with negative residue. This corresponds

to a wrong sign kinetic energy term in the Lagrangian. Alternatively one can make

the sign of the kinetic term of the auxiliary LW field standard by rescaling the field

by i. Then the structure of these pole masses can also be obtained as coming from

a non-hermitian mass matrix of the form

M2
Bα =

[

m2
α −i m2

α

−i m2
α M2 −m2

α

]

. (10)

The two solutions of the pole equation (9), or, equivalently, the two eingenvalues of

the mass matrix (10), are

M2
Bα1,2 =

M2

2

(

1∓
√

1− 4m2
α

M2

)

. (11)

These two masses are real if m2
α < M2/4. This holds for the usual choice of pa-

rameters in applications of LW theory to the hierarchy problem since mα are of

electroweak size while M is taken in the several TeV range. When calculating

the one-loop effective potential for values of the Higgs field background for which

m2
α > M2/4, the two masses (11) are complex conjugate pairs, their sum giving a

real contribution to the potential (see below). Expanding the masses (11) in powers

of m2
α/M

2 we find

M2
Bα1 = m2

α +O(m4
α/M

2) ,

M2
Bα2 =M2 −m2

α −m4
α/M

2 +O(m6
α/M

4) .
(12)

Figure 1 shows the squared-masses for bosons throughout both low and high

Higgs background regions as a function of the ratiomα/M . The two complex masses

in the high region are represented by plotting their real part, M2/2, as a solid line

while the dashed lines giveM2(1±
√

4m2
α/M

2 − 1)/2 as a convenient way of plotting

the information on the imaginary parts.

In summary, for each standard bosonic degree of freedom with mass squared

m2
α (up to corrections suppressed by M) there is a new LW degree of freedom with

mass squared M2 − m2
α + . . . completing a “LW-multiplet.” Using the standard

formula (5) for these degrees of freedom and keeping a unique label α for each SM-

LW pair we reproduce the UV behaviour of (8), up to an irrelevant background-field

independent constant. One sees explicitly that this is the result of cancellations
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Figure 1: Squared-masses of a bosonic “LW-multiplet” as a function of the ratio mα/M .

See text for explanations.

between the normal and LW contributions. We can also see this cancellation as

occurring through Tr[M2
Bα] and Tr[M4

Bα] directly without any power expansion,

which is one of the uses of writing down the mass matrix M2
Bα in (10). One can

also see the two contributions arising directly from the integral (7) by factoring the

argument of the logarithm:

V1 =
1

32π2

∑

α

Nα

∫ Λ2

0

p2E dp2E log[(p2E +M2
Bα1)(p

2
E +M2

Bα2)] . (13)

Explicitly, the contribution to the one-loop potential reads

δαV1 =
Nα

64π2

∑

i=1,2

M4
Bαi

[

log
M2

Bαi

Q2
− Cα

]

, (14)

where we have merely used the standard Coleman-Weinberg expression in Landau

gauge. Here Cα = 5/6 for gauge bosons, Cα = 3/2 for scalars and Q is the renor-

malization scale.

In the low field region, for which m2
α < M2/4, the potential above takes the form

δαV1 =
Nα

64π2
M4

[(

1− 2m2
α

M2

)(

log
Mmα

Q2
− Cα

)

− 1

2
ζα log

1− ζα
1 + ζα

]

, (15)

with

ζα ≡
√

1− 4m2
α

M2
. (16)
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By contrast, in the high field region, for which m2
α > M2/4, the potential above

takes the form2

δαV1 =
Nα

64π2
M4

[(

1− 2m2
α

M2

)(

log
Mmα

Q2
− Cα

)

−∆α arctan∆α

]

, (17)

with

∆α ≡
√

4m2
α

M2
− 1 . (18)

We can see from this result that the bosonic contributions to the one-loop effec-

tive potential now grow only like v2 log(v2) for high v ≫ M (to be compared with

the v4 growth in the normal case). Therefore, in that region of field space the tree

level term (λ/4)v4 will dominate.

2.3 Fermionic Contributions to the LW Effective Potential

We consider next the contributions of fermions to the effective potential in a theory

with higher derivatives. The terms in the Lagrangian with derivatives on fermions

are

L = ψ̄αi/∂(1− ∂2/M2)ψ . (19)

The fermionic contributions to the effective potential in LW theories can be obtained

through an analysis similar to the one for bosons above. Instead of (3), for fermions

in LW theories one has

V1 =
1

32π2

∑

α

Nα

∫ Λ2

0

p2E dp2E log
[

p2E(1 + p2E/M
2)2 +m2

α

]

, (20)

where, we remind the reader, we have included a minus sign in Nα. By applying the

same procedure as above one finds that fermions do not contribute to the potential

a field-dependent UV divergence, not even logarithmic.

Again, we can understand this result in terms of new auxiliary LW fermionic

degrees of freedom. Now, the equation giving the propagator poles reads

p2(p2 −M2)2 −m2
α M

4 = 0 , (21)

wheremα is the mass of the standard fermionic degree of freedom. This pole equation

admits now two additional solutions, corresponding to two additional LW degrees

of freedom. The structure of these pole masses can be obtained in an equivalent

manner as coming from a non-hermitian mass-squared matrix of the form3

M2
Fα =





M2 −i mα M mα M

−i mα M 0 0

mα M 0 M2



 , (22)

2Note that (15) is simply the analytic continuation of (17) into ζα = i∆α < 1.
3We are assuming that both LW fields appear with the same heavy mass M for simplicity, but

this is not necessary. In the most general case the LW mass in the 33 entry in (22) can be different

from the other LW mass.
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which is what one would obtain by rescaling the auxiliary LW fields ψ by ψ → iψ

and ψ̄ → iψ̄, which gives a standard sign for their kinetic term.

The eigenvalues of this matrix, or the solutions to the pole equation, Eq. (21),

are

M2
Fα1 =

M2

3

[

2− 2 cos(θα/3)
]

,

M2
Fα2 =

M2

3

[

2 + cos(θα/3)−
√
3 sin(θα/3)

]

,

M2
Fα3 =

M2

3

[

2 + cos(θα/3) +
√
3 sin(θα/3)

]

,

where the angle θα is given by

cos θα = 1− 27

2

m2
α

M2
. (23)

We assume here that m2
α < 4M2/27, which guarantees real masses. An expansion

in powers of m2
α/M

2 gives

M2
Fα1 = m2

α +O(m4
α/M

2) ,

M2
Fα2 =M2 −Mmα − 1

2
m2

α − 5m3
α

8M
− m4

α

M2
+O(m6

α/M
4) ,

M2
Fα3 =M2 +Mmα − 1

2
m2

α +
5m3

α

8M
− m4

α

M2
+O(m6

α/M
4) .

(24)

Therefore, each standard fermionic degree of freedom is accompanied by two quaside-

generate heavy LW-fields completing a fermionic “LW-multiplet.”

Using the standard formula (5) for the contribution of these degrees of freedom to

the one-loop potential and keeping a unique label α for each standard-LW fermionic

multiplet, we reproduce (up to a field-independent constant) the UV finiteness of

Eq. (20) as a result of standard-LW cancellations. The same cancellations can be

seen as operating directly in Tr[M2
α] and Tr[M4

α] for the fermionic mass matrix (22).

At the level of the integral (20) the three separate contributions to the effective

potential follow simply from writing the argument of the logarithm in factorized

form:

V1 =
1

32π2

∑

α

Nα

∫ Λ2

0

p2E dp2E log[Πi=1,...,3(p
2
E +M2

Fαi)] . (25)

The explicit expression for the potential is

δαV1 =
Nα

64π2

∑

i=1,2,3

M4
αi

[

log
M2

αi

Q2
− Cα

]

, (26)

where now Cα = 3/2. In fact, the only dependence on Q that appears in (26) affects

the renormalization of a background-field independent term. For the purpose of

studying the shape of the background-field dependent potential, we can therefore

simply drop Q and Cα altogether in that expression.
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Figure 2: Squared-masses of a fermionic “LW-multiplet” as a function of the ratio mα/M .

The complex masses in the high region are represented by plotting M2
Fα as a solid line

and M2
Fα ±∆2

Fα as dashed lines; see Eqs. (27) and (29).

In the high-field region, for which m2
α > 4M2/27, one of the three mass eigen-

values is still real while the other two form a complex conjugate pair. They are

M2
Fα1 =

M2

2

{

4

3
− f+

(mα

M

)

− f−

(mα

M

)

+ i
√
3
[

f+

(mα

M

)

− f−

(mα

M

)]

}

,

M2
Fα2 =

M2

2

{

4

3
− f+

(mα

M

)

− f−

(mα

M

)

− i
√
3
[

f+

(mα

M

)

− f−

(mα

M

)]

}

,

M2
Fα3 =M2

[

2

3
+ f+

(mα

M

)

+ f−

(mα

M

)

]

,

(27)

where we have used the functions

f±(x) ≡
3

√

x2

2
− 1

27
± x

√

x2

4
− 1

27
. (28)

For later use, we quote the useful relation f+(x)f−(x) = 1/9.

In the high field region, m2
α > 4M2/27, the effective potential takes the form:

δαV1 =
Nα

64π2

[

M4
Fα3 log(M

2
Fα3) + 2(M4

Fα −∆4
Fα) log(ρ

2
Fα)− 4M2

Fα∆
2
FαθFα

]

, (29)
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where

M2
Fα ≡ M2

2

[

4

3
− f+

(mα

M

)

− f−

(mα

M

)

]

,

∆2
Fα ≡ M2

2

√
3
[

f+

(mα

M

)

− f−

(mα

M

)]

,

ρ4Fα ≡M4
Fα +∆4

Fα ,

θFα ≡ arctan
∆2

Fα

M2
Fα

,

(30)

that is,M2
Fα1,2 =M2

Fα±i∆2
Fα = ρ2Fα exp (iθFα). Different fermionic contributions in

Eq. (29) grow at high v ≫M as v4/3 log(v2) and v4/3. There is a cancellation of the

dominant v4/3 log(v2) terms, leaving a total result that grows only as v4/3. These

contributions are therefore subdominant compared with the tree-level quartic.

Figure 2 shows the squared-masses for fermions throughout both low and high

background field regions as a function of the ratio mα/M . The complex masses in

the high region are represented by plotting M2
Fα as a solid line and M2

Fα ±∆2
Fα as

dashed lines.

3 RGEs in the LW Abelian Higgs Model. Diagrammatic

Approach

As a warm-up for the LWSM case, in this section we calculate the renormalization

group equations (RGEs) of the scalar sector parameters in the Lee-Wick Abelian

Higgs model. We do this by computing directly the one-loop counterterms needed to

renormalize Green functions. We compute them first, in Sec. 3.1, using the higher-

derivative formulation of the model and then we calculate them again, in Sec. 3.2,

using the auxiliary-field formulation. We find agreement between both approaches,

once the parameters in the two formulations are appropriately matched to each other.

These results will be used as the benchmark against which the effective potential

calculation of the RGEs (Sec. 4) can be compared. This model already captures the

main features and subtleties of the LWSM calculation (which we present in section 5)

with the advantage of being simpler.

3.1 Diagrammatic Approach in the Higher-Derivative Formulation

The Lagrangian of the LW Abelian Higgs model in the higher-derivative formulation

(indicated by hatted fields and parameters) reads:

LHD = −1

4
F̂ 2
µν +

1

2M̂2
A

(∂µF̂µν)
2− 1

2ξ
(∂µÂµ)

2+ |D̂µφ̂|2−
1

M̂2
|D̂2φ̂|2− m̂2|φ̂|2− λ̂|φ̂|4 ,

(31)
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where D̂µφ̂ ≡ ∂µφ̂+ igÂµφ̂ and we show explicitly the gauge-fixing term. With this

gauge-fixing the gauge-boson propagator is

Pµν(p) =
−M̂2

A

p2(p2 − M̂2
A)

[

gµν −
pµpν
p2

]

+ ξ
pµpν
p4

. (32)

The scalar propagator can be written as

P (p) =
1

m̂2 − p2 + p4/M̂2
=

M̂2

(p2 −m2
1)(p

2 −m2
2)
, (33)

with m2
1 +m2

2 = M̂2 and m2
1m

2
2 = m̂2M̂2.

We are interested in calculating the RGEs of the parameters in the scalar sector

of the theory, that is, the beta functions of m̂2, M̂2, λ̂ and the anomalous dimension

of φ̂. A straightforward one-loop diagrammatic calculation using dimensional reg-

ularization gives the following result for the divergent piece of the scalar two-point

function:

16π2Π(p)UV = g2CUV

[

−ξ p
4

M̂2
+

(

6
M̂2

A

M̂2
+ ξ

)

p2 − 3M̂2
A − ξm̂2

]

− 4λ̂CUV M̂
2 ,

(34)

where

CUV ≡ 1

ǫ
− γE + log(4π) , (35)

with ǫ = (4− d)/2 and γE the Euler constant. From Eq. (34) we can extract in the

standard way the following RGEs:

γφ̂ ≡ d φ̂

d logQ
= − g2

16π2

(

6
M̂2

A

M̂2
+ ξ

)

, (36)

βM̂2 ≡
d M̂2

d logQ
= − g2

16π2
12M̂2

A , (37)

βm̂2 ≡ d m̂2

d logQ
= − 6g2

16π2
M̂2

A

(

1− 2
m̂2

M̂2

)

− 8λ̂

16π2
M̂2 . (38)

At ξ = 0 and λ̂ = 0 these results are in accord with Ref. [21].

In order to get the RGE for the scalar quartic coupling λ̂ we need the divergent

part of the four-point scalar function. In the limit of vanishing external momenta

tending to zero, it reads

16π2L̂UV
0 = −2ξλ̂g2CUV , (39)

where L̂0 is normalized as λ̂. Note that there are no contributions of order λ̂2 (the

corresponding diagrams are finite) or g4 (UV divergences of separate diagrams cancel

out). From Eq. (39) and the previous result on the scalar anomalous dimension,

Eq. (36), we obtain

βλ̂ ≡ d λ̂

d logQ
= 24

g2λ̂

16π2

M̂2
A

M̂2
. (40)

13



This completes our task. As expected on general grounds [24], the one-loop beta

functions for m̂2, M̂2 and λ̂ are gauge independent and only the scalar anomalous

dimension depends on the gauge-fixing parameter ξ.

3.2 Diagrammatic Approach in the Auxiliary-Field Formulation

We now turn to the calculation of the RGEs in the auxiliary-field formulation, with

derivatives at most of second order. We need an auxiliary-field Lagrangian equivalent

to the Higher derivative one in Eq. (31), which we can get by adding auxiliary fields

through

L = LHD − 1

2
M̂2

A

(

Ãν −
1

M̂2
A

∂µF̂µν

)2

+ M̂2

∣

∣

∣

∣

φ̃′ − 1

M̂2
D̂2φ̂

∣

∣

∣

∣

2

, (41)

where LHD is the higher-derivative Lagrangian in Eq. (31). Replacing the field φ̂

through the change of variables φ̂ = φ′ − φ̃′ and performing a symplectic rotation

(

φ′

φ̃′

)

=

(

cosh θ sinh θ

sinh θ cosh θ

) (

φ

φ̃

)

, (42)

with

e4θ = 1− 4
m̂2

M̂2
, (43)

we obtain

L = −1

4
F 2
µν +

1

4
F̃ 2
µν −

1

2
M2

AÃµÃ
µ − 1

2ξ
(∂µAµ − ∂µÃµ)

2

+ |Dµφ|2 − |Dµφ̃|2 +M2|φ̃|2 −m2|φ|2 − λ|φ− φ̃|4

+ g2ÃµÃ
µ(|φ|2 − |φ̃|2) + igÃµ

[

φ̃(Dµφ̃)∗ − φ(Dµφ)∗ − h.c.
]

, (44)

where now Dµ = ∂µ + igAµ.

The dictionary between the new parameters M2
A, M

2, m2 and λ appearing in

Eq. (44) and the original parameters in LHD is the following:

m2 =
1

2
M̂2

[

1−
√

1− 4m̂2/M̂2

]

,

M2 =
1

2
M̂2

[

1 +

√

1− 4m̂2/M̂2

]

,

λ =
λ̂

1− 4m̂2/M̂2
,

(45)
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and the trivial equality M2
A = M̂2

A. The inverse relations are:

M̂2 =M2 +m2 ,

m̂2 =
m2M2

M2 +m2
,

λ̂ = λ
(M2 −m2)2

(M2 +m2)2
.

(46)

Note that m2 and M2 correspond to the pole masses m2
1 and m2

2 of the higher-

derivative scalar propagator, as given by Eq. (33).

Before we compute directly the RGE for the parameters of this model (M2, m2

and λ) we can obtain them indirectly by differentiating relations (45) and using

the corresponding RGEs for the hatted parameters, calculated in the preceding

subsection, and then use the relations (46) to express the results in terms of unhatted

parameters. In this way one arrives at

βM2 ≡ dM2

d logQ
= − 1

16π2

[

6g2M2
A − 8λ(M2 −m2)

]

, (47)

βm2 ≡ dm2

d logQ
= − 1

16π2

[

6g2M2
A + 8λ(M2 −m2)

]

, (48)

βλ ≡ d λ

d logQ
= − 1

16π2
32λ2 . (49)

We now proceed to verify that these results follow from direct diagrammatic

calculation in the auxiliary-field formulation. Explicitly, the divergent part of the

two-point functions are:

16π2Π(p)UV
φφ = −g2CUV

[

3M2
A + ξ(m2 − p2)

]

− 4λCUV (M
2 −m2) ,

16π2Π(p)UV
φ̃φ̃

= g2CUV

[

3M2
A + ξ(M2 − p2)

]

− 4λCUV (M
2 −m2) ,

16π2Π(p)UV
φφ̃

= 4λCUV (M
2 −m2) .

(50)

These divergences can be compensated by counterterms in the usual way. Although

the renormalization of the kinetic terms is invariant under an SO(1, 1) rotation

among the fields φ and φ̃, as explained in [22], such rotation introduces mixed mass

terms. For this reason we can absorb the non-zero Π(p)UV
φφ̃

, which requires a mixed φ-

φ̃ counterterm, through an off-diagonal anomalous dimension (even if the divergence

is momentum-independent).4 More explicitly, we obtain

d

d logQ

(

φ

φ̃

)

≡
(

γφφ γφφ̃
γφ̃φ γφ̃φ̃

)

(

φ

φ̃

)

= − 1

16π2

(

ξg2 8λ

8λ ξg2

)(

φ

φ̃

)

. (51)

4Alternatively, one could introduce a new mass term in the potential, µ2(φ∗φ̃ + φ̃∗φ), but this

can always be rotated away by a field redefinition. Our prescription can be reinterpreted in terms

of a renormalization of the mixing angle θ.
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These anomalous dimensions reproduce d φ̂/d logQ of Eq. (36), as can be easily

checked simply writing φ̂ in terms of φ and φ̃. With the use of these anomalous

dimensions we can also obtain the RGEs for M2 and m2 from Eqs. (50) obtaining

precisely the results anticipated by Eqs. (47) and (48).

In order to get the one-loop RGE for λ it is enough to compute the divergent

part of the one-loop four-point function for φ. In the limit of vanishing external

momentum we obtain

16π2LUV
0 = −2ξλg2CUV , (52)

where L0 is normalized as λ. The divergent pieces of mixed φ-φ̃ four-point functions

are such that |φ − φ̃|4 is the divergent operator in the one-loop effective action, so

that a single counterterm for λ can absorb that divergence. Making use of the scalar

anomalous dimensions as given by Eqs. (51) one obtains a beta function for λ that

reproduces the result given in Eq. (49).

In Ref. [22] a different result is found, namely βλ = 0. This is the result of

renormalizing differently the scalar mass terms and wave-functions, along the lines

of footnote 4. Using such prescription implies in particular that the Higgs quartic

coupling in [22] differs from ours by an overall factor (that depends on the field-

mixing radiatively induced) and therefore runs differently. While the prescription

in [22] is simpler in the sense of having a non-running λ, it requires the introduction

of an additional mass parameter, which is absent in our prescription. Needless to

say, all physical predictions of the theory should be prescription-independent.

4 RGEs in the LW Abelian Higgs Model. Effective Poten-

tial Approach

In this section we will rederive the RGEs for the parameters of the scalar sector in

the LW Abelian Higgs Model via the Coleman-Weinberg potential and the scalar

anomalous dimensions of the scalar field(s). The technique, based on the scale-

independence of the effective potential, is well known [25]. Consider a model with

SM-like tree-level potential

V0 =
1

2
µ2h2 +

1

4
λh4 . (53)

The one-loop Coleman-Weinberg correction is

V1 =
1

64π2

∑

α

NαM
4
α(h)

[

log
M2

α(h)

Q2
− Cα

]

, (54)

where the sum runs over species α with h-dependent mass-squared M2
α(h) and Nα

degrees of freedom (taken negative for fermions); Q is the renormalization scale
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and Cα = 5/6 (3/2) for gauge bosons (scalars or fermions). Imposing one-loop RG

invariance of V0 + V1 one obtains the relations

βµ2 + 2γµ2 =
1

16π2

[

∂

∂h2
StrM4

]
∣

∣

∣

∣

h=0

≡ 1

16π2

∑

α

Nα
∂M4

α

∂h2

∣

∣

∣

∣

h=0

, (55)

βλ + 4γλ =
1

16π2

[

∂2

(∂h2)2
StrM4

]
∣

∣

∣

∣

h=0

≡ 1

16π2

∑

α

Nα
∂2M4

α

(∂h2)2

∣

∣

∣

∣

h=0

, (56)

where βx ≡ dx/d logQ and γ ≡ d log h/d logQ, as usual. For masses of the generic

form M2
α = µ2

α + καh
2 one then obtains

βµ2 + 2γµ2 =
1

8π2

∑

α

Nακαµ
2
α , (57)

βλ + 4γλ =
1

8π2

∑

α

Nακ
2
α . (58)

This procedure can be generalized trivially to cases with mass mixing and/or several

scalar fields.

In order to determine the beta functions it is necessary to calculate the anomalous

dimension(s) separately. For the case of the Abelian Higgs model we will take them

from the previous section. (In Sec. 4.2 we will discuss the subtleties that arise due

to mixing of the anomalous dimensions of normal and LW scalars in the auxiliary

field formalism.)

For the purpose of calculating these beta functions in a given model we do

not need to calculate explicitly the Mα’s because the scale dependence of V1 only

involves StrM4, see (55) and (56). In general, the Mα’s in each sector of the theory

are solutions, p2 =M2
α, of polynomial secular equations of the general form:

(p2)n + (p2)n−1a1 + (p2)n−2a2 + ...an = 0 , (59)

where the ai are functions of the background field h. Writing formally this equation

as

Πn
α=1(p

2 −M2
α) = 0 , (60)

we immediately get

TrM2 ≡
∑

α

M2
α = −a1 , TrM4 ≡

∑

α

M4
α = a21 − 2a2 . (61)

We will use these equations in what follows, applying them sector by sector, to

compute the separate contributions to the supertrace StrM4.

Before embarking into that detailed calculation for the Abelian Higgs Model, we

can apply this technique to a general LW theory in the simple Landau gauge and

assuming a unique LW mass M (the case considered in our previous analysis of LW
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effective potential contributions). Bosonic LW multiplets, with pole equation as in

(9), will contribute to StrM4 the piece

(

δαStrM4
)

B
=M4

Bα1 +M4
Bα2 =M4 − 2m2

αM
2 , (62)

while fermionic LW multiplets, with pole equation as in (21), will give the h-

independent piece
(

δαStrM4
)

F
= −

3
∑

i=1

M4
Fαi = −2M4 . (63)

If we input these results in the general formulas (55) and (56) and usem2
α = µ2

α+καh
2

we get, instead of the standard RGEs given in Eqs. (57)–(58),

βµ2 + 2γµ2 = − 1

8π2
M2
∑

α

′

Nακα , (64)

βλ + 4γλ = 0 , (65)

where the primed sum indicates that only bosons contribute and α labels LW multi-

plets. In general, the Lee-Wick mass M can be different for different scalar fields, in

which case the above formula (64) should be generalized in a straightforward way.

4.1 Effective Potential Approach in the Higher-Derivative Formulation

We give a nonzero background value v to the complex scalar field φ̂ and write

φ̂ =
1√
2
(ϕ̂+ v − iâ) , (66)

and then proceed to derive the (inverse) propagators in that background. The zeros

of such inverse propagators will occur at the squared masses M2
α(v). For the scalar

field ϕ̂ we find the secular equation

P−1
ϕ̂ (p) = p2 − m̂2

ϕ − p4

M̂2
= 0 , (67)

with m̂2
ϕ ≡ m̂2+3λ̂v2. The inverse propagator for the pseudoscalar field â is similarly

obtained with m̂2
ϕ → m̂2

a ≡ m̂2+ λ̂v2 but, with the gauge-fixing as in Eq. (31), there

is also mixing between â and ∂µÂ
µ. The inverse propagator for the â - Âµ sector is

the matrix








(

p2 −m2
A − p4

M2

A

)

gµν +
(

−1 + 1
ξ
+ p2

M2

A

+
m2

A

M̂2

)

pµpν imApν

(

1− p2

M̂2

)

−imApµ

(

1− p2

M̂2

)

m̂2
a − p2 + p4

M̂2









,

(68)
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where mA(v) ≡ gv. Equating the determinant of this matrix to zero we get the

secular equation

(p4 − p2M2
A +m2

AM̂
2)3
[

p6 − p4M̂2 + p2m̂2
a(M̂

2 + ξm2
A)− ξm̂2

am
2
AM̂

2
]

= 0 , (69)

for the pole masses in this sector. We see that this equation splits into two separate

equations, of which one gives pole mass solutions with multiplicity 3, corresponding

to the different polarizations of a massive gauge boson. Applying to the secular

equations (67) and (68) the prescription in Eq. (61) we immediately obtain

Tr[M2] = (M̂2)ϕ̂ + 3
(

M2
A

)

Âµ
+ (M̂2)â , (70)

where the labels indicate (with some abuse of notation) the origin of each contribu-

tion. This trace is independent of v, as it should be to cancel quadratic divergences

in the scalar mass (see discussion in Sec. 2.2). We also obtain

Tr[M4] =
(

M̂4 − 2M̂2m̂2
ϕ

)

ϕ̂
+ 3

(

M4
A − 2m2

AM
2
A

)

Âµ
+
[

M̂4 − 2m̂2
a(M̂

2 + ξm2
A)
]

â

= (v-indep. terms)− 2(3g2M2
A + ξg2m̂2 + 4λ̂M̂2)v2 − 2ξλ̂g2v4 .

(71)

It follows that

16π2(βm̂2 + 2γφ̂m̂
2) = −2(3g2M2

A + ξg2m̂2 + 4λ̂M̂2) , (72)

16π2(βλ̂ + 4λ̂γφ̂) = −4λ̂ξg2 , (73)

in perfect agreement with the results in Sec. 3.1, Eqs. (36)–(38). One can also check

that, in Landau gauge (ξ = 0) and for M2
A = M̂2 = M2, these equations are in

agreement with the general formulas (64) and (65).

4.2 Effective Potential Approach in the Auxiliary-Field Formulation

In this formulation we give φ a background value v and write

φ =
1√
2
(ϕ+ v − ia) , (74)

while

φ̃ =
1√
2
(ϕ̃− iã) , (75)

and then proceed to derive the secular equations for the pole masses M2
α(v) in the

same way as before.

There is mixing among the CP-even scalars ϕ and ϕ̃ and their inverse propagator

is the 2× 2 matrix




p2 −m2
ϕ 3λv2

3λv2 M2 − p2 − 3λv2



 , (76)

19



where m2
ϕ(h) ≡ m2 + 3λv2. Equating the determinant of this matrix to zero, we

obtain the secular equation

p4 − p2(M2 +m2) +M2m2 + 3λv2(M2 −m2) = 0 . (77)

The fields Aµ, a, Ãµ and ã get all mixed in the v-background and their inverse

propagator is the matrix

























P−1
µν (p) imApµ m2

Agµν − 1
ξ
pµpν 0

−imApν m2
a − p2 imApν −λv2

m2
Agµν − 1

ξ
pµpν −imApµ P̃−1

µν (p) 0

0 −λv2 0 p2 −M2 + λv2

























, (78)

where

P−1
µν (p) ≡ (p2 −m2

A)gµν +

(

−1 +
1

ξ

)

pµpν , (79)

P̃−1
µν (p) ≡ (−p2 +M2

A −m2
A)gµν +

(

1 +
1

ξ

)

pµpν , (80)

which leads to the secular equations

0 = (p4 − p2M2
A +m2

AM
2
A)

3 ,

0 = p6 − p4(M2 +m2) + p2
[

m4 +m2
a(M

2 −m2) + ξm2
am

2
A

]

− ξm2
A

[

m4 + (M2 −m2)m2
a

]

.

(81)

Applying again to the secular equations (77) and (81) the prescription in Eq. (61)

we immediately obtain

Tr[M2] =
(

M2 +m2
)

ϕ−ϕ̃
+ 3

(

M2
A

)

Aµ−Ãµ
+
(

M2 +m2
)

a−ã
, (82)

where the labels indicate (again with some abuse of notation) the origin of each con-

tribution. This trace is independent of v, as it should be if the quadratic divergences

in the scalar mass are to cancel (see discussion in Sec. 2.2). We also obtain

Tr[M4] =
[

M4 +m4 − 6λv2(M2 −m2)
]

ϕ−ϕ̃
+ 3

(

M4
A − 2m2

AM
2
A

)

Aµ−Ãµ

+
[

M4 − 2λv2M2 + 2m2
(

m2 + λv2
)

− 2ξm2
A

(

m2 + λv2
)]

a−ã

= (v-indep.)− 2[3g2M2
A + ξg2m2 + 4λ(M2 −m2)]v2 − 2ξλg2v4 . (83)

There is now a subtlety when using the scale-independence of the effective po-

tential due to the fact that, even if the field φ̃ has no background expectation value,
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its derivative with the renormalization scale, d φ̃/d logQ will have a nonzero back-

ground value that arises from mixing with the field φ. That is, from the tree-level

potential

V0 = m2|φ|2 −M2|φ̃|2 + λ|φ− φ̃|4 , (84)

we obtain
d V0

d logQ
=

1

2
(βm2 + 2γφφm

2)v2 +
1

4

[

βλ + 4λ(γφφ − γφφ̃)
]

v4 , (85)

where γφφ and γφφ̃ can be read off Eq. (51). Using the previous result for Tr[M4],

Eq. (83), which determines the scale-dependence of the one-loop Coleman-Weinberg

correction, we arrive at

16π2(βm2 + 2γφφm
2) = −2

[

3g2M2
A + ξg2m2 + 4λ(M2 −m2)

]

, (86)

16π2
[

βλ + 4λ(γφφ − γφ̃φ)
]

= −4λξg2 , (87)

in perfect agreement with the results presented in Eqs. (47)-(49).

5 Some Implications of the UV Behaviour of the LW Stan-

dard Model

5.1 Implications at Zero Temperature

We have seen that the LW effective potential is softer than in standard theories: on

the one hand, the bosonic part of the effective potential, Eq. (8), does not contain a

m4
α log Λ

2 term while, on the other hand, the fermionic part, Eq. (20), is finite. The

softer UV behaviour has direct implications for the RGEs of the LW theory above

the threshold M . Using (57) and (58), the RGEs in the SM, using Landau gauge,

satisfy

16π2(βSM
µ2 + 2γSMµ2) = 12λµ2 , (88)

16π2(βSM
λ + 4γSMλ) = 24λ2 − 6h4t +

3

4
g4 +

3

8
(g2 + g′

2
)2 , (89)

with the normalization of µ2 and λ as in (2); g and g′ are the SU(2)L and U(1)Y
gauge couplings and ht is the top Yukawa coupling. The Higgs anomalous dimension

is

16π2 γSM = −3h2t +
3

4
(3g2 + g′

2
) . (90)

Below the scale M associated with the new LW degrees of freedom these SM RGEs

will still be valid.

Above that scale the full LWSM RGEs should be used. In Landau gauge, we

can use the same procedure that leads to (64) and (65) to get

16π2(βµ̂2 + 2γ̂µ̂2) = −
[

12λ̂M̂2 +
3

2
(3g2M̂2

A + g′
2
M̂

′2
A )

]

, (91)

βλ̂ + 4γ̂λ̂ = 0 . (92)

21



The different Lee-Wick masses are the following: M̂ is associated with the Higgs,

M̂A with the SU(2)L gauge boson and M̂ ′
A with the U(1)Y gauge boson. Much as

in SUSY theories we see that βλ̂ is dictated by wave-function renormalization only.

In particular the SM top-quark vertex contribution ∼ −h4t to this beta function [see

Eq. (89)] is absent.

We can easily extend the result for the scalar anomalous dimension in the

LW Abelian Higgs Model found in a previous section to the Higgs field in the

LWSM and its non-Abelian gauge structure, simply replacing g2M2
A in (36) by

∑

γA g
2
γT

A
(γ)T

A
(γ)M

2
A(γ), where the sum runs over the different gauge groups (labeled

by γ) and group generators (labeled by A), with gauge coupling constant gγ and the

TA
(γ) are the group generator matrices in the representation of the Higgs field. We

keep explicit the dependence on the different Lee-Wick masses MA(γ). In contrast

with the SM case, this anomalous dimension only gets contributions from gauge

loops (and not from fermions). In Landau gauge it reads:

16π2 γ̂ = − 3

2M̂2
(3g2M̂2

A + g′
2
M̂

′2
A ) . (93)

In these formulas for the LWSM RGEs we are implicitly adopting the higher-

derivative formulation. Even if one is interested in a simplified case with M̂ =

M̂A = M̂ ′
A ≡ M , this condition is not stable under RG evolution. The RGEs for

the Lee-Wick masses are simple to obtain. Following the results of [21], we know

that the combinations g2M̂2
A and g′2M̂

′2
A are scale-invariant in Landau gauge. There-

fore, the running of the gauge Lee-Wick masses is governed by the evolution of the

corresponding gauge couplings, which are given explicitly by [21]

8π2βg2 = −2g4 , 8π2βg′2 =
61

3
g′

4
. (94)

For the RGE of M̂ we can generalize the Abelian Higgs case in (37) to

βM̂2 = − 3

16π2
(3g2M̂2

A + g′
2
M̂

′2
A ) , (95)

which can be readily integrated.

Focusing on the evolution of the Higgs quartic coupling, we find that its scale

running in the LWSM above the LW mass is governed by the RGE:

8π2βλ̂ = 3
λ̂

M̂2
(3g2M̂2

A + g′
2
M̂

′2
A ) . (96)

In leading-log approximation5 it is straightforward to integrate this RGE to obtain

λ̂(Q > M) = λ̂(M)

[

M2

M2 − 3
16π2 (3g2M̂2

A + g′2M̂
′2
A ) log(Q/M)

]2

, (97)

5In fact, following [21], we expect that these beta functions will not receive further contributions

beyond one loop, with the exception of γ̂, which will still be corrected at two-loop order.
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Figure 3: Higgs quartic coupling λ̂ running with the renormalization scale Q in the LW

Standard Model (blue solid lines) as compared to the SM (red dashed lines) for several

values of the Higgs mass. The Lee-Wick mass is M = 1 TeV (note the kink in the RG

evolution at that threshold).

where M is the common Lee-Wick mass (at the scale M).

One consequence of this scale dependence is that λ̂(Q) ≥ λ̂(M) and that the

Higgs effective potential in the LWSM (in contrast with the SM case) will not develop

pathologies at high scales.

This is shown in Fig. 3, which plots the running λ̂(Q) (for several Higgs mass

choices) in the LW Standard Model (blue solid lines) departing above a Lee-Wick

mass M = 1 TeV from the running in the SM (red dashed lines). The plot shows

the well known fact that in the pure SM, if the Higgs is too light, the running λ(Q)

turns negative at high energies triggering an instability in the effective potential.

Alternatively, if the Higgs is too heavy, λ runs into a Landau pole below the Planck

scale. For the most updated study on this UV fate of the SM and references to

the literature, see [26]. In the LW Standard Model, in contrast, the light Higgs

instability does not take place (provided the LW mass is below the SM instability

scale) because βλ̂ is proportional to λ̂ itself. On the other hand, the heavy Higgs

non-perturbative regime is pushed toward higher masses because βλ̂ does not grow

quadratically with λ̂ as it does in the SM. In fact the explicit solution (97) tells us

that λ̂ hits a Landau pole at

Λ =M Exp

[

16M2π2

3(3g2M̂2
A + g′2M̂

′2
A )

]

, (98)

independently of the Higgs mass value. This means in particular that there is no
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perturbativity bound on the Higgs mass in the LWSM: one could always require

λ̂(Q ≤MP l) ≤ 2π, but the obtained bound would not be competitive with the usual

unitarity bound, and we do not calculate it.6 Inspection of the beta function for M̂ ,

(95), also shows that M̂ → 0 at the same scale Λ, which would also be a pathological

behaviour. At any rate, the numerical value of this cutoff scale is higher than the

Planck mass and is no cause of concern.

In the previous discussion we have used the coupling λ̂, from the higher-derivative

formulation but similar conclusions follow if we use the auxiliary formulation instead.

In that formulation, the RGE for the quartic coupling λ is now

βλ = − 48

16π2
λ2 , (99)

corresponding to a well-behaved, asymptotically-free coupling. In agreement with

the previous results one cannot obtain lower or upper bounds on the Higgs mass on

the basis of this running behaviour. Nevertheless, the cutoff scale Λ reappears in

this formulation when looking at the running of M2+µ2, which goes to zero at that

scale.

On the other hand, the U(1)Y gauge coupling g′ now runs faster than in the SM,

see (94), and can become nonperturbative below the Planck mass. The Landau pole

for this gauge coupling occurs at

Λ′ ≡M Exp

[

24π2

61g′2(M)

]

. (100)

ForM = 1 TeV, one gets Λ′ ∼ 1016 GeV. This indicates that new physics beyond the

LWSM should appear below MP l. Alternatively, this Landau pole could be pushed

beyond the Planck mass if the Lee-Wick mass is higher, but the required value, of

order M ∼ 108 GeV is orders of magnitude too high to solve the hierarchy problem.

5.2 Implications at Finite Temperature

As discussed in the introduction, one possible way of probing the acausal nature of

LW theories in search of a macroscopic effect or some pathological behaviour is to

study them at finite temperature. The behavior of a LW gas in thermal equilibrium

was studied in Ref. [20]. It was found there that the contribution to the free energy

(∆Ω)LW of each LW state, that is, of the narrow resonances that would be states of

negative metric in the limit that interactions are switched off, is the negative of the

contribution of a normal state of the same mass:

(∆Ω)LW/V T =

{

−
∫

d3p
(2π)3

log
(

1− e−E/T
)

, for bosons,
∫

d3p
(2π)3

log
(

1 + e−E/T
)

, for fermions.
(101)

6Lattice studies of such bound in similar models, with a higher-derivative kinetic term as regu-

lator, exist [7] and show a large increase of the bound with respect to the standard case. However,

the studied cases use a φ∂6φ/M4 term, which is higher order than ours, and do not include gauge

fields, preventing a direct comparison.
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Here E =
√

p2 +M2 and V and T denote volume and temperature. Consider

the energy density ρ at high temperature. For each normal scalar degree of freedom

(labeled α) giving a normal contribution with massMBα1 there is a LW contribution

of mass MBα2, cf. Eq. (11). A high-temperature expansion shows that each bosonic

LW multiplet gives a contribution to the energy density:

ρBα =

[

π2T 4

30
− M2

Bα1T
2

24
+ · · ·

]

−
[

π2T 4

30
− M2

Bα2T
2

24
+ · · ·

]

=
(M2 − 2m2

α)T
2

24
+ · · ·

(102)

where we have assumed mα < 2M and used the mass expansions of Eq. (12) in the

last step. Although the normally leading term T 4 is missing, the energy density is

positive and increases with temperature.

By contrast, the contribution to the energy density of a fermionic LW multiplet

includes a normal contribution with mass MFα1 and two additional contributions

from LW modes of masses MFα2,3, cf. Eq. (24), with the opposite sign. The energy

density at high temperature is dominated by the T 4 term and is given by:

ρFα =

[

7π2T 4

240
− M2

Bα1T
2

48
+ · · ·

]

−
3
∑

i=2

[

7π2T 4

240
− M2

BαiT
2

48
+ · · ·

]

= −7π2T 4

240
+

(M2 −m2
α)T

2

24
+ · · ·

(103)

The energy density decreases with temperature and at high enough temperatures

turns negative. This peculiar behavior suggests that, either interesting phenomena

are taking place in the LW fermionic gas at high temperature or the result (101) is

not correct, see below.

We have not computed the effective potential for the scalar field in a plasma at

finite temperature. But there is a well known correspondence between the zero tem-

perature self-energy diagrams that exhibit quadratic divergences and the diagrams

responsible for a scalar thermal mass [27]. If Λ is a straight momentum cut-off,

quadratic divergences in the scalar mass arising from bosonic excitations, ∆m2 =

κΛ2/(16π2), translate into a thermal mass correction ∆m2 = κT 2/12. Similarly, for

fermionic excitations ∆m2 = −κΛ2/(16π2) translate into ∆m2 = κT 2/24. There-

fore, in models that solve the hierarchy problem by cancellations of the quadratic

divergence in the Higgs mass arising from intermediate states of the same spin, one

expects a corresponding cancellation in the thermal mass [23].

The cancellation of quadratically-divergent contributions to the scalar potential

was shown explicitly in Secs. 2.2 and 2.3 for the bosonic and fermionic cases, respec-

tively. Consider first the bosonic case. The effective potential, given in Eq. (13), is

the sum of two same “normal” sign contributions. The mass shift can be obtained
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by differentiation

∆m2 = 2
∂V1
∂v2

∣

∣

∣

∣

0

=
∑

α

Nα

16π2

∫ Λ2

0

p2E dp
2
E

[

1

p2E +M2
Bα1

∂M2
Bα1

∂v2
+

1

p2E +M2
Bα2

∂M2
Bα2

∂v2

]∣

∣

∣

∣

0

,

(104)

where the 0 subscript indicates evaluation at v = 0. Since M2
Bα1+M2

Bα2 =M2, and

M is independent of the background field, one has

∆m2 =
∑

α

Nα

16π2

∫ Λ2

0

p2E dp2E

[

1

p2E +M2
Bα1

− 1

p2E +M2 −M2
Bα1

]

∂M2
Bα1

∂v2

∣

∣

∣

∣

0

, (105)

which shows explicitly the cancellation of quadratic divergences. Rather than per-

forming the angular momentum integral that gives Eq. (13), one can do first the

integral over the time component of momentum, yielding

V1 =
∑

α

Nα

16π3

∫

d3p (EBα1 + EBα2) , (106)

where EBαi =
√

p2 +M2
Bαi. The connection with the finite temperature potential

is made, at least in the normal case, by replacing the energy integral by a sum over

Matsubara modes. Doing this for the LW model, disregarding any subtleties that

may arise from the LW and CLOP prescriptions, the finite temperature potential is

V T
1 =

∑

α

Nα

16π3

∫

d3p
{(

EBα1 + EBα2

)

+ T
[

log(1− e−EBα1/T ) + log(1− e−EBα2/T )
]}

,

(107)

Taking a derivative we obtain the mass shift:

∆m2 =
∑

α

Nα

16π3

∫

d3p
∂M2

Bα1

∂v2

[(

1

EBα1

− 1

EBα2

)

+

(

1

EBα1

1

eEBα1/T − 1
− 1

EBα2

1

eEBα2/T − 1

)]
∣

∣

∣

∣

0

. (108)

Whilst this expression is not fully justified, it does produce the expected results,

namely the cut-off independence that takes place as a cancellation of the T = 0

terms as well as the absence of the thermal T 2 mass shift. But, remarkably, it

was obtained from an effective potential in which the normal and LW modes enter

with normal signs. This is in contrast with the computation of the free energy in

Ref. [20] in which the LW modes appear with negative sign. However, we have not

been able to find any problem with the derivation in [20] and, at present, we do not

know which one of these two results, if either, is correct. LW theory is remarkably

intricate and it is possible that missed subtleties have rendered one or the other

calculations, or both, incorrect.
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The result carries over to the fermionic case. Although there are two LW modes

for one normal mode, the sum rule
∑3

i=1M
2
Fαi = 2M2 produces the cancellations

that are associated with the non-normal signs even though the potential is the sum

of normal sign contributions. Therefore if, contrary to the findings of Ref. [20],

LW fields contribute to the thermal free-energy with normal signs, one would avoid

the problem with a negative fermionic contribution to the energy density discussed

before.

We postpone investigation of the properties of this thermal potential until a

future time when we understand how to better justify the calculation.
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