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Abstract

The Exceptional Supersymmetric (SUSY) Standard Model (E6SSM) predicts three

families of Higgs doublets plus three Higgs singlets, where one family develops vac-

uum expectation values (VEVs), while the remaining two which do not are called

Inert. The model can account for the dark matter relic abundance if the two light-

est Inert neutralinos, identified as the (next-to) lightest SUSY particles ((N)LSPs),

have masses close to half the Z mass. In this case we find that the usual SM-like

Higgs boson decays more than 95% of the time into either LSPs or NLSPs. The lat-

ter case produces a final state containing two leptons l+l− with an invariant mass

less than or about 10 GeV. We illustrate this scenario with a set of benchmark

points satisfying phenomenological constraints and the WMAP dark matter relic

abundance. This scenario also predicts other light Inert chargino and neutralino

states below 200GeV, and large LSP direct detection cross-sections close to current

limits and observable soon at XENON100.
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1. Introduction

The discovery of the Higgs boson, the last missing piece in the Standard Model (SM) of

particle physics, is one of the main goals of upcoming accelerators. It is expected that the

Higgs particle will be detected at the Large Hadron Collider (LHC) in the near future.

The strategy for Higgs searches depends on the decay branching fractions of the Higgs

boson to different channels. Physics beyond the Standard Model may affect the Higgs

decay rates to SM particles and give rise to new channels of Higgs decays requiring a

drastic change in the strategy for Higgs boson searches (for recent reviews of nonstandard

Higgs boson decays see [1]). In particular, there exist several extensions of the Standard

Model in which the Higgs boson can decay with a substantial branching fraction into

particles which can not be directly detected. Invisible Higgs decay modes may occur

in models with an enlarged symmetry breaking sector (Majoron models, SM with extra

singlet scalar fields etc.) [2]-[5], in “hidden valley” models [6], in the SM with a fourth

generation of fermions [7]-[8], in the models with compact and large extra dimensions [5],

[9]-[10], in the littlest Higgs model with T-parity [11] etc. 1.

Another example wherein invisible decay modes can occur is supersymmetry (SUSY),

with the lightest Higgs boson decaying into the lightest SUSY particle (LSP). R–parity

conservation ensures the stability of the LSP so that the LSP can play the role of cold

dark matter (CDM) [13]. In most scenarios the LSP is the lightest neutralino, a linear

combination of neutral electroweak (EW) gauginos and Higgsinos. In some regions of

the parameter space the lightest Higgs boson in the Minimal Supersymmetric Standard

Model (MSSM) decays into the lightest neutralino with a relatively large branching ratio,

therefore giving rise to invisible final states if R–parity is conserved [14].

LEP and Tevatron data still allow the neutralino LSP to be sufficiently light that

the decays of the lightest Higgs into these neutralinos is kinematically allowed. Light

neutralinos can annihilate efficiently through a Z-pole resulting in a reasonable density of

dark matter. Moreover the Cryogenic Dark Matter Search (CDMS) experiment recently

reported the observation of 2 events possibly due to dark matter scattering with an ex-

pected background of about 0.8 events [15]. CDMS events suggest that the mass of the

dark matter particles are around 40 − 80 GeV while their spin independent elastic cross

section is σSI ≈ few×10−44 cm2. If recent results of the CDMS experiment get confirmed

then scenarios with invisible decays of the Higgs boson will become rather plausible.

Certainly the presence of invisible decays modifies considerably Higgs boson searches,

making Higgs discovery much more difficult. If the Higgs is mainly invisible, then the

1In the context of the so-called “nightmare scenario”, in which the LHC produces nothing beyond the

SM, Higgs decays into and interactions with dark matter particles were discussed in [12].



visible branching ratios will be dramatically reduced, preventing detection in the much

studied channels at the LHC and the Tevatron. In the case where invisible Higgs decays

dominate it is impossible to fully reconstruct a resonance and it is very challenging to

identify it at the collider experiments, i.e. quantum numbers remain unknown. At e+e−

colliders, the problems related to the observation of the invisible Higgs are less severe

[3],[16] since it can be tagged through the recoiling Z. Presently, the LEP II collaborations

exclude invisible Higgs masses up to 114.4 GeV [17]2.

On the other hand, Higgs searches at hadron colliders are more difficult in the pres-

ence of such invisible decays. Previous studies have analysed ZH and WH associated

production [4], [18]-[19] as well as tt̄H production [20] and tt̄V V (bb̄V V ) production [21]

as promising channels. The possibility of observing an “invisible” Higgs boson in central

exclusive diffractive production at the LHC was studied in [8]. Another proposal is to

observe such an invisible Higgs in inelastic events with large missing transverse energy

and two high ET jets. In this case the Higgs boson is produced by V V fusion and has large

transverse momentum resulting in a signal with two quark jets with distinctive kinematic

distributions as compared to Zjj and Wjj backgrounds [10],[19],[22].

Consideration of the possibility that the dominant Higgs decays will be invisible would

lead to drastic changes in the strategy of Higgs boson searches. Therefore, it is a rather

interesting subject of investigation as to the nature and extent of invisibility acquired by

Higgs, and how it can be related to specific aspects of the models concerned, especially

well motivated SUSY extensions of the SM. In this article, we consider the exotic decays of

the lightest Higgs boson and associated novel collider signatures within the Exceptional

Supersymmetric Standard Model (E6SSM) [23]-[24]. This E6 inspired SUSY model is

based on the low–energy Standard Model gauge group together with an extra U(1)N

gauge symmetry under which right-handed neutrinos have zero charge. In the E6SSM the

µ problem is solved in a similar way as in the Next–to–Minimal Supersymmetric Standard

Model (NMSSM), but without the accompanying problems of singlet tadpoles or domain

walls. Because right–handed neutrinos do not participate in the gauge interactions in this

model they can be superheavy, shedding light on the origin of the mass hierarchy in the

lepton sector and providing a mechanism for the generation of the baryon asymmetry in

the Universe via leptogenesis [25].

The particle spectrum of the E6SSM contains exotic matter. In particular, it involves

three SM singlet superfields that have non-zero U(1)N charges. One of these singlets

acquires a non-zero vacuum expectation value (VEV), breaking U(1)N symmetry and

2Similar limits could apply to the case where the Higgs decays some fraction of the time into soft

lepton pairs plus missing energy, as will be the case for some of the novel Higgs decays considered in this

paper.



inducing the effective µ term and the masses of the the exotic fermions. The masses of

the fermion components of the two other singlet superfields (Inert neutralinos) are also

related to the VEVs of the Higgs doublets. Because the Yukawa couplings that determine

the strength of these interactions are constrained by the requirement of the validity of

perturbation theory up to the Grand Unification scale the masses of the corresponding

Inert neutralinos are expected to be lighter than 60 − 65 GeV. As a result the lightest

Inert neutralino tends to be the lightest SUSY particle in the spectrum. Such a neutralino

can give an appropriate contribution to the dark matter density consistent with the recent

observations if it has mass 35− 50 GeV [26]. In this case the lightest Higgs boson decays

predominantly into Inert neutralino whereas usual Higgs branching ratios are less than a

few percent.

The layout of this paper is as follows. In Section 2 we briefly review the E6SSM. In

Sections 3 and 4 the spectrum and couplings of the Inert neutralinos, charginos and Higgs

bosons are specified. The novel decays of the lightest CP-even Higgs state and dark matter

constraints are discussed in Section 5. In section 6 we discuss the benchmark points and

the experimental constraints and predictions. Section 7 summarizes and concludes the

paper.

2. Exceptional SUSY model

The E6SSM is based on the SU(3)C × SU(2)W × U(1)Y × U(1)N gauge group which is a

subgroup of E6. The additional low energy U(1)N , which is not present either in the SM

or in the MSSM, is a linear superposition of U(1)χ and U(1)ψ, namely

U(1)N =
1

4
U(1)χ +

√
15

4
U(1)ψ , (1)

where the U(1)ψ and U(1)χ symmetries are defined by:

E6 → SO(10)× U(1)ψ , SO(10) → SU(5) × U(1)χ .

Thus the E6SSM can originate from an E6 GUT gauge group which is broken at the GUT

scale MX . The extra U(1)N gauge symmetry is defined such that right–handed neutrinos

carry zero charges.

In E6 theories the anomalies cancel automatically; all models that are based on the

E6 subgroups and contain complete representations of E6 should be anomaly–free. Con-

sequently, in order to make a supersymmetric model with an extra U(1)N anomaly–free,

one is forced to augment the minimal particle spectrum by a number of exotics which,

together with ordinary quarks and leptons, form complete fundamental 27 representations



of E6. Thus the particle content of the E6SSM involves at least three fundamental repre-

sentations of E6 at low energies. These multiplets decompose under the SU(5) × U(1)N

subgroup of E6 as follows [27]:

27i →
(

10,
1√
40

)

i

+

(

5∗,
2√
40

)

i

+

(

5∗, − 3√
40

)

i

+

(

5,− 2√
40

)

i

+

(

1,
5√
40

)

i

+ (1, 0)i .
(2)

The first and second quantities in brackets are the SU(5) representation and extra U(1)N

charge respectively, while i is a family index that runs from 1 to 3. An ordinary SM family,

which contains the doublets of left–handed quarks Qi and leptons Li, right-handed up–

and down–quarks (uci and dci) as well as right–handed charged leptons, is assigned to
(

10,
1√
40

)

i

+

(

5∗,
2√
40

)

i

. Right-handed neutrinos N c
i should be associated with the

last term in Eq. (2), (1, 0)i. Because they do not carry any charges right-handed neutrinos

are expected to be superheavy allowing them to be used for both the see–saw mechanism

and leptogenesis. The next-to-last term,

(

1,
5√
40

)

i

, represents SM-singlet fields Si,

which carry non-zero U(1)N charges and therefore survive down to the EW scale. The pair

of SU(2)W–doublets (Hd
i and Hu

i ) that are contained in

(

5∗, − 3√
40

)

i

and

(

5, − 2√
40

)

i
have the quantum numbers of Higgs doublets. They form either Higgs or Inert Higgs

SU(2)W multiplets 3. Other components of these SU(5) multiplets form colour triplets

of exotic quarks Di and Di with electric charges −1/3 and +1/3, respectively. These

exotic quark states carry a B −L charge ±2/3, twice that of ordinary ones. Therefore in

phenomenologically viable E6 inspired models they can be either diquarks or leptoquarks.

In addition to the complete 27i multiplets the low energy matter content of the E6SSM

can be supplemented by an SU(2)W doublet L̂4 and anti-doublet L̂4 from the extra 27′

and 27′ to preserve gauge coupling unification. These components of the E6 fundamental

representation originate from

(

5∗,
2√
40

)

of 27′ and

(

5, − 2√
40

)

of 27′ by construction.

Thus, in addition to a Z ′ corresponding to the U(1)N symmetry, the E6SSM involves

extra matter beyond the MSSM that forms three 5 + 5∗ representations of SU(5) plus

three SU(5) singlets with U(1)N charges. The analysis performed in [28] shows that the

unification of gauge couplings in the E6SSM can be achieved for any phenomenologically

acceptable value of α3(MZ) consistent with the measured low energy central value, unlike

in the MSSM which, ignoring the effects of high energy threshold corrections, requires val-

ues of α3(MZ) which are significantly above the experimentally measured central value.

The presence of a Z ′ boson and of exotic quarks predicted by the E6SSM provides spec-

tacular new physics signals at the LHC which were discussed in [23]–[24], [29]. Recently

3We use the terminology “Inert Higgs” to denote Higgs–like doublets that do not develop VEVs.



the particle spectrum and collider signatures associated with it were studied within the

constrained version of the E6SSM [30].

In general, the E6 symmetry does not forbid lepton and baryon number violating

operators that result in rapid proton decay. Moreover, exotic particles in E6 inspired

SUSY models give rise to new Yukawa interactions that induce unacceptably large non–

diagonal flavour transitions. To suppress these effects in the E6SSM an approximate ZH
2

symmetry is imposed. Under this symmetry all superfields except one pair of Hd
i and Hu

i

(say Hd ≡ Hd
3 and Hu ≡ Hu

3 ) and one SM-type singlet field (S ≡ S3) are odd. The ZH
2

symmetry reduces the structure of the Yukawa interactions to

WE6SSM ≃ λŜ(ĤuĤd) + λαβŜ(Ĥd
αĤ

u
β ) + f̃αβŜα(Ĥ

d
βĤu) + fαβŜα(ĤdĤ

u
β ) + κijŜ(D̂iD̂j)

+ hUij(ĤuQ̂i)û
c
j + hDij (ĤdQ̂i)d̂

c
j + hEij(ĤdL̂i)ê

c
j + hNij (ĤuL̂i)N̂

c
j

+
1

2
MijN̂

c
i N̂

c
j + µ′(L̂4L̂4) + hE4j(ĤdL̂4)ê

c
j + hN4j(ĤuL̂4)N̂

c
j , (3)

where α, β = 1, 2 and i, j = 1, 2, 3 . The SU(2)W doublets Ĥu and Ĥd and SM-type

singlet field Ŝ, that are even under the ZH
2 symmetry, play the role of Higgs fields. At

the physical vacuum the Higgs fields develop VEVs

〈Hd〉 =
1√
2

(

v1

0

)

, 〈Hu〉 =
1√
2

(

0

v2

)

, 〈S〉 =
s√
2
. (4)

generating the masses of the quarks and leptons. Instead of v1 and v2 it is more convenient

to use tan β = v2/v1 and v =
√

v2
1 + v2

2 = 246 GeV. The VEV of the SM-type singlet

field, s, breaks the extra U(1)N symmetry thereby providing an effective µ term as well

as the necessary exotic fermion masses and also inducing that of the Z ′ boson. Therefore

the singlet field S must acquire a large VEV in order to avoid conflict with direct particle

searches at present and past accelerators. This also requires the Yukawa couplings λi

and κi to be reasonably large. If λi or κi are large enough at the GUT scale they affect

the evolution of the soft scalar mass m2
S of the singlet field S rather strongly resulting

in a negative value of m2
S at low energies which triggers the breakdown of the U(1)N

symmetry.

Note that the surviving components from the 27′ and 27′ manifest themselves in the

Yukawa interactions (3) as fields with lepton number L = ±1. The corresponding mass

term µ′L4L4 in the superpotential (3) is not involved in the process of electroweak sym-

metry breaking (EWSB). Moreover this term is not suppressed by the E6 symmetry.

Therefore the parameter µ′ remains arbitrary. Gauge coupling unification requires µ′ to

be below about 100 TeV [28]. Thus we assume that the scalar and fermion components

of the superfields L̂4 and L̂4 are very heavy so that they decouple from the rest of the

particle spectrum.



Although ZH
2 eliminates any problems related with baryon number violation and non-

diagonal flavour transitions it also forbids all Yukawa interactions that would allow the

exotic quarks to decay. Since models with stable charged exotic particles are ruled out

by various experiments [31] the ZH
2 symmetry must be broken. At the same time, the

breakdown of ZH
2 should not give rise to operators that would lead to rapid proton decay.

There are two ways to overcome this problem: the Lagrangian must be invariant with re-

spect to either a ZL
2 symmetry, under which all superfields except leptons are even (Model

I), or a ZB
2 discrete symmetry, which implies that exotic quark and lepton superfields are

odd whereas the others remain even (Model II). If the Lagrangian is invariant under the

ZL
2 symmetry, then the terms in the superpotential which permit exotic quarks to decay

and are allowed by the E6 symmetry can be written in the form

W1 = gQijkD̂i(Q̂jQ̂k) + gqijkD̂id̂
c
jû
c
k , (5)

that implies that exotic quarks are diquarks. If ZB
2 is imposed then the following couplings

are allowed:

W2 = gEijkê
c
iD̂j û

c
k + gDijk(Q̂iL̂j)D̂k . (6)

In this case baryon number conservation requires the exotic quarks to be leptoquarks.

3. Inert charginos and neutralinos

From here on we assume that ZH
2 symmetry violating couplings are small and can be

neglected in our analysis. This assumption can be justified if we take into account that the

ZH
2 symmetry violating operators may give an appreciable contribution to the amplitude

of K0 −K
0

oscillations and give rise to new muon decay channels like µ → e−e+e−. In

order to suppress processes with non–diagonal flavour transitions the Yukawa couplings

of the exotic particles to the quarks and leptons of the first two generations should be

smaller than 10−3 − 10−4. Such small ZH
2 symmetry violating couplings can be ignored

in the first approximation.

In this approximation and given the previous assumption that only Hu, Hd and S ac-

quire non-zero VEVs the charged components of the Inert Higgsinos (H̃u+
2 , H̃u+

1 , H̃d−
2 , H̃d−

1 )

and ordinary chargino states do not mix. The neutral components of the Inert Higgsinos

(H̃d0
1 , H̃d0

2 , H̃u0
1 , H̃u0

2 ) and Inert singlinos (S̃1, S̃2) also do not mix with the ordinary

neutralino states. Moreover if ZH
2 symmetry was exact then both the lightest state in the

ordinary neutralino sector and the lightest Inert neutralino would be absolutely stable.

Therefore, although ZH
2 symmetry violating couplings are expected to be rather small,

we shall assume that they are large enough to allow either the lightest neutralino state



or the lightest Inert neutralino to decay within a reasonable time, the lighter of the two

being the stable LSP.

In the field basis (H̃d0
2 , H̃

u0
2 , S̃2, H̃

d0
1 , H̃

u0
1 , S̃1) the mass matrix of the Inert neutralino

sector takes a form

MIN =





A22 A21

A12 A11



 , (7)

where Aαβ are 3 × 3 sub-matrices given by [26]:

Aαβ = − 1√
2











0 λαβs f̃βαv sin β

λβαs 0 fβαv cosβ

f̃αβv sin β fαβv cosβ 0











, (8)

so thatAαβ = ATβα. In the basis of Inert chargino interaction states (H̃u+
2 , H̃u+

1 , H̃d−
2 , H̃d−

1 )

the corresponding mass matrix can be written as

MIC =





0 CT

C 0



 , Cαβ =
1√
2
λαβ s . (9)

where Cαβ are 2 × 2 sub-matrices. From Eqs. (7)–(9) one can see that in the exact ZH
2

symmetry limit the spectrum of the Inert neutralinos and charginos in the E6SSM can be

parametrised in terms of

λαβ , fαβ , f̃αβ , tanβ , s . (10)

In other words the masses and couplings of the Inert neutralinos are determined by 12

Yukawa couplings, which can be complex, tanβ and s. Four of the Yukawa couplings

mentioned above, i.e. λαβ, as well as the VEV of the SM singlet field s set the masses

and couplings of the Inert chargino states. Six off–diagonal Yukawa couplings define the

mixing between the two families of the Inert Higgsinos and singlinos.

In the following analysis we shall choose the VEV of the SM singlet field to be

large enough (s & 2400 GeV) so that the experimental constraints on Z ′ boson mass

(MZ′ & 865 GeV) and Z − Z ′ mixing are satisfied. In order to avoid the LEP lower limit

on the masses of Inert charginos the Yukawa couplings λαβ are chosen so that all Inert

chargino states are heavier than 100 GeV. In addition, we also require the validity of

perturbation theory up to the GUT scale and that constrains the allowed range of all

Yukawa couplings.

The theoretical and experimental restrictions specified above set very strong limits on

the masses and couplings of the lightest Inert neutralinos. In particular, our numerical

analysis indicates that the lightest and second lightest Inert neutralinos are always light.



They typically have masses below 60−65 GeV. These neutralinos are predominantly Inert

singlinos. From our numerical analysis it follows that the lightest and second lightest Inert

neutralinos might have rather small couplings to the Z–boson so that any possible signal

which these neutralinos could give rise to at LEP would be extremely suppressed. As a

consequence such Inert neutralinos would remain undetected. At the same time four other

Inert neutralinos, which are approximately linear superpositions of neutral components

of Inert Higgsinos, are normally heavier than 100 GeV.

3.1 The diagonal Inert Yukawa approximation

In order to clarify the results of our numerical analysis, it is useful to consider a few simple

cases that give some analytical understanding of our calculations. In the simplest case

when all off–diagonal Yukawa couplings vanish, considered in [26],

λαβ = λα δαβ , fαβ = fα δαβ , f̃αβ = f̃α δαβ ,

the mass matrix of Inert neutralinos reduces to the block diagonal form while the masses

of the Inert charginos are given by

mχ±
α

=
λα√

2
s . (11)

In the limit where fα = f̃α one can easily prove using the method proposed in [32]

that there are theoretical upper bounds on the masses of the lightest and second lightest

Inert neutralino states. The corresponding theoretical restrictions are

|mχ0
α
|2 . µ2

α =
1

2

[

|mχ±
α
|2 +

f 2
αv

2

2

(

1 + sin2 2β

)

−
√

(

|mχ±
α
|2 +

f 2
αv

2

2
(1 + sin2 2β)

)2

− f 4
αv

4 sin2 2β

]

.

(12)

The value of µα decreases with increasing |mχ±
α
| and tanβ, hence reaching its maximum

value of fα√
2
v for mχ±

α
→ 0 and tanβ → 1. At large values of |mχ±

α
| and tan β, Eq. (12)

simplifies resulting in

|mχ0
α
|2 .

f 4
αv

4 sin2 2β

4

(

|mχ±
α
|2 +

f 2
αv

2

2
(1 + sin2 2β)

) . (13)

Eqs. (12)-(13) demonstrate that the upper bound on the mass of the lightest Inert neu-

tralino also depends on the values of Yukawa couplings fα and f̃α. For relatively small

values of tanβ, the theoretical restrictions on fα and f̃α, due to the requirement that the

perturbation theory is valid up to the GUT scale, become weaker with increasing tan β.

However, at large values of tanβ the upper bounds on |mχ0
α
| become rather small according



to Eqs. (12)-(13). When tanβ tends to unity, µ2
α also decreases because the constraints on

fα and f̃α become more and more stringent. The theoretical restrictions on |mχ0
α
| achieve

their maximal value around tanβ ≃ 1.5. For this value of tan β the requirement of the

validity of perturbation theory up to the GUT scale implies that f1 = f̃1 = f2 = f̃2 are

less than 0.6. As a consequence the lightest Inert neutralinos are lighter than 60−65 GeV

for |mχ±
α
| > 100 GeV.

The Inert neutralino mass matrix (7)-(8) can be diagonalized using the neutralino

mixing matrix defined by

Na
i M

abN b
j = miδij , no sum on i. (14)

In the limit where off–diagonal Yukawa couplings vanish and λαs ≫ fαv, f̃αv the eigen-

values of the Inert neutralino mass matrix can be easily calculated (see [26]). The masses

of the four heaviest Inert neutralinos are set by the masses of Inert chargino states

mχ0

3,4,5,6
≃ ±mχ±

α
− f̃αfαv

2 sin 2β

4mχ±
α

. (15)

The masses of the two lightest Inert neutralinos are determined by the values of the

Yukawa couplings f̃α and fα

mχ0
α
≃ f̃αfαv

2 sin 2β

2mχ±
α

. (16)

These are naturally small and hence good candidates for being the LSP and NLSP since

mχ±
α
∼ s from Eq. (11) and hence mχ0

α
∼ v2/s as observed in [26].

Again one can see that the masses of the lightest Inert neutralino states decrease with

increasing tan β and chargino masses. In this approximation the lightest Inert neutralinos

are made up of the following superposition of interaction states

χ̃0
α = N1

αH̃
d0
2 +N2

αH̃
u0
2 +N3

αS̃2 +N4
αH̃

d0
1 +N5

αH̃
u0
1 +N6

αS̃1 , (17)

where

N1
1 = N2

1 = N3
1 = 0 , N4

1 ≃ −f1v cosβ

λ1s
, N5

1 ≃ − f̃1v sin β

λ1s
,

N6
1 ≃ 1 − 1

2

(

v

λ1s

)2
[

f 2
1 cos2 β + f̃ 2

1 sin2 β
]

;

N1
2 ≃ −f2v cos β

λ2s
, N2

2 ≃ − f̃2v sin β

λ2s
, N4

2 = N5
2 = N6

2 = 0 ,

N3
2 ≃ 1 − 1

2

(

v

λ2s

)2
[

f 2
2 cos2 β + f̃ 2

2 sin2 β
]

.

(18)

From Eq. (18) it becomes clear that the lightest and second lightest Inert neutralinos are

mostly Inert singlinos.



Using the above lightest and second lightest Inert neutralino compositions it is straight-

forward to derive the couplings of these states to the Z-boson. In general the part of the

Lagrangian that describes the interactions of Z with χ0
1 and χ0

2, can be presented in the

following form:

LZχχ =
∑

α,β

MZ

2v
Zµ

(

χ0T
α γµγ5χ

0
β

)

RZαβ ,

RZαβ = N1
αN

1
β −N2

αN
2
β +N4

αN
4
β −N5

αN
5
β .

(19)

In the case where off–diagonal Yukawa couplings go to zero while λαs ≫ fαv, f̃αv the

relative couplings of the lightest and second lightest Inert neutralino states to the Z-boson

are given by

RZαβ = RZαα δαβ , RZαα =
v2

2m2
χ±

α

(

f 2
α cos2 β − f̃ 2

α sin2 β

)

. (20)

Eq. (20) demonstrates that the couplings of χ0
1 and χ0

2 to the Z-boson can be very strongly

suppressed or even tend to zero. This happens when |fα| cosβ = |f̃α| sin β, which is when

χ0
α contains a completely symmetric combination of H̃d0

α and H̃u0
α . Eq. (20) also indicates

that the couplings of χ0
1 and χ0

2 to Z are always small when Inert charginos are rather

heavy or f̃α and fα are small (i.e. mχ0
α
→ 0).

3.2 ∆27 and pseudo-Dirac lightest neutralino states

In order to provide an explanation of the origin of the aproximate ZH
2 symmetry that sin-

gles out the third family of Higgs doublets and singlets, and to account for tri-bimaximal

mixing and other features of the quark and lepton spectrum, a ∆27 family symmetry has

been applied to the E6SSM [33] 4. The addition of a ∆27 family symmetry implies an Inert

neutralino mass matrix with A11 ≈ A22 ≈ 0, where Aαβ are defined in Eq. (7), leading to

approximately degenerate lightest neutralino states with a pseudo-Dirac structure.

When all flavour diagonal Yukawa couplings λαα, fαα and f̃αα exactly vanish, i.e.

A11 = A22 = 0, all Inert Higgsinos and singlinos form Dirac states. In this limit the

Lagrangian of the E6SSM is invariant under a U(1) global symmetry. The fermion com-

ponents of the Inert Higgs superfields transform under this symmetry as follows:

S̃1 → eiαS̃1 , H̃u
1 → eiαH̃u

1 , H̃d
1 → eiαH̃d

1 ,

S̃2 → e−iαS̃2 , H̃u
2 → e−iαH̃u

2 , H̃d
2 → e−iαH̃d

2 .
(21)

4The corresponding mass terms come from the product (3 × 3 × 3f)(3 × 3̄′f), where 3, 3f and 3̄′f are

triplet representations of ∆27. The 27i multiplets that contain quarks and leptons form 3 representations

of the ∆27 group. 3f and 3̄′f contain flavon fields that break ∆27. In the considered model the non-zero

mass of the lightest Inert neutralino state is induced by the symmetric invariant that appears in the

(3 × 3× 3) decomposition of the ∆27 triplet representation (i.e. 123 + 231 + 312 + 213 + 321 + 132) [34].



In the above limiting case the lightest Inert neutralino is a Dirac state formed predom-

inantly by S̃1 and S̃2. In this case the LSP and its antiparticle have opposite charges

with respect to the extra global U(1) and this might lead to so-called asymmetric dark

matter (ADM) [35]–[37]. In the framework of the ADM scenario there can be an asym-

metry between the density of dark matter particles and their antiparticles in the early

universe similar to that for ordinary baryons. This may have a considerable effect on the

relic density calculations [36]. In particular, if an asymmetry exists between the number

density of dark matter particles and their antiparticles in the early universe, then one

can get an appreciable dark matter density even if the dark matter particle–antiparticle

annihilation cross section is very large like in the case of baryons. Moreover if most of the

dark matter antiparticles are eliminated by annihilation with their particles then such an

ADM scenario does not have the usual indirect signatures associated with the presence

of dark matter (e.g. there is no high energy neutrino signal from annihilations in the Sun

etc.). At the same time, a relatively high concentration of dark matter particles can build

up in the Sun altering heat transport in the solar interior and affecting the low energy

neutrino fluxes [37].

In practice the ∆27 scenario tells us that we are somewhat away from the above limit-

ing case, with a broken global U(1) symmetry leading to almost degenerate pseudo-Dirac

lightest neutralinos, where the relic density of the LSP can be calculated by standard

methods. It will turn out that the LSP cannot be too light (must be of order MZ/2)

in order not to have too high a cosmological relic density. At the same time we will see

that the two lightest neutralinos cannot be too heavy in order for perturbation theory

to be valid up to the GUT scale. In practice this means that in realistic scenarios the

two lightest Inert neutralino states are rather close in mass. The ∆27 scenario provides a

natural explanation of this successful neutralino mass pattern. It is worth noting that the

results from the previous section can be reinterpreted in terms of this scenario. Specif-

ically in the case where A11 = A22 = 0 and A21 = A12 a block diagonalisation of the

Inert neutralino mass matrix (7) yields A22 → A′
22 = −A21 and A11 → A′

11 = A21 (with

A21 = A12 → A′
21 = A′

12 = 0). This only corresponds to a redefinition of the generations 1

and 2 and does not mix fields of different hypercharge. This provides the following dictio-

nary between these two scenarios: λ′11 = −λ′22 = λ21; f
′
11 = −f ′

22 = f21; f̃
′
11 = −f̃ ′

22 = f̃21.

Rewriting the Inert neutralino mass matrix in this block diagonal form also makes it clear

that the RZ12 coupling vanishes in this limit, as it did in the subsection (3.1).

3.3 Scenario with one light family of Inert Higgsinos

Another limit that it is worth considering corresponds to the case where one pair of Inert

Higgs doublets decouples from the rest of the spectrum. This occurs when either the



corresponding states are extremely heavy (& 1 TeV) or they have rather small couplings

to other Inert Higgs fields. When H̃d0
2 and H̃u0

2 decouple, the Inert neutralino mass matrix

(7) reduces to a 4×4 matrix. If λ11s≫ fα1v, f̃α1v, the Inert Higgs states associated with

H̃d0
1 and H̃u0

1 can be integrated out. Then the resulting 2× 2 mass matrix can be written

as follows

MIS =
v2 sin 2β

4mχ±

1





2f̃11f11 f̃11f21 + f11f̃21

f̃11f21 + f11f̃21 2f̃21f21



 . (22)

The masses of the lightest and second lightest Inert neutralinos, which are predominantly

superpositions of the Inert singlinos S̃1 and S̃2, are given by

mχ0

1
, χ0

2
=
v2 sin 2β

4mχ±

1

[

f̃11f11 + f̃21f21 ±
√

(f 2
11 + f 2

21)(f̃
2
11 + f̃ 2

21)

]

. (23)

From Eq. (23) it is easy to see that the substantial masses of the lightest and second

lightest Inert neutralinos can be induced even if only one family of the Inert Higgsinos

couples to S1 and S2.

Using Eq. (19) one can also calculate the couplings of χ0
1 and χ0

2 to the Z-boson

RZ11 =
v2

2m2
χ±

1

[

(f11 cos θ + f21 sin θ)2 cos2 β − (f̃11 cos θ + f̃21 sin θ)2 sin2 β

]

,

RZ22 =
v2

2m2
χ±

1

[

(f21 cos θ − f11 sin θ)2 cos2 β − (f̃21 cos θ − f̃11 sin θ)2 sin2 β

]

,

RZ12 = RZ21 =
v2

2m2
χ±

1

[(

1

2
(f 2

21 − f 2
11) sin 2θ + f11f21 cos 2θ

)

cos2 β

−
(

1

2
(f̃ 2

21 − f̃ 2
11) sin 2θ + f̃11f̃21 cos 2θ

)

sin2 β

]

,

(24)

where tan 2θ = (f̃11f21 + f̃21f11)/(f̃21f21 − f̃11f11). Again from Eqs. (24) it follows that

RZ11, RZ22 and RZ12 are typically small since mχ±
α
∼ s from Eq. (11) and hence they

are proportional to v2/s2. However this assumes the lightest Inert chargino is rather

heavy. Alternatively the couplings may be small due to a cancellation between different

contributions in Eqs. (24), and/or the f-couplings being small (i.e. mχ0

1
, χ0

2
→ 0).

The simple hierarchical structure of the spectrum of the Inert neutralinos considered

above allows us to highlight an interesting scenario which does not normally appear in the

simplest SUSY extensions of the SM such as the MSSM and NMSSM. When f̃11 = f21 = 0

the diagonal entries of the mass matrix (22) vanish leading to the formation of a Dirac

lightest Inert neutralino state. In this case the Lagrangian of the model is invariant under

extra U(1) global symmetry transformations 5 S̃1 → eiαS̃1 , H̃u
1 → e−iαH̃u

1 , H̃d
1 → eiαH̃d

1 ,

S̃2 → e−iαS̃2 . In fact if the E6SSM possess such an exact U(1) global symmetry, then the

spectrum of the Inert neutralinos contains a set of Dirac states only.

5Similar results can be obtained for f11 = f̃21 = 0



4. Higgs masses and couplings

The presence of light Inert neutralinos in the particle spectrum of the E6SSM makes

possible the decays of the Higgs bosons into these exotic final states. In this and the next

section we argue that such decays may result in the modification of the SM-like Higgs

signal at current and future colliders. Since our main concern in this paper is the decays of

the SM-like lightest Higgs boson, we shall ignore the effects of the Inert Higgs scalars and

pseudoscalars which do not mix appreciably with the scalar sector responsible for EWSB.

We also assume that all the Inert bosons are heavier than the SM-like Higgs boson.

The sector responsible for the EWSB in the E6SSM includes two Higgs doublets Hu

and Hd as well as the SM singlet field S. The Higgs effective potential can be written in

the following form:

V = VF + VD + Vsoft + ∆V ,

VF = λ2|S|2(|Hd|2 + |Hu|2) + λ2|(HdHu)|2 ,

VD =
g2
2

8

(

H†
dσaHd +H†

uσaHu

)2

+
g′2

8

(

|Hd|2 − |Hu|2
)2

+

+
g

′2
1

2

(

Q̃1|Hd|2 + Q̃2|Hu|2 + Q̃S|S|2
)2

,

Vsoft = m2
S|S|2 +m2

1|Hd|2 +m2
2|Hu|2 +

[

λAλS(HuHd) + h.c.

]

,

(25)

where g2, g
′ =

√

3/5g1 and g
′

1 are the low energy SU(2)W , U(1)Y and U(1)N gauge

couplings while Q̃1, Q̃2 and Q̃S are the effective U(1)N charges of Hd, Hu and S. The

term ∆V represents the contribution from loop corrections to the Higgs effective potential.

Here HT
d = (H0

d , H
−
d ), HT

u = (H+
u , H

0
u) and (HdHu) = H+

u H
−
d −H0

uH
0
d .

Initially the EWSB sector involves ten degrees of freedom. However four of them are

massless Goldstone modes which are swallowed by the W±, Z and Z ′ gauge bosons that

gain non-zero masses. In the limit where s ≫ v the masses of the W±, Z and Z ′ gauge

bosons are given by

MW =
g2

2
v , MZ ≃ ḡ

2
v , MZ′ ≃ g′1Q̃S s ,

where ḡ =
√

g2
2 + g′2. When CP–invariance is preserved the other degrees of freedom form

two charged, one CP–odd and three CP-even Higgs states. The masses of the charged

and CP-odd Higgs bosons are

m2
H± =

√
2λAλ

sin 2β
s− λ2

2
v2 +M2

W + ∆± , m2
A ≃

√
2λAλ

sin 2β
s+ ∆A , (26)

where ∆± and ∆A are the loop corrections.



The CP–even Higgs sector involves ReH0
d , ReH

0
u and ReS. In the field space basis

(h, H, N), rotated by an angle β with respect to the initial one,

ReH0
d = (h cosβ −H sin β + v1)/

√
2 ,

ReH0
u = (h sin β +H cosβ + v2)/

√
2 ,

Re S = (s+N)/
√

2 ,

(27)

the mass matrix of the CP–even Higgs sector takes the form [38]:

M2 =



















∂2V

∂v2

1

v

∂2V

∂v∂β

∂2V

∂v∂s

1

v

∂2V

∂v∂β

1

v2

∂2V

∂2β

1

v

∂2V

∂s∂β

∂2V

∂v∂s

1

v

∂2V

∂s∂β

∂2V

∂2s



















=









M2
11 M2

12 M2
13

M2
21 M2

22 M2
23

M2
31 M2

32 M2
33









, (28)

where

M2
11 =

λ2

2
v2 sin2 2β +

ḡ2

4
v2 cos2 2β + g

′2
1 v

2(Q̃1 cos2 β + Q̃2 sin2 β)2 + ∆11 ,

M2
12 = M2

21 =

(

λ2

4
− ḡ2

8

)

v2 sin 4β +
g

′2
1

2
v2(Q̃2 − Q̃1)×

×(Q̃1 cos2 β + Q̃2 sin2 β) sin 2β + ∆12 ,

M2
22 =

√
2λAλ

sin 2β
s+

(

ḡ2

4
− λ2

2

)

v2 sin2 2β +
g

′2
1

4
(Q̃2 − Q̃1)

2v2 sin2 2β + ∆22 ,

M2
23 = M2

32 = −λAλ√
2
v cos 2β +

g
′2
1

2
(Q̃2 − Q̃1)Q̃Svs sin 2β + ∆23 ,

M2
13 = M2

31 = −λAλ√
2
v sin 2β + λ2vs+ g

′2
1 (Q̃1 cos2 β + Q̃2 sin2 β)Q̃Svs+ ∆13 ,

M2
33 =

λAλ

2
√

2s
v2 sin 2β +M2

Z′ + ∆33 .

(29)

In Eq. (29) the ∆ij represent the contributions from loop corrections which in the leading

one–loop approximation are rather similar to the ones calculated in the NMSSM6. Since

the minimal eigenvalue of the mass matrix (28)–(29) is always less than its smallest

diagonal element, at least one Higgs scalar in the CP–even sector (approximately h)

remains always light, i.e. m2
h1

. M2
11. In the leading two–loop approximation the mass of

the lightest Higgs boson in the E6SSM does not exceed 150 − 155 GeV. When the SUSY

breaking scale MS and the VEV s of the singlet field are considerably larger than the EW

scale, the mass matrix (28)–(29) has a hierarchical structure and can be diagonalised using

the perturbation theory [38]-[40]. In this case the masses of the heaviest Higgs bosons are

6Note that the explicit expressions for ∆ij , ∆± and ∆A presented in the first paper in [38] contain a

typo. In the corresponding formulae µ is neither a parameter of the MSSM Lagrangian nor an effective

µ–term in the NMSSM. It has to be associated with the renormalisation scale.



closely approximated by the diagonal entries M2
22 and M2

33 [23]. As a result the mass of

one CP–even Higgs boson (approximately given by H) is governed by mA while the mass

of another one (predominantly the N singlet field) is set by MZ′. When λ & g′1, vacuum

stability requires mA to be considerably larger than MZ′ and the EW scale so that the

qualitative pattern of the Higgs spectrum is rather similar to the one which arises in the

PQ symmetric NMSSM [40]-[41]. In the considered limit the heaviest CP–even, CP–odd

and charged states are almost degenerate around mA and lie beyond the TeV range [23].

If all other Higgs states are much heavier than the lightest CP-even Higgs boson then

the lightest Higgs state (approximately given by h) manifests itself in the interactions

with gauge bosons and fermions as a SM–like Higgs boson. Since within the E6SSM the

mass of this state is predicted to be relatively low its production cross section at the LHC

should be large enough so that it can be observed in the near future. In this context it is

particularly interesting and important to analyse the decay modes of the lightest CP-even

Higgs state. Furthermore we concentrate on the decays of the SM–like Higgs boson into

the lightest and second lightest Inert neutralinos.

The couplings of the Higgs states to the Inert neutralinos originate from the inter-

actions of Hu, Hd and S with the Inert Higgs superfields in the superpotential. Using

Eqs. (27) one can express ReH0
d , ReH

0
u and ReS in terms of the components of the

CP–even Higgs basis h, H and N . At the same time the components of the CP–even

Higgs basis are related to the physical CP–even Higgs eigenstates by virtue of a unitary

transformation:








h

H

N









= U †









h1

h2

h3









. (30)

Combining all these expressions together one obtains an effective Lagrangian that de-

scribes the interactions of the Inert neutralinos with the CP-even Higgs eigenstates

LHχχ =
∑

i,j,m(−1)θi+θjXhm

ij

(

ψ0T
i (−iγ5)

θi+θjψ0
j

)

hm ,

Xhm

ij = − 1√
2
U †
Nhm

Λij −
1√
2

(

U †
hhm

cosβ − U †
Hhm

sin β

)

Fij

− 1√
2

(

U †
hhm

sin β + U †
Hhm

cosβ

)

F̃ij ,

Fij = f11N
6
i N

5
j + f12N

6
i N

2
j + f21N

3
i N

5
j + f22N

3
i N

2
j ,

F̃ij = f̃11N
6
i N

4
j + f̃12N

6
i N

1
j + f̃21N

3
i N

4
j + f̃22N

3
i N

1
j ,

Λij = λ11N
4
i N

5
j + λ12N

4
i N

2
j + λ21N

1
i N

5
j + λ22N

1
i N

2
j ,

(31)

where i, j = 1, 2, ...6 and m = 1, 2, 3. In Eq. (31) ψ0
i = (−iγ5)

θiχ0
i is the set of Inert

neutralino eigenstates with positive eigenvalues, while θi equals 0 (1) if the eigenvalue



corresponding to χ0
i is positive (negative). As before, the Inert neutralinos are labeled

according to increasing absolute value of mass, with ψ0
1 being the lightest Inert neutralino

and ψ0
6 the heaviest.

The expressions for the couplings of the Higgs scalars to the Inert neutralinos (31)

become much more simple in the case of the hierarchical structure of the Higgs spectrum.

In this case Uij is almost an identity matrix. As a consequence, the couplings of the SM-like

Higgs boson to the lightest and second lightest Inert neutralino states are approximately

given by

Xh1

γσ = − 1√
2

(

Fγσ cosβ + F̃γσ sin β

)

, (32)

where γ, σ = 1, 2, labeling the two light, mostly Inert singlino states. In the limit when

off-diagonal Yukawa couplings that determine the interactions of the inert Higgs fields

with Hu, Hd and S vanish, as defined in subsection (3.1), and Inert neutralino mass

matrix has a hierarchical structure (i.e. λαs ≫ fαv, f̃αv), one can use the expressions

(18) for Na
1,2 in order to derive the approximate analytical formulae for Xh1

γσ. Substituting

Eqs. (18) into (32) one obtains

Xh1

γσ ≃ |mχ0
σ
|

v
δγσ , (33)

These simple analytical expressions for the couplings of the SM–like Higgs boson to the

lightest and second lightest Inert neutralinos are not as surprising as they may first ap-

pear. When the Higgs spectrum is hierarchical, the VEV of the lightest CP–even state

is responsible for all light fermion masses in the E6SSM. As a result we expect that their

couplings to SM–like Higgs can be written as usual as being proportional to the mass

divided by the VEV. We see that this is exactly what is found in the limit of |mχ0
σ
| being

small.

5. Novel Higgs decays and Dark Matter

5.1 Higgs decay widths

The interaction Lagrangian (31) gives rise to decays of the lightest Higgs boson into Inert

neutralino pairs with partial widths given by

Γ(h1 → χ0
αχ

0
β) =

∆αβ

8πmh1

(

Xh1

αβ +Xh1

βα

)2[

m2
h1

− (|mχ0
α
| + (−1)θα+θβ |mχ0

β
|)2

]

×
√

(

1 − |mχ0
α
|2

m2
h1

−
|mχ0

β
|2

m2
h1

)2

− 4
|mχ0

α
|2|mχ0

β
|2

m4
h1

,

(34)

where ∆αβ =
1

2
(1) for α = β (α 6= β).



The partial widths associated with the exotic decays of the SM-like Higgs boson (34)

have to be compared with the Higgs decay rates into the SM particles. When the SM-like

Higgs state is relatively light (mh1
. 140 GeV) it decays predominantly into b-quark and

τ–lepton pairs. The partial decay width of the lightest CP–even Higgs boson into fermion

pairs is given by (for recent review see [42])

Γ(h1 → f f̄) = Nc
g2
2

32π

(

mf

MW

)2

g2
h1ffmh1

(

1 −
4m2

f

m2
h1

)3/2

. (35)

Eq. (35) can be used for the calculation of the lightest Higgs decay rate into τ–lepton pairs.

In this case the coupling of the lightest CP–even Higgs state to the τ–lepton normalized

to the corresponding SM coupling, i.e. gh1ττ , is given by

gh1ττ =
1

cosβ

(

U †
hh1

cosβ − U †
Hh1

sin β

)

. (36)

For a final state that involves b–quarks one has to include the QCD corrections. In

particular, the fermion mass in Eq. (35) should be associated with the running b–quark

mass mb(µ). The bulk of the QCD corrections are absorbed by using the running b–quark

mass defined at the appropriate renormalisation scale, i.e. at the scale of the lightest

Higgs boson mass (µ = mh1
) in the considered case. In addition to the corrections which

are associated with the running b–quark mass there are other QCD corrections to the

Higgs coupling to the b–quark that should be taken into account [43]. As a consequence,

the partial decay width of the lightest CP–even Higgs boson into b–quark pairs can be

calculated using Eq. (35) if one sets Nc = 3 and replaces

mf → mb(mh1
) ,

g2
h1ff

→ 1

cos2 β

(

U †
hh1

cos β − U †
Hh1

sin β

)2[

1 + ∆bb + ∆H

]

,

∆bb ≃ 5.67
ᾱs
π

+ (35.94 − 1.36Nf)
ᾱ2
s

π2
,

∆H ≃ ᾱ2
s

π2

(

1.57 − 2

3
log

m2
h1

m2
t

+
1

9
log2 m2

b

m2
h1

)

,

(37)

where ᾱs = αs(m
2
h1

). Here we neglect radiative corrections that originate from loop

diagrams that contain SUSY and exotic particles 7.

From Eqs. (33)–(35) one can see that in the E6SSM the branching ratios of the SM–like

Higgs state into the lightest and second lightest Inert neutralinos depend rather strongly

on the masses of these exotic particles. When the lightest Inert neutralino states are

relatively heavy, i.e. mχ1, χ2
& mb(mh1

), the lightest Higgs boson decays predominantly

into χαχβ while the branching ratios for decays into SM particles are suppressed. On the

7Radiative corrections that are induced by SUSY particles can be very important particularly in the

case of the bottom quark at high values of tanβ (for a review, see [44]).



other hand if the lightest Inert neutralinos have masses which are considerably smaller

than the masses of the b–quark and τ–lepton then the branching ratios of the exotic

decays of the SM–like Higgs state are small. In the E6SSM the lightest and second

lightest Inert neutralinos are expected to be heavier than a few MeV so that they would

not contribute to the expansion rate prior to nucleosynthesis and thus not modify Big

Bang nucleosynthesis (BBN).

5.2 Dark matter

More stringent constraints on the masses of the lightest Inert neutralino can be obtained

if we require that this exotic state accounts for all or some of the observed dark matter

relic density which is measured to be ΩCDMh
2 = 0.1099± 0.0062 [45]. If a theory predicts

a greater relic density of dark matter than this then it is ruled out, assuming standard

pre-BBN cosmology. A theory that predicts less dark matter cannot be ruled out in the

same way but then there would have to be other contributions to the dark matter relic

density.

In the limit where all non-SM fields other than the two lightest Inert neutralinos are

heavy (& TeV) the lightest Inert neutralino state in the E6SSM results in too large a

density of dark matter. As we noted in Section 3, χ̃0
1 is usually composed of Inert singlino

and has a mass (Eq. (16)) which is inversely proportional to the charged Higgsino mass.

Thus in this limit it is typically very light |mχ0
σ
| ≪ MZ . As a result the couplings of the

lightest Inert neutralino to gauge bosons, the SM-like Higgs state, quarks and leptons are

quite small leading to a relatively small annihilation cross section for χ̃0
1χ̃

0
1 → SM particles.

Since the dark matter number density is inversely proportional to the annihilation cross

section at the freeze-out temperature (see, for example [46]) the lightest Inert neutralino

state gives rise to a relic density that is typically much larger than its measured value.

Thus in the limit considered the bulk of the E6SSM parameter space that leads to small

masses of χ̃0
1 is ruled out.

The situation changes dramatically when the mass of the lightest Inert neutralino

increases. In this case the Higgsino components of χ̃0
1 become larger and as a consequence

the couplings of χ̃0
1 to the Z–boson grow [26]. A reasonable density of dark matter can

be obtained for |mχ0
σ
| ∼MZ/2 when the lightest Inert neutralino states annihilate mainly

through an s–channel Z–boson, via its Inert Higgsino doublet components which couple

to the Z–boson. It is worth noting that if χ̃0
1 was pure Inert Higgsino then the s–channel

Z–boson annihilation would proceed with the full gauge coupling strength leaving the

relic density too low to account for the observed dark matter. In the E6SSM the LSP is

mostly Inert singlino so that its coupling to the Z–boson is typically suppressed, since it

only couples through its Inert Higgsino admixture leading to an increased relic density.
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Figure 1: Contour plot of (Xh1

11 )2 and relic density Ωχh
2 regions in the (f, tan β)-plane with

s = 2400GeV, fαα = f̃αα = λαα = 0, f12 = f , f̃12 = f12/a, f21 = 1.02 · f12, f̃21 = 0.98 · f̃12,

a = 0.75 + 0.25 tan β and λ12 = λ21 = 0.06 (mχ±

1,2
= 101.8GeV). The red region is where the

prediction for Ωχh
2 is consistent with the measured one σ range of ΩCDMh2 = 0.1099 ± 0.0062.

The dark green region corresponds to D < 3 (D is defined in subsection 6.2) while the pale green

region represents the part of the parameter space in which D varies from 3 to 4. The grey area

indicates that D > 4. The blue region corresponds to mχ0

1

> MZ/2, while the dark blue region to

the right is ruled out by the requirement that perturbation theory remains valid up to the GUT

scale.

In practice, the appropriate value of ΩCDMh
2 can be achieved even if the coupling of χ̃0

1

to the Z–boson is relatively small. This happens when χ̃0
1 annihilation proceeds through

the Z–boson resonance, i.e. 2|mχ0
σ
| ≃ MZ [26, 47]. Thus scenarios which result in a

reasonable dark matter density correspond to lightest Inert neutralino masses that are

much larger than mb(mh1
), and hence the SM–like Higgs has very small branching ratios

into SM particles.

6. Benchmarks, constraints and predictions

In order to illustrate the features of the E6SSM mentioned in the previous section, we

shall specify a set of benchmark points (see Tables 1-2). For each benchmark scenario

we calculate the spectrum of the Inert neutralinos, Inert charginos and Higgs bosons
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Figure 2: Contour plot of (Xh1

11 )2 and relic density Ωχh
2 regions in the (f, tan β)-plane with

s = 2400GeV, fαα = f̃αα = λαα = 0, f12 = f , f̃12 = f12/a, f21 = 1.02 · f12, f̃21 = 0.98 · f̃12,

a = 0.5 + 0.5 tan β and λ12 = λ21 = 0.06 (mχ±

1,2
= 101.8GeV). The red region is where the

prediction for Ωχh
2 is consistent with the measured one σ range of ΩCDMh2 = 0.1099 ± 0.0062.

The dark green region corresponds to D < 3 while the pale green region represents the part of the

parameter space in which D varies from 3 to 4. The blue region corresponds to mχ0

1

> MZ/2,

while the dark blue region to the right is ruled out by the requirement that perturbation theory

remains valid up to the GUT scale.

as well as their couplings, the branching ratios of the decays of the lightest CP-even

Higgs state and the dark matter relic density. In order to calculate the dark matter

relic density we use numerical methods. In particular, MicrOMEGAs 2.2 [48] is used to

numerically compute the present day density of dark matter. This includes the relevant

(co-)annihilation channel cross sections and the LSP freeze-out temperature. MicrOMEGAs

achieves this by calculating all of the relevant tree-level Feynman diagrams using CalcHEP.

The CalcHEP model files for the considered model are generated using LanHEP [49]. The

MicrOMEGAs relic density calculation assumes standard cosmology in which the LSP was

in equilibrium with the photon at some time in the past.

6.1 Benchmark scenarios

In order to construct benchmark scenarios that are consistent with cosmological obser-

vations and collider constraints we restrict our considerations to low values of tanβ . 2.



Figs. 1 and 2 show that in principle the appropriate value of dark matter density can be

obtained even when tanβ > 2. At the same time larger values of tanβ lead to masses

of the lightest and second lightest Inert neutralinos that are too small, as discussed in

Section 3. As a result larger couplings of the lightest Inert neutralinos to Z are required

to reproduce the measured value of ΩCDMh
2. On the other hand according to Figs. 1 and

2, light Inert neutralinos with substantial couplings to Z–boson give a considerable contri-

bution to its invisible width leading to a conflict with LEP measurements (see discussion

in subsection 6.2).

However, even for tanβ . 2 the lightest inert neutralino states can get appreciable

masses only if either all or at least one of the Inert chargino mass eigenstates are light,

i.e. mχ±

1

≃ 100− 200 GeV. As clarified in Section 3 and in [26], the masses of the lightest

inert neutralino states decrease with increasing mχ±

1, 2
and it is therefore rather difficult to

find benchmark scenarios consistent with cosmological observations for mχ±

1

& 200 GeV.

At the same time we demonstrate (see benchmark point (ix) in Table 2) that one light

Inert chargino mass eigenstate is enough to ensure that the lightest inert neutralino state

gains a mass of the order of MZ/2.

To obtain the kind of Inert neutralino and chargino spectrum discussed above one has

to assume that some or all of the couplings λαβ are rather small, e.g. they are expected to

be much smaller than fαβ and f̃αβ . On the other hand in order to get mχ0

1
∼ mχ0

2
∼MZ/2

the Yukawa couplings fαβ and f̃αβ need to be relatively close to their theoretical upper

bounds which are caused by the requirement of the validity of perturbation theory up to

the GUT scale. Since gauge coupling unification determines the RG flow and low energy

value of g′1 the mass of the Z ′ gauge boson is set by the VEV of the singlet field s only.

In our study we choose s = 2400 GeV so that the Z ′ mass is about 890 GeV. This value

of the Z ′ boson mass is just above the present lower bound of 865 GeV set by CDF [50]

and allows satisfaction of stringent limits on the Z ′ mass and Z − Z ′ mixing that come

from precision EW tests [51].

Since we restrict our analysis to low values of tanβ . 2 the mass of the SM-like Higgs

boson is very sensitive to the choice of the coupling λ. Stringent LEP constraints require

λ(Mt) to be larger than the low energy value of g′1 ≃ 0.47. If we try to increase λ(Mt) much

further, then the theoretical upper bounds on fαβ and f̃αβ become substantially stronger.

As a consequence, it is rather difficult to find solutions with |mχ0

1
| ∼ |mχ0

2
| ∼ MZ/2.

Therefore in our analysis we concentrate on values of λ(Mt) . 0.6. In addition, we

set stop scalar masses to be equal to mQ = mU = MS = 700 GeV and restrict our

consideration to the so-called maximal mixing scenario when the stop mixing parameter

Xt = At − λs/(
√

2 tanβ) is equal to Xt =
√

6MS. This choice of parameters limits

the range of variations of the lightest CP–even Higgs mass. In the leading two–loop



approximation the mass of the SM-like Higgs boson varies from 115 GeV(λ = g′1) to

136 GeV (λ = 0.6). From Tables 1-2 one can see that the large values of λ & g′1 that we

choose in our analysis result in the extremely hierarchical structure of the Higgs spectrum,

as pointed out in Section 4 (see also [23]). In Tables 1-2 the masses of the heavy Higgs

states are computed in the leading one–loop approximation. In the case of the lightest

Higgs boson mass the leading two–loop corrections are taken into account.

The set of the benchmark points that we specify demonstrates that one can get a rea-

sonable dark matter density consistent with the recent observations if |mχ0

1
| ∼ |mχ0

2
| ∼MZ/2.

Our benchmark scenarios also indicate that in this case the SM–like Higgs boson decays

predominantly into the lightest inert neutralinos (χ1 and χ2) while the total branching

ratio into SM particles varies from 2% to 4%.

The benchmark points (i), (ii), (iv), (v) and (viii) are motivated by a non-Abelian

family symmetry ∆27 which describes well the observed hierarchy in the quark and lepton

sectors. As was discussed in Section 3 these scenarios imply that all flavour diagonal

Yukawa couplings λαα, fαα and f̃αα are rather small. Due to the approximate global U(1)

symmetry (21), that originates from the family symmetry ∆27, the spectrum of Inert

neutralinos involves a set of pseudo–Dirac states. When the masses of the lightest and

second lightest Inert neutralinos are close or they form a Dirac state then the decays of

h1 into χαχβ will not be observed at the LHC. Thus these decay channels give rise to a

large invisible branching ratio of the SM–like Higgs boson.

In Tables 1-2 we presented a few benchmark scenarios (i), (ii), (iv)-(vi), (ix) with

almost degenerate lightest and second lightest Inert neutralinos. In some of these bench-

mark points both lightest Inert neutralinos are lighter than MZ/2. Thus the Z–boson

can decay into χαχβ so that the lightest and second lightest Inert neutralino states con-

tribute to the invisible Z–boson width. In other benchmark scenarios both of the lightest

Inert neutralinos have masses above MZ/2 and the decays Z → χαχβ are kinematically

forbidden.

When the LSP and NLSP are close in mass, LSP-NLSP co-annihilations may be an

important factor in determining the dark matter relic density. If this is the case then

the LSP-NLSP mass splitting should be an important factor. Since annihilations of two

like-neutralinos are p-wave suppressed, one should compare βRZ11 with RZ12 when trying

to determine how important co-annihilations are, where β is the relative speed of the

incoming particles, approximately 1/6. It is useful to consider the following situations.

With the LSP and NLSP almost degenerate and with equal self-annihilation cross-sections,

but a negligible co-annihilation cross-section, the relic density of dark matter would be

twice what it would have have been if the NLSP had not been present. If, alternatively, the

co-annihilation cross-section was equal to the self-annihilation cross-sections, the existence



of this extra channel would lead to a lower relic density. In this case it would in fact be

equal to the relic density calculated in the absence of the NLSP. In this way, in such

a scenario where co-annihilations and self-annihilations are about as important as each

other, the relic density is largely independent of the LSP-NLSP mass splitting.

For the benchmark scenarios (i) and (ii) this latter situation is approximately the case

and the LSP-NLSP mass splitting turns out not to be an important factor. The mass

splitting is in fact small, about half a GeV, but if it were larger and the NLSPs were

made to have frozen-out much earlier, the relic density would only be decreased slightly

(by about a tenth). In benchmark scenario (iv), even though the LSP and NLSP are

close in mass, co-annihilations are unimportant due to the small value of RZ12. In this

case increasing the NLSP mass substantially while keeping everything else fixed would

lead to an approximate halving of the predicted relic density, since the NLSPs would

have decoupled much earlier than, rather than at the same time as, the LSPs. The

only other benchmark scenario where the LSP and NLSP are close enough in mass for

co-annihilations to be potentially important is scenario (ix). Here co-annihilation is in

fact the dominant process and changing the LSP-NLSP mass splitting would have a large

effect on the predicted relic density. In fact, in this scenario, if the NLSP were not present

the predicted relic density would be within the measured range.

If the mass difference between the second lightest and the lightest Inert neutralino is

10 GeV or more, then some of the decay products of a χ2 that originates from a SM-like

Higgs boson decay might be observed at the LHC. In our analysis we assume that all

scalar particles, except for the lightest Higgs boson, are heavy and that the couplings of

the Inert neutralino states to quarks, leptons and their superpartners are relatively small.

As a result the second lightest Inert neutralino decays into the lightest one and a fermion–

antifermion pair mainly via a virtual Z. In our numerical analysis we did not manage to

find any benchmark scenario with |mχ0

2
| − |mχ0

1
| & 20 GeV leading to reasonable values

of ΩCDMh
2. Hence we do not expect any observable jets at the LHC associated with the

decay of a χ2 produced through a Higgs decay. However, it might be possible to detect

some lepton-antilepton pairs that come from the decays h1 → χ2χα. In particular, we

hope that µ+µ− pairs that come from the exotic decays of the lightest CP–even Higgs

state mentioned above can be observed at the LHC.

In Tables 1-2 benchmark scenarios (iii), (vii), (viii) can lead to these relatively energetic

muon pairs in the final state of the SM-like Higgs decays. Since the Higgs branching ratios

into SM particles are rather suppressed, the decays of the lightest CP–even Higgs state

into l+l− +X might play an essential role in Higgs searches.

In addition to the exotic Higgs decays, the scenarios considered here imply that at

least two of the Inert neutralino states that are predominantly the fermion components



of the Inert Higgs doublet superfields and one of the Inert chargino states should have

masses below 200 GeV. Since these states are almost Inert Higgsinos they couple rather

strongly to W and Z–bosons. Thus at hadron colliders the corresponding Inert neutralino

and chargino states can be produced in pairs via off-shell W and Z–bosons. Since they

are light their production cross sections at the LHC are not negligibly small. After being

produced Inert neutralino and chargino states sequentially decay into the LSP and pairs

of leptons and quarks resulting in distinct signatures that can be discovered at the LHC

in the near future.

6.2 Neutralino and chargino collider limits

The remarkable signatures discussed above raise serious concerns that they could have

already been observed at the Tevatron and/or even earlier at LEP. For example, the light

Inert neutralino and chargino states could be produced at the Tevatron [52]. Recently,

the CDF and D0 collaborations set a stringent lower bound on chargino masses using

searches for SUSY with a trilepton final state (i.e. trilepton signal) [53]. These searches

ruled out chargino masses below 164 GeV. However this lower bound on the chargino

mass was obtained by assuming that the corresponding chargino and neutralino states

decay predominantly into the LSP and a pair of leptons. In our case, however, the Inert

neutralino and chargino states are expected to decay via virtual Z and W exchange, i.e.

they decay predominantly into the LSP and a pair of quarks. As a consequence the lower

limit on the mass of charginos that is set by the Tevatron is not directly applicable to

the benchmark scenarios that we consider here. Instead in our study we use the 95% C.L.

lower limit on the chargino mass of about 100 GeV that was set by LEP II [54].

In principle LEP experiments also set constraints on the masses and couplings of

neutral particles that interact with the Z–boson. As mentioned above when the masses

of χ1 and χ2 are below MZ/2 they are almost degenerate and thus the decays of Z into

χαχβ contribute to the invisible width of the Z–boson changing the effective number of

neutrino species N eff
ν . The contribution of χ1 and χ2 (∆N eff

ν ) to N eff
ν is given by

∆N eff
ν = δ11 + 2δ12 + δ22 , (38)

where

δαβ = R2
Zαβ

[

1 −
|mχ0

α
|2 + |mχ0

β
|2

2M2
Z

− 3(−1)θα+θβ

|mχ0
α
||mχ0

β
|

M2
Z

−
(|mχ0

α
|2 − |mχ0

β
|2)2

2M4
Z

]

√

(

1 −
|mχ0

α
|2 + |mχ0

β
|2

M2
Z

)2

− 4
|mχ0

α
|2|mχ0

β
|2

M4
Z

.

(39)

All three terms in Eq. (38) contribute to N eff
ν only if 2|mχ0

2
| < MZ . In the case where

only the Z–boson decays into χ0
1χ

0
1 are kinematically allowed the values of δ12 and δ22



should be set to zero. If |mχ0

1
| + |mχ0

2
| < MZ while 2|mχ0

2
| > MZ then only δ11 and δ12

need to be taken into account.

In order to compare the measured value of Nν with the effective number of neutrino

species in the E6SSM, i.e. N eff
ν = 3 + ∆N eff

ν , it is convenient to define the variable

D =
N eff
ν −N exp

ν

σexp
, (40)

where N exp
ν = 2.984 and σexp = 0.008 [55]. The value of D represents the deviation

between the predicted and measured effective number of neutrinos contributing to the Z–

boson invisible width. It is worth pointing out that in the SM D = 2. In the benchmark

scenarios presented in Tables 1-2 the value of D is always less than 3. Figs. 1 and 2

also demonstrate that there is a substantial part of the E6SSM parameter space where

mχ0

1,2
< MZ/2 and D < 3. This indicates that the relatively light Inert neutralinos with

masses below MZ/2 are not ruled out by different constraints on the effective number

of neutrinos set by LEP experiments (see, for example [55]–[56]). Indeed, as argued

in Section 3 the Yukawa couplings fαβ and f̃αβ can be chosen such that the RZαβ are

very small. The couplings of the lightest and second lightest Inert neutralinos to the

Z–boson are relatively small anyway because of the Inert singlino admixture in these

states. Nevertheless Figs. 1 and 2 show that the scenarios with light Inert neutralinos

which have masses below MZ/2 and relatively small couplings to the Z–boson can lead

to the appropriate dark matter density consistent with the recent observations.

LEP has set limits on the cross section of e+e− → χ0
2χ

0
1 (χ+

1 χ
−
1 ) in the case when

χ0
2 → qq̄χ0

1 (χ±
1 → qq̄′χ0

1) predominantly [57]. Unfortunately, the bounds are not directly

applicable for our study because OPAL limits were set for a relatively heavy χ0
2 (χ±

1 )

only (|mχ0

2
| & 60 GeV). Nevertheless, these bounds demonstrate that it was difficult

to observe light neutralinos with |mχ0

2,1
| . 100 GeV if their production cross section

σ(e+e− → χ0
αχ

0
β) . 0.1 − 0.3 pb−1. Since at LEP energies the cross sections of colourless

particle production through s-channel γ/Z exchange are typically a few picobarns the

lightest and second lightest Inert neutralino states in the E6SSM could escape detection

at LEP if their couplings RZαβ . 0.1 − 0.3.

6.3 Dark matter direct detection

Another constraint on the couplings of the lightest Inert neutralino comes from exper-

iments for the direct detection of dark matter. Recently the CDMSII and XENON100

collaborations have set upper limits on the weakly interacting massive particle (WIMP)–

nucleon elastic–scattering spin–independent cross section [15],[58]. The XENON100 Col-

laboration claims a limit on the spin-independent cross section of 3.4 × 10−44 cm2 for

a 55 GeV WIMP. This limit remains fairly constant for lower WIMP masses and does



not increase above about 4 × 10−44 cm2 even for the lowest LSP masses that are con-

sistent with our thermal freeze-out scenario. Since in the E6SSM the couplings of the

lightest Inert neutralino to quarks (leptons) and squarks (sleptons) are suppressed, the

χ0
1–nucleon elastic scattering, which is associated with the spin-independent cross section,

is mediated mainly by the t–channel lightest Higgs boson exchange. Thus in the leading

approximation the spin–independent part of χ0
1–nucleon cross section in the E6SSM takes

the form [59, 60]

σSI =
4m2

rm
2
N

πv2m4
h1

|Xh1

11F
N |2 ,

mr =
mχ0

1
mN

mχ0

1
+mN

, FN =
∑

q=u,d,s f
N
Tq +

2

27

∑

Q=c,b,t f
N
TQ ,

(41)

where

mNf
N
Tq = 〈N |mq q̄q|N〉 , fNTQ = 1 −

∑

q=u,d,s

fNTq .

Here for simplicity we assume that the lightest Higgs state has the same couplings as the

Higgs boson in the SM and ignore all contributions induced by heavy Higgs and squark

exchange8. Due to the hierarchical structure of the particle spectrum and the approximate

ZH
2 symmetry this approximation works very well. Using the experimental limits set on

σSI and Eqs. (41) one can obtain upper bounds on Xh1

11 [62].

In Tables 1-2 we specify the interval of variations of σSI for each benchmark scenario.

As one can see from Eq. (41) the value of σSI depends rather strongly on the hadronic

matrix elements, i.e. the coefficients fNTq, that are related to the π–nucleon σ term and

the spin content of the nucleon. The hadronic uncertainties in the elastic scattering cross

section of dark matter particles on nucleons were considered in [59, 63]. In particular, it

was pointed out that fNTs could vary over a wide range. In Tables 1-2 the lower limit on

σSI corresponds to fNTs = 0 while the upper limit implies that fNTs = 0.36 (see [60]). From

Tables 1-2 and Eq. (41) it also becomes clear that σSI decreases substantially when mh1

grows.

Since in all of the benchmark scenarios presented in Tables 1-2 the lightest Inert

neutralino is relatively heavy (|mχ0

1
| ∼ MZ/2), allowing for a small enough dark matter

relic density, the coupling of χ0
1 to the lightest CP-even Higgs state is always large giving

rise to a χ0
1–nucleon spin-independent cross section which is of the order of or larger than

the experimental upper bound. However it is worth keeping in mind that the obtained

8The presence of almost degenerate lightest and second lightest Inert neutralinos could result in the

inelastic scattering of χ0

1 on nuclei (A), i.e. χ0

1 + A → χ0

2 + A, that could affect the direct detection of

χ0

1
at the experiment. However such processes may take place only if the mass splitting between χ0

1
and

χ0

2 is less than 100 KeV [61]. Since in all of the benchmark scenarios considered here the corresponding

mass splitting is substantially larger the inelastic scattering of χ0

1
does not play any significant role.



experimental limits on σSI are not very robust [64]. Moreover, CDMS II and XENON100

quote 90% C.L. upper bounds while the 95% confidence level bounds are larger by a

factor of 1.3 . By the same token the 99% C.L. and 99.9% C.L. upper bounds, which are

associated with 2.6 and 3.3 standard deviations, are expected to be 2 and 3 times larger

than the 90% C.L. bounds respectively. Following these estimates it is clear that the

benchmark scenarios presented in Tables 1-2 cannot yet be ruled out by either XENON100

or CDMS II. However in the near future the expected new analysis from XENON100 may

either confirm or refute our scenario.

7. Summary and Conclusions

In this paper we have considered novel decays of the SM–like Higgs boson which can occur

within a particular dark matter motivated scenario of the Exceptional Supersymmetric

Standard Model (E6SSM). This model implies that at high energies the E6 GUT gauge

group is broken to the SM gauge group together with an additional U(1)N gauge group

under which right–handed neutrinos have zero charge. To ensure anomaly cancellation and

gauge coupling unification, the low energy matter content of the E6SSM includes three

27 representations of E6 and a pair of SU(2) doublets from an additional 27′ and 27′.

Thus the E6SSM involves extra exotic matter beyond that of the MSSM that includes

two families of Inert Higgs doublet superfields Hu
α and Hd

α and two Inert SM singlet

superfields Sα that carry U(1)N charges. The fermion components of these superfields

form Inert neutralino and chargino states.

To satisfy LEP constraints we restricted our consideration to scenarios with relatively

heavy Inert chargino states, i.e. mχ±

1,2
& 100 GeV. In our analysis we also required the

validity of perturbation theory up to the GUT scale which sets stringent constraints on

the values of the Yukawa couplings at low energies. Using these restrictions we argued

that the lightest and the second lightest Inert neutralinos (χ0
1 and χ0

2) are always light,

viz. they typically have masses below 60 − 65 GeV. These neutralinos are mixtures of

Inert Higgsinos and singlinos. In our model χ0
1 tends to be the LSP and can play the role

of dark matter, while χ0
2 tends to be the NLSP. The masses of χ0

1 and χ0
2 can be induced

even if only one family of the Inert Higgsinos couples to the two SM singlinos. The masses

of χ0
1 and χ0

2 decrease with increasing tan β and Inert chargino masses.

An important requirement of this paper is that the lightest Inert neutralino account for

all or most of the observed dark matter relic density. This sets another stringent constraint

on the masses and couplings of χ0
1. Indeed, because the lightest Inert neutralino states are

almost Inert singlinos, their couplings to the gauge bosons, Higgs states, quarks (squarks)

and leptons (sleptons) are rather small resulting in a relatively small annihilation cross



section of χ̃0
1χ̃

0
1 → SM particles and the possibility of an unacceptably large dark matter

density. In the limit when all non-SM states except the Inert neutralinos and charginos are

heavy (& TeV) a reasonable density of dark matter can be obtained for |mχ0

1, 2
| ∼ MZ/2

where the Inert LSPs annihilate mainly through Z in the s–channel [26]. If χ̃0
1 annihilation

proceeds through the Z–boson resonance, i.e. 2|mχ0
σ
| ≈MZ , then an appropriate value of

ΩCDMh
2 can be achieved even for a relatively small coupling of χ̃0

1 to Z.

The above scenario naturally emerges when a ∆27 family symmetry is included in

the E6SSM [33]. The family symmetry was not introduced for this purpose, instead it

was introduced earlier to provide an explanation of the ZH
2 symmetry and to account for

the quark and lepton masses and mixings, including tri-bimaximal neutrino mixing. It is

therefore encouraging to find that the same symmetry leads to a spectrum of inert pseudo-

Dirac neutralinos which allows for a successful dark matter relic abundance, and also

predicts novel Higgs decays. The ∆27 family symmetry also implies two almost degenerate

families of D–fermion states [33] and in addition may have interesting consequences for

B–physics [65]. As discussed in subsection (3.2) this symmetry leads to a cancellation of

different contributions to the off-diagonal couplings of the LSP and NLSP. In addition, due

to the singlino component of the lightest Inert neutralino states, the diagonal couplings

of χ0
1 and χ0

2 to the Z–boson can also be rather small. Therefore these states could have

escaped detection at LEP.

The main point we make in this paper is that, within the above dark matter motivated

scenario, although the lightest and the second lightest Inert neutralinos might have very

small couplings to the Z–boson, their couplings to the SM–like Higgs state h1 are always

large. Indeed, we argued that in the first approximation the couplings of χ0
1 and χ0

2 to the

lightest CP–even Higgs boson are proportional to |mχ0

1, 2
|/v. Since |mχ0

1, 2
| ∼ MZ/2 these

couplings are much larger than the corresponding b–quark coupling. Thus the SM–like

Higgs boson decays predominantly into the lightest inert neutralino states and has very

small branching ratios (2% − 4%) for decays into SM particles. We have illustrated this,

together with the other phenomenological aspects of the dark matter motivated scenario

considered in this paper, by presenting a set of benchmark points in Tables 1-2. If the

masses of the lightest and second lightest Inert neutralinos are very close then the decays

of h1 into χαχβ will not be observed at the LHC giving rise to a large invisible branching

ratio of the SM–like Higgs boson. When the mass difference between the second lightest

and the lightest Inert neutralinos is larger than 10 GeV the invisible branching ratio

remains dominant but some of the decay products of χ2 might be observed at the LHC.

In particular, there is a chance that µ+µ− pairs could be detected. Since the branching

ratios of h1 into SM particles are extremely suppressed, the decays of the SM–like Higgs

boson into l+l− +X could be important for Higgs searches.



In conclusion, the E6SSM predicts three Higgs families plus three Higgs singlets, where

one family develop VEVs, while the remaining two which do not are called Inert. This

pattern of Higgs VEVs is due to a broken ZH
2 symmetry whose origin can be understood

from a ∆27 family symmetry. The model can account for the dark matter relic abun-

dance if the two lightest Inert neutralinos, identified as the LSP and NLSP, have masses

close to half the Z mass, with a pseudo-Dirac structure as predicted by the ∆27 family

symmetry. Within this scenario we find that the usual SM-like Higgs boson decays more

that 95% of the time into either LSPs or NLSPs, with the latter case producing a final

state containing two soft leptons l+l− with an invariant mass less than or about 10 GeV.

We have illustrated this with a set of benchmark points satisfying phenomenological con-

straints and the WMAP dark matter relic abundance. This scenario also predicts other

light Inert chargino and neutralino states below 200 GeV, and large LSP direct detection

cross-sections close to current limits and observable soon at XENON100.
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i ii iii iv

tan(β) 1.5 1.5 1.7 1.564
mH± ≃ mA ≃ mh3

/GeV 1977 1977 2022 1990
mh1

/GeV 135.4 135.4 133.1 134.8

λ22 0.001 0.001 0.094 0.0001
λ21 0.077 0.062 0 0.06
λ12 0.077 0.062 0 0.06
λ11 0.001 0.001 0.059 0.0001

f22 0.001 0.001 0.53 0.001
f21 0.61 0.61 0.05 0.476
f12 0.6 0.6 0.05 0.466
f11 0.001 0.001 0.53 0.001

f̃22 0.001 0.001 0.53 0.001

f̃21 0.426 0.426 0.05 0.4

f̃12 0.436 0.436 0.05 0.408

f̃11 0.001 0.001 0.53 0.001

mχ̃0

1
/GeV 41.91 47.33 33.62 -36.69

mχ̃0

2
/GeV -42.31 -47.84 47.78 36.88

mχ̃0

3
/GeV -129.1 -103.6 108.0 -103.11

mχ̃0

4
/GeV 132.4 107.0 -152.1 103.47

mχ̃0

5
/GeV 171.4 151.5 163.5 139.80

mχ̃0

6
/GeV -174.4 -154.4 -200.8 -140.35

mχ̃±

1

/GeV 129.0 103.5 100.1 101.65

mχ̃±

2

/GeV 132.4 106.9 159.5 101.99

Ωχh
2 0.096 0.098 0.109 0.107

RZ11 -0.0250 -0.0407 -0.144 -0.132
RZ12 0.0040 0.0048 0.051 0.0043
RZ22 -0.0257 -0.0429 -0.331 -0.133

∆N eff
ν 0.000090 0 0.0068 0.0073
D 2.011 2.000 2.85 2.91

Xh1

11 0.137 0.147 0.110 -0.114

Xh1

12 +Xh1

21 −1.9 × 10−6 −3.4 × 10−6 0.0136 1.15 × 10−6

Xh1

22 -0.138 -0.148 0.125 0.115

σSI/10−44 cm2 2.6-10.5 3.0-12.1 1.7-7.1 2.0-8.2

Br(h→ χ̃0
1χ̃

0
1) 49.5% 49.7% 57.8% 49.1%

Br(h→ χ̃0
1χ̃

0
2) 7.9 × 10−11 2.5 × 10−10 0.34% 49.2%

Br(h→ χ̃0
2χ̃

0
2) 49.0% 48.5% 39.8% 3.5 × 10−11

Br(h→ bb̄) 1.36% 1.58% 1.87% 1.59%
Br(h→ τ τ̄ ) 0.142% 0.165% 0.196% 0.166%

Γ(h→ χ̃0
1χ̃

0
1)/MeV 98.3 85.1 81.7 82.9

Γtot/MeV 198.7 171.1 141.2 169.0

Table 1: Benchmark scenarios for mh1
≈ 133 − 135 GeV. The branching ratios and decay widths

of the lightest Higgs boson, the masses of the Higgs states, Inert neutralinos and charginos as
well as the couplings of χ̃0

1
and χ̃0

2
are calculated for s = 2400 GeV, λ = 0.6, Aλ = 1600 GeV,

mQ = mU = MS = 700 GeV, Xt =
√

6MS that correspond to mh2
≃ MZ′ ≃ 890 GeV.



v vi vii viii ix

tan(β) 1.5 1.7 1.5 1.5 1.5
mH± ≃ mA ≃ mh3

/GeV 1145 1165 1145 1145 1145
mh1

/GeV 115.9 114.4 115.9 115.9 115.9

λ22 0.004 0.104 0.094 0.001 0.468
λ21 0.084 0 0 0.079 0.05
λ12 0.084 0 0 0.080 0.05
λ11 0.004 0.09 0.059 0.001 0.08

f22 0.025 0.72 0.53 0.04 0.05
f21 0.51 0.001 0.053 0.68 0.9
f12 0.5 0.001 0.053 0.68 0.002
f11 0.025 0.7 0.53 0.04 0.002

f̃22 0.025 0.472 0.53 0.04 0.002

f̃21 0.49 0.001 0.053 0.49 0.002

f̃12 0.5 0.001 0.053 0.49 0.05

f̃11 0.025 0.472 0.53 0.04 0.65

mχ̃0

1
/GeV -35.76 41.20 35.42 -45.08 -46.24

mχ̃0

2
/GeV 39.63 44.21 51.77 55.34 46.60

mχ̃0

3
/GeV -137.8 153.1 105.3 -133.3 171.1

mχ̃0

4
/GeV 151.7 176.7 -152.7 136.9 -171.4

mχ̃0

5
/GeV 173.6 -197.3 162.0 178.4 805.4

mχ̃0

6
/GeV -191.3 -217.9 -201.7 -192.2 -805.4

mχ̃±

1

/GeV 135.8 152.7 100.1 133.0 125.0

mχ̃±

2

/GeV 149.3 176.5 159.5 136.8 805.0

Ωχh
2 0.102 0.108 0.107 0.0324 0.00005

RZ11 -0.116 -0.0278 -0.115 -0.0217 -0.0224
RZ12 0.0037 -0.00039 -0.045 -0.0020 -0.213
RZ22 -0.118 -0.0455 -0.288 -0.0524 -0.0226

∆N eff
ν 0.0049 0.00009 0.0034 1.57 × 10−6 0
D 2.62 2.011 2.43 2.0002 2.0

Xh1

11 -0.117 0.141 0.117 -0.147 -0.148

Xh1

12 +Xh1

21 -0.000027 -0.00025 -0.0127 -0.0000140 -0.000031

Xh1

22 0.130 0.147 0.141 0.174 0.149

σSI/10−44 cm2 3.9-15.7 5.4-21.9 3.5-14.2 6.0-24.4 6.1-25.0

Br(h→ χ̃0
1χ̃

0
1) 49.6% 53.5% 76.3% 83.4% 49.3%

Br(h→ χ̃0
1χ̃

0
2) 2.1 × 10−8 7.2 × 10−7 0.26% 7.6 × 10−9 3.0 × 10−8

Br(h→ χ̃0
2χ̃

0
2) 48.4% 44.2% 20.3% 12.3% 47.9%

Br(h→ bb̄) 1.87% 2.04% 2.83% 3.95% 2.58%
Br(h→ τ τ̄ ) 0.196% 0.21% 0.30% 0.41% 0.27%

Γ(h→ χ̃0
1χ̃

0
1)/MeV 61.5 60.1 62.6 49.0 44.4

Γtot/MeV 124.1 112.2 82.0 58.8 90.1

Table 2: Benchmark scenarios for mh1
≈ 114 − 116 GeV. The branching ratios and decay widths

of the lightest Higgs boson, the masses of the Higgs states, Inert neutralinos and charginos as well
as the couplings of χ̃0

1
and χ̃0

2
are calculated for s = 2400 GeV, λ = g′

1
= 0.468, Aλ = 600 GeV,

mQ = mU = MS = 700 GeV, Xt =
√

6MS that correspond to mh2
≃ MZ′ ≃ 890 GeV.


