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Abstract

We calculate the weak scale MSSM spectrum starting from a heterotic
string theory compactified on an anisotropic orbifold. Supersymmetry break-
ing is mediated by vector-like exotics that arise naturally in heterotic string
theories. The messengers that mediate SUSY breaking come in incomplete
GUT multiplets and give rise to non-universal gaugino masses at the GUT
scale. Models with non-universal gaugino masses at the GUT scale have
the attractive feature of allowing for precision gauge coupling unification at
the GUT scale with negligible contributions from threshold corrections near
the unification scale. The unique features of the MSSM spectrum are light
gluinos and also large mass differences between the lightest and the next-to-
lightest neutralinos and charginos which could lead to interesting signatures
at the colliders.
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1 Introduction

Grand unification of the fundamental forces is a very appealing idea. It was
noticed in as early as 1974, that when the couplings of the three fundamental
interactions are run to high energies, they seem to meet at a point [1],[2].
Supersymmetry is required for precise unification [3], without which there is
a discrepancy of about 12 σ [4]. With supersymmetry, assuming universal
scalar and gaugino masses at the GUT scale, precision electroweak data
requires [5], for the strong coupling constant to match experiments, that α3

be about 3 − 4% smaller than α1 and α2 at the GUT scale. This conflict
between the coupling constants at the GUT scale can be eased by including
‘threshold corrections’ from extra states around the GUT scale.

In grand unified theories, the Higgs fields have to respect the GUT sym-
metry and thus existence of Higgs doublets also implies the existence of Higgs
triplets. In order to avoid rapid proton decay the triplets necessarily have
mass greater than the GUT scale which introduces some unpleasantness into
these SUSY GUT theories. In addition, complicated symmetry breaking
potentials are required to break the GUT symmetry. Theories with extra
dimensions have gained popularity in this respect, since they can eliminate
some of the problems with 4D SUSY GUTs. In theories with extra dimen-
sions, connection is made to the low-energy world, by compactifying the extra
dimensions. The choice of boundary conditions then can lead to natural and
simple solutions to the problems hindering SUSY GUTs. The threshold cor-
rections required to match precision electroweak data can come from massive
states around the GUT scale and from Kaluza-Klein states living between
the compactification scale of the extra dimensions, MC and the cut-off scale,
M∗; in string theory M∗ is the string scale, MS.

Recent searches for the MSSM from heterotic string theory have yielded
interesting results. Orbifold compactifications of the E8×E8 heterotic string
theory have been shown to yield realistic models that include the gauge group
and the matter content of the MSSM [12, 13]. In addition, the models also
have vector-like exotics with Standard Model charges that obtain mass in
the supersymmetric limit. They may couple to the SUSY breaking field, and
mediate supersymmetry breaking. The mechanism of supersymmetry break-
ing plays a very important role in understanding the low-energy spectrum,
and in this case the possibility of Gauge Mediated Supersymmetry breaking
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(GMSB) [9]. In GMSB, the gauginos receive mass at one-loop as:

Mi ∼
αi

4π

〈F 〉

〈Mφ〉
(1)

where, φ is the messenger field with mass, Mφ, and 〈F 〉 is the SUSY breaking
VEV. Thus, a heavier messenger (in this case, the exotics) corresponds to a
lighter gaugino.

It was shown earlier in [6] that light(of the order 109 − 1013 GeV) vector-
like exotic states were required for gauge coupling unification, assuming
the standard scenario with universal gaugino masses at the GUT scale and
threshold corrections of about -3%. Solutions to gauge coupling unification
were constrained by the bounds on proton decay. It was also assumed that
all the vector-like exotics obtain mass at the same scale. The exotics come in
incomplete GUT multiplets and hence, in general could obtain mass at dif-
ferent scales. In this work, we generalize the solutions, allowing the exotics
that carry SU(3) and SU(2) charges to obtain mass at different scales. We
build a consistent MSSM spectrum at the weak scale with these exotic mes-
sengers. We find that this generalization increases the number of solutions
satisfying gauge coupling unification. In addition, the weak scale spectrum
now allows unification with moderate or even zero threshold corrections at
the GUT scale. The low energy spectrum in such a case has light gluinos
which should be detected at the Tevatron and/or LHC.

2 Gauge Mediated Supersymmetry Breaking

Gauge Mediated SUSY Breaking(GMSB) [18] models have chiral supermul-
tiplets called messenger fields that mediate supersymmetry breaking. The
messenger fields carry SU(3) × SU(2) × U(1) charges and hence couple to
the matter fields of the MSSM through the usual SU(3) × SU(2) × U(1)
gauge interactions. The messenger fields are very massive at some scale,
denoted by Mmess. Sources of flavor violation near the messenger scale are
given by (4+d)-dimension operators that are suppressed by 1

(Mmess)d . Hence,
the major source of flavor violation is due to Yukawa couplings, similar to the
Standard Model(SM). This suppression of flavor changing neutral currents
(FCNC) is the most attractive feature of GMSB.

In string theories where the extra-dimensions are compactified on an
orbifold, there exist extra vector-like non-standard model particles, usually
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called “exotics”. These exotics need to be heavy in order for them to de-
couple from the low-energy theory. The exotics carry charges under the SM
gauge group, and hence are perfect candidates to mediate supersymmetry
breaking via gauge mediation. We build a consistent MSSM spectrum at the
weak scale with these exotic messengers. By consistent, we mean that if we
start at the highest scale in the model and run the coupling constants and
soft SUSY breaking parameters all the way down to the weak scale, integrat-
ing out heavy states during this running, we must end up with the coupling
constants that match the experimental values at the weak scale. Since this
requires knowledge of the spectrum of exotics and Kaluza-Klein modes, as
well as the MSSM spectrum, we perform our analysis in two steps:

Step #1 We concentrate on a class of models based on SU(6) gauge-Higgs
unification in 5D [12, 13]. Starting from heterotic string theory compactified
on an anisotropic orbifold, T 6/Z6-II and applying the ‘Phenomenological Pri-
ors’ - Inequivalent models with the SM gauge group, 3 SM families, Higges,
and non-anomalous U(1)Y ⊂ SU(5); the authors end up with 15 models
consisting of low energy spectrum that is similar to that of MSSM. In addi-
tion, the spectrum consists of heavy vector-like exotics that decouple from
the low-energy theory. Gauge coupling unification was studied [6] in 2 out of
the above 15 models [13] - “Model 1A” and “Model 2”. The matter content
of both these models are very similar and is summarized in Table 3. For
the gauge couplings to unify in the heterotic orbifold theory, it was noted in
Ref.[6] that there had to be at least ~n = (n3, n2, (n1, n

′

1)) ‘light’ exotics at
some intermediate scale MEX , below the 4D unification(GUT) scale. This
scale, MEX was determined by matching the Renormalization Group Equa-
tions(RGE) from the two theories - heterotic orbifold model and the 4D
MSSM at some low energy scale µ, where both the theories predict the same
running for the couplings. In the 4D MSSM, the gauge couplings unify at the
GUT scale with some threshold corrections from new physics near the GUT
scale whereas, on the heterotic side, the gauge couplings unify at the string
scale, MS(See Fig.3). The analysis in Ref.[6] was done in the context of a
minimal scenario where all the light exotics obtained mass at the same scale
and to accommodate precision electroweak data, a -3 % threshold correction
was assumed at the GUT scale.

The exotics come in incomplete SU(5) GUT multiplets and in general
could obtain mass at different scales. We therefore relax the previous as-
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sumption that the light exotics obtain mass at the same scale and allow
those that carry SU(3) and SU(2) charges to obtain mass at different scales.
This leads to non-universal gaugino masses at the GUT scale, as a conse-
quence of which, the threshold corrections required to match precision data
at this scale is no longer of order -3%. The GUT scale threshold correction
is a priori a free parameter which depends on the spectrum of states near the
GUT scale. However, it’s value needs to be fixed by evaluating the 2-loop
RGE running from the string scale to the weak scale and including one loop
threshold corrections at both the weak and the GUT scales, self-consistently.
This is done in the next step. The new intermediate scales, MEX3 and MEX2

are determined self-consistently using the RGEs. The details of the calcula-
tion of the light exotics mass spectrum is given in Appendix A.

Step #2 Once the exotic masses are determined, the soft SUSY breaking
terms are calculated at this scale, i.e. the messenger scale [9]. We then use
SOFTSUSY [11] to run them down to the weak scale.1 SOFTSUSY uses
the 2-loop RG running to determine the weak scale MSSM spectrum and
the 1-loop weak scale threshold corrections. The MSSM parameters are then
run back again to the GUT scale and the GUT scale threshold corrections
are calculated, i.e. the (output) values fixed by SOFTSUSY (see Eq. (7)).
We compare this value of the GUT threshold corrections with the (input)
value determined independently by the exotic mass spectrum (see Eq. (11)).
We vary the arbitrary parameters of the orbifold string theory and save only
those cases where the input (determined by the exotic mass spectrum) and
output (required by the low energy MSSM spectrum) threshold corrections
match. We also only keep cases consistent with the bound on the proton
lifetime and a lower bound on the Higgs mass.

1Note, SOFTSUSY runs from the presumed 4D GUT scale to the weak scale. In our
case the soft masses are only determined at the messenger scale. The error made by
matching the 5D theory to the 4D theory at the messenger scale is however, small. Using
the fact that up to 1-loop, the ratio Mi/αi = constant, we calculate the soft-masses at
the GUT scale where they get small 2-loop corrections. As shown in Appendix. B, the
corrections to the gaugino masses are found to be less than 1% and can be neglected. A
detailed discussion of the soft SUSY breaking masses is in Section 2.1.

5



2.1 Soft Masses

The exotics of the orbifold theory mediate supersymmetry breaking by acting
as messengers of gauge mediation. Due to the gauge interactions of the
messengers, soft terms are generated at the messenger scale. We assume that
the gravity-mediated SUSY breaking contributions to gaugino masses are
much smaller than the gauge-mediated contribution. There can be anomaly
mediated contributions to the soft masses, proportional to the gravitino mass,
m3/2, or dilaton contributions proportional to FS/MP l.

2 We allow for a large
gravitino mass of the order of a few TeV. However, if the ratio, F

MEX
≫ m3/2,

we can ignore the gravitino contribution to the gaugino masses. At one loop,
the gauginos masses are given by:

Mi = bEX3
i

αi

4π

F

MEX3
+ bEX2

i

αi

4π

F

MEX2
(2)

where F is the SUSY breaking VEV, which at this point is chosen to be
arbitrary.

The scalars obtain mass at two-loops, and the dominant contribution to
their mass is from the gravitino. In addition, in string models, it is natural
to have an anomalous U(1)X gauge interaction. Such interactions can add
an additional Fayet-Iliopoulos D-term to the scalar potential. In such cases,
the scalar masses can receive a contribution from the D-term that is of the
same order as the gauge mediation contribution. This was discussed in [21]
where the contribution to scalar masses was modeled by a term:

δm2
φi

= d QX
i M2

2 (3)

with, d, an arbitrary parameter and, QX
i , the U(1)X charge of the field φi. For

the matter fields this charge is taken to be +1, and for the Higgs fields, it is
set equal to -2; i.e. U(1)X is the U(1) in SO(10) commuting with SU(5). M2

represents the wino mass calculated earlier in Eq. (2). With contributions
from the gravitino, gauge mediation, and the D-term, the scalar masses are

2We assume the SUSY breaking dilaton VEV, FS , is negligibly small. Kahler and
complex structure moduli (denoted generically by T ) contribute to gaugino masses via
one loop corrections to the gauge kinetic function with scale set by FT /MPl. F is then
assumed to be a linear combination of geometric moduli and chiral matter moduli.
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given by:

m2
φi

= m2
3/2 + 2

(

bEX3
3

α3

4π

F

MEX3

)2

C3(i) + 2

(

bEX2
2

α2

4π

F

MEX2

)2

C2(i)

+2

(

α3

4π

(

bEX3
1

F

MEX3

+ bEX2
1

F

MEX2

))2

C1(i) + dQX
i M2

2 (4)

where, Cis represent the quadratic Casimir invariants [10]. The low energy
spectrum is now computed for different values of ~n, ǫ3, F , m3/2, and d. Table
1 shows the GUT scale parameters for four sample points.

Table 1: The GUT scale parameters for four different cases. gstring is discussed
in Appendix A.3.2. Dimensionful quantities in units of GeV unless specified.

Observable Case 1 Case 2 Case 3 Case 4

~n (4,2,(2,1)) (4,2,(2,1)) (4,2,(1,1)) (4,2,(2,0))
m3/2 4 TeV 10 TeV 10 TeV 4 TeV

d 0 5 5 1
gstring 0.99412 0.99604 0.8233 0.8588
MS 6.04 ×1017 6.05 ×1017 7.39 ×1017 7.27 ×1017

MC 1.2 ×1016 1.2 ×1016 3.2 ×1016 2.8 ×1016

MEX3 5.03 ×1013 1.10 ×1014 1.07 ×1014 5.05 ×1013

MEX2 1.69 ×1013 8.54 ×1013 5.35 ×1013 8.87 ×1012

MGUT 2.5 ×1016 2.0 ×1016 3.25 ×1016 1.75 ×1016

ǫ3 -2.5 % 0 % -2.5 % -0.5 %
F 1.0 × 1018GeV2 1.0 × 1018GeV2 1.0 × 1018GeV2 1.0 × 1018GeV2

M3(MGUT ) 257.296 155.269 120.882 260.894
M2(MGUT ) 392.844 600.865 119.793 747.307
M1(MGUT ) 124.900 128.947 39.666 260.894

3 Features of the Spectrum

The MSSM spectrum is calculated using SOFTSUSY [11]. For the four cases
shown in Table 1, the spectrum from SOFTSUSY is shown in Table. 2.

Non-universal gaugino masses: The split exotics give rise to non-universal
gaugino masses at the GUT scale, as is clear from Eq.(2). As a result of this
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Figure 1: The scatter plot of consistent points for the case, ~n = (4, 2, (2, 1)).
The gravitino mass, m3/2 was taken to be 4 TeV. The running of the couplings
depend only on the ratio M3/M2 since the scalars are very heavy. We find an
anti-correlation between this ratio and the value of ǫ3. Precision unification favors
M3/M2 ∼ 0.3 at the GUT scale.

non-universality, the GUT scale threshold corrections required to match the
precision electroweak data need not necessarily be of order -3 % . In fact,
we notice that it is possible to obtain precision unification when M3 < M2.
This requirement was observed in [7] in a variety of SUSY breaking scenarios
including a Higgs-messenger mixing model where SUSY is broken via gauge
mediation. The weak scale MSSM spectrum now has a light gluino. Case
2 in Table 2 illustrates this feature of the gluino being the second lightest
sparticle after the neutralino. Figure 1 demonstrates the correlation between
the GUT scale threshold corrections ǫ3 and the ratio of gaugino masses at
the weak scale and the GUT scale. Note, the scalar masses are heavy and
degenerate. As a result, they do not introduce differential running of the
coupling constants.

SUSY breaking scale, gravitino mass, and D-Term: The low energy spec-
trum depends on the following parameters that are chosen arbitrarily - the
SUSY breaking scale F , the gravitino mass m3/2 and the d parameter in
the D-term. Although the doublet and the triplet exotics could couple to
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Figure 2: The plot shows the consistent points with varying m3/2 and d. The
plot on the left is for m3/2 = 4 TeV and the one on the right is for m3/2 = 10 TeV.

different SUSY breaking fields, for simplicity we use a single SUSY break-
ing VEV, F . The gravitino mass m3/2, is the dominant contribution to the
scalar masses. In order to obtain consistent solutions, we find m3/2 ≥ 2 TeV,
otherwise the scalars become non-degenerate at the GUT scale and spoil uni-
fication through differential running. At the same time, if m3/2 > 10 TeV, the
assumption that gauge mediation is the dominant contribution to gaugino
masses no longer holds and the gravitino corrections to the gaugino masses
must be included. The D-term introduces a splitting between the sparticle
masses and the Higgs masses, since they carry different charges under the
UX(1). For the two cases of m3/2 = 4 TeV and 10 TeV, the graph 2 shows
the set of consistent points with varying d = 0, 5.

MSSM Spectrum: The MSSM spectrum for the four particular cases (Ta-
ble 1) is given in Table 2. The m3/2 contribution makes the scalars very
heavy, with the third family being slightly lighter. The gauginos receive
the dominant contributions only from the gauge messengers and are light in
comparison with the scalars. The LSP is the lightest neutralino, χ̃0

1, which is
predominantly “bino-like”. The gluino and chargino masses depend on the
threshold corrections at the GUT scale, as is seen for the four cases given
in Table 2. Most of the points that were found to be consistent with the
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low energy data have small values of tanβ < 10. Finally, increasing the d
parameter gives a handle on the possible values for tanβ.

Collider prospects: We have found light gauginos which can be produced
at the LHC or possibly the Tevatron. Since the gauginos are lighter than the
scalars, they will decay only through off-shell squarks. Gluinos can decay via
the process: g̃ → q q̄ χ̃i. The produced χ̃i would then undergo cascade decay
until the final product is the LSP and Standard Model leptons. This would
give a striking signature of at least 4 jets + missing ET [16]. The heavier
χ̃0

i and χ̃±

i could decay into their lighter counterparts and leptons that could
be the cleanest signature at the LHC. The unique feature of the spectrum is
the mass difference between the heavier neutralinos and the LSP - about 150
GeV in one case and close to 500 GeV in the other. This could lead to very
high energy leptons and a lot of missing energy making this a very favorable
channel at the LHC. Once detected, this would give useful information about
the GUT scale threshold corrections.

4 Summary

We have calculated the spectrum of exotics as well the MSSM spectrum start-
ing from a heterotic string theory compactified on an anisotropic orbifold.
Allowing the exotics, that come in incomplete GUT multiplets to obtain
mass according to their quantum numbers allows for more possible solutions
to gauge coupling unification. We find that we can build consistent MSSM
spectra starting with such theories with the exotics acting as messengers
of SUSY breaking through the gauge mediation mechanism. The gaugino
masses in the low energy spectrum depend on the threshold corrections at
the GUT scale. They are lighter than the scalars and are within the kinematic
reach of the LHC. The unique features of the spectrum are light gluinos and
also large mass differences between the lightest and the next-to-lightest neu-
tralinos and charginos which could lead to interesting signatures at the LHC.
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Table 2: The MSSM spectrum at the weak scale for the four different cases given
in Table 1.

Observable Case 1 Case 2 Case 3 Case 4

tan β 7 4 4 6
mu -206.217 -1932.930 937.044 958.984
mh0 119.311 117.384 117.791 117.384
mH0 4039.466 10327.840 10323.870 4129.50
mA0 4037.954 10323.182 10319.566 4127.62
mH+ 4039.133 10323.750 10320.322 4128.69
mg̃ 708.987 455.343 369.786 712.66
mχ̃0

1
52.867 60.336 13.608 24.671

mχ̃0
2

198.922 548.051 97.766 629.15

mχ̃0
3

-221.679 1947.429 -947.105 -962.34

mχ̃0
4

360.330 -1949.000 952.206 974.12

mχ̃±

1
199.225 548.196 98.136 629.87

mχ̃±

2
351.551 1974.466 967.940 984.45

md̃L
≃ ms̃L

4035.319 10017.133 9891.84 4195.60
mũL

≃ mc̃L
4034.710 10017.005 9891.67 4195.03

mb̃1
3312.041 8329.932 8180.58 3489.22

mt̃1 2357.034 6181.548 6034.69 2419.63
mẽL

≃ mµ̃L
4023.779 10095.067 9973.61 4185.18

mν̃eL
≃ mν̃µL

4022.711 10094.474 9973.00 4184.15
mτ̃L

3982.090 10068.311 9966.998 4053.27
mν̃τL

4014.664 10088.009 9966.40 4178.30
md̃R

≃ ms̃R
4011.295 10009.631 9919.58 4078.18

mũR
≃ mc̃R

4009.916 10005.369 9914.576 4076.57
mb̃2

3994.851 9997.358 9907.23 4065.98
mt̃2 3314.600 8330.918 8181.58 3491.80
mẽR

3998.343 10081.311 9993.46 4065.36
mµ̃R

3998.289 10081.268 9993.42 4065.32
mτ̃R

4015.735 10088.622 9980.25 4179.34
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A Renormalization Group Equations

A.1 4D SUSY GUT Theory

The grand unification (GUT) scale, MGUT is defined by SOFTSUSY [11] as
the point where

α1(MGUT ) = αGUT = α2(MGUT )

α3(MGUT ) = αGUT (1 + ǫ3). (5)

Precision electroweak data requires, in the standard supersymmetry breaking
scenarios, with universal gaugino and scalar masses at the GUT scale:

ǫ3 =
α3 − αGUT

αGUT
≃ −0.03. (6)

Thus the 1-loop renormalization group equations for SUSY GUT from the
weak scale to the GUT scale, with 2-loop threshold corrections near the GUT
scale are given (in the vicinity of the GUT scale) by:

α−1
i (µ) = α−1

GUT +
bi

2π
log

MGUT

µ
− ∆δi3 (7)

where i = 3,2,1, represent SU(3)C , SU(2)L, and U(1)Y respectively. The bis
are the β-function coefficients, bi = (−3, 1, 33

5
) for the MSSM and δi3 is the

threshold corrections to α3,

∆ = α−1
GUT

ǫ3

(1 + ǫ3)
. (8)

It should be noted that when we work in the non-standard scenarios such as
models with non-universal gaugino masses at the GUT scale, the value of ǫ3

need not be -3 %.

A.2 Orbifold GUT Theory

The RGEs for the orbifolded model can be arrived at by taking into account
all the particles in the spectrum. The highest scale in this theory is the string
scale, MS, above which there is one unified grand unified coupling constant,
αstring. In the heterotic framework, the unified coupling constant is related
to Newton’s constant, GN , by the relation:

GN =
1

8
αstring α′ (9)
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where, α′ = 1
M2

S

, and from the observed value of GN = 1
M2

PL

; MPL ∼ 1.2×1019

GeV. Thus we have,

αstring = 8
M2

S

M2
PL

(10)

The three gauge couplings renormalize independently below the string scale.
New states enter the theory at the intermediate scales:

• MEX3 - Mass scale of the triplet exotics.

• MEX2 - Mass scale of the doublet exotics.

• MC - The compactification scale of the extra-dimensions.

MEX2 MEX1 MCMGUT MS

 µ  in GeV

(α
string

)
-1                         

(α
GUT

)
-1

20

30

40

50

α
1

-1

α
2

-1

α
3

-1

Figure 3: The figure shows the evolution of couplings for one particular model ~n
= (4,2,(2,1)). The 4D GUT scale is MGUT = 2 × 1016 GeV. The doublet exotics
enter at MEX2 = 1.29×1013 GeV; the triplets enter at MEX3 = 1.115×1014 GeV.
At MC = 1.2 × 1016 GeV, the Kaluza-Klein states of the MSSM particles enter
and couplings run with a power law to unify at the string scale, MS =6.06 × 1017

GeV.

In general each of the exotics could obtain different mass. We generalize
from the previous work [6], where it was assumed that all the exotics obtain

13



mass at the same scale. This generalization is motivated by the fact that the
exotics do not come in complete GUT multiplets. Hence the possibility of a
splitting between the doublets and triplets is well motivated. The running of
the couplings begin to alter at these scales, as shown in Fig. 3. Taking into
account all particles in the spectrum below the string scale: MSSM particles,
exotic states and the Kaluza-Klein modes from the compactification, the
renormalization group equation for the orbifold GUT theory becomes:

α−1
i (µ) = α−1

string +
bMSSM
i

2π
log

Ms

µ
+

bEX3
i

2π
log

Ms

MEX3
+

bEX2
i

2π
log

Ms

MEX2

−
1

4π
(b++

i + b−−

i )log
Ms

Mc
+

bG

2π
(
Ms

Mc
− 1). (11)

The first term in the above equation is the tree level boundary condition
from the heterotic string theory as given in Eq. (10). The next three terms
include contributions to the β-function coefficients from the from the MSSM
and exotic brane states and the zero-KK modes of the states living in the
bulk.

bX
i = bX,++

i + bX,brane
i where X = MSSM, EX3, EX2. (12)

For the MSSM, bi = (3,−1, 33/5). The infinite sum over the KK modes of the
MSSM can be evaluated to give the last term in Eq. (11) [14]. States that are
not localized on the “branes” are free to propagate in the higher-dimensional
“bulk”. In this work, we have considered that only the minimum amount of
matter lives in the bulk - the MSSM third family b̄ and L. In principle we
could allow two more pairs of chiral multiplets, 6+6c in the bulk that would
correspond to “bulk” exotics. The contribution from the massive KK modes
of the exotics that live in the bulk would also include an infinite sum over the
KK modes. The case of bulk exotics was analyzed in [6] and the spectrum
of exotics was calculated. For the purposes of the current work, we shall
assume that the exotics live only on the brane. The current treatment can
be extended similarly for the bulk exotics case also, without any significant
change in the low energy phenomenology.

The brane-localized exotics’ β-function coefficients depend on the exotic
matter content of the theory, see Table 3. The exotic matter content is
defined in terms of the parameters ni with:

n3 ×
[

(3, 1)1/3,∗ + (3, 1)−1/3,∗

]

+ n2 × [(1, 2)0,∗ + (1, 2)0,∗] +

n1 × [(1, 1)1,∗ + (1, 1)−1,∗] (13)
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The coefficients

bEX3 = (n3, 0,
n3 + 3n1

10
) bEX2 = (0, n2,

3n′

1

10
)

(given in table 4) can be calculated for each different value of the parameters
−→n = (n3, n2, (n1, n

′

1)). In the above expression, n1 of the exotics with just
U(1) hypercharge obtain the same mass as the triplets and n′

1 of them obtain
the same mass as the doublets. We check for gauge coupling unification by
comparing the following quantities (i) 1/α3 − 1/α2, (ii) 1/α2 − 1/α1, (iii) α3

from the 4D SUSY GUT theory and the orbifold GUT theory at the scale µ.
We scan over all possible, ni, and check for gauge coupling unification.

Table 3: Exotic matter content in Models 1A/B and 2 from [13]. Listed are the
quantum numbers of the states under the MSSM and hidden sector gauge groups,
with the hypercharge denoted in the subscript. The brane localized exotic matter
in Model 1 is a subset of that in Model 2.

Model Hidden Sector Exotic Matter Irrep Name

1 A/B SU(4) × SU(2) brane 2 ×
[

(3, 1; 1, 1)1/3,2/3 + (3, 1; 1, 1)
−1/3,−2/3

]

v + v̄
exotics 4 × [(1,2; 1, 1)0,∗ + (1,2; 1, 1)0,∗] m + m

1 × [(1,2; 1,2)0,0 + (1,2; 1,2)0,0] y + y
2 ×

[

(1, 1;4, 1)1,1 + (1, 1;4, 1)−1,−1

]

f+ + f̄−

14 × [(1, 1; 1, 1)1,∗ + (1, 1; 1, 1)−1,∗] s+ + s−

bulk 6 ×
[

(3, 1; 1, 1)
−2/3,−2/3 + (3, 1; 1, 1)2/3,2/3

]

δ + δ̄
exotics 1 ×

[

(3, 1; 1, 1)
−2/3,−1/3 + (3, 1; 1, 1)2/3,1/3

]

d + d̄
1 × [(1,2; 1, 1)−1,−1 + (1,2; 1, 1)1,1] ℓ + ℓ̄

2 SO(8) × SU(2) brane 4 ×
[

(3, 1; 1, 1)1/3,∗ + (3, 1; 1, 1)
−1/3,∗

]

v + v̄
exotics 2 × [(1,2; 1, 1)0,∗ + (1,2; 1, 1)0,∗] m + m

1 × [(1,2; 1,2)0,0 + (1,2; 1,2)0,0] y + y
2 × [(1, 1; 1,2)1,1 + (1, 1; 1,2)−1,−1] x+ + x−

20 × [(1, 1; 1, 1)1,∗ + (1, 1; 1, 1)−1,∗] s+ + s−

bulk 3 ×
[

(3, 1; 1, 1)
−2/3−2/3 + (3, 1; 1, 1)2/3,2/3

]

δ + δ̄
exotics 1 ×

[

(3, 1; 1, 1)
−2/3,2/3 + (3, 1; 1, 1)2/3,−2/3

]

d + d̄
1 × [(1,2; 1, 1)−1,−1 + (1,2; 1, 1)1,1] ℓ + ℓ̄
3 × [(1,2; 1, 1)−1,0 + (1,2; 1, 1)1,0] φ + φ̄

A.3 Spectrum of Exotics and Constraints

We look for models with gauge coupling unification allowing the triplets and
the doublets to obtain mass at different scales: MEX3, and MEX2. The
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irrep b3 b2 bY
[

(3, 1)1/3,∗ + (3, 1)−1/3,∗

]

1 0 1/10
[(1, 2)0,∗ + (1, 2)0,∗] 0 1 0
[(1, 1)1,∗ + (1, 1)−1,∗] 0 0 3/10

Table 4: Values of β-function coefficients for the brane-localized exotics.

relevant quantities in the RGEs are given by:

MSSM β-function coefficients bMSSM = (−3, 1,
33

5
)

MSSM bulk states β-function coefficients b++ = (−7,−3,
13

5
)

b−− = (5, 1,
1

5
)

bG ≡
∑

P=±,P ′=±

bMSSM,PP ′

i ; bG = −4

Planck Scale MPL = 1.22 × 1019 GeV

MC is allowed to vary between a minimum of 7× 1015 GeV, the approxi-
mate bound determined in [6] and higher. We find the maximum number of
solutions for MC = 1.2×1016 GeV. All further results shown will be from the
data set with this value of MC . This also seems to be a good choice of MC

since it is only an order of magnitude smaller than the string scale. Since
we are deviating from the standard scenario of universal gaugino masses at
the GUT scale, we need to consider a larger range of ǫ3. In fact, we assume
that the GUT threshold corrections, in order to agree with the precision elec-
troweak data, can be anywhere between ǫ3 ∼ -4% and +2%. In comparison
with the earlier analysis, [6], we find a larger number of cases that satisfy
gauge coupling unification. Introducing the splitting of the doublets and
triplets gives more freedom in fixing the compactification scale, and hence a
larger number of solutions fall within the proton lifetime bound (See eq. 14).

A.3.1 Proton Decay

The bound on the proton lifetime is an important constraint on the solu-
tions, since the models discussed here are SU(6) GUTS in 5D. At the scale,
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MX ∼ MC , the grand unified gauge group is broken and the GUT gauge X

boson gets mass at this scale. It can mediate proton decay via dimension 6
operators. In a 4D effective theory formalism, the decay rate Γ(p → e+ +π0)
can be calculated in terms of gGUT , MS, MC , and MX . In Appendix B of
Ref. [6] they obtain

τ(p → e+π0) = 5.21 × 1040

(

MC

MS

)4

years. (14)

When calculating the spectrum of exotics satisfying gauge coupling uni-
fication, we only keep cases consistent with the experimental bounds on
the proton lifetime. The strongest experimental bound comes from Super-
Kamiokande in Japan that searches for p → e+ +π0 signatures. The current
bound is [8]

τ(p → e+π0) > 1 × 1034years. (15)

A.3.2 String Coupling Constant

We have assumed that the E8 × E8 model considered in this paper is in the
weakly coupled regime. In [17] a simple formula relating the string coupling
constant, gstring, to other relevant quantities of the model was obtained

g2
string = αGUT

MS

MC
. (16)

To be in the perturbative regime, we need gstring ≤ 1. In the heterotic
framework, we also have a relation between αGUT (MS) ≡ αstring, i.e. the
unified coupling constant at the string scale, given in Eq. 10:

α−1
GUT =

1

8

M2
PL

M2
S

. (17)

This condition then imposes an additional constraint on the possible consis-
tent solutions. The value of gstring for the four cases discussed earlier can be
found in Table. 1.

B 2-loop corrections to soft masses

The 2-loop renormalization group equations for the MSSM parameters have
been studied extensively in literature [19]. The RGEs for the couplings and
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gaugino masses at 2-loop are given by:

dMi

dt
=

2g2
i

16π2
b
(1)
i Mi +

2g2
i

(16π2)2

3
∑

j=1

b
(2)
ij g2

j (Mi + Mj) (18)

dgi

dt
=

g3
i

16π2
b
(1)
i +

g3
i

(16π2)2

3
∑

j=1

b
(2)
ij g2

j (19)

where,
g2

i

4π
= αi. The 1-loop and 2-loop β- function coefficients for the MSSM

are:

b
(1)
i = (−33/5,−1, 3) b

(2)
ij =





199/100 27/20 22/5
9/20 25/4 6
11/20 9/4 7/2



 (20)

At 1-loop the gaugino masses and the couplings obey the relation:

Mi

αi
= constant (21)

At 2-loops this equation gets small corrections. Solving the above two equa-
tions at 2-loops, we find:

Mi

αi
=

3
∑

j=1

b
(2)
ij αjMj (22)

Approximating the right-hand side by the 1-loop result, and using the values
of the β-function coefficients, we find that the 2-loop corrections to Eq. (21)
are less than 1% [20].
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