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ABSTRACT

We present physical results obtained from simulations using 2+1 flavors of domain wall quarks

and the Iwasaki gauge action at two values of the lattice spacing a, (a−1= 1.73 (3) GeV and

a−1= 2.28 (3) GeV). On the coarser lattice, with 243 × 64× 16 points (where the 16 corresponds

to Ls, the extent of the 5th dimension inherent in the domain wall fermion (DWF) formulation
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of QCD), the analysis of ref. [1] is extended to approximately twice the number of configura-

tions. The ensembles on the finer 323 ×64×16 lattice are new. We explain in detail how we use

lattice data obtained at several values of the lattice spacing and for a range of quark masses in

combined continuum-chiral fits in order to obtain results in the continuum limit and at physical

quark masses. We implement this procedure for our data at two lattice spacings and with uni-

tary pion masses in the approximate range 290–420 MeV (225–420 MeV for partially quenched

pions). We use the masses of the π and K mesons and the Ω baryon to determine the physical

quark masses and the values of the lattice spacing. While our data in the mass ranges above are

consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are

also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to per-

form the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions

about higher order corrections. In some cases, particularly for fπ , the pion leptonic decay con-

stant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results

include fπ = 124(2)stat(5)syst MeV, fK/ fπ = 1.204(7)(25) where fK is the kaon decay constant,

mMS
s (2GeV) = (96.2±2.7) MeV and mMS

ud (2GeV) = (3.59±0.21) MeV (ms/mud = 26.8±1.4)

where ms and mud are the mass of the strange-quark and the average of the up and down quark

masses respectively, [ΣMS(2GeV)]1/3 = 256(6) MeV, where Σ is the chiral condensate, the Som-

mer scale r0 = 0.487(9) fm and r1 = 0.333(9) fm.
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I. INTRODUCTION

For several years now, the RBC and UKQCD Collaborations have been undertaking a major pro-

gramme of research in particle physics using lattice QCD with Domain Wall Fermions (DWF)

and the Iwasaki gauge action. In the series of papers [1–3], we studied general properties of en-

sembles with an inverse lattice spacing of a−1 = 1.73(3)GeV (corresponding to β = 2.13) and

with unitary pion masses mπ ≥ 330 MeV (partially quenched mπ & 240 MeV). The number of

points in these ensembles are 163 ×32×8 [2], 163 ×32×16 [3] and 243×64×16 [1], where the

fifth dimension is a feature of DWF and is not visible to low-energy physics which remains four-

dimensional. We do not review the properties of DWF here, beyond underlining their physical

chiral and flavor properties which we exploit in much of our wider scientific programme. We have

used these ensembles to investigate a broad range of physics, including studies of the hadronic

spectrum, mesonic decay constants and light-quark masses [1], the evaluation of the BK parameter

of neutral-kaon mixing [1, 4], the calculation of the form-factors of Kℓ3 decays [5, 6], studies in

nucleon structure [7–9] and proton decay matrix elements [10] and very recently the first lattice

study of the masses and mixing of the η and η ′ mesons [11] as well as a determination of the

matrix elements relevant for neutral B-meson mixing in the static limit [12]. A key limiting factor

in the precision of these results was that the simulations were performed at a single lattice spacing.

In this paper we remove this limitation, by presenting results for the spectrum, decay constants and

quark masses obtained with the same lattice action using ensembles generated on a 323 ×64×16

lattice at a second value of the lattice spacing corresponding to β = 2.25, for which we will see

below that a−1 = 2.28(3) GeV. Now that we have results for the same physical quantities with the

same action at two values of the lattice spacing we are able to perform a continuum extrapolation

and below we will present physical results in the continuum limit.

Since the most precise results at β = 2.13 were obtained on the 243 × 64× 16 [1] lattices, as a

shorthand throughout this paper we will refer to these lattices as the 243 ensembles and label the

new lattices at β = 2.25 as the 323 ensembles.

The new 323 ensembles at β = 2.25 will, of course, be widely used also in our studies of other

physical quantities. In this first paper however, we discuss their properties in some detail (see

Sec. II). In this section we also discuss reweighting which allows us to eliminate one source of

systematic uncertainty. While at present we cannot simulate with physical u and d quark masses,

there is no reason, in principle, why we cannot simulate with the physical strange quark mass.
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The difficulty however, is that we don’t know a priori what this mass is and so in practice the

simulations are performed with a strange quark mass which is a little different from the physical

one. As explained in Section II D, the technique of reweighting allows us to correct a posteriori

for the small difference in the simulated and physical strange quark masses. In Section III, we

present updated raw results for the pion and kaon masses and decay constants and the mass of

the Ω-baryon on the 243 ensembles which have been extended beyond those discussed in ref.[1].

Section IV contains the corresponding results on the 323 ensembles. In these two sections we also

present the raw results for the masses of the nucleon and ∆ baryons from the two ensembles, but in

contrast to the mesonic quantities a description of their chiral behaviour and extrapolation to the

continuum limit are postponed to a future paper.

The price we pay for using a formulation with good chiral and flavor properties is the presence

of the fifth dimension and the corresponding increase in computational cost. The lightest unitary

pion which we have been able to afford to simulate has a mass of 290 MeV and so, in addition

to the continuum extrapolation we need to perform the chiral extrapolation in the quark masses.

In Sec. V we present a detailed explanation of how we combine the chiral and continuum extrap-

olations in an attempt to optimize the precision of the results, exploiting the Symanzik effective

theory approach as well as chiral perturbation theory and other ansatze for the mass dependence of

physical quantities. Having explained the procedure, we then proceed in Section V E to discuss the

results, to determine the physical bare masses and lattice spacings as well as to make predictions

for the pion and kaon decay constants. In particular we find that the ratio of kaon and pion decay

constants [78]
fK

fπ
= 1.204±0.026 , (1)

where the error is largely due to the uncertainty in the chiral behaviour of fπ as explained in

Sec. V E 3. From the chiral behaviour of the masses and decay constants we determine the corre-

sponding Low Energy Constants (LECs) of SU(2) Chiral Perturbation Theory (ChPT).

Among the most important results of this paper are those for the average u and d quark mass and

for the strange quark mass which are obtained in Sec.VI:

mMS
ud (2GeV) = (3.59±0.21)MeV and mMS

s (2GeV) = (96.2±2.7)MeV. (2)

The masses are presented in the MS scheme at a renormalization scale of 2 GeV, after the renor-

malization to symmetric momentum schemes has been performed non-perturbatively [13, 14] and

the conversion to the MS scheme has been done using very recent two-loop results [15, 16].
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Section VII contains a discussion of the topological charge and susceptibility of both the 243 and

323 ensembles and in Sec.VIII we summarise our main results and present our conclusions. There

are three appendices. Appendix A contains the chiral extrapolations performed separately on

the 243 and 323 ensembles. This is in contrast with the procedure described in Section V E in

which the chiral and continuum extrapolations were performed simultaneously with common fit

parameters at the two spacings. Appendix B contains a detailed analysis of a subtle issue, the

normalization of the partially conserved axial current. For domain wall fermions this is expected

to deviate from the conventionally normalized continuum current by terms of order amres, where a

is the lattice spacing and mres is the residual mass [1, 17]. Current simulations are now becoming

sufficiently precise that these effects need to be understood and quantified and the method proposed

in appendix B, in which the O(amres) effects are absent, is implemented in the numerical analyses

throughout the paper. Finally Appendix C contains a discussion of the expected statistical errors

when reweighting is performed on Monte Carlo data to obtain results with a different action from

that used to generate the data.

We end the Introduction with an explanation of our notation for quark masses [1]. When discussing

unitary computations, with the valence and sea quarks degenerate, we call the bare light (u or d)

quark mass ml and the bare heavy (strange) quark mass mh. mud and ms refer to the physical values

of these masses (we work in the isospin limit so that the up and down quarks are degenerate). For

the partially quenched computations we retain the notation ml and mh for the sea-quark masses,

but use mx and my for the valence quarks. A tilde over the mass indicates that the residual mass

has been added, m̃q = mq +mres; it is m̃ which is multiplicatively renormalizable.

II. SIMULATION DETAILS AND ENSEMBLE PROPERTIES

As described in Ref. [1, 3, 18], we generate ensembles using a combination of the DWF formula-

tion of Shamir [19] and the Iwasaki gauge action [20]. For the fermionic action we use a value of

1.8 for the “domain wall height” M5 and an extension of the 5th dimension of Ls = 16. In addition

to the new ensembles generated on a 323 × 64 lattice volume and a gauge coupling β = 2.25,

we have also significantly extended the 243 ×64, β = 2.13 ensembles generated in our previous

study [1]. As indicated in Tab. I we have extended the ml = 0.005, 243 ×64 ensemble from 4460

to 8980 MD units while the ml = 0.01 ensemble has been extended from 5020 to 8540 MD units.

The three 323 ×64 ensembles that are first reported here are also shown in Tab. I and those with
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light quark masses of 0.004, 0.006 and 0.008 contain 6856, 7650 and 5930 MD units respectively.

A. Ensemble Generation

For the generation of both the 243 × 64 and 323 × 64 ensembles, we employ the “RHMC II”

algorithm described in Ref. [1]. More specifically, the simulation of two light quarks and one

strange quark is carried out using a product of three separate strange quark determinants each

evaluated using the rational approximation. The 2 flavors of light quarks are preconditioned by

the strange quark determinant [21]. While the preconditioning mass does not have to be the same

as the strange-quark mass, we found that the strange-quark mass is close to being optimal in DWF

simulations in tests on smaller volumes.

Using the notation D(ml) = D
†
DW F(M5,ml)DDWF(M5,ml), the fermion determinant including the

contribution from the Pauli-Villars fields and evaluated on a fixed gauge configuration can be

written as

det

[
D(ms)

1/2D(ml)

D(1)3/2

]

= det

[
D(ms)

D(1)

]3/2

·det

[
D(ml)

D(ms)

]
(3)

= det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
R 1

2

(
D(ms)

D(1)

)]
·det

[
D(ml)

D(ms)

]
. (4)

In the third line we explicitly show how this ratio of determinants is implemented using the ratio-

nal approximation. Here Ra(x) denotes xa evaluated using the rational approximation and each

determinant is evaluated using a separate set of pseudofermion fields. An Omelyan integrator [22]

with the Omelyan parameter λ = 0.22 was used in each part of evolution.

Given the disparate contributions to the molecular dynamics force coming from the gauge action

and the different factors in Eq. (4) we follow the strategy of Ref. [23] and increase performance by

simulating these different contributions with different molecular dynamics time step granularities.

In particular, the suppression of the force from the light quark determinant that results from the

Hasenbusch preconditioning allows us to evaluate the computationally expensive force from the

light quark using the largest time step among the different terms, decreasing the computational cost

significantly. As a result, we divide our simulation in such a way that ∆tlight : ∆theavy : ∆tgauge = 1 :

1 : 1/6 which gave a good performance, measured in flops per accepted trajectory in tuning runs

performed separately. (Note, the nature of the Omelyan integrator makes ∆theavy effectively half
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of ∆tlight .) This ratio of time steps was used for all the ensembles studied here. However ∆tlight

was varied from ensemble to ensemble to reach an approximate acceptance of 70%. The precise

numbers that were used are listed in Tab. I.

In addition, we chose to simulate with a trajectory length τ = 2 for the 323 ensembles, twice

that used for the 243 ensembles. While a longer trajectory length may be expected to reduce the

autocorrelation between configurations, the time for a trajectory scales very nearly linearly in the

trajectory length. In comparisons between τ = 1 and τ = 2 trajectory lengths we were not able

to recognize any statistically significant reduction in autocorrelations, especially in those for the

topological charge, in terms of wall-clock time used to generate the configurations.

A final optimization was used for the simulations run on the IBM BG/P machines at the Ar-

gonne Leadership Computing Facility(ALCF). Instead of using double precision throughout, the

BAGEL-generated assembly routines [24] keep the spin-projected spinors in single precision in

the conjugate gradient(CG) inverters during the molecular dynamics evolution to decrease the

amount of communication needed per CG iteration. (Full precision is used in the accept-reject

step.) While this kind of improvement is expected to make the molecular dynamics integrator un-

stable for sufficiently large volumes, the effect on the acceptance turned out to be minimal for all

the ensembles presented in this paper while improving the performance of the CG by up to 20%

compared to a full double precision CG with the same local volume.

B. Ensemble properties

In Fig. 1 we show the evolution of the plaquette and the chiral condensate for the 323 ensembles.

Both quantities suggest that 500 MD units is enough for the thermalization of each of the 323

ensembles. We have thus begun measurements at 1000 MD units for ml = 0.006 (except for the

measurements of the chiral condensate which started after 3304 MD units) and 520 MD units for

the other 323 ensembles. (The starting points for measurements on the three 243 ×64 ensembles

are given in Tab. I of Ref. [1].)

Figure 2 shows the integrated autocorrelation time for various quantities measured on the 323

ensembles. As can be seen the plaquette, chiral condensate and even the light pion propagator

for a separation of 20 time units show a short autocorrelation time of 5-10 MD units. However,

the measured autocorrelation times for the topological charge are much larger, on the order of

80 MD units. In fact, as is discussed in Section VII, the evolutions shown in Fig. 52 suggest
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even longer autocorrelation times implying that the autocorrelation times shown in Fig. 2 may be

underestimated because of insufficient statistics.

In Section VII this issue of the autocorrelation time for the topological charge is discussed in

greater detail and the β = 2.13 and 2.25 evolutions are compared. The 323, β = 2.25 ensem-

bles (with finer lattice spacing) are shown to evolve topology more slowly. This suggests that

the change from the DBW2 gauge action used in earlier 2-flavor work [25] to the Iwasaki gauge

action used here may have been a wise one. While the DBW2 gauge action gives smaller residual

DWF chiral symmetry breaking, it does this by suppressing the tunneling which changes topolog-

ical charge. Thus, the use of the DBW2 gauge action may have resulted in a topological charge

evolution for our current finest lattice spacings that would have been unacceptably slow.

C. Fitting procedure

In the analysis described in this paper it is important to take into account the fact that the various

quantities computed on a single gauge configuration may be correlated. To do this we apply the

jackknife technique to simple uncorrelated fits. While there is no proof, or even expectation, that

this is an optimal procedure, the jackknife will provide a good estimate of the error except in the

unlikely event of large deviations of our result from a normal distribution. While we could attempt

to perform a “text-book” correlated fit (again, using a jackknife procedure), this would not be

sensible: such fits assume that the data should exactly follow the functional form used in the fit.

In the case of a fit to chiral perturbation theory or a simpler analytic ansatz for the quark-mass

dependence of physical quantities we know that this is not the case. While this complaint applies

to both correlated and uncorrelated fits, for the highly correlated lattice data with which we are

dealing, small deviations (which in this procedure are assumed to be statistical, but in our case are

likely to be systematic) are penalized by many orders of magnitude more for the correlated than

uncorrelated fits. Nevertheless, we have performed correlated fits, where the correlation matrix

is obtained by taking increasing numbers of the leading eigenvectors. Within our limited ability

to estimate the correlation matrix, we find no significant difference in the results and errors with

those obtained using uncorrelated fits. Therefore, in this paper (as was also the case in Ref. [1])

we present our main results from the uncorrelated fits, but with a full jackknife procedure for

estimating the errors. However, it must be borne in mind that for such uncorrelated fits the resulting

χ2 may not be a reliable indicator of goodness of fit. Therefore, we present a sample set of our fits
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graphically.

D. Reweighting in the mass of the sea strange-quark

The sea strange quark mass value used in our ensemble generation, m
(sim)
h , differs from the one

in nature, which we determine only after performing our final analysis. In this subsection, we

describe the reweighting method used to correct this strange quark mass from m
(sim)
h to the tar-

get mass mh. Various target heavy quark masses are determined in Section V through interpola-

tion/extrapolation to yield meson masses which match either unphysical values present in a dif-

ferent ensemble or which reproduce those from experiment. Recently, several large-scale QCD

simulations have been reported using a reweighting technique [26–28]. The various uses of this

method include obtaining sea quark mass derivatives in Ref. [29], tuning the light and strange

quark masses in Ref. [30], tuning the strange and charm quark masses in Ref. [31] and going to

larger Ls for the DWF action in Ref. [32].

An observable, such as the meson propagator, at the target strange sea quark mass mh is obtained by

measuring that observable on the ensemble generated using m
(sim)
h , multiplied by the reweighting

factor w:

〈O〉mh
=

〈Ow〉
m

(sim)
h

〈w〉
m

(sim)
h

. (5)

Here the reweighting factor w[Uµ ] for a particular ensemble of gauge links Uµ is the ratio of the

square root of the two-flavor Dirac determinant evaluated at the mass mh divided by that same

rooted determinant evaluated at m
(sim)
h ,

w[Uµ ] =
detD(mh)

1/2

detD(m(sim)
h

)1/2
. (6)

This factor must be calculated for each configuration on which measurements will be performed

in the ensemble generated using the sea strange mass m
(sim)
h .

Among the many possible ways of computing the determinant ratio in Eq. (6), we have chosen to

use the Hermitian matrix Ω(mh,m
(sim)
h ), whose determinant is w[Uµ ],

Ω(mh,m
(sim)
h ) =

[
D(m(sim)

h )†
]1/2 [

D(mh)
†
]−1/2

[D(mh)]
−1/2

[
D(m(sim)

h )
]1/2

. (7)

The square root of these matrices is implemented using the same rational polynomial approx-

imation, R 1
2
(x), and multi-shift conjugate gradient algorithm, which are used in the ensemble
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generation. The order of the matrix products in Ω assures that in the limit of mh → m
(sim)
h

, Ω goes

to the unit matrix, so that the method described below for evaluating w has vanishing stochastic

error in this limit.

To obtain w on each configuration, the determinant of Ω is stochastically evaluated using a com-

plex random Gaussian vector ξ of dimension Ls × 12. Each complex element is drawn from a

random distribution centered at zero with width σξ in both the real and imaginary directions:

w = 〈〈e−ξ †[Ω−1/(2σ2
ξ )]ξ 〉〉ξ ≡

∫
DξDξ † e

−ξ †[Ω−1/(2σ2
ξ )]ξ

e
−ξ †ξ/(2σ2

ξ )

∫
DξDξ †e

−ξ †ξ/(2σ2
ξ
)

. (8)

We set σ 2
ξ = 1/2 and sample using Nξ Gaussian vectors per configuration. For one sample, two

multi-mass inversions, one for mh and another for m
(sim)
h , are performed.

One needs to be careful in evaluating Eq. (8) to avoid a large and difficult to estimate statistical

error. When the eigenvalues of Ω, λΩ, are far from 1/(2σ 2
ξ ), the large shift in the width of the

Gaussian in the integrand will cause poor sampling in this stochastic evaluation of w, as can be

seen if Eq. 8 is rewritten with Ω diagonal:

w = ∏
λΩ∈spect(Ω)

∫
dξλ ξ †

λ e
−ξ †

λ
[λΩ−1/(2σ2

ξ )]ξλ e
−ξ †

λ
ξλ /(2σ2

ξ )
/ ∏

λΩ∈spect(Ω)

∫
dξλ ξ †

λ e
−ξ †

λ
ξλ /(2σ2

ξ )
. (9)

The first exponential function in the integrand (9) will be a rapidly decreasing function of ξ †ξ

when [λΩ − 1/(2σ 2
ξ )] is large, with most of the Gaussian samples generated according to the

second exponential function in Eq. (9) falling in a region where the first factor is very small. In

this sense, Eq. (8) may provide a statistically noisy estimate of the ratio of the determinants in

Eq. (6). The fluctuations in this estimate will be rapidly reduced when [λΩ−1/(2σ 2
ξ )] → 0 or, for

our choice of σξ , when Ω becomes close to the unit matrix, Ω → 1.

To reduce the stochastic noise in our estimate, detΩ is divided into Nrw factors [27]

w = detΩ =
Nrw−1

∏
i=0

detΩi =
Nrw−1

∏
i=0

〈〈e−ξ †
i [Ωi−1/(2σ2

ξ
)]ξi〉〉ξi

. (10)

Each of Ωi needs to be close to unit matrix while keeping the determinant of the product the

same as the original determinant. Each factor detΩi in the product, is evaluated using Eq. (8)

with Nξ Gaussian vectors. We note that all Gaussian vectors, ξi, must be statistically independent

otherwise there will be unwanted correlation among contribution from the Nrw steps. A similar

decomposition of the reweighting factor is also possible by using the nth root of the operators[32].
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In this work, Ωi is chosen by uniformly dividing the interval [mh,m
(sim)
h

] into smaller pieces:

Ωi = Ω
(

m
(i+1)
h

,m
(i)
h

)
, (11)

m
(i)
h = m

(sim)
h + i

mh −m
(sim)
h

Nrw
,(i = 0,1, · · · ,Nrw) . (12)

In that way, reweighting factors for the intermediate masses m
(i)
h are also obtained, which will be

used in our analysis too.

For a given difference between the target and the simulation masses, mh −m
(sim)
h , Nrw needs to be

sufficiently large that Ωi is close to the unit matrix, suppressing the statistical noise in estimating

each of the determinants. We have checked whether Nrw is large enough in our calculation of

the reweighting factor. Figure 3 shows the logarithm of the full reweighting factor, − ln(w), as a

function of the number of divisions in strange quark mass, Nrw, on the β = 2.13,243 × 64,ml =

0.005 lattices, the 2,000th trajectory in the left panel and the 4,000th trajectory in the right panel.

The target and simulation quark masses are mh = 0.035 and m
(sim)
h = 0.040.

For Nrw ≤ 10, the reweighting factor w appears inconsistent with the results obtained for larger Nrm

by a large amount (note that − ln(w) is plotted) for the left case (2,000th trajectory). We believe

this is caused by the poor stochastic sampling in our method to compute w when Nrw ≤ 10 and

that for these cases the statistics are insufficient to estimate the error accurately.

We also check the relative difference between the reweighting factors for Nrw = 20 and Nrw = 40

in Fig. 4 for five lattices. This plot indicates that Nrw = 20 is sufficient to estimate the reweighting

factor and its error for changing from m
(sim)
h = 0.040 to mh = 0.035 on this ensemble. We summa-

rize the values of Nrw and Nξ used in estimating the reweighting factors for the sea strange quark

mass in Tab. II.

Is the Nrw dependence, described above, all one needs to check to assure the correctness of the

reweighting procedure? The answer is clearly no. So far, we have only established that Eq. (10)

estimates w to some degree of accuracy, on each configuration for large Nrw. One needs further

checks to see whether or not the reweighted observable in Eq. (5) has an accurately estimated

statistical error. A highly inaccurate estimate of the statistical errors could easily result from a

poor overlap between the reweighted ensemble and the original ensemble generated by the RHMC

simulation. In addition, because the reweighted observable in Eq. (5) is given by a ratio of averages

it is a biased estimator of the observable of interest. In this circumstance, a large statistical error,

even if well determined, may lead to a systematic error of order 1/Nconf enhanced by this large
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statistical error.

We have attempted the following checks: In Fig. 5, w is plotted as a function of trajectory. If the

fluctuation among different configurations is large, Eq. (5) might be dominated by a small number

of measurements made on those configurations with large w, and the measurement efficiency for

the reweighted observable would be very poor. Using the reweighting factor, wi, obtained on the

ith configuration, the reweighted observable O can be written from Eq. (5) as,

〈O〉ms
=

Nconf

∑
i=1

Oiŵi , (13)

ŵi =
wi

∑
Nconf

i=1 wi

. (14)

Because the process of reweighing selectively samples the original distribution, even with pre-

cisely determined reweighting factors we should expect the effective number of samples to be

reduced and the statistical errors to increase. In Appendix C this effect is analyzed in the case that

correlations between the data and the reweighting factors can be neglected when estimating these

statistical errors, including the effects of autocorrelations. For the case of no autocorrelations, we

obtain the following expression for the effective number of configurations after reweighting:

Neff =

(
∑

Nconf

n=1 wn

)2

∑
Nconf

n=1 w2
n

. (15)

The quantity Neff goes to Nconf if there is no fluctuation in the wi while it goes to 1 if the largest

wi completely dominates the reweighted ensemble. We summarize the statistical features of the

reweighting factors for each ensemble in Tab. III. For completeness we also compare the definition

of Neff given in Eq. (15) with the more pessimistic estimate used in Ref. [33]:

N∗
eff =

∑
Nconf

i=1 wi

max j(w j)
. (16)

As can be seen from Tab. III, our choice gives a somewhat more optimistic view of the effects of

reweighting on the effective size of our ensembles.

As the numbers in Tab. III indicate, for our ensemble and reweighting settings, the ensembles are

not overwhelmed by a small number of configurations.

The efficiency of the reweighting procedure is also observable dependent. It is influenced by the

fluctuations of the reweighted observable within the ensemble and the strength of the correlation

between the reweighted observable and the reweighting factor. Sanity checks of the statistical
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properties of the most important observables, mπ and fπ , have been performed and are summarized

in Fig. 6. The observables reweighted to mh = 0.0250 from m
(sim)
h = 0.030 are calculated using

the first half and the second half of the ensemble (circle symbols), which are compared to that

of the full statistics (square symbols). The number of the Gaussian vectors, Nξ , is also varied

from Nξ = 1 (blue symbols) to Nξ = 4 (red symbols) in the same plot. In the case of mπ , all the

statistical samples are within 1×σ , while for fπ the deviations are less than ∼ 2×σ .

To probe the mh dependence of the observables, we show in Fig. 7 the correctly reweighted mπ

and fπ as a function of mh along with the results obtained from randomly permuting the {wi} in

Eq. (13). The random permutation is done for each reweighted mass mh to show the difference

from the correctly reweighted observables. While the randomly reweighted observables are almost

flat in mh, the correctly reweighted observables have a positive slope in mh. Finally in Fig. 8 we

plot the reweighted observables fπ and fK as a function of the target reweighted mass mh for three

example parameter points. Note that in both Figs. 7 and 8 we observe an increase in statistical

errors which appears roughly consistent with what should be expected from the decrease in
√

Neff.

We should emphasize that further careful studies may be needed to establish a more accurate

estimate of possible errors in the reweighting procedure.

III. UPDATED RESULTS FROM THE 243 ENSEMBLES

In this section we update the results presented on the 243 ensembles in [1] to the extended data set

described in Sec. II, and in Table I in particular. For this extended data set we make measurements

of pseudoscalar quantities on a total of 203 configurations for the ml = 0.005 ensemble and 178

configurations for the ml = 0.01 ensemble. These configurations were separated by 40 trajecto-

ries as documented in the first two rows of Table IV. In our previous work we used 92 of these

measurements on each ensemble [1, 4]. Before performing the analyses we binned the data into

blocks of either 80 or 400 trajectories and the measurements from each bin were then treated as

being statistically independent. No statistically significant increase in the error was observed with

the analysis using bins of 400 trajectories compared to that with bins of 80 trajectories.

In the following sections the results from the 243 lattices, combined with those obtained on the

323 ensembles, will be input into global chiral and continuum fits in order to determine physical

quantities; here we simply tabulate the fitted pseudoscalar masses and decay constants as obtained

directly from the correlation functions at our simulated quark masses. In addition, since we use
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the mass of the Ω baryon in the definition of the scaling trajectory, we also present the results for

mhhh here together with those for the Sommer scale r0 and also the scale r1. Finally, in Sec.III A

we give the results for the masses of the nucleons and ∆ baryons from the 243 ensembles, although

the chiral and scaling behaviour of these masses will not be studied in this paper. We present these

baryon masses partly for completeness and partly to share our experience in the use of different

sources.

On the 243 lattices discussed in this section, the measurements are presented for the two values

of the sea light-quark mass, ml = 0.005 and 0.01, and for the full range of valence quark masses

mx,y = 0.001, 0.005, 0.01, 0.02, 0.03 and 0.04. The ensembles with ml = 0.02 and 0.03, presented

in [1], are not included in this paper because such values of ml were found to be too large for

SU(2) chiral perturbation theory to describe our data. The value of the sea strange-quark mass in

these simulations is mh = 0.04. After completing the global chiral and continuum fits described

in Section V below, we find that the physical value of the bare strange-quark mass, obtained using

the chiral perturbation theory ansatz, is ms = 0.0348(11). In this section we anticipate this result

and use reweighting to obtain results also at this value of the strange-quark mass.

For the 243 ensembles, we placed Coulomb gauge-fixed wall sources at t = 5 and at t = 57. From

each source, we calculated two quark propagators, one with periodic and the other with anti-

periodic boundary conditions. From the periodic propagators for the two sources, denoted by D−1
P,5

and D−1
P,57, and the anti–periodic propagators, written as D−1

A,5 and D−1
A,57, we form the combinations

D−1
P+A,5 =

1

2

(
D−1

P,5 +D−1
A,5

)
and D−1

P+A,57 =
1

2

(
D−1

P,57 +D−1
A,57

)
. (17)

The use of periodic plus anti-periodic boundary conditions in the time direction doubles the length

of the lattice in time, which markedly reduces the contamination from around-the-world propaga-

tion in the time direction. For two point functions, such as the propagator of a pseudoscalar meson

given by

〈π(t)π(0)〉= ∑
~x

Tr

{[
D−1

P+A,5(t,~x)
]†

D−1
P+A,5(t,~x)

}
, (18)

on a lattice of time extent Nt the time dependence of the contribution of the ground state is given

by

〈π(t)π(0)〉= A [exp(−mπ(t −5))+ exp(−mπ(2Nt − (t −5))] . (19)

Here A is a t-independent constant. For our 243 ensembles, we find that around-the-world propa-

gation is not visible in two-point functions. This is not the case however, for three-point functions,
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as we now explain (although we do not analyze three-point functions in this paper, they are being

evaluated in the computation of BK , for example [34]).

For three-point functions of the form 〈P(x)O(y)P(z)〉, where P(x) and P(z) are pseudoscalar in-

terpolating fields and O(y) is an operator whose matrix element we wish to measure, we use the

wall source at t = 5 as the source for P(z) and the wall source at t = 57 as the source for P(x). We

only consider y0 in the range 5 ≤ y0 ≤ 57, so we do not perform any measurements in the doubled

lattice. The doubling of the lattice is important to reject around-the-world propagation in time for

such measurements. For kaons, we found that a time separation of 52 between the sources gave us

a broad plateau, with sufficiently small errors. This measurement strategy was chosen to optimise

the measurement of the kaon bag parameter [4, 34].

Before presenting our results for masses, decay constants and r0 and r1, we discuss the values of

the residual mass and the renormalization constant of the local axial current. The residual mass

m′
res(m f ) at each partially quenched valence mass used in this work is measured using the ratio [79]

m′
res
(m f ) =

〈0|Ja
5q|π〉

〈0|Ja
5 |π〉

, (20)

where Ja
5q is the usual DWF mid-point pseudoscalar density composed of fields of each chirality

straddling the mid-point in the fifth dimension, and Ja
5 is the physical pseudoscalar density at the

surfaces of the fifth dimension composed of surface fields in the fifth dimension. The results are

given in Table V. For completeness we also present the corresponding residual masses obtained

after reweighting to the physical strange mass in Table VI. The residual mass in the two-flavor

chiral limit mres = m′
res(mx = ml = 0) is given in Table VII and in the left-hand plot of Figure 9.

We define ZA to be the renormalization constant of the local axial current, Aµ , composed of the

physical surface fields. Here we have determined ZA through two methods. In the first, ZA is

determined for each valence mass using the improved ratio [35] of the matrix element 〈A4(t)P(0)〉
to 〈A4(t)P(0)〉, where Aµ is the conserved DWF axial current and the results are presented in

Table VIII. This method assumes ZA = 1, and we find ZA = 0.71651(46) in the two-flavor chiral

limit with the simulated sea strange mass, and ZA = 0.71689(51) when reweighted to the nearby

physical strange mass. This determination of ZA is illustrated in the plots of Figure 10. As pointed

out in [1], we expect ZA = 1 + O(amres), and in [1] we added a ∼ 1% error to account for the

size of this correction. As part of our current work, we have investigated the consequences of

this correction, which is discussed in detail in appendix B. From this analysis, we find ZA =

0.7041(34), a 1.8% difference from the result with our previous method. Although, as we will see,
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this error is smaller than our current combined errors on the decay constants and other physical

quantities, we choose to use this value of ZA = 0.7019(26), coming from ZV /ZV as defined in

Equation (B19), as the normalization factor for the local axial current when quoting all our central

values below. Here V and V are the local and conserved vector currents.

We now turn to the measurements of the meson masses and decay constants. In order to illustrate

the quality of the fits, we start by presenting some sample plots for the unitary pion and kaon on

the ml = 0.005, mh = 0.04 ensemble. The pion effective masses obtained using different sources

and sinks are shown in Figure 11. The mass and decay constant is obtained from a simultaneous fit

with a single, constrained mass to five correlation functions. These are the 〈P|P〉, 〈A|A〉 and 〈A|P〉
correlation functions (denoted in the figure by PP, AA and AP respectively) with gauge-fixed wall

sources and local (LW) or wall (WW) sinks (we do not use the AA-WW combination because

it is noisier). The long time extent Nt = 64 on our lattices together with the noise properties of

pseudoscalar states allow for long plateaux and the results are insensitive to the choice of tmin, the

starting point of the fits. Figure 12 displays the effective masses for the unitary kaon, together with

the results obtained from a simultaneous constrained fit. We give an example of the mh dependence

of the unitary pion and kaon masses in figure 13. This dependence is obtained by reweighting.

We normalize the states so that, for periodic boundary conditions, the time dependence of the

correlators for large times is given by

C
s1s2

O1O2
(t) =

〈0|Os1

1 |π〉〈π |O
s2

2 |0〉
2mxyV

[
e−mxyt ± e−mxy(2Nt−t)

]
, (21)

where the superscripts specify the type of smearing and the subscripts denote the interpolating

operators. The sign in the square brackets in Eq. (21) is + for PP and AA correlators and − for AP

ones. We therefore define the amplitude of the correlator to be

N
s1s2

O1O2
≡ 〈0|Os1

1 |π〉〈π |O
s2

2 |0〉
2mxyV

. (22)

For each correlator included in the simultaneous fit

N
LW

AA ,N LW
PP ,N LW

AP ,N WW
PP and N

WW
AP ,

we determine the amplitude and obtain the decay constant fxy using

fxy = ZA

√
2

mxy

N LW
AP

2

N WW
PP

. (23)
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Table IX contains the measured pseudoscalar masses and decay constants at the simulated strange-

quark mass mh = 0.04. After reweighting to the estimated physical strange-quark mass ms =

0.0348(11) the masses and decay constants of the pions are presented in Table X and those for the

kaons in Table XI.

The Ω baryon, being one of the quantities included in the definition of our scaling trajectory (see

Section V), plays an important rôle in our analysis. We have performed measurements on the same

configurations using a gauge-fixed box source of size 16 lattice units that gives a good plateau

for the Ω-state for valence quark masses mx = 0.04 and mx = 0.03 to enable interpolation to the

physical strange-quark mass. We display the fit to the mx = 0.04 Ω baryon mass on the ml = 0.005,

mh = 0.04 ensemble in figure 14, along with the dependence of this mass on the dynamical strange

mass using reweighting.

The results for the Ω mass, mhhh, obtained directly at the simulated strange-quark mass (mh = 0.04)

with valence strange-quark masses my = 0.04 and 0.03 are presented in Table XII. In this table we

also present the results for mhhh obtained after reweighting to the physical strange-quark mass. In

Table XIII we display the values of the Sommer scale r0, r1 and their ratio at both the simulated

and physical strange-quark masses. These quantities were determined using Wilson loops formed

from products of temporal gauge links with Coulomb gauge-fixed closures in spatial directions,

with an exponential fit to the time-dependence of the Wilson loop W (r, t) from t = 3 to t = 7 for

each value of the separation r. The resulting potential V (r) was then fit over the range r = 2.45−8

to the Cornell form [36]

V (r) = V0 −
α

r
+σ r , (24)

where V0, α and σ are constants. These fits are illustrated in Figure 15, which shows the fit to the

time dependence of the Wilson loop W (r = 2.45, t) at the physical strange-quark mass, and also

the subsequent fit over the potential. The strange-quark mass dependence of the scales r0 and r1 is

small and cannot be resolved within our statistics.

A. Nucleon and ∆ Masses

A detailed study of the baryon mass spectrum, including the continuum and chiral extrapolations,

is postponed to a separate paper. The one exception is the Ω baryon, whose mass is used in the

definition of the scaling trajectory and which is therefore studied in detail together with the prop-

erties of pseudoscalar mesons. In this subsection we briefly discuss our experiences in extracting
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the masses of the nucleons and ∆-baryons using different sources and present the results for these

masses on each ensemble, starting here with those from the 243 ensembles. The baryon spec-

trum from the 323 ensembles will be discussed in Sec. IV A. We start however, with some general

comments about our procedures which are relevant to both sets of ensembles.

We use the standard operator, N = εabc(u
T
a Cγ5db)uc, to create and annihilate nucleon states and

∆ = εabc(u
T
a Cγµub)uc for the flavor decuplet ∆ states. On an anti-periodic lattice of size Nt in the

time direction, the zero-momentum two-point correlation function, C(t), calculated with one of

these baryonic operators at its source and sink, takes the following asymptotic form for sufficiently

large time, t,

C(t) = Z[(1+ γ4)e
−Mt − (1− γ4)e

−M(Nt−t)], (25)

corresponding to particle and anti-particle propagation, respectively. Conventionally one chooses

an appropriate range in time where the excited-state contributions can be neglected so that this

form is valid, and extracts the ground-state mass, M, by fitting the numerical data to the function

in Eq. (25). This is indeed what we do to extract baryon masses from the 243 ensembles. Alter-

natively we can try to fit the correlation function to a sum of two exponentials, representing the

ground- and excited-state contributions. As will be reported in Sec. IV A, this is the method we

use for the 323 ensembles.

The determination of baryon masses can be made more effective by an appropriate choice of

smearing at the source and/or sink. We use several different choices of the smearing of these

operators, wall, box, and gauge-invariant Gaussian [37, 38], in an attempt to obtain a better overlap

with the ground state; our choices are summarized in Table XIV. The wall source, used for the

323 ensembles, is Coulomb-gauge fixed. A box source of size 16, also Coulomb-gauge-fixed, is

used for the 243 ensembles. The Gaussian-source radius is set to 7 lattice units and 100 smearing

steps are used for the 243 ensembles, while the radius is 6 in the 323 ensembles: these choices are

optimized for our nucleon-structure calculations [7–9].

As can also be seen from the table, several steps are taken to reduce the statistical error. For each

configuration, as many as four different time slices are used for the sources, usually separated

by 16 lattice units, but occasionally fewer. Measurements are made as frequently as every tenth

trajectory and are averaged into bins of 40 hybrid Monte Carlo time units.

We now turn to the results obtained specifically on the 243 ensembles. The unitary nucleon and ∆

effective masses are plotted in Figs. 16 and 17 for each choice of quark mass. For the nucleon,

both Gaussian and box sources are shown. Plateaus for the effective masses obtained with the
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box source appear quickly, suggesting a strong overlap with the ground state. The corresponding

plateaus obtained with the Gaussian source appear more slowly, from above. Both sets of results

agree reasonably well for sufficiently large t. For the ∆ the correlators were only computed using

the box source and the plateaus for the effective masses again appear quickly. The results for

the masses, obtained using fully correlated fits, are summarized in Table XV. Note such fully

correlated fits work well for extracting baryon masses as the procedure involves much shorter

ranges in time than for the meson observables discussed in the rest of this paper. As expected from

the effective mass plots, nucleon masses obtained using different sources agree fairly well when

the fits are performed over appropriate ranges. All values of χ2/d.o.f. are close to 1 or smaller,

except for the box-source nucleon fit at m f = 0.02 which is about 2.5.

Some of these results have been reported earlier at Lattice 2008 [39], and also partially in related

papers on nucleon structure [8, 9]. A preliminary report on a bootstrap correlated analysis with

frozen correlation matrix was presented at Lattice 2009 [40] and the results agree with the updated

ones given here.

IV. RESULTS FROM THE 323 ENSEMBLES

The results for masses, decay constants, r0 and r1 obtained directly on the 323 lattice are pre-

sented in the same format as those from the 243 ensembles in Section III and the available

measurements are also summarised in table IV. The results are presented for three values of

the sea light-quark mass ml = 0.004, 0.006 and 0.008 which correspond to unitary pion masses

in the range 290 MeV – 400 MeV which we had found to be consistent with SU(2) chiral per-

turbation theory on the 243 lattice [1]. The valence-quark masses used in the analysis are

mx,y = 0.002, 0.004, 0.006, 0.008, 0.025 and 0.03. For pseudoscalar quantities we use 305, 312

and 252 measurements separated by 20 trajectories on the 0.004, 0.006 and 0.008 ensembles re-

spectively (see Table IV). For the 323 lattices, we have used a single-source technique for our

measurements of pseudoscalar quantities, which differs from the two-source method for the 243

ensembles. Recall that for the 243 ensembles, as discussed in Section III, we placed Coulomb

gauge-fixed wall sources at t = 5 and at t = 57. For the 323 ensembles we have used a sin-

gle source and calculated both periodic and anti-periodic propagators from this one source. The

source is placed at t = 0 on the first configuration used for measurements, and the position of

the source is then increased by 16 for every subsequent measurement so that tsrc = 16n mod 64
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where n is the measurement index, which starts from zero. Moving the source in this way helps

to decorrelate measurements. We always place the anti-periodic boundary condition on the links

in the time direction going from the hyperplane with t = tsrc −1 to t = tsrc. Clearly the number of

propagators to calculate for the single source method is half that for the two-source method.

For meson two-point functions, as given in Eq. (18), the single-source method is identical to the

two-source method, except for having half the number of measurements per configuration. For the

light-quark masses on our 323 ensembles we do see around-the-world effects at the fraction of a

percent level, so fits of the form in Eq. (19) must be used. We also perform measurements using

three-point functions of the type 〈P(x)O(y)P(z)〉, where P(x) and P(z) are pseudoscalar interpo-

lating fields and O(y) is an operator whose matrix element we wish to measure. Here P(x) is made

out of propagators of the form D−1
P+A,0 = 1/2

(
D−1

P,0 +D−1
A,0

)
in the notation of Eq. (17) and P(z)

is composed of D−1
P−A,0 = 1/2

(
D−1

P,0 −D−1
A,0

)
propagators. This means that the time separation be-

tween P(x) and P(z) is Nt , the time extent of our lattice. We performed tests on our 243 ensembles,

comparing the single-source and two-source methods and found that, for the same number of in-

versions, the single-source methods gave at least as small an error as the two-source methods. The

single-source method allows us to measure on more configurations for the same computer time

and so we chose this method. Although we do not discuss three-point measurements in this paper,

sharing propagators between them and the two-point measurements discussed here has helped to

define our measurement strategy.

The measured values of the residual mass m′
res at each pair of valence and sea light-quark masses

(mx,ml) used in this work are given in table XVI; in this table the strange-quark mass is the

one used in the simulation mh = 0.03. Table XVII contains the corresponding results obtained

after reweighting to the physical strange mass (ms = 0.0273(7)) determined later in the analysis

and presented in Section V. The residual mass in the unitary two-flavor chiral limit is given in

table VII and figure 9.

The results for ZA for the 323 ensembles obtained from the ratios of matrix elements of A4 and A4

are given in table XVIII. We obtain ZA = 0.74475(12) in the chiral limit with the simulated sea

strange mass and ZA = 0.74468(13) when reweighted to the nearby physical strange mass. This is

illustrated in figure 18. As explained in Section III and appendix B however, in this paper we use

ZV /ZV = 0.7396(17) as the normalization factor for the local axial current when calculating the

central values of physical quantities.

In order to illustrate the quality of the fits, we present sample effective mass plots for the unitary
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simulated pion on the ml = 0.004, mh = 0.03 ensemble in figure 19 and for the kaon in Figure 20.

The analysis is performed as a simultaneous constrained fit to the five pseudoscalar channels as

for the 243 ensembles (see Section III). The fits are performed between tmin = 12 and tmax = 51.

We give an example of the reweighted mh dependence of the unitary pion and kaon masses in

figure 21.

Table XIX contains the measured pseudoscalar masses and decay constants at the simulated

strange-quark mass mh = 0.03. Reweighting to the estimated physical strange-quark mass

mh = 0.0273(7), we obtain the masses and decay constants of the pions and kaons in Tables XX

and XXI respectively.

We use a gauge fixed box source of size 24 for the Ω baryon using the same configurations as for

our pion measurements with valence strange-quark masses mx = 0.03 and mx = 0.025 to enable

an interpolation to the physical strange-quark mass. We display the fit to the mx = 0.03 Ω baryon

mass on the ml = 0.004, mh = 0.03 ensemble in figure 22, along with the dependence of this mass

on the dynamical strange mass under reweighting. We take our fitting range between tmin = 7 and

tmax = 13.

The results for the masses of the Ω baryon and the scales r0, r1 and r1/r0 are given in Table XXII

and XXIII respectively. r0 and r1 were determined again using Wilson loops formed from prod-

ucts of temporal gauge links with Coulomb gauge-fixed closures in spatial directions, with an

exponential fit from t = 4 to t = 8 and the resulting potential fit to the Cornell form in the range

r = 2.45− 10. An example of the fit to the time dependence of the Wilson loops at the physical

strange-quark mass is given in Figure 23. This figure also shows the fit to the potential. On these

ensembles, the strange-quark mass dependence of r0 and r1 can be resolved within the statistics,

but remains small.

A. Nucleon and ∆ Masses

Baryon effective masses from the 323 ensembles are plotted in Fig. 24 and 25. The Gaussian-

source correlators give good effective-mass signals, while the wall-source correlators are much

noisier; indeed it is hard to identify a plateau in effective mass signals from the latter. While for

nucleons effective mass signals from the wall-source seem to eventually settle at the same values

as from Gaussian source correlators, for the ∆ baryons a plateau cannot be identified from the wall

source except for the lightest up/down mass. Nevertheless fully correlated fits using two expo-
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nentials to represent the contributions of the ground and first-excited states can be performed for

both the nucleon and ∆, yielding the results summarized in Table XXIV. In addition to this fully-

correlated two-exponential fit, we have tried two other fit methods: uncorrelated and bootstrap

correlated with frozen correlation matrix [40]. While those earlier analysis were conducted on

smaller statistics, they agree with the two-state fully correlated fits within two standard deviations

(see Table XXV.) We use the results from the two-state fully correlated fits as our best values of

the baryon masses. They also broadly agree with an independent analysis of baryon masses from

our ensembles by the LHP collaboration [41] within two standard deviations.

V. COMBINED CONTINUUM AND CHIRAL FITS

We now turn to the main objective of this paper which is to use the results obtained on the 243

and 323 ensembles, as discussed in the previous two sections, to determine physical hadron and

quark masses and mesonic decay constants in the continuum limit, for physical values of the light

and strange quark masses. Since we are reporting our first results obtained at a second lattice

spacing, we present a careful discussion of our approach to taking the continuum limit and the

relation between evaluating the continuum limit and determining the physical quark masses. We

start in Section V A with a discussion of what we mean by a scaling trajectory and explain in

some detail the choice of scaling trajectory which we use in the following. In Section V B we

describe our power counting scheme, in which we treat the O(a2) terms in our two ensembles and

the NLO terms in SU(2) chiral perturbation theory as being of comparable size. In order to gain

insights into the uncertainties associated with the chiral extrapolation, in addition to SU(2) chiral

perturbation theory, we introduce an analytic ansatz which is a simple first-order Taylor expansion

in the light-quark mass. This is explained in Section V C. We then discuss the specific fitting

procedure which implements this power counting strategy in Section V D and in Section V E we

present and discuss the results.

A. Defining the scaling trajectory

Although ultimately we will combine the continuum and chiral extrapolations by performing

global fits as described in subsection V A 3 and in the following subsections, we start by focussing

on the approach to the continuum limit and discussing the definition and choice of scaling tra-
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jectory. For the purposes of this subsection we imagine that we can perform lattice computations

for any choice of quark masses and envision performing a series of lattice simulations for a range

of values of β , the inverse square of the bare lattice coupling. As β → ∞ the lattice spacing,

measured in physical units, will vanish along with all discretization errors. We refer to such a

one-dimensional path through the space of possible lattice theories as a scaling trajectory. For

2+1 flavor QCD we must vary the bare lattice mass mud(β ) of the up and down quarks and ms(β )

of the strange quark so that this trajectory describes physically equivalent theories up to order a2

errors. The functions mud(β ) and ms(β ) can be determined by requiring two mass ratios (or two

other dimensionless quantities) to remain fixed as β varies. Because of the presence of O(a2)

discretization errors, using a different pair of mass ratios will yield a different trajectory of lattice

theories, whose low-momentum Green’s functions will be equivalent to those of the first up to

O(a2) corrections.

In ref. [1], where we obtained results from simulations at a single value of β , we found that using

the masses of the π and K mesons and the Ω baryon to determine the lattice spacing a and the bare

values of mud and ms was an effective procedure. A natural choice of scaling trajectory would

therefore be to keep the ratios mπ/mΩ and mK/mΩ fixed as β varies. Thus these ratios would

be chosen to take their continuum values for all β with no a2 corrections. This choice of scaling

trajectory then fixes the functions mud(β ) and ms(β ). In addition, we will identify an inverse

lattice spacing, expressed in GeV, with each point on this scaling trajectory. To do this we use the

mass of the Ω− baryon and define 1/a = 1.672/mΩ GeV where 1.672 GeV is the physical mass

of this baryon and mΩ is the mass of the Ω− as measured along our trajectory in lattice units.

Having defined the scaling trajectory and determined the lattice spacing at each β by fixing the

ratios mπ/mΩ, mK/mΩ and the mass of the Ω baryon to their physical values, we are in a position

to make predictions for other physical quantities. The results obtained at a particular value of β

will differ from the physical ones by terms of O(a2). We imagine eliminating these artefacts by

extrapolating results obtained at several values of β to the continuum limit. In order to discuss this

continuum extrapolation it is convenient to introduce some notation. Let us assume that we have

performed lattice calculations at a series of N values of β , {β e}1≤e≤N corresponding to points

along the scaling trajectory defined above (in the present study N = 2). This will determine a

series of bare quark masses me
f = m f (β

e) where f = ud or s. On each of the lattices we compute

a number of physical quantities, e.g. the kaon leptonic decay constant f e
K , and our prediction for

the physical value of fK is the value obtained by extrapolating to the continuum limit.
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Of course, as already mentioned above, the scaling trajectory and the assigned value of the lattice

spacing at a particular β are not unique. Had we used three different physical quantities to calibrate

the lattice at each β and then used the resulting bare quark masses and lattice spacing to compute

mπ/mΩ, mK/mΩ and the mass of the Ω baryon, we would find results which differed from the

physical ones by terms of O(a2). Although there is a choice of the quantities used to define and

determine the scaling trajectory and the value of the lattice spacing at each β , for a 2+1 flavor

theory the number of conditions is always 3N, where N is the number of different β values used in

the simulations and the factor 3 corresponds to the fact that at each β there are three parameters,

the bare masses mud and ms and the lattice spacing a.

In the above presentation we have tried to provide a pedagogical introduction to the determination

of scaling trajectories and chose to decouple issues related to the extrapolations in the mass of the

light quark (chiral extrapolations) from the discussion. Of course, in practice at present we are

unable to perform simulations at physical quark masses, i.e. with masses which give the physical

values of mπ/mΩ and mK/mΩ, and so chiral extrapolations are necessary. It will therefore be useful

in the following to discuss the scaling behavior of a general 2+1 flavor theory in which the masses

of the pion and kaon differ from those in Nature. Following the conventions defined elsewhere in

this paper, we will use ml and mh for the quark masses in the DWF lattice action which correspond

to the usual ud and s quarks, and m̃l and m̃h for the corresponding multiplicatively renormalizable

bare quark masses m̃l = ml + mres and m̃h = mh + mres specific to the DWF action. In the next

subsection we review the origin of the a2 errors as described by the Symanzik effective theory for

DWF and in the following subsection present our treatment of scaling for this more general theory.

1. Symanzik effective theory and a2 → 0 extrapolation

Symanzik’s effective theory provides a powerful framework in which to discuss the approach to

the continuum limit. For any finite value of β we expect the low-momentum Green’s functions in

our lattice theory to agree with those in a corresponding effective continuum theory. The effective

action for this theory contains not only the usual dimension-3 and 4 terms standard in QCD but also

higher-dimension operators. If the quark masses and the coefficients of these higher-dimension

operators are properly chosen then the low-energy Green’s functions of the lattice and effective

theories will agree through O(ad−4) provided the effective theory includes all necessary terms of

dimension up to and including d. This implies that the low-energy Green’s functions of the lattice
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theory and the usual continuum theory will differ by the matrix elements of these dimension-5 and

higher operators which of course are not present in the standard continuum theory.

For the domain wall fermion calculation presented here the leading corrections come from opera-

tors of dimension 6. While the dimension-5 Pauli term qσ µνF µνq is present, its chiral properties

imply that it is generated by chirality violation due to propagation between the left and right do-

main walls. This same residual breaking of chiral symmetry gives rise to the residual mass mres,

the coefficient of the dimension-3 mass term which remains when the input quark mass is set

equal to zero. The largest value for mres found in our current calculation, mres = 0.003152(43),

is suppressed from unity by more than two orders of magnitude. Since a similar suppression for

this dimension 5 operator is expected, the combination of chiral symmetry and the small value of

aΛQCD ∼ 0.2 suggest this term can be ignored and that the largest finite lattice spacing errors that

we should expect are O(a2).

We require that for our choice of scaling trajectory the matrix elements of these O(a2) Symanzik

terms behave as a2, allowing a linear extrapolation in a2 to give the continuum limit. This implies

that the coefficients of these operators remain reasonably constant along our trajectory. This is

typically achieved by varying only β and quark masses along the trajectory so the only variation

in the coefficients of these O(a2) terms comes from the variations in β which are quite small in

present scaling studies [80].

2. Scaling and the quark masses

In the present calculation we obtain results using a number of light-quark masses, all of which

are significantly larger than the physical quark masses that were used in the introductory remarks

above to describe a physical scaling trajectory in which mπ/mΩ, mK/mΩ and mΩ were fixed at

their physical values. However, we can easily generalize our notion of a scaling trajectory to

include families of choices for the parameters (β , m̃l, m̃h) for which, in an obvious notation, the

ratios mll/mhhh and mlh/mhhh are held fixed. In the language used earlier, we require that the N

triplets of parameters (β e, m̃e
l , m̃

e
h), 1 ≤ e ≤ N, lie on the same scaling trajectory if

mll(β
e, m̃e

l , m̃
e
h)

mhhh(β e, m̃e
l , m̃

e
h)

=
mll(β

e′, m̃e′
l , m̃e′

h )

mhhh(β e′, m̃e′
l , m̃e′

h )
(26)

mlh(β
e, m̃e

l , m̃
e
h)

mhhh(β e, m̃e
l , m̃

e
h)

=
mlh(β

e′, m̃e′
l , m̃e′

h )

mhhh(β e′, m̃e′
l , m̃e′

h )
(27)
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for each pair e and e′. The ratio of lattice spacings for such a pair would be defined as

ae

ae′ =
mhhh(β

e, m̃e
l , m̃

e
h)

mhhh(β e′, m̃e′
l , m̃e′

h )
. (28)

The scaling trajectory determines two functions m̃l(β ) and m̃h(β ), where these bare masses are

non-trivial functions of β . While a portion of their β dependence should reflect their naive mass

dimension, these quantities also carry a logarithmic dependence on a characteristic of the anoma-

lous dimension of the mass operator qq in QCD. Thus, even when expressed as dimensionless

ratios, e.g. m̃l(β )/mΩ and m̃h(β )/mΩ, these parameters will have singular continuum limits (in

fact, the sign of the anomalous dimension of qq is such that these ratios vanish in the continuum

limit).

The mass parameters m̃l and m̃h are short-distance quantities whose definition is free of infrared

singularities. For example, they could be specified by examining high-momentum, infra-red safe

Green’s functions with no need to compute low-energy masses which are dependent upon the

low-energy, non-perturbative behavior of QCD. While the individual masses m̃l(β ) and m̃h(β ) do

not have a continuum limit, both the naive and anomalous scale dependence cancels in their ratio

m̃l(β )/m̃h(β ), which is well-defined in the continuum limit and agrees with the corresponding

ratio in conventional renormalization schemes, such as RI/MOM or MS.

Let us now assume that we have performed lattice calculations at a series of N values of β ,

{β e}1≤e≤N , corresponding to points along the scaling trajectory defined above. This will de-

termine a series of quark masses m̃e
f = m̃ f (β

e) where f = l or h. It is natural to introduce a series

of factors which relate the lattice spacings and quark masses between these N ensembles. For con-

venience, we identify a primary ensemble 1, and introduce 3(N−1) factors relating each ensemble

e to the ensemble 1 as follows:

Re
a =

a1

ae
=

m1
hhh

me
hhh

(29)

Ze
f =

1

Re
a

m̃1
f

m̃e
f

for f = l or h. (30)

Since the ratio m̃l/m̃h is well-defined in the continuum limit, the corresponding ratio for each

of these ensembles m̃e
l /m̃e

h differs from that limit by a term proportional to (ae)2. This O(a2)

correction represents the discrepancy between our choice of scaling trajectory with mll/mlh fixed

as we vary β and an alternative choice where instead m̃e
l /m̃e

h is held fixed. Since these trajectories
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differ at O(a2), we expect that

m̃e
l

m̃e
h

= lim
β→∞

(
m̃l(β )

m̃h(β )

)(
1+ cm(ΛQCDae)2

)
. (31)

The term proportional to cm arises from the shifts in m2
ll and m2

lh caused by the first-order effects of

dimension-6 terms in the Symanzik effective action. While cm must vanish as m̃e
l → m̃e

h, we prefer

not to write cm as proportional to the difference m̃e
l − m̃e

h because of possible non-analytic terms

in the quark masses (e.g. possible logarithms of me
l ) that may appear in the low-energy matrix

elements of these dimension-6 operators. If we divide Eq. (31) evaluated for our primary ensemble

1 by the same equation applied to the ensemble e and Taylor expand in the lattice spacing, we

obtain the following useful relation between Ze
h and Ze

l :

Ze
h = Ze

l

(
1+ cmΛ2

QCD

[
(ae)2 − (a1)2

])
(32)

implying the 2(N−1) Z factors associated with the quark masses actually depend on N quantities

through order a2 (e.g. we can take the (N − 1) Ze
l and cm as the independent quantities). The

constraints implied by Eq. (32) do not simplify the N = 2 case addressed in the present paper where

we would simply be trading the two parameters Z2
h and Z2

l for the alternative pair of parameters Z2
l

and cm.

Equation (32) provides an explicit estimate of how scaling violations revise the standard expecta-

tion that all quark masses will scale with a common Z factor as the cut-off is varied. As we will see

from our simulation results presented below, the terms proportional to cm are small and difficult to

resolve from zero given our statistical errors.

Since we are now using formulae in which the lattice spacing ae appears alone rather than in a

ratio, e.g. as ae/ae′ , it may be useful to explain how we intend this is to be determined. It is

natural to start by considering the physical scaling trajectory discussed in Section V A on which

mll/mhhh = mπ/mΩ and mlh/mhhh = mK/mΩ. For this physical trajectory, the actual value of

the Omega mass measured in GeV can be used to define the lattice spacing for any point β e on

that trajectory using ae = me
hhh/(1.67245(0.29)GeV). In our present study, in order to reach the

physical trajectory a chiral extrapolation must be performed from the quark masses used in our

simulation. Ultimately of course, when we present results for dimensionful quantities in physical

units, it will be necessary to perform the chiral extrapolation and this is the subject of the following

subsections. For the present discussion of scaling it is sufficient simply to imagine that the lattice

spacing has been determined in this way and this is the most straightforward way of interpreting
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the O((ae)2) terms appearing in equations in this subsection. We stress however, that even this is

not strictly necessary. We can consider a scaling trajectory defined by fixed, but unphysical, values

of mll/mhhh and mlh/mhhh and define the lattice spacing by assigning an arbitrary value to Mhhh,

the mass of the hhh baryon on the trajectory in “physical” units, ae ≡ me
hhh/Mhhh. While the value

of ae defined in this way depends, of course, on the choice of Mhhh, this arbitrariness is simply

absorbed by a change in constants such as cm in (31). For the discussion in this subsection it is

sufficient to note that such a definition of the lattice spacing is possible in principle, the numerical

determination of ae does not actually have to be performed.

In the analysis to follow we will examine a family of nearby scaling trajectories in which m̃l

and m̃h vary over limited ranges (specifically, m̃l varies up to about 0.013 on our coarser lattice

and m̃h varies by up to 20% around m̃s). Consider two such trajectories, defined by keeping the

ratios mll/mhhh and mlh/mhhh fixed along each trajectory, but taking different values on the two

trajectories. Let mll/mhhh = rll and mlh/mhhh = rlh on the first trajectory and mll/mhhh = r′ll and

mlh/mhhh = r′lh on the second. As β → ∞, the ratio of bare quark masses on the two trajectories

will approach a limit up to O(a2) corrections:

m̃e
f (rll,rlh)

m̃e
f (r

′
ll
,r′

lh
)

= lim
β→∞

(
m̃ f (β )

m̃′
f (β )

)
(
1+dm, f (ΛQCDae)2

)
, (33)

where f =l or h, and m̃e
l (rll,rlh) and m̃e

h(rll,rlh) (m̃e
l (r

′
ll,r

′
lh) and m̃e

h(r
′
ll,r

′
lh)) are the values of the

bare quark masses on ensemble e such that mll/mhhh = rll and mlh/mhhh = rlh (mll/mhhh = r′ll

and mlh/mhhh = r′lh). The ratios Ra = m1
hhh(m̃

1
l (rll,rlh), m̃

1
h(rll,rlh))/me

hhh(m̃
e
l (rll,rlh), m̃

e
h(rll,rlh))

and R′
a = m1

hhh(m̃
1
l (r

′
ll,r

′
lh), m̃

1
h(r

′
ll,r

′
lh))/me

hhh(m̃
e
l (r

′
ll,r

′
lh), m̃

e
h(r

′
ll,r

′
lh)) each describe the change in

lattice scale as the bare coupling changes from β 1 to β e. In the limit of small bare coupling, this

change of scale can be determined entirely from the short-distance part of the theory and must be

the same for our two trajectories up to order a2 corrections since these two trajectories differ only

in the choice of quark masses. Thus we can write

Ra

R′
a

= 1+daΛ2
QCD

(
(ae)2 − (a1)2

)
(34)

where we have explicitly represented the fact that each ratio and hence the ratio of ratios must

approach unity as ae → a1. Both the coefficients dm, f and da will vanish when the primed and

unprimed trajectories that are being compared become identical.

Taking the ratio of two versions of Eq. (33), one for β e and the other for our primary ensemble

β 1 and using Eq. (34), we obtain an expression for the change in the factors Z f between these two
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trajectories:
Ze

f

Ze ′
f

=
(

1+(dm, f +da)Λ
2
QCD

[
(a1)2 − (ae)2

])
. (35)

Since the changes in m̃l and m̃h between these two trajectories which we wish to compare are small,

the resulting coefficients dm, f and da will also be small and we will neglect the O(a2) correction

on the right-hand side of Eq. (35). Thus, we will use the same values for Zl and Zh for this family

of nearby trajectories, i.e. we drop lattice artefacts proportional to m̃l and (m̃h−m̃s) and so neglect

the mass dependence of Zl and Zh in this limited range of masses. In the following we will refer

to this range for m̃l and m̃h as their “allowed range”.

3. Fitting strategies

We exploit the above relations between numerical results obtained at the two values of β for which

we have performed simulations in two ways. The first we label the “fixed-trajectory” method. In

this approach we determine Ra, Zl and Zh by matching results obtained at a single pair of equivalent

quark masses [81]. For example, the masses used at one value of β may correspond to values at

which a simulation was actually performed. The corresponding set of masses for the other β might

be determined by linear interpolation to make the two ratios mll/mhhh and mlh/mhhh agree with

those on the first ensemble. The ratio of lattice spacings and the two Z f factors are then determined

from Eqs. (29) and (30). It will be important to recall that Zl and Zh are constant in the allowed

range of quark masses. Finally, knowing the three factors Ra, Zl and Zh we make a common fit to

the mass dependence of physical quantities computed for both values of β .

In the final step, we adopt an ansatz for the mass dependence that is expected to be accurate

both for the points in our calculation and for the physical values to which we wish to extrapolate,

specifically a NLO chiral expansion about the chiral limit or a simple Taylor expansion about

the physical point. Each ansatz for the continuum theory, when combined with the three scaling

factors Ra, Zl and Zh and with any required a2 corrections, will then provide a set of formulae

which should describe all of our data for both β values. For example, in the chiral fits described in

the next section we can use a common set of Low Energy Constants (LECs) to fit both sets of data

provided we scale the values used on one set by the required factors of Ra, Zl and Zh before we

use them on the other. Where explicit O(a2) terms are required, these can be added with unknown

coefficients which are also scaled appropriately between our two values of β . In such a combined

chiral and a2 expansion we adopt a power counting scheme, described below, so that only effects
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of a similar minimum size are consistently included.

During the initial process of determining Ra, Zl and Zh we cannot assign a physical value to the

lattice spacing. The original trajectory being used does not correspond to physical masses so no

notion of “GeV” exists for that case. Of course, the further fitting to the quark mass dependence of

the two ensembles is introduced to allow extrapolation to physical values for the ratios mll/mhhh

and mlh/mhhh. When mΩ is evaluated at this same physical point, its value can be compared with

1.672 GeV to determine the lattice scale.

This fixed trajectory method is intended to cover a wider range of possible scaling trajectories than

the example discussed above where the trajectory passes precisely through one of the simulation

points. If we wish, we can adopt an ansatz for the quark mass dependence of mπ , mK and mΩ and

perform this fixed trajectory scaling with the parameters Ra, Zl and Zh allowed to vary and fix their

values from Eqs. (29) and (30) at values of ml and mh for which the ratios mll/mhhh and mlh/mhhh

take their physical values.

The second approach, termed “generic scaling”, introduces the factors Ra, Zl and Zh as parameters

into the ansatz being used to fit the quark mass dependence. In this approach we perform a fit to all

our data for mπ , mK and mΩ over a range of quark masses for which the fitting ansatz is accurate

and for which the use of fixed values for Ra, Zl and Zh is legitimate. In this generic scaling ap-

proach, our choice of scaling trajectory with fixed hadron mass ratios mll/mhhh and mlh/mhhh and

with mhhh determining the lattice scale is realized somewhat indirectly. The three conditions asso-

ciated with this choice of scaling trajectory are realized by omitting possible a2 corrections from

the expressions used to fit mll, mlh and mhhh. The resulting trajectory can therefore be interpreted

as being the one along which the masses of the pion, kaon and Ω-baryon take their physical values,

as was the case in the discussion of Section V A. The difference of course, is that whereas in Sec-

tion V A we envisaged (unrealistically at present) being able to simulate directly at the physical

value of ml , we now reach the physical point after an extrapolation in quark masses. The detailed

discussion of the ChPT functions used in describing the quark mass dependence of the pion and

kaon masses is given in Subsection V B and those for the analytic ansatz in Subsection V C below.

However, both our ChPT and Taylor expansion ansätze stipulate that to the order being studied

mhhh is a linear function of m̃l and m̃h. It is instructive to explore this case here.

Included among the equations used to determine the low energy constants and the scaling factors
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Ra, Zl and Zh are two equations for mhhh on our two ensembles:

m1
hhh(m̃l, m̃h) = m1

hhh(0, m̃h0)+ c1
mΩml

m̃l + c1
mΩmh

(m̃h − m̃h0) (36)

m2
hhh(m̃l, m̃h) =

1

Ra

m1
hhh(RaZlm̃l,RaZhm̃h)

=
1

Ra

[
m1

hhh(0, m̃h0)+ c1
mΩml

RaZlm̃l + c1
mΩmh

(
RaZhm̃h − m̃h0

)]
. (37)

Here 1 is our primary ensemble, for us that is the one with β = 2.25 and the 323×64 volume, while

the second ensemble is the one with the coarser lattice spacing and is labeled 2. me
hhh(m̃l, m̃h) are

the hhh-baryon masses corresponding to bare-quark masses m̃l and m̃h on ensemble e. Although

we have written m̃h0 as a general constant, we have in mind to use the equations with m̃h0 in the

allowed range of the physical bare strange quark mass in the primary ensemble. Equations (36)

and (37) define the three constants m1
hhh(0, m̃h0), c1

mΩml
and c1

mΩmh
which are related to the physical

Ω− mass and its “physical” dependence on the quark masses. The absence of O(a2) corrections

to Eqs. (36) and (37) implements our choice that mΩ is being used to set the scale and hence by

construction contains no finite lattice-spacing errors. While part of a larger set of equations which

are being used to determine the low energy constants as well as Ra, Zl and Zh, the leading order

effect of these two equations is to determine Ra. Note that this is identical to imposing Eq. (29)

in the fixed trajectory method at the point m̃l = 0, m̃h = m̃h0. Since the variation of Ra as m̃l and

m̃h change over their allowed range is of the same size as the variation of Zl and Zh over this same

range it can also be neglected, so any particular choice of m̃h is equivalent to any other within this

allowed range.

The fixed trajectory and generic scaling methods are similar in nature. Both require that an ansatz

be adopted to allow the quark mass dependence of lattice quantities to be described in order to

define the scaling parameters Ra, Zl and Zh and to extrapolate to the physical point. Both assume

that the scaling relations between the two ensembles defined by Ra, Zl and Zh hold over the allowed

range of masses. The fixed trajectory method corresponds most closely to our original definition

of a scaling trajectory and decouples the matching of the two lattices from the chiral extrapolation.

It requires however, the introduction of a convenient but arbitrary point at which the matching

between the two ensembles is performed. The generic method avoids this arbitrary choice and

applies these assumptions uniformly over the entire range of allowed masses. The fixed trajectory

method determines Ra, Zl and Zh in an iterative fashion as explained in Section V D. The generic

approach determines the coefficients in the adopted ansatz from a single χ2 minimization. The

physical quark masses are then determined by inverting the resulting equations which give mπ , mK
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and mΩ in terms of m̃l and m̃h.

The detailed discussion and results presented in this paper correspond to the fixed trajectory

method; fits using the generic scaling approach were performed to monitor the consistency of

the results and estimated errors.

B. Scaling and chiral perturbation theory

At the start of section V A we discussed the continuum extrapolation in an idealized situation in

which we can perform simulations at any value of the quark mass ml . In reality this is not the case;

for example, the lightest unitary pion appearing in the current study has mass 290 MeV. In order to

compare our results with Nature we therefore need to extrapolate to lighter quark masses and this

was already acknowledged when discussing the fitting strategies in section V A 3 above. We now

explain how we combine the continuum and chiral extrapolations in global fits. We start in this

section by using SU(2) chiral perturbation theory for the mass dependence, with the expectation

that the extrapolation will be made more precise if constrained by the theoretically known behavior

of QCD in the chiral limit [1]. However, in order to estimate possible systematic errors associated

with this extrapolation and to obtain a more complete understanding of the implications of our

calculation, we also examine a simpler analytic extrapolation to physical quark masses [42] and

this is explained in the following subsection. Although later we will perform extrapolations using

partially quenched ensembles, for the purposes of this introduction we restrict the discussion to

the unitary theory in which the valence and sea quark masses are equal.

We now explain the power counting scheme we employ to identify NLO corrections to the chiral

and continuum limits. Since the pion mass and decay constant are central to SU(2) ChPT, we

begin by considering the predictions of continuum NLO ChPT for these two quantities:

m2
ll = χl + χl ·

{
16

f 2

(
(2L

(2)
8 −L

(2)
5 )+2(2L

(2)
6 −L

(2)
4 )
)

χl +
1

16π2 f 2
χl log

χl

Λ2
χ

}
(38)

fll = f + f ·
{

8

f 2
(2L

(2)
4 +L

(2)
5 )χl −

χl

8π2 f 2
log

χl

Λ2
χ

}
. (39)

Here mll and fll are the mass and decay constant of the pseudoscalar meson composed of two

light quarks, f , L4, L5, L6 and L8 are the conventional low energy constants and Λχ is the usual

chiral scale. The quantity χl comes directly from the lowest order chiral symmetry breaking term

in the effective chiral theory and is proportional to the QCD light quark mass. It is conventionally
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written χl = 2Bm̃l, where B is another low-energy constant.

We now discuss how we apply these formulae to describe the low energy behavior of lattice the-

ories which lie on a scaling trajectory. For a sequence of ensembles {e}1≤e≤N lying on such a

scaling trajectory not only will the quark masses and lattice units, (m̃e
l , m̃

e
h,a

e) be related, but also,

when expressed in physical units, the quantities f , L4, L5, L6 and L8 should take the same val-

ues up to O(a2) corrections. The same is true for the renormalization independent combination

χl = 2Bm̃l (see the discussion below). As detailed in Ref. [1], chiral perturbation theory at finite

lattice spacing for domain wall fermions involves a simultaneous expansion in the explicit bare

quark mass, ml , the squared lattice spacing, a2, and the residual chiral symmetry breaking arising

from the finite separation, Ls, between the two four-dimensional walls in the fifth dimension. We

will denote this last quantity by e−λLs , suggesting the exponential decrease in such residual chiral

symmetry breaking found in perturbation theory for DWF. (The actual behavior is a sum of ex-

ponential and inverse power dependence on Ls.) No new terms need to be added to the resulting

effective low energy theory to describe the resulting Green’s functions to NLO in the parameters

m̃l , a2 and e−λLs . Thus, we can use equations with the form of Eqs. (38) and (39) to describe

the lattice results for mll and fll along a scaling trajectory, provided we work to NLO in a power

counting scheme which treats the quantities χl/(4π f )2, a2Λ2
QCD and e−λLs as equivalent and keep

a single power of any of these quantities as a correction. We must now determine how the param-

eters appearing in these equations must be adjusted to describe lattice results at finite a2.

Since the scale Λχ can be freely varied if the other analytic terms are appropriately changed, we

will choose this quantity to be constant if measured in physical units. Thus, for each point on

our physical scaling trajectory we will choose Λχ = mΩ · 1/1.672, giving it the value of 1 GeV.

Because of their proportionality to the NLO factor χl all of the parameters which appear in the

large curly brackets on the right hand side of Eqs. (38) and (39) can be given their continuum

values, dropping possible O(a2) terms as being of NNLO in our power counting scheme. Thus,

within those brackets the quantities f , L4, L5, L6 and L8, when expressed in physical units, can be

given identical values for the ensembles on the scaling trajectory.

In contrast, when Eq. (39) is used to describe our finite lattice spacing results, the LO quantity f e

determined on ensemble e, expressed in physical units, depends on β e. However, it approaches its

continuum limit with O(a2) corrections and so we write f e = f + c f (a
e)2.

Given the definition of a scaling trajectory, the variation of the quantity χe
l needed to apply Eq. (38)

to the ensemble e is actually trivial. Because our choice of quark mass m̃e
l gives the same value for
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mll for each ensemble e on our scaling trajectory, all of the quantities in Eq. (38) with the possible

exception of the χe
l which we are now considering, are the same when expressed in physical units

for all points on the scaling trajectory. Thus, χe
l = 2Bem̃e

l /(ae)2 must be a constant as well, where

Be and m̃e
l are explicitly left in lattice units. Since we know how the quantities m̃l and a2 are related

between an ensemble e and our primary ensemble 1, we can determine the N −1 constants Be in

terms of the single constant B1:

Be =
Ze

l

Re
a

B1 (40)

without any a2 corrections. Because of the complex scaling behavior of the mass, we will treat

B1 as one of the LEC’s to be determined in our fitting and not relate it to a “physical” continuum

quantity whose definition would require introducing a continuum mass renormalization scheme.

We conclude that our lattice results for light pseudoscalar masses and decay constants obtained

from a series of ensembles {e} can be described through NLO by the formulae:

(me
ll)

2 = χe
l + χe

l ·
{

16

f 2

(
(2L

(2)
8 −L

(2)
5 )+2(2L

(2)
6 −L

(2)
4 )
)

χe
l +

1

16π2 f 2
χe

l log
χe

l

Λ2
χ

}
(41)

f e
ll = f

[
1+ c f (a

e)2
]

+ f ·
{

8

f 2
(2L

(2)
4 +L

(2)
5 )χe

l − χe
l

8π2 f 2
log

χe
l

Λ2
χ

}
(42)

with

χe
l =

Ze
l

Re
a

B1m̃e
l

(ae)2
(43)

where all quantities in Eqs. (41) and (42) are expressed in physical units (except for B1 and m̃e
l in

Eq. (43) which are given in lattice units).

Two important refinements should be mentioned. First, for the case of a physical scaling trajectory,

i.e. one which terminates in the physical masses mπ , mK and mΩ, these physical units are naturally

GeV. However, for other scaling trajectories appropriate “physical” units to use can be those in

which the Omega mass is unity. Second, for simplicity in Eqs. (38), (39), (41) and (42) we have

treated the heavy quark mass as fixed and not displayed the dependence of the quantities f , B,

L4, L5, L6 and L8 on mh. In practice we can easily generalize these equations to describe the

dependence of mll and fll on mh as well. Provided we limit the variation of mh to a small range

about an expansion point m̃h0, this variation can be described by including a linear term in mh−m̃h0

and treating this term as NLO in our power counting scheme. Thus, such extra linear terms will

only be introduced into the leading order terms in Eqs. (41) and (42).

Next we present the corresponding formulae for the quantities mK and mΩ which are used in the



35

determination of the scaling trajectory and in the assignment of a lattice spacing at each value of

β :

(me
lh)

2 =
(

m(K)
)2

+
(

m(K)
)2
{

λ1 +λ2

f 2
χe

l

}
(44)

me
hhh = m(Ω) +m(Ω) cmΩ,ml

χe
l . (45)

Here m(K) and m(Ω) are the mass of the lh meson and the hhh baryon respectively in the SU(2)

chiral limit, i.e. with m̃l = 0, for the value of m̃h used in the simulation. Similarly the LECs λ1,2

and cmΩ,ml
depend on m̃h and we are using the notation for the LECs λ1,2 which we introduced

in [1]. (Note that cmΩ,ml
, whose value is given in Table XXVII below, should be distinguished

from the related parameter c1
mΩml

which appears in Equations (36) and (37) above.) The absence

of any corrections of O(a2) on the right-hand sides of Eqs. (44) and (45) follows from the same

argument which justified omitting an O(a2) correction from the right hand side of Eq. (41). For

masses m̃e
l and m̃e

h lying on a scaling trajectory the left hand sides of these equations must all be

the same because of our definition of scaling trajectory. Because of our power counting scheme,

no a2 corrections need to be included in the NLO terms proportional to χe
l on the right hand side

of these two equations. Therefore the leading order terms m(K) and m(Ω) must also be the same for

all ensembles when expressed in physical units and no O(a2) correction can appear. As discussed

above, these equations can be generalized to describe the NLO dependence on m̃h varying about

an expansion point m̃h0. In fact, for the Ω baryon this more general case for Eq. (45) was described

in the previous subsection in the equivalent Eqs. (36) and (37).

Note that the coefficient of the chiral logarithm in Eq. (41) includes a factor which depends on f ,

the pion decay constant in the SU(2) chiral limit (all other factors of f in Eqs.(41) and (44) can be

absorbed into a redefinition of LECs which in any case are determined by fitting). This low energy

constant f can be determined from the measured values of fll using Eq. (42), but to NLO it can

also be replaced by the measured values of fll .

As described in Subsection V A 3, these ChPT formulae can now be used to determine physical

results in the continuum limit from those obtained on our two lattice spacings. We can employ the

fixed trajectory method, finding the ratios Zl and Zh which relate a specific choice of quark masses

on one ensemble to those on the other which lie on the same scaling trajectory. The corresponding

ratio of values of mhhh determines Ra. These three quantities then allow a single set of LECs to

be used to extrapolate the results of both ensembles to the continuum limit and to the physical

value of the light quark mass using Eqs. (41), (42), (44) and (45). As a result we learn the physical
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values of m̃ud(β
e), m̃s(β

e) and ae on our two ensembles. In other words, we determine the quark

masses and lattice spacings for our two ensembles which lie on the physical scaling trajectory.

Alternatively, we can use the generic fitting approach and introduce the three parameters

(Zl,Zh,Ra) into the four equations Eqs. (41), (42), (44) and (45) and obtain a fit to the lattice data

from both ensembles for which the quark masses lie in the allowed range. The resulting values of

the LECs and (Zl,Zh,Ra) then determine the functions me
ll(m̃l, m̃h), me

lh(m̃l, m̃h) and me
hhh(m̃l, m̃h).

The physical quark masses on each ensemble, me
ud = mud(β

e) and me
s = ms(β

e), are then obtained

by solving the equations:

me
ll(m̃

e
ud, m̃

e
s)

me
hhh(m̃

e
ud , m̃

e
s)

=
mπ

mΩ
and

me
lh(m̃

e
ud, m̃

e
s)

me
hhh(m̃

e
ud, m̃

e
s)

=
mK

mΩ
, (46)

where on the right-hand sides the ratios take their physical values.

Having determined mud(β
e), ms(β

e) and ae as described above, we are in a position to compute

other physical quantities. For example, at NLO in our power counting the behaviour of the kaon

decay constant fK is

f e
lh = f (K)

[
1+ c f (K)(a

e)2
]

+ f (K)

{
λ3 +λ4

f 2
χe

l − 1

(4π f )2

3

4
χe

l log
χe

l

Λ2
χ

}
, (47)

where f (K) is the result in the SU(2) chiral limit (m̃l = 0), λ3,4 are mh-dependent low-energy

constants and c f (K) is a constant. For each β e, having determined m̃s(β
e) we measure f e

lh for

m̃e
h = m̃s(β

e) as a function of m̃l; fit the measured values at all β e to determine the LECs and

c f (K) in Eq. (47) and finally obtain the physical value of fK by setting a = 0 and m̃l = m̃ud . Such a

procedure is then generalized to the other physical quantities we wish to compute.

C. Scaling combined with an analytic ansatz for the chiral dependence

While we know that the ansatz based on chiral perturbation theory described in the previous sub-

section is valid in the limit of small u and d quark masses, we do not know the precision with

which it holds over the range of masses which we analyze in this paper (corresponding to data in

the range 240MeV ≤ mπ . 420 MeV). Indeed it is precise lattice simulations which will answer

such questions. In order to obtain some understanding of the corresponding systematic uncertain-

ties, in addition to the procedures based on chiral perturbation theory described in section V B, we

consider an ansatz based on a first-order Taylor expansion about a non-zero quark mass, in the

style of ref. [42, 43]. Within this approach, since we do not include chiral logarithms, we are not
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able to take the chiral limit and only assume the validity of the analytic ansatz between the physical

point (to which we extrapolate) and the region where we have data. In this work we only consider

linear, first-order fits and are therefore insensitive to the choice of expansion point which we take

to be the same as that at which we match the ensembles when using the fixed trajectory method.

This simplifies the discussion below of the simultaneous expansion in a2 and mass differences.

Beyond first order, convergence may be improved by considering an expansion point between the

region in which we have data and the physical point, but this is beyond the scope of our current

analysis.

Using the analytic ansatz for m2
π as a function of the quark mass mq, we find numerically that the

constant (mass independent) term is consistent with zero, indicating that the tangent of m2
π(mq)

in the unitary case does pass through the origin. Thus, at our statistical precision, no significant

chiral curvature is needed to satisfy Goldstone’s theorem, however we retain the view that we are

indeed using a model which is valid only in a restricted region of non-zero quark masses.

Goldstone’s theorem also applies in the partially quenched theory and the pion mass vanishes as

the valence-quark masses are taken to zero while keeping the sea-quark masses fixed. In this case

however, our linear fit extrapolates to a non-zero pion mass for massless valence quarks, and this

naturally implies that some form of curvature is required at smaller masses. This is consistent with

enhanced chiral logarithms in the partially quenched theory. However, the fits do not necessarily

imply that chiral logarithms at NLO correctly represent the quark-mass dependence between the

simulated range of masses and the physical point. Instead, in this approach the sum over multiple

orders of chiral perturbation theory is assumed to be approximated by a linear dependence in the

relevant range of masses. It is also possible of course that the simulated range of masses is outside

the useful domain of chiral perturbation theory and that, for example, phenomenological models

based on combining NLO chiral perturbation theory with arbitrary analytic subsets of terms which

appear at NNLO and NNNLO are less well motivated than our linear ansatz.

For m2
π and fπ it is convenient to define the average valence quark mass m̃v =

m̃x+m̃y

2
. As in

section V B, we apply a power counting rule in a double expansion in mx−mm, my−mm, ml −mm

and a2, where mm is the mass at which we match the ensembles which we also choose to be the

point around which we perform the Taylor expansion and we recall that mx,y and ml are the valence

and sea light-quark masses respectively (here we allow for partial quenching). For the pion mass

we use the ansatz

m2
xy = C

mπ
0 +C

mπ
1 (m̃v − m̃m)+C

mπ
2 (m̃l − m̃m) , (48)
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where we use our standard notation in which the subscripts xy imply that the two valence quarks

have mass mx and my respectively. By the definition of our scaling trajectory, there is no O(a2)

term at the match point and so there is no correction to C
mπ
0 . Within our power counting we could

equivalently use

m2
xy = C

mπ
0 +C

mπ
1 m̃v +C

mπ
2 m̃l , (49)

where for convenience we redefine C
mπ
0 between equations (48) and (49).

In searching for evidence of chiral logarithms it is conventional to plot the ratio m2
xy/m̃v as a

function of the quark masses. With the ansatz proposed in Eq. (49)

m2
xy

m̃v
=

C
mπ
0

m̃v
+C

mπ
1 +

C
mπ
2 m̃l

m̃v
, (50)

and we note that an observed deviation of the mass dependence of
m2

xy

m̃v
from a constant in the

finite range of quark masses which can be simulated, is not in itself unambiguous evidence of a

non-analytic structure.

For decay constants, which do not vanish in the chiral limit, the O(a2) term are not sensitive to the

choice of expansion point:

fxy = C
fπ
0 [1+C fπ a2]+C

fπ
1 (m̃v − m̃m)+C

fπ
2 (m̃l − m̃m) (51)

≡ C
fπ
0 [1+C f a2]+C

fπ
1 m̃v +C

fπ
2 m̃l, (52)

where again we have redefined C
fπ
0 between the first and second lines.

Following a similar argument, at a fixed strange-quark mass, we take the light-quark mass depen-

dence of the kaon mass and decay constant and the mass of the Ω-baryon to be given by

m2
xh(a,ml) = C

mK

0 +C
mK

1 m̃x +C
mK

2 m̃l , (53)

fxh(a,ml) = C
fK

0 [1+C fK
a2]+C

fK

1 m̃x +C
fK

2 m̃l . (54)

mhhh(a,ml) = C
mΩ
0 +C

mΩ
2 m̃l . (55)

We stress that the constants Cmπ
n , C

fπ
n , C f , CmK

n , C
fK
n , C fK

and C
mΩ
n implicitly depend on the strange

quark mass.

D. Procedure for combined scaling and chiral fitting

Having introduced the theoretical framework behind our combined scaling and chiral fits in Sec-

tions V B and V C we now explain its practical implementation. The formulae given above which
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describe the combined behaviour are valid only for a fixed strange-quark mass and we are faced

with the problem that the physical strange mass is not known a priori but is an output of the

calculation. The procedure for performing the combined chiral-continuum fits is therefore neces-

sarily iterative. As explained in more detail below, we start with some initial values for the lattice

spacings and quark masses, perform the fits and then use linear interpolations in mh to obtain

updated estimates. The process terminates when the updated estimates converge. During this it-

erative procedure we use reweighting (see section II D) to adjust all pionic observables to the new

strange-quark mass on each ensemble. For kaon and Ω observables a linear interpolation between

the unreweighted unitary measurement, and measurements with a second valence strange quark

(reweighted-to-be-unitary) suffice to obtain that observable for my = mh = m
guess
s .

For the remainder of this subsection we explain further the procedure which we use to match

lattices with different β and present results for the ratios Re
a and Ze

f defined in Eqs. (29) and (30)

for our ensembles using the fixed trajectory method explained in Section V A 3. We start by taking

a specific value of (ml,mh)
M on the ensemble M to which the other ensembles are matched. We

refer to this as the matching point. The ensemble set M may be the same as the primary ensemble

1, but does not need to be. As discussed in section V A, the matching to other ensembles e 6= M is

performed by requiring that the ratios of hadronic masses
mll

mhhh
and

mlh

mhhh
are the same on all lattices

at the matching point. Although the final physical predictions do not depend upon the choice of

matching point, certain choices are favoured due to the quality of the data at the matching point

and the range over which the data must be interpolated/extrapolated on the other ensembles to

perform the matching. The ideal point has as small a statistical error as possible and lies within

the range of simulated data on all of the matched ensembles such that only a small interpolation is

required. In practice, the errors on the mass ratios at the matching point can be reduced by fitting

to all partially quenched simulated data on the ensemble set M and interpolating to the matching

point along the unitary curve. We use linear fitting functions for the light-quark mass dependence

of the pseudoscalar mesons and the Ω baryon in these short interpolations:

m2
xy = c0 + cl ml + cv(mx +my) , (56)

m2
xh = d0 +dl ml +dv mx , (57)

mhhh = e0 + el ml , (58)

where as elsewhere x,y (l) represent the light valence (sea) quarks and h represents the heavy

quark. Equations (56) - (58) are written in lattice units. Although the linear behaviour in Eqs. (56) -
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(58) is similar to that used in the analytic ansatz, Eqs. (49), (53) and (55), we stress that the

meaning is different. When using the analytic ansatz we assume its validity in the full range

of masses between the physical ones and those we simulate. Eqs. (56) - (58) on the other hand,

are only assumed to represent the mass behaviour in the short intervals between the matching

and simulated points on ensembles e 6= M, independently of whether we subsequently use chiral

perturbation theory or the analytic ansatz to perform the chiral extrapolation.

Once a matching point has been chosen, the matching proceeds as follows:

1. For each set of ensembles e 6= M, we perform an independent partially-quenched linear fit

to the simulated pion, kaon and Omega masses using the forms given in Eqs. (56) - (58).

2. We make a first estimate of the pair of quark masses (ml,mh)
e on each ensemble set e 6= M

that corresponds to the matching point.

3. We then interpolate the three hadronic masses to the estimated me
l for each value of the

simulated unitary heavy quark mass.

4. We linearly interpolate each quantity to the estimated value of me
h.

5. Next we calculate the ratios Re
l =

me
ll

me
hhh

and Re
h =

me
lh

me
hhh

.

6. Using the measured slopes of me
ll and me

hhh with respect to me
l , by comparing Re

l to the

corresponding value RM
l at the matching point we obtain an updated estimate of me

l .

7. Similarly, by comparing the ratio Re
h to RM

h we obtain an updated estimate of me
h.

8. With these updated estimates of the quark masses (ml,mh)
e, we return to step 3 and iterate

the steps until the process converges.

Once this procedure has converged, we have a set of bare quark masses (ml,mh)
e which, in phys-

ical units, are equivalent to the masses (ml,mh)
M. Following the discussion in Sec. V A 2, we

choose a primary ensemble 1 and determine the ratios of quark masses Ze
f in ensembles 1 and e as

in Eq. (30) with the corresponding ratios of lattice spacing Ra given in Eq. (29).

In the above we assumed that for each ensemble e we had performed simulations at several val-

ues of me
h. In our present study the simulations were performed at a single value of me

h and the

dependence on the heavy-quark mass is obtained by reweighting as explained in Section II D.
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The above discussion was deliberately presented in a general case where there are an arbitrary

number of ensembles. In our case we only have two sets, i.e. the 243 and 323 lattices. For the

primary ensemble we choose the finer 323 lattice. As we have only one other ensemble set (243),

from now on we drop the superscript on the ratios of lattice spacings (Ra) and quark masses (Zl

and Zh).

In Table XXVI we give results for Zl , Zh and Ra obtained by matching at several matching points

on both ensemble sets M ∈ {243,323}. Since we prefer to have a matching point within the range

of simulated data on both ensembles, we can discard the first and last entries in the table. From

the remaining 3 possibilities, we choose as our final values Zl = 0.981(9), Zh = 0.974(7) and

Ra = 0.7583(46) from the second entry with M = 323 and (ml,mh)
323

= (0.006,0.03).

Having chosen to perform the matching of the lattices at the two lattice spacings by requiring

that mll/mhhh and mlh/mhhh take the same values at the matching point, we expect to see lattice

artefacts in ratios of other physical quantities. This is illustrated in Figure 26 in which we show the

ratios of several other dimensionless combinations of lattice quantities between the two lattices at

the quark masses used in the matching procedure above. The figure shows that we can expect only

small scaling violations on the order of 1–2% for the other quantities used in our global fits, and

also confirms that other dimensionless combinations of lattice quantities would be equally suitable

choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl , Zh and Ra determined as described in the previous section we are

ready to perform a simultaneous fit of all our pion, kaon and Ω mass and decay constant data

to either the NLO forms in chiral perturbation theory, Eq. (41) to Eq. (45), or the analytic forms

Eq. (49) to Eq. (55). We also correct for finite volume effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume sum of Bessel functions [44]. The iterative

procedure is the same for each of these three fit ansätze. For each iteration i, we:

1 estimate the physical strange-quark masses, mi
s, from the (i−1)th iteration;

2 interpolate and reweight the data to mi
s;

3 fit the mx,my,ml dependence of the light pseudoscalar mass and decay constant;

4 fit the mx,ml dependence of kaon quantities at mh = mi
s;
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5 fit the ml dependence of the Omega mass for mh = mi
s;

6 by comparing to the physical values of mπ/mΩ and mK/mΩ, determine the iterated predic-

tions for the physical strange quark masses mi+1
s .

This process is repeated until it converges and a self consistent set of quark masses, lattice spacings

and results in the continuum limit are obtained.

For the fits based on NLO chiral perturbation theory we use Eqs. (41) and (42) for the pion mass

and decay constant respectively, and Eqs. (44) and (47) for the kaon mass and decay constant.

In our earlier work [1] we found that we had to apply cuts to keep the pion mass below around

420 MeV in order for NLO SU(2) ChPT to give an acceptable description of our data. All the

additional data introduced in this work satisfies this cut and we include all the data for pions with

valence masses mx,my ≤ 0.01 on the two 243 ensembles and all data for pions with valence masses

mx,my ≤ 0.008 for the three 323 ensembles. For kaons we include all the valence light-quark

masses in the above range for each fixed strange-quark mass. For this infinite-volume SU(2) NLO

global fit the fitted parameters are presented in the second column of table XXVII. The χ2/dof

for all the fits discussed here are given in table XXVIII. We also perform the corresponding fits

using the finite-volume chiral logarithm composed of a sum of Bessel functions [44]; resummed

expressions are not available for our partially quenched fits. The parameters of the fit are presented

in the third column of table XXVII. In terms of the conventional LECs l̄3 and l̄4 the results are

l̄3 = 2.82(16), l̄4 = 3.76(9) (Infinite Volume ChPT) (59)

l̄3 = 2.57(18), l̄4 = 3.83(9) (Finite Volume ChPT) . (60)

In table XXIX we present the parameters of the fit with the analytic ansatz over the same mass

range as for the fits using SU(2) chiral perturbation theory, as explained in the previous paragraph.

We find that analytic fits including a larger range of pseudoscalar masses give an acceptable un-

correlated χ2/dof but then the lightest data points were consistently missed by the fit by about

one standard deviation. The utility of such extended fits for extrapolating to the physical point

was therefore compromised and we therefore decided to restrict the range of masses used in the

analytic fits.

The global fit to many ensembles of partially quenched data is naturally a high dimensional space

and so the exposition of the fits is best performed by looking at portions of the data in turn. In
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order to illustrate the quality of the fits, in the following subsections we display the fit and data for

each physical quantity in turn. In total we have analysed five ensembles at two lattice spacings,

and each ensemble has measurements at many partially quenched valence-quark masses. As it is

only feasible to present a subset of possible plots, in the following we display the dependence of

each quantity on the valence quark masses at the lightest sea-quark mass (ml = 0.005 for the 243

ensembles and ml = 0.004 on the 323 ensembles). The exception of course, is the mass of the

Omega baryon mhhh which does not depend on the light valence-quark masses. We also display

the unitary subset of data on both lattice spacings along with the mass dependence we infer from

our fits in the unitary continuum limit.

Before discussing the chiral and continuum behaviour of hadronic masses and decay constants in

detail, we present in table XXX our results for the unrenormalised physical quark masses and the

lattice spacings obtained from the three fits. In this table the quark masses are given in lattice

units. The non-perturbative renormalization of the masses will be discussed in Sec. VI where the

values of the renormalized quark masses in the MS scheme will be presented.

1. Chiral and continuum behaviour of the Ω-baryon

The Ω mass is fitted using Eq. (45) (or equivalently (55) ). The fit form for the Ω baryon does

not change between the different ansätze and only very small differences arise from the different

estimates of physical quark masses and hence of the lattice spacings. For illustration, Figure 27

shows the extrapolation of the Ω mass using the analytic ansatz.

2. Chiral and continuum behaviour of the pion mass

We display the fits of the partially quenched pion masses using infinite volume NLO SU(2) par-

tially quenched ChPT (i.e. to the partially quenched generalization of Eq. (38) given in Eq. (B.32)

of ref. [1]) in figure 28 for the lightest 243 and 323 ensembles. As discussed in section V C, we

divide by the average valence-quark mass with the intention of enhancing the visibility of chiral

logarithms. Figure 29 displays the corresponding fit of the same data but including finite-volume

corrections.

It is apparent that the infinite volume and finite volume NLO fits diverge rapidly from our data at

larger masses, and this indeed is the reason why we were compelled to introduce the upper cut-off



44

of 420 MeV for this analysis [1].

We now consider the chiral extrapolation of the pion mass using the analytic form of Eq. (49) which

is shown in Fig. 30. Comparing Figs. 28 and 29 with Fig. 30 suggests that data at substantially

larger masses can be described by the analytic expansion, without any curvature terms in the

ansatz. The division by the average valence quark mass in the plots, coupled to allowing the

tangent not to pass through the origin (i.e. that the extrapolated m2
π at mx = my = 0 may not be

equal to zero) allows the analytic fit to reproduce a structure that might otherwise be attributed to

chiral logarithms.

We emphasize that admitting the possibility that the constant term C
mπ
0 6= 0 allows for a pole in

figure 30 in the unitary chiral limit. In fact we find that C
mπ
0 is numerically small and consistent

with zero, C
mπ
0 = −0.001(1)GeV2. We stress again that while Goldstone’s theorem implies the

vanishing of the pion mass in the SU(2) chiral limit, this does not necessarily imply that C
mπ
0 = 0.

Our model is that the linear ansatz is valid in the region between that where we have data and

the physical point, and that if C
mπ
0 6= 0 then it is the curvature due to chiral logarithms below the

physical pion mass which will force the pion mass to zero in the chiral limit. Nevertheless, from

the fits we found that C
mπ
0 is consistent with zero. This is illustrated by the flat behaviour (within

the statistical precision) for the chiral behaviour of the unitary points for m2
π/ml in the continuum

limit shown in the right panel in Fig. 31. Allowing for a non-zero value of C
mπ
0 does however

lead to an amplified error for m2
π/ml at the physical point. The left panel of Fig. 31 shows the

corresponding plots for the infinite and finite-volume ChPT fits.

Goldstone’s theorem equally applies at vanishing valence-quark mass (mx = my = 0) but with a

non-zero sea-quark mass (ml > 0). In contrast with the unitary case discussed in the previous

paragraph where C
mπ
0 was consistent with zero, in the partially quenched direction we find that the

corresponding constant C
mπ
0 +C

mπ
2 ml is non-zero, specifically C

mπ
2 = 0.43(8)GeV. This value for

C
mπ
2 is much larger than might be created by propagating the mass dependence in m′

res(m) through

the term involving C
mπ
1 ; the greatest mass dependence in m′

res occurs on our 243 ensembles in the

partially quenched direction, but can at most generate a 1% correction to m̃ and produces a term

much smaller than the measured C
mπ
2 . Further, the residual chiral symmetry breaking is four times

smaller for the 323 ensemble which is also included in the global fit. Our results from this global

analytic fit therefore require a curvature, most likely from partially-quenched chiral logarithms

which are known to be larger than in the unitary direction, in order for Goldstone’s theorem to be

satisfied.
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It is also worth emphasizing that the discovery of chiral logarithms in lattice data from plots such

as those in Figs. 28 to 30 is to a certain extent artificial. Inconsistency with LO chiral perturbation

theory is certainly indicated. Our linear fits suggest that the transformations made in displaying

the data render even conclusions of genuine curvature, let alone unambiguous demonstration of

logarithmic mass dependence, to be somewhat optimistic. In order to prove logarithmic behaviour,

one should really change quark masses substantially on a logarithmic scale; our present lattice data

supports only the weaker claim of consistency with logarithmic behaviour in the partially quenched

direction.

3. Chiral and continuum behaviour of the pion decay constant

We now turn to the chiral behaviour of fπ and the extrapolation to the physical point. The leading

term in all the fits contains an a2 correction and we display the fits performed at non-zero lattice

spacing combined with the unmodified lattice data and also our continuum predictions combined

with the lattice data extrapolated to the continuum limit using the results of the fits.

We display our fits obtained using infinite volume NLO SU(2) partially-quenched ChPT in Fig-

ure 32. The corresponding fits including finite-volume corrections are shown in Figure 33. Finally

Figure 34 displays the fits obtained using our analytic ansatz. Having performed the fits, we adjust

our unitary data to the continuum limit using the fitting functions with the determined parameters

and display the adjusted data in Fig. 35 together with the finite and infinite-volume NLO SU(2)

ChPT fits (left panel) and the analytic fit (right panel). The effect of the adjustment to the con-

tinuum limit is illustrated in Figure 36 where the fits are superimposed on the unadjusted unitary

data. It can be seen from Figs. 35 and 36 that the adjustment to the continuum limit for the pion

decay constant is very small.

The predictions for fπ extrapolated to the physical quark masses for each of the fits is given in

table XXXI. We anticipate the discussion of the global fits for fK which are presented in Sec V E 6

and mention that the predictions for fK extrapolated to the physical quark masses are given in

table XXXII, and the predictions for fK/ fπ extrapolated to the physical quark masses are given in

table XXXIII.

We find that the NLO SU(2) fits underestimate the physical value at our simulated lattice spacings,

and that this discrepancy is amplified a little by the extrapolation to the continuum limit. At each

of our two lattice spacings, the analytic ansatz extrapolates close to the physical value of fπ , but,
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with our ansatz for the form of the a2 effects, the result becomes statistically inconsistent in the

continuum limit.

From the above discussion we see that using NLO ChPT to perform the chiral extrapolation for

fπ results in a value which is significantly smaller than the physical one. We recall that only data

limited to mπ < 420 MeV was used in the analysis and note that the fits were performed using the

chiral expansion with f , the decay constant in the SU(2) chiral limit, included in the expansion

parameter χl/(4π f )2. The downward curvature at low masses seen in Figure 35 can, of course, be

reduced by replacing the mass-independent f by an artificial larger parameter such as the physical

fπ or fll(m̃l) measured at each quark mass used in the simulation. The curvature can also be

partially absorbed by using a subset of terms that arise at NNLO. We have experimented with

NNLO fits [46] but find that the low-energy constants are insufficiently constrained by our data to

be of practical use. Thus the resulting predictions for the physical value of fπ depend strongly on

the model assumptions used at NNLO.

The observed O(10%) deviation found using NLO chiral perturbation theory is broadly consistent

with the size of NNLO terms one might expect to be present at masses in the region of our data.

Our data for fπ vary from about 20% to 40% above the value of f obtained from our extrapolations

and the square of these terms can be taken as being indicative of the expected NNLO terms. We

might therefore expect them to be around 5-15% within our simulated mass range.

The discrepancy of the prediction for the physical value of fπ from the analytic fits is smaller than

that found with NLO ChPT, but is nevertheless visible. The results at each of the two lattice spac-

ings are statistically consistent with fπ but lead to an underestimate in the continuum limit. Given

the sign of the chiral logarithms at NLO, one might expect a linear ansatz to over-estimate rather

than underestimate the prediction for the physical value. It is nevertheless striking that one cannot

admit any significant non-linearity in this extrapolation and retain consistency with the physical

value for fπ . The simple analytic form used here appears to be a successful phenomenological

model which is simpler and has fewer parameters than approaches based on ChPT with arbitrarily

chosen analytic subsets of NNLO and NNNLO terms.

It is of interest to pose the scientific question whether any of the fit ansätze could in principal be

consistent with the experimentally measured pion decay constant? To answer this question we

update the analysis of Ref. [47] and include an artificially created data point for each ensemble

that represents the experimental result in the continuum limit but includes our fitted a2 correction

at each non-zero lattice spacing. This is displayed in figure 37 and we find that the analytic
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ansätze could be consistent with an uncorrelated χ2/dof = 1.9(7), while NLO ChPT would fail

to simultaneously fit our data and the physical point, with χ2/dof = 6(1) (infinite volume) and

χ2/dof = 5(1) (finite volume).

Of course, improved statistical errors, simulations at a third lattice spacing and larger physical

volumes would give us better control of the continuum extrapolation and finite-volume effects.

However, our main conclusion is that it is imperative to simulate with masses substantially nearer

to the physical point; this will constrain both fit forms to give more consistent predictions. Ul-

timately simulations will be performed directly at physical quark masses and will eliminate this

error completely. We are currently generating new ensembles with a coarser lattice spacing, with a

substantially larger volume and with very much lighter pion masses (for a preliminary discussion

of these configurations see Ref. [48]) precisely to address this issue.

As an estimate of the systematic uncertainties in physical quantities we take the difference be-

tween the results obtained using linear and finite-volume NLO ChPT analyses. This allows for the

possible validity of the full NLO non-analyticity in the region of masses between the data and the

physical point but also recognises that part of this extrapolation may be outside the range of valid-

ity of NLO ChPT as suggested by the observation that the present data is surprisingly consistent

with linear behaviour. Guided by the results for fπ discussed above, we take as our central values

for phenomenological predictions the average of the results obtained from our finite-volume NLO

ChPT fits and our analytic fits.

4. Chiral and continuum behaviour of the mass of the kaon

We display our fits using infinite volume NLO SU(2) partially quenched ChPT in figure 38. Fig-

ure 39 displays the corresponding fits of the same data with the finite-volume corrections included,

while the analytic fits are displayed in figure 40. The corresponding unitary view of the data in the

continuum limit is shown in figure 41. All these plots are for results at the physical sea strange

quark mass.

5. Chiral and continuum behaviour of fK

We next discuss fK , the decay constant of the kaon. We display our fits using infinite-volume

NLO SU(2) partially quenched ChPT in Figure 42. The following two figures display fits of the
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same partially quenched data to ChPT with finite-volume corrections (Figure 43) and to the global

analytic fit ansatz (Figure 44). The NLO ChPT fit ansätze, both with and without finite-volume

logarithms, are displayed for the unitary data adjusted to the continuum limit in figure 45.

The two panels in Figure 46 display the chiral behaviour of the actual unitary data from the two

sets of ensembles (left panel) as well as of the data adjusted to the continuum limit (right panel).

From these fits our final predictions for fK are given in table XXXII, and the corresponding results

for
fK

fπ
in table XXXIII.

6. Predictions

We now present our results for fπ , fK and their ratio as well as for the physical bare quark masses.

As discussed above, our central value for any physical quantity is taken to be the average of the

results obtained from analyses using the NLO SU(2) ChPT fit with finite volume corrections and

those from the analytic fit. The difference between the analytic and finite-volume NLO SU(2) fits

is taken as a systematic error. This procedure includes a NLO finite-volume correction, estimated

from the difference between results obtained using NLO ChPT at infinite and finite volumes, and

which is much smaller than the total systematic error here.

Our predictions for pseudoscalar decay constants therefore contain systematic errors for finite

volume effects, the chiral extrapolation, and residual chiral symmetry breaking, while the discreti-

sation error is included indirectly by the fitting procedure:

f continuum
π = 124(2)(5)MeV (61)

f continuum
K = 149(2)(4)MeV (62)

( fK/ fπ)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of fπ influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

fπ cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ fπ and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the
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β = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)

and these will be renormalised in the following section. The corresponding bare masses for the

β = 2.13 243 ensembles can be obtained by dividing the results in (64) by the values of Zl and Zh

in Table XXVI.

7. Chiral and continuum behaviour of r0 and r1

Finally in this section we apply the combined chiral/continuum extrapolation procedure to the

scales r0 and r1. Assuming a linear dependence for the light sea-quark mass dependence, and

including a leading order a2 term as before, the scales are independently fit to the form

ri = cri
+ cri,aa2 + cri,ml

m̃l , (65)

where i = 0,1. Prior to the fit, the data are linearly interpolated to each of the physical strange

quark masses obtained from the global fits and presented in Table XXX, and the fit and the subse-

quent extrapolation are performed using the corresponding physical light-quark mass and lattice

spacings.

The parameters and χ2/d.o.f of the fits are given in Tables XXXIV and XXXV respectively, and

plots showing the fits overlaying the data in the continuum limit are shown in figure 47. The fits

to r0 appear to describe the data well by eye, and have a reasonable (uncorrelated) χ2/d.o.f for

the central value, but with a large deviation across the superjackknife distribution. The fits to r1

also appear to describe the data reasonably well, although there does seem to be a tension with the

heaviest point on the 243 ensembles, which is likely responsible for the larger χ2/d.o.f. As there

are only five data points it is difficult to reach any stronger conclusions regarding the data: more

ensembles and better statistics are needed. For the purpose of quoting a final result, we apply a

PDG scale factor of
√

χ2/d.o.f to the statistical errors on each of the results. In order to retain

the correlations between these quantities when the ratio is taken, the scale factor is applied to the

difference of each jackknife sample from the mean.

The continuum results for r0, r1 and their ratio at physical quark masses are given in table XXXVI.

Using the procedure for combining the results obtained using the different chiral ansätze outlined
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in Section V E 3 and applying the PDG scale factor as above, gives:

r0 = 2.468(45)stat(1)FV(1)χ GeV−1 = 0.4870(89)stat(2)FV(2)χ fm ,

r1 = 1.689(47)stat(0)FV(1)χ GeV−1 = 0.3333(93)stat(1)FV(2)χ fm , and

r1/r0 = 0.684(15)stat(0)FV(0)χ ,

(66)

where the finite volume error arising from the different determinations of the lattice spacings and

quark masses is smaller than the quoted precision on the ratio. χ labels the error due to the chiral

extrapolation. For comparison, the MILC collaboration recently obtained r1 = 0.3117(6)(+12
−31) fm

(≃ 1.580(3)(+6
−16) GeV−1) [49], and also r1 = 0.317(7)(3) fm (≃ 1.61(4)(2)GeV−1) and r0 =

0.462(11)(4) fm (≃ 2.34(6)(2)GeV−1) from an earlier study [50]. At this time we do not have

an explanation of the discrepancy between our results in (66) and those of the MILC collabora-

tion beyond noting the very different approaches to setting the scale and performing the chiral

extrapolation.

VI. LIGHT-QUARK MASSES

The quark masses quoted in Eq. (64) are the bare masses for the lattice action which we are using

on the 323 ensembles with β = 2.25 corresponding to a lattice spacing a−1 ≃ 2.28GeV. In order

to be useful in phenomenological applications these results must be translated into renormalized

masses in some standard continuum scheme. Therefore in Subsection VI A we determine the

renormalization constants relating the bare masses in (64) to those renormalized in the MS scheme

at a renormalization scale of 2GeV. In Subsection VI B we then combine these renormalization

constants with the bare masses in (64) to obtain the renormalized masses, the LO LEC BMS(2GeV)

and the chiral condensate.

A. Non-perturbative renormalization for quark masses

The quark-mass renormalization factor which relates the lattice bare quark mass to that in the MS

scheme is determined using non-perturbative renormalization (NPR) with the RI/SMOM schemes

proposed in Ref. [14] as intermediate schemes. This is an extension of the Rome-Southampton

NPR program in which the RI/MOM scheme was defined [51]. Quark masses renormalized in the

RI/SMOM or RI/MOM schemes are obtained entirely non-perturbatively. Since it is not possible to

simulate in a non-integer number of dimensions, continuum perturbation theory is needed to match



51

the results in either the RI/SMOM or the RI/MOM scheme and the target MS scheme. We stress

however, that we completely avoid the use of lattice perturbation theory which often converges

more slowly than continuum perturbation theory (PT). Since RI/MOM and any of the schemes

proposed in [14] are legitimate renormalization schemes, we exploit the freedom to choose an

intermediate scheme to reduce its effect on the final result for the renormalized quark mass in the

MS scheme and to have a better understanding of this uncertainty.

Our earlier study [13], used to normalize the quark mass on the 243 ensembles, applied the

RI/MOM scheme to renormalize the quark masses and suffered from sizable systematic errors

with two dominant sources. One of these is the truncation error in the perturbative continuum

matching between the RI/MOM and MS schemes. This was estimated to be 6% for µ = 2 GeV

from the relative size of the highest-order term used (3 loop). The other is a non-perturbative effect

arising because the strange quark mass is fixed close to its physical value, and the chiral limit is not

taken for this quark. We estimated the corresponding systematic error on the quark-mass renormal-

ization factor for a−1 = 1.73 GeV and µ = 2 GeV to be about 7%. As the strange-quark mass and

the typical scale of spontaneous chiral symmetry breaking are almost the same, this error can be

viewed as a general error due to contamination of non-perturbative effects (NPE). It was shown in

Ref. [13] that changing the kinematics of momenta used to define the NPR scheme greatly reduces

the contamination from unwanted non-perturbative effects and this will be discussed below. The

actual implementation of the schemes with unconventional kinematics has been done in Ref. [14]

carefully ensuring that the Ward-Takahashi chiral identities are satisfied. A pilot study [52] us-

ing the new schemes demonstrated that it is a promising alternative to the conventional RI/MOM

scheme with reduced systematic errors. In the present article we use two RI/SMOM schemes

proposed in Ref. [14]. Preliminary results have been reviewed in Ref. [53].

An important technical improvement introduced since the previous study [13] is the use of volume

momentum sources for the quark propagators. This helps to reduce the statistical error greatly and

in addition reduces the systematic error due to the dependence on the position of the local source

used in [13]. More details about the use of momentum sources can be found in Ref. [34].

The mass renormalization factor Zm is conveniently calculated using the relation

Zm = 1/ZS = 1/ZP, (67)

where Zm, ZS, ZP are the quark mass, flavor non-singlet scalar and pseudoscalar renormalization

factors respectively. Here we are exploiting the important chiral symmetry properties of DWF. Our
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convention is that the renormalization factors multiply the bare quantities to yield renormalized

ones:

mR = Zmm̃, Pa
R = ZPPa, Sa

R = ZSSa, (68)

where the left-hand sides are the renormalized mass, pseudoscalar and scalar densities and a is a

flavour label. m̃ in Equation (68) is in physical units. The relations in Eq. (67) are necessary for the

Ward-Takahashi identities to hold for the renormalized operators. The RI/MOM renormalization

condition on the amputated scalar vertex ΠS reads

ZS

Zq

1

12
Tr[ΠS · I] = 1. (69)

Zq is the wave function renormalization factor, which can be determined using the trace condition

on the local vector operator,
ZV

Zq

1

48
Tr[ΠVµ · γµ ] = 1. (70)

The vertex functions Π depend on the incoming and outgoing momenta on the two fermion lines,

Π(pin, pout). The conventional RI/MOM scheme is defined using the forward vertex with pin =

pout = p. The renormalization conditions Eqs. (69), (70) are applied by setting the renormalization

scale µ to be the off-shell external momentum, µ2 = p2, in the chiral limit.

It is in principle possible to determine ZS (= ZP) using the pseudoscalar vertex function instead of

the scalar one in Eq. (69). However, with the original RI/MOM choice for the external momenta,

the pseudoscalar vertex couples to the zero-momentum pion, and the Green function diverges as

1/mq as the quark mass mq → 0 at fixed p [54]. Therefore the pseudoscalar vertex cannot be

used without some manipulation of the divergence (see e.g. [55]) and has not been considered in

our previous publication [13]. This is in contrast with the RI/SMOM schemes described below

which do not have such a pole as mq → 0. Similarly, the axial-vector vertex can be used to

determine Zq because ZV = ZA. However, Zq obtained using the vector and axial-vector vertices at

large but finite p2 will differ because of the coupling of the axial current to the Goldstone boson

[51]. These differences are known to be of O(1/p2) at high momentum from the operator product

expansion [51, 54] or from Weinberg’s theorem of power counting for a Feynman diagram [13].

In Ref. [13], the average of the vector and the axial-vector vertex was used to determine Zq and

the difference was included in the systematic error, though the corresponding 1% error is sub-

dominant.

The caveats mentioned in the two preceding paragraphs are both connected to the RI/MOM

scheme and its channel with an “exceptional momentum”; specifically, the momentum transfer
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q ≡ pin − pout = 0. This is the reason for the large NPE error. It was demonstrated that the use

of non-exceptional momenta pin − pout 6= 0 reduces the NPE effect significantly. The RI/SMOM

schemes are designed so that all channels have non-exceptional momenta. For quark bilinear

operators we choose to have p2
in = p2

out = q2 and hence introduce the name “Symmetric Mom”

(SMOM) schemes. The two schemes RI/SMOM and RI/SMOMγµ
are defined with this kine-

matical choice but differ in the Γ-projection operators which are used to define the wave function

renormalization. For the vector (axial-vector) vertex function the projector q/qµ/q2 (γ5q/qµ/q2) is

used in the RI/SMOM scheme and γµ (γ5γµ ) as in Eq. (70) is used for RI/SMOMγµ
. The standard

I (γ5) spinor projector is used for the scalar (pseudoscalar) vertex in both new schemes.

The conversion factors from the RI/SMOM and RI/SMOMγµ
schemes to MS have been calculated

at one-loop order in Ref. [14] and recently to two-loop order [15, 16]:

Cm(RI/SMOM → MS,µ) = 1−
(

αs(µ)

4π

)
0.646−

(
αs(µ)

4π

)2

(22.608+4.014n f ) · · · ,(71)

Cm(RI/SMOMγµ
→ MS,µ) = 1−

(
αs(µ)

4π

)
1.979−

(
αs(µ)

4π

)2

(55.032+6.162n f ) · · · ,(72)

where the coefficients have been rounded to the third decimal place. Evaluating these factors at

µ = 2 GeV we have

Cm(RI/SMOM → MS,µ = 2GeV,n f = 3) = 1−0.015−0.006 · · · , (73)

Cm(RI/SMOMγµ
→ MS,µ = 2GeV,n f = 3) = 1−0.046−0.020 · · · . (74)

In the RI/MOM and RI′/MOM schemes the conversion factors are known to three-loop order [56,

57]:

Cm(RI/MOM → MS,µ = 2GeV,n f = 3) = 1−0.123−0.070−0.048+ · · · , (75)

Cm(RI′/MOM → MS,µ = 2GeV,n f = 3) = 1−0.123−0.065−0.044+ · · · . (76)

We note that, at least up to two-loop order, the convergence of the series relating the new SMOM

schemes to MS is considerably better than for the RI/MOM scheme. As already mentioned, the

truncation error of the RI/MOM scheme was estimated from the size of the highest order term

available (3 loop). Having in addition two intermediate SMOM schemes, we can expect to have a

more reliable estimate of the truncation error.

We now turn to the numerical evaluation of the renormalization factors. At each value of β , we

use data obtained at the three light-quark masses: ml = 0.004, 0.006 and 0.008 for the finer 323
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lattice and ml = 0.005, 0.01 and 0.02 for the coarser 243 lattice. 20 configurations were analyzed

for each point. The ratio of quark wavefunction and local axial current renormalization factors is

calculated from the average of vector and axial-vector vertex functions,

Zq

ZV
=

1

2
(ΛV +ΛA), (77)

with projected and traced vertex functions:

ΛRI/SMOM
V =

1

12q̂2
Tr[ΠVµ · q̂/q̂µ ] and ΛRI/SMOM

A =
1

12q̂2
Tr[ΠAµ · γ5q̂/q̂µ ], (78)

for the RI/SMOM scheme. Here qµ in the continuum RI/SMOM scheme [14] has been replaced

with the q̂µ = sin(qµ), as the derivative for the divergence of the current in the continuum theory

is naturally replaced by the symmetric difference on the lattice. A remarkable feature of the

RI/SMOM scheme is that in the chiral limit ΛV = ΛA holds non-perturbatively, in contrast to ΛV 6=
ΛA for RI/MOM scheme due to spontaneous symmetry breaking (SSB). In principle there could

still be a small difference for the lattice RI/SMOM scheme with non-zero mres, which, however, is

negligible in the momentum range we use [52]. Using the continuum Ward-Takahashi identities,

one can also show the equivalence of Zq in the RI/SMOM and RI′/MOM schemes [14].

The RI/SMOMγµ
scheme is defined using the conventional projectors,

Λ
RI/SMOMγµ

V =
1

48
Tr[ΠVµ · γµ ] and Λ

RI/SMOMγµ

A =
1

48
Tr[ΠAµ · γ5γµ ] . (79)

Although these projectors are superficially the same as those used in the RI/MOM scheme, it

should be remembered that the kinematics is different in the two cases with no exceptional chan-

nels in the Green functions used to define the RI/SMOMγµ
scheme.

The product of mass and wavefunction renormalization factors is calculated from the average of

scalar and pseudoscalar vertex functions,

ZmZq =
1

2
(ΛS +ΛP), (80)

with

ΛS =
1

12
Tr[ΠS ·1] and ΛP =

1

12
Tr[ΠP · γ5], (81)

again defined with the SMOM kinematics for the vertex functions. While ΛS = ΛP holds to all

orders in perturbation theory with naive dimensional regularization, by using Weinberg’s power-

counting scheme we see that they can in general differ by terms of O(1/p6) [13]. The difference
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ΛP −ΛS after the chiral extrapolation is plotted in Fig. 48 as a function of p2 (in physical units)

for both the 243 and 323 lattices. The figure confirms the expected approximate 1/p6 scaling. The

unwanted non-perturbative effect from SSB is small and the introduction of non-exceptional mo-

menta has had the expected effect. This is in contrast to the RI/MOM scheme with the exceptional

channel, where the same difference behaves as 1/(mp2), and thus diverges in the chiral limit at

finite p2.

The mass renormalization factor Zσ
m , with σ = RI/SMOM or RI/SMOMγµ

, is given by combining

Eqs. (77) and (80),

Zσ
m =

1

ZV

ΛS +ΛP

Λσ
V +Λσ

A

. (82)

In calculating the ratio of vertex functions in Eq. (82) we take the average of S and P or V and A

for each light-quark mass and then fit with a quadratic (c+c′(ml +mres)
2) or linear c+c′′(ml +mres)

formula to obtain the value c in the chiral limit for the numerator and denominator. For illustration,

the extrapolation for the numerator using the quadratic formula is shown in Fig. 49, where the

observed mass dependence is seen to be very small. Because of the very mild mass dependence,

to the precision with which we quote our results and errors, the quadratic and linear extrapolation

formulae lead to exactly the same quark-mass renormalization factor and error. Finally taking the

ratio and combining with ZV gives the mass renormalization factor in the RI/SMOM schemes. The

renormalization factor in the MS scheme at a scale µ = 2 GeV is obtained by first matching the

scheme σ to MS at µ2 = p2
in = p2

out = q2 using Eqs. (71) and (72) and then running to 2 GeV using

the three-loop anomalous dimension in the MS scheme. We use the four-loop QCD beta functions

[58] to calculate α
(3)
s (µ) for running and matching as shown in Appendix A of Ref. [13]. The

relevant parameters taken from the 2008 Particle Data Group [45] are

α
(5)
s (mZ) = 0.1176, mZ = 91.1876 GeV, mb = 4.20 GeV and mc = 1.27 GeV, (83)

where the quark masses are in the MS scheme at the scale of the mass itself, e.g. mb = mMS
b (mb) .

In Fig. 50 we plot Z
SMOMγµ
m (µ) and ZSMOM

m (µ) in the SU(2) chiral limit as functions of µ2 = p2

for the 323 ensembles. In addition we also plot ZMS
m (2GeV) as functions of the matching scale p2

obtained with SMOM and SMOMγµ as the intermediate schemes. In an ideal situation, i.e. one in

which the errors due to NPE contamination, truncation of perturbation theory and lattice artifacts

are all small, the results obtained using the two intermediate schemes would give the same results

for ZMS
m (2GeV), and the results would be independent of (pa)2. Since we have observed that the

NPE error is small, the difference between the two sets of results is mostly due to the truncation of



56

perturbation theory and lattice discretization errors. The observed decrease in this difference as p2

increases is consistent with the expected behaviour of the truncation error. Conversely, since the

truncation error increases as p2 decreases, taking the limit (pa)2 → 0, which is a typical treatment

to eliminate the discretization error, is not an appropriate procedure. We therefore choose instead

to evaluate Zm by taking an intermediate reference point p2 = (2 GeV)2, for both the 243 and 323

lattices. In this way, as we take the continuum limit of the renormalized quark mass, the leading

(pa)2 discretization error associated with the non-perturbative renormalization will be removed.

There is a subtlety due to lattice artefacts which are not O(4) invariant and which are responsible

for the non-smooth (pa)2 dependence in the figure. A term like a2 ∑µ(pµ)4/p2, whose presence

has been demonstrated in the conventional RI/MOM scheme for Wilson quarks [59], could exist

also in the SMOM schemes. Such a term would manifest itself as scattered data around a smooth

curve in p2, and the size of the scatter is expected to be comparable to the leading (pa)2 error as

both are of the same order in a2. This appears to be compatible to what is shown in the figure.

Of course, it would be very helpful to know these terms, but in the absence of this knowledge we

include this scatter in the systematic error by inflating the error by a factor
√

χ2/dof. The results

are

Z
MS(32)
m (µ = 2 GeV,n f = 3; SMOMγµ ) = 1.573(2), (84)

Z
MS(32)
m (µ = 2 GeV,n f = 3; SMOM) = 1.541(7). (85)

The final arguments on the left-hand sides denote the choice of intermediate scheme. The error on

the right-hand sides is the combination of the statistical fluctuations and the scatter of the points

around the linear fit. The central values and errors are shown in the figure at the reference point,

p2 = (2GeV)2.

The 243 coarser lattice has been analyzed similarly for the ml = 0.005, 0.01 and 0.02 ensembles

and the results are shown in Fig. 51. The mass renormalization factors on the 243 lattice for the

two intermediate SMOM schemes are:

Z
MS(24)
m (µ = 2 GeV,n f = 3; SMOMγµ ) = 1.578(2), (86)

Z
MS(24)
m (µ = 2 GeV,n f = 3; SMOM) = 1.534(10). (87)

In Eq. (64) we have presented the bare quark masses for the fine 323 lattice and in Table XXVI

we give the ratios of equivalent bare masses on the 243 and 323 lattices. Because of the different

O(a2) artefacts for the light and heavy quark masses, there are two such ratios Zl for the ud quarks
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and Zh for the s quark. These ratios Zl and Zh are also the scheme-independent ratios of the

renormalization constants on the course and fine lattices. We now use these ratios to estimate

the difference of the MS renormalized masses with the SMOM and SMOMγµ schemes in the

continuum limit. The continuum extrapolation of Z
(32)
m and Z

(24)
m /Zl or Z

(24)
m /Zh will remove the

(pa)2 error in the non-perturbative renormalization. Thus, if a difference is found, it can largely be

attributed to the truncation error of the perturbative matching. Performing such an extrapolation

we find

Z
MS(32)c
ml (µ = 2 GeV,n f = 3; SMOMγµ ) = 1.527(6), (88)

Z
MS(32)c
ml (µ = 2 GeV,n f = 3; SMOM) = 1.511(22), (89)

for the ud quark, and

Z
MS(32)c
mh (µ = 2 GeV,n f = 3; SMOMγµ ) = 1.510(6), (90)

Z
MS(32)c
mh (µ = 2 GeV,n f = 3; SMOM) = 1.495(22) (91)

for the s quark. Note that because these factors multiply m̃ud(323)/a(323) or m̃s(323)/a(323)

presented in Eq. (64) to give the MS mass in the continuum limit, they are made to absorb the

O(a2(323)) discretization error in these bare quark masses on the fine lattice. Because of this,

as well as the fact that the Zm’s are free from O(a2) errors originating from the SMOM non-

perturbative renormalization, we have put additional suffix “c” as “continuum” to distinguish them

from Z
MS(32)
m . The existence of a mass dependent contribution to the O(a2) artefacts gives rise to

the different Zm for the light and heavy-quark masses. From the two different estimates of the MS

renormalization factors with the SMOM and SMOMγµ intermediate non-perturbative schemes,

we choose to take SMOMγµ for our central value. The reason is that the scatter about the linear

behaviour observed for the SMOM scheme in Figs. 50 and 51 is much larger. Although the effect

of the scatter has been taken into account in the error, we consider the continuum extrapolation

from the SMOM scheme to be less reliable. The difference in the central values of Z
MS(32)c
ml in

Eqs. (88) and (89) is about 1%, and this is also the case for the difference between the central

values of Z
MS(32)c
mh in Eqs. (90) and (91). These differences of about 1% give an indication of the

possible size of the truncation error of the perturbative two-loop matching to MS (it should be

noted however, that the errors in the renormalization factors in the SMOM scheme are even a

little larger). Another estimate of the truncation error of the matching is obtained by evaluating

the size of the two-loop term in Eq. (74), resulting in 2.1% for the SMOMγµ scheme. In order to
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be conservative, we shall take the latter as our estimate. Other systematic errors arise from the

fact that the simulated strange mass is non-zero and from the small difference in the scalar and

pseudoscalar vertices due to the residual spontaneous symmetry breaking effects. The first error

is estimated from the response of scalar and pseudoscalar vertex functions to the variation of the

light-quark mass [13]. From the flat behaviour of ΛP +ΛS on the light-quark mass in Fig. 49 it can

be seen that this uncertainty is small. The error estimates are compiled in Table XXXVII. In the

table, the corresponding errors from the RI/MOM analysis [13] are shown for comparison. All

errors have become significantly smaller for the new SMOM schemes. Now our final values for

the MS renormalization factor read

Z
MS(32)c
ml (µ = 2 GeV,n f = 3) = 1.527(6)(33), (92)

Z
MS(32)c
mh (µ = 2 GeV,n f = 3) = 1.510(6)(33), (93)

where the first error is the statistical uncertainty inflated to take into account the scatter about the

linear behaviour due to O(4) non-invariant effects (as explained above) and the second is due to

the remaining systematic effects and is dominated by the 2.1% truncation error of the perturba-

tive matching. Here we have not taken into account the statistical fluctuation of ZV , which will be

properly included in the calculation of the renormalized quark masses described in the next subsec-

tion. The corresponding renormalization factor for the light-quark mass on the coarse 243 lattice

is Z
MS(24)c
ml (µ = 2 GeV,n f = 3) = Zl ·Z

MS(32)c
ml (µ = 2 GeV,n f = 3) = 1.498(6)(33). This value

is consistent with our earlier estimate of the same quantity using RI/MOM as the intermediate

scheme, 1.656(157) [13], but now with a considerably reduced error.

B. Renormalized quark masses

After the detailed discussion of the quark-mass renormalization, it is now straightforward to com-

bine the renormalization constants in Eqs. (92) and (93) with the physical bare quark masses on

the 323 lattice in Eq. (64) to obtain the light and strange quark masses renormalized in MS scheme:

mMS
ud (2GeV) = Z

MS(32)c
ml

(µ = 2GeV,n f = 3) · m̃ud(323) ·a−1(323)

= 3.59(13)stat(14)sys(8)ren MeV, (94)

mMS
s (2GeV) = Z

MS(32)c
mh (µ = 2GeV,n f = 3) · m̃s(323) ·a−1(323)

= 96.2(1.6)stat(0.2)sys(2.1)ren MeV, (95)
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where the three errors on the right-hand side correspond to the statistical uncertainty, the system-

atic uncertainty due to the chiral extrapolation and finite volume, and the error in the renormaliza-

tion factor. We recall that for the error due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-volume NLO SU(2) and analytic fits and for

the central value we take the average of these results. We estimate the finite-volume effects from

the difference of the results obtained using finite volume and infinite-volume NLO ChPT fits and

combine these errors in quadrature. The finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms

mud

= 26.8(0.8)stat(1.1)sys. (96)

We end this section by presenting our results for the leading-order LEC B and the chiral conden-

sate. Using the finite-volume NLO ChPT fits we find

BMS(2GeV) = Z
MS(32)−1

ml (µ = 2GeV,n f = 3) ·B(323) ·a−1(323) = 2.64(6)stat(6)sys(6)ren GeV.

(97)

Combining this result with the pion decay constant in the chiral limit, also obtained using the

finite-volume NLO ChPT fits the chiral condensate is found to be

[ΣMS(2GeV)]1/3 = [ f 2B(2GeV)/2]1/3 = 256(5)stat(2)sys(2)ren MeV. (98)

In Eqs. (97) and (98) the second error is only due to finite volume corrections estimated from the

difference of finite and infinite volume NLO ChPT fits.

VII. TOPOLOGICAL SUSCEPTIBILITY

The topological charge Q, defined on a single Euclidean space-time configuration, and its sus-

ceptibility, χQ, are interesting quantities to calculate. While Q depends only indirectly on the

quark masses, leading order SU(2) ChPT [60, 61] predicts a strong dependence of χQ on the light

sea quark mass with χQ vanishing linearly as ml → 0, suggesting that χQ may show important

dynamical quark mass effects.

In the continuum Q and χQ are defined by

Q =
g2

16π2

∫
d4xGµν(x)G̃µν(x) and χQ = 〈Q2〉/V, (99)
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where V is the four-volume of the lattice, Gµν(x) is the gluon field strength tensor and G̃µν(x), its

dual. In the continuum, Q is integer valued and related to exact chiral zero modes of the massless

Dirac operator by the Atiyah-Singer index theorem [62]. For sufficiently smooth gauge fields it

is possible to find a lattice expression which will always evaluate to an integer [63], as in the

continuum limit. However, in the calculation reported here the necessary smoothness condition

is not obeyed and we instead replace the right-hand side of Eq. (99) by a sum of Wilson loops

chosen to approximate the Gµν(x)G̃µν(x) product in Eq. (99). Specifically we employ the “five-

loop improved” (5Li) definition of the topological charge proposed in Ref. [64] which at tree level

is accurate through order a4. However, before evaluating this lattice expression for the topological

charge, we smooth the links in the lattice by performing a series of APE smearing steps [65,

66]. The smearing parameter was set to 0.45, and 60 smearing sweeps were performed before

measuring Q. The results are insensitive to the choice of these parameters.

In Fig. 52 the Monte Carlo time history of Q is shown for each ensemble of gauge fields in our

study. For each case, the update algorithm RHMC II [1] was used, except for the first 1455

configurations for the ml = 0.01 ensemble where the RHMC 0 and RHMC I algorithms were

used. In [1] it was shown that RHMC II is more effective in changing the gauge field topology,

and therefore produces shorter auto-correlation times. The data for the first half (up to trajectory

5000) of both 243 ensembles is repeated from [1]. Figure 52 shows clearly the expected slowing

of the rate of change of topological charge when moving towards the continuum [67] and, to a

lesser degree, when decreasing the quark mass. The integrated auto-correlation times for Q for

the smaller lattice spacing ensembles are shown in Fig. 2. While this figure is consistent with the

autocorrelation times reaching a plateau of about 80 time units when integrated over an interval

of about 200 time units, the exploding errors make this conclusion highly uncertain. Scanning

Fig. 52 by eye, one might argue that the auto-correlations could be 500 time units, or longer. For

example, note the large fluctuation to negative Q beginning around time unit 4750 for ml = 0.006.

The distributions of topological charge for each ensemble are shown in Fig. 53. The distributions

become narrower as the quark mass is decreased. For the smaller lattice spacing, they also appear

to exhibit non-Gaussian-like tails, or humps at large |Q|.
Because of the parity symmetry of our calculation, the average of the pseudo-scalar quantity 〈Q〉
vanishes. However, χQ remains non-zero and at leading order in SU(2) chiral perturbation the-
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ory [60, 61] is given by

χQ = Σ

(
1

mu
+

1

md

)−1

= Σ
mumd

mu +md

, (100)

where Σ = B f 2/2 is the chiral condensate coming from a single flavor in the limit of vanishing up

and down quark mass.

At one-loop in chiral perturbation theory [68],

χQ = Σ

(
1

mu

+
1

md

)−1

×
(

1− 3

(4π f )2
m2

π log
m2

π

Λ2
+K6(mu +md)+2(2K7 +K8)

mumd

mu +md

)
, (101)

= Σ
ml

2

(
1− 3

(4π f )2
m2

ll log
m2

ll

Λ2
+(2K6 +2K7 +K8)ml

)
, (102)

where Ki = 128ΣLi/ f 4 are proportional to the Gasser-Leutwyler NLO LEC’s [68], and in the last

line the formula is evaluated for degenerate quarks. In contrast to other quantities considered in

this paper, we do not attempt to characterize or evaluate the corrections to Eqs. (101) or (102)

which come from non-zero lattice spacing. That interesting question is left for future work.

In Tab. XXXVIII values of 〈Q〉 and χQ for each ensemble of configurations are summarized. To

test for the expected auto-correlations, the data were blocked into bins of various sizes ranging

from 10 to 600 time units. The quoted values of the statistical errors resulted when the block sizes

were taken large enough that the errors no longer changed significantly. The block sizes are given

in Tab. XXXVIII. For all cases the first 1000 time units were discarded for thermalization.

The dependence of χQ on the light quark mass is shown in Fig. 54. All of the data points lie

above the LO curve (dashed line), all but the lightest significantly so. The result of the fit (χ2/dof

≈ 13/4 ≈ 3) to the NLO formula Eq. (102) is also shown. Since we have not determined K7

in Eq. (102) from other means, we treat the linear combination of LEC’s as a single, new, free

parameter in the fit and find (2K6 + 2K7 + K8) = 19.8(6.3). Except for the lightest data point,

there is scant evidence for large O(a2) errors, though the statistical errors on the heavier two

points with a−1 = 2.284 are somewhat large. Omitting the former point in the fit leads to a more

acceptable value of χ2/dof ≈ 1.5, suggesting the lightest point may be systematically low due to

long auto-correlations in Q that are not well resolved in our finite Markov chain of configurations.

Despite these limitations, the data appear to show a dependence on the light sea quark mass that is

consistent with the dictates of NLO SU(2) ChPT.



62

VIII. CONCLUSIONS

We have presented results from simulations using DWF and the Iwasaki gauge action for lattice

QCD at two values of the lattice spacing (a−1= 1.73 (3) GeV and a−1= 2.28 (3) GeV) and for uni-

tary pion masses in the range 290–420 MeV (225–420 MeV for the partially quenched pions). The

raw data obtained at each of the two values of β was presented in Sections III and IV respectively

and the chiral behaviour of physical quantities on the 243 and 323 lattices separately was studied

in Appendix A. The main aim of this paper however, was to combine the data obtained at the

two values of the lattice spacing into global chiral–continuum fits in order to obtain results in the

continuum limit and at physical quark masses and we explain our procedure in Section V. In that

section we define our scaling trajectory, explain how we match the parameters at the different

lattice spacings so that they correspond to the same physics and discuss how we perform the ex-

trapolations. We consider this discussion to be a significant component of this paper and believe

that this will prove to be a good approach in future efforts to obtain physical results from lattice

data. Although we apply the procedures to our data at two values of the lattice spacing, we stress

that the discussion is more general and can be used with data from simulations at an arbitrary

number of different values of β . In the second half of Section V we then perform the combined

continuum–chiral fits in order to obtain our physical results for the decay constants, physical bare

quark masses (which are renormalized in Section VI) and for the quantities r0 and r1 defined from

the heavy-quark potential. For the discussion below, it is important to recall that we use the phys-

ical pion, kaon and Ω masses to determine the physical quark masses and the values of the lattice

spacing and we then make predictions for other physical quantities.

In contrast to most other current lattice methods, the DWF formulation gives our simulations

good control over chiral symmetry, non-perturbative renormalization factors and flavor symmetry.

This control allows us to measure and use, as either inputs or predictions: pseudoscalar decay

constants, as well as their ratios; pseudoscalar masses; baryon masses; weak matrix elements

and static potential values, limited only by the statistics achievable for these observables. The
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ability to predict many observables from the same simulations, provides evidence for the general

reliability of the underlying methods. The good properties of DWF also allow us to test scaling,

over this wide range of observables, at unphysical quark masses, since there are no flavor or chiral

symmetry breaking effects to distort a test of scaling. We find scaling violations at the percent

level, which supports including scaling corrections in only the leading order terms in our light-

quark expansions.

As we reduce the quark masses used in the simulations, it is frustrating that there remains a doubt

as to the best ansatz to use for the chiral extrapolation. We know of course that for sufficiently light

u and d masses the behaviour is given by SU(2) ChPT; what we don’t know is what ”sufficiently

light” means in practice. While in the range of quark masses accessible in our simulations, corre-

sponding to 290 - 420 MeV for unitary pions and 225 - 420 MeV for partially quenched pions, our

data are consistent with NLO SU(2) ChPT, we have seen that they are also consistent with a simple

analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation.

This is particularly well illustrated in the study of fπ , see Fig. 35 for example, where the data is

well represented by all three ansätze (including NLO SU(2) ChPT with finite-volume corrections),

but the extrapolated values differ as seen in Table XXXI fπ = 121(2) MeV from the NLO ChPT

analysis with finite-volume corrections and fπ =126(2) MeV using the analytic ansatz. Since a

complete NNLO ChPT analysis is not possible with the available data, we have resisted the temp-

tation to introduce model dependence by including only some of the higher order corrections and

for our current “best” results we take the average of the two values and include the full difference

in the systematic uncertainty obtaining fπ = 124(2)(5)MeV. In Section V E 3 we investigated the

increase in χ2/dof if the fits are required to pass through the physical value 130.7(4) MeV up to

corrections from lattice artefacts and found χ2=1.9(7) for the analytic ansatz and an unacceptably

large value of 5(1) for the NLO ChPT with finite volume corrections. In the future, it will be

very interesting to see how the different ansätze for the chiral extrapolation become constrained or

invalidated as we perform simulations with even lighter masses. We point out that the difference

in the results from the analyses using the finite-volume ChPT and analytic ansätze is much smaller

for the other quantities studied in this paper than for fπ .

The main physical results of this study are:

fπ = 124(2)(5)MeV {Eq.(61)}; fK = 149(2)(4)MeV {Eq.(62)};

fK

fπ
= 1.204(7)(25) {Eq.(63)};
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mMS
s (2GeV) = (96.2±2.7)MeV {Eq.(95)}; mMS

ud (2GeV) = (3.59±0.21)MeV {Eq.(94)};

[ΣMS(2GeV)]1/3 = 256(6) MeV {Eq.(98)};

r0 = 0.487(9) fm and r1 = 0.333(9) fm {Eq.(66)} . (103)

For convenience we also display the equation number where the results were presented earlier in

this paper to help the reader find the corresponding discussion. All the results in Eq. (103) were

obtained after reweighting the strange-quark mass to its physical value at each β , and the renor-

malized quark masses were obtained using non-perturbative renormalization with non-exceptional

momenta as described in Section VI. The low-energy constants obtained by fitting our data to

NLO chiral perturbation theory can be found in Sec. V E.

The configurations and results presented in this paper are being used in many of our current stud-

ies in particle physics phenomenology, including the determination of the BK parameter of neutral

kaon mixing in the continuum limit [34]. In parallel to these studies we are exploiting config-

urations generated at almost physical pion masses on lattices with a large physical volume (∼
4.5 fm) but at the expense of an increased lattice spacing. Preliminary results obtained for the

meson spectrum and decay constants and for ∆I = 3/2 K → ππ decay amplitudes were recently

presented in Refs. [48, 69]. Having access to data with excellent chiral and flavor properties with a

range of lattice spacings and quark masses makes this an exciting time indeed for studies in lattice

phenomenology.
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Appendix A: Separate fits to 243 and 323 data

In this section we report on results obtained by fitting the data from the 243 runs at β = 2.13 and

from the 323 runs at β = 2.25 separately to the predictions of SU(2)×SU(2) ChPT. This comple-

ments the material presented in Sections III and IV in which we presented the results for masses

and decays constants at each set of quark masses but did not perform the chiral extrapolations

and also that in Section V in which we performed simultaneous chiral and continuum fits to the

data at both lattice spacings. Our main motivation for studying separate fits here is to be able

to compare directly our results obtained with the new data to those in our previous publication

[1]. For that reason in this appendix we will be using the same renormalization constant ZA as in

our previous publication, which differs from the one used in the global analysis presented in the

main part of this paper, see the discussion in Sec. III and App. B for details. We use the same

method of iterated fits as outlined in our earlier publication [1]; at each lattice spacing we iterate

the combined fits of the meson masses and decay constants with mx ≤ 0.01 to the SU(2)-ChPT

formulae, using kaon SU(2) ChPT to fit the kaon mass and decay constants and the extrapolation

in the Ω-baryon mass until convergence. The pion, kaon, and Ω masses are used to fix the phys-

ical bare quark masses mud , ms and the lattice scale 1/a. Predictions for the remaining physical

quantities are then obtained by extrapolation to these physical quark masses. For further details

see [1]. In the case of the 243 ensembles, the runs have been extended since the publication of

[1] (see Sec. II and especially Tab. I for details) so that a direct comparison of the results from

the previous (smaller) data set with the new extended data set is possible. We quote results from
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fits with and without corrections due to finite-volume effects. When including the finite volume

corrections, the terms described in Appendix C of [1] are included in the SU(2) ChPT in the pion

sector (both for the meson masses and decay constants). We also include the correction terms

containing the chiral logarithm of the light quark masses in the kaon decay constant [82] and note

that up to NLO in the light-quark masses, no finite-volume corrections arise in the masses of the

kaon and Ω-baryon. Below we present the physical results in the infinite-volume limit, i.e. after

removing the corrections. Finally, we will perform a naı̈ve continuum extrapolation of the results

obtained by the separate fits at the two lattice spacings, which can then be compared to results

from the combined chiral-continuum extrapolations using the global fits described in Sec. V. Note

that in this appendix also for the combined chiral-continuum extrapolations we are going to quote

results obtained using our previous definition of ZA. For that reason the results reported here differ

slightly from those in the main part of this paper.

1. SU(2)-ChPT fits to 243 data

In Tab. XXXIX we summarize our results from the iterative fits to the masses and decay constants

measured on the 243 ensembles (see Sec. III for details) and compare them to our earlier results ob-

tained with lower statistics [1]. We have performed two kinds of fits: one including the Ω-baryon

masses determined at all the simulated light-quark masses, ml = 0.005, 0.01, 0.02, and 0.03, (as

was done originally) and one where only the Ω-baryon masses at the two lightest dynamical quark

masses ml = 0.005 and 0.01 are included. The latter, limited range is also the one used in the

combined chiral-continuum extrapolations in Section V and in the separate fits to the 323 data

in the next subsection. In Fig. 55 we plot the combined SU(2) ChPT fits (without finite-volume

corrections) to the meson masses and decay constants in the pion sector. It is evident that over

the fit range (mx + my)/2 ≤ 0.01, corresponding to a maximum meson mass of about 420 MeV,

the data is well described by SU(2) ChPT. This is also true for the fits including the finite-volume

corrections (not shown).

We note that by comparing the results in the first two columns of Tab. XXXIX, which have been

obtained using the same (large) mass-range for the chiral extrapolation of the Ω-baryon mass, the

results obtained with the increased statistics (for each dynamical light-quark mass the statistics

has nearly been doubled, see Section III) nicely agree with those from our previous publication [1]

within the statistical uncertainty. Furthermore, we observe the expected reduction in the statistical
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error. For the remainder of the discussion, we focus on the fits in which only the two lightest

dynamical masses have been included in the extrapolation of the Ω-baryon mass, i.e. the last two

columns of Tab. XXXIX. The major difference resulting from this change in the fit range is in the

value of the lattice scale 1/a, but within 1.4 standard deviations (statistical error only, taking into

account correlations) the results still show agreement. Including the finite-volume effects results

in higher values for the decay constants (both in the chiral limit and at the physical point), which

is a statistically significant effects (taking the correlations into account). In Tab. XL we compare

the decay constants and their ratio obtained from the separate fits with the corresponding results

from the global analysis at the simulated, finite value of the lattice spacing (i.e. not extrapolated

to the continuum, see Sec. V and especially Tabs. XXXI, XXXII, XXXIII but note the difference

due to the use of our previous definition of ZA here). We are reassured by the observed agreement

between the results obtained using the global fits with those obtained using our previous strategy

in Ref. [1] which was developed at that time to describe data at only a single lattice spacing.

2. SU(2)-ChPT fits to 323 data

The results of a separate fit on the 323 data set are summarized in Tab. XLI. Here we only included

the Ω-baryon masses from the ml = 0.004, 0.006, and 0.008 ensembles. In Fig. 56 we show the fits

for the meson masses and decay constants in the pion sector (without finite-volume corrections).

Again, over the fit range ((mx +my)/2 ≤ 0.008), corresponding to a maximum pion mass of about

400 MeV, the data is well described by SU(2) ChPT.

As was already the case for the 243 ensembles, taking finite-volume corrections into account also

leads to a good description of the data and results in higher values for the decay constants at the

physical point and in the chiral limit. Again, taking the correlations into account, we note that this

is a statistically significant effect. As was also the case on the 243 ensembles, we observe a good

agreement for the decay constants and their ratio between the results of the separate fits to the 323

data and the results from the global fits at finite lattice spacing, see Tab. XL.

3. Extrapolation to the Continuum Limit

With the results obtained from separate chiral extrapolations on the 243 (extended statistics) and

the 323 data sets (see the two previous subsections, respectively) we can perform a naı̈ve contin-
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uum limit extrapolation assuming a2-scaling. Of course, with only two lattice spacings available,

we are not able to confirm this scaling behaviour. Further caveats include the fact that here, for

simplicity, we did not use reweighting and so the dynamical strange-quark mass is not tuned to

exactly the same value on the two data sets and indeed is not exactly the physical one on either

set. Also, the dynamical light-quark mass ranges are a little different at the two lattice spac-

ings, corresponding to unitary pion masses in the range 330–420 MeV on the coarser 243 lattices

and 290–400 MeV on the finer 323 lattices (a similar statement is true for the partially-quenched

masses). One might therefore expect a larger uncertainty in the chiral extrapolation of the 243

results. In the naı̈ve continuum ansatz followed here, we are not taking into account this effect.

Because of this, and maybe more importantly, since two separate chiral extrapolations have been

performed (one at each of the two values of the lattice spacing), the continuum extrapolation is

not completely disentangled from the chiral extrapolation. Recall that in our procedure for the

global fits described in the main part of this paper, these two extrapolations are indeed disentan-

gled. There this is achieved by adding O(a2) terms into the two functions, such that the chiral and

continuum extrapolations are performed simultaneously and independently from each other.

In Tab. XLII we repeat the results obtained at the two different lattice spacings (with and with-

out finite-volume corrections) and give the values extrapolated to the continuum limit assuming

a2 scaling. Fig. 57 illustrates the continuum extrapolation of the various quantities (only results

obtained without taking into account finite-volume corrections are shown there). Note, that the

two points at the different lattice spacings are completely uncorrelated, the only correlation in the

data for the continuum extrapolation is between the uncertainty in the lattice spacing (the “x”-

datum) and the quantity itself at that lattice spacing (the “y”-datum). These correlations were

treated by the super-jackknife method which we have been using in our earlier work and which is

clearly explained in [73, 74]. For comparison, Tab. XLII also contains our results from the com-

bined continuum-chiral extrapolation as described in the main part of this paper but here using our

previous definition of ZA. As one can see, the combined continuum-chiral extrapolation gives a

substantially smaller (up to a factor of 5) statistical uncertainty compared to the naı̈ve continuum

extrapolation. The main reason, of course, is the correlation in the combined fits between the two

data sets at different lattice spacings. This correlation occurs because we require the fitted param-

eters to be the same on both data sets and only include O(a2) corrections for the leading-order

terms, as is consistent with our power counting scheme. In this way, the continuum extrapo-

lation in the combined fits is also more constrained, leading to a smaller statistical uncertainty.
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Comparing the results of the naı̈ve continuum extrapolation and the combined continuum-chiral

extrapolation for the quantities in Tab. XLII we observe agreement better than 0.5-σ (taking into

account correlations) for all quantities except for l̄4, where the agreement still holds at the 1- or

1.5-σ level (without and with taking FV-corrections into account, respectively). It is reassuring,

that the results from the two methods agree well, although the value of this statement is limited,

given the large (statistical) uncertainty of almost 10% for the decay constants or even more in

case of the LECs from the naı̈ve method. However, it should be noted that the same agreement

holds, not only for the continuum values, but also for the results obtained in the separate fits as

compared to the predictions of the global fit made for the finite lattice spacings. This has already

been discussed in the previous subsections and is shown in Tab. XL.

Appendix B: Determining ZA

As pointed out by Sharpe [17] and refined in Ref. [1], the normalization of the partially conserved

axial current defined for domain wall fermions [75] is expected to deviate from that of the con-

ventionally normalized continuum current by an amount of order mresa. Here and below when

making such estimates we will introduce the explicit lattice spacing a and express the residual

mass in physical units in order to make the comparison of various terms in a Symanzik expan-

sion in powers of a easier to recognize. Since such a deviation can be viewed as O(ma) which

is formally larger than the O(ma2) which we neglect in our power counting scheme and because

the normalization of this axial current plays a central role in our determination of the important

quantities fπ and fK , we have calculated this normalization factor ZA numerically. We explain our

method and result in this appendix. The first subsection contains a discussion of the theoretical

issues and explains the basis for our method of determining ZA . The second subsection describes

the actual calculation and results.

1. Determining the normalization of Aµ

To determine the normalization of Aµ we compare the matrix element of four distinct domain wall

fermion currents. The first two are the conserved/partially conserved vector and axial currents

V a
µ (x) and A a

µ (x) respectively, where a and µ are flavor and space-time indices. These currents

were introduced by Furman and Shamir [75] and involve fermion fields evaluated on each of the Ls
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4-dimensional hyperplanes and at both the space-time points x and x+ êµ where êµ is a unit vector

pointing the µth direction. Thus, these currents are local but distributed in the fifth dimension and

one-link non-local in space-time. While this vector current is exactly conserved, the divergence of

the axial current contains the usual mass term and a mid-point term Ja
5q. In the long-distance limit

this midpoint term can be decomposed into the residual mass term, a piece that is conveniently

written as (1−ZA ) times the divergence of the same axial current and a final term of dimension

five which we write out explicitly as the sum of the dimension-five, chiral rotation of the usual

clover term and the four-dimensional Laplacian applied to the pseudoscalar density:

Ja
5q = mresqγ5λ aq+

1−ZA

2
∆µA

a
µ + c1qσ µνFµν λ aq+ c2∂µ ∂µqγ5λ aq. (B1)

In Equation (B1) λ a is the generator which acts on the fermion fields corresponding to the flavor

index a while q(x) and q(x) are the “physical”, four-dimensional quark fields obtained by evaluat-

ing the five-dimensional domain wall fields on the s = 0 and s = Ls−1 boundaries. (See Eqs. (11)

and (12) in Ref. [1].)

The second pair of currents which we will need in this appendix is the local vector and axial

currents, V a
µ (x) and Aa

µ(x), constructed in the standard way from the four-dimensional quark fields,

q(x) and q(x). These currents are localized in all five dimensions and neither is conserved.

Finally it will also be convenient to introduce the scalar densities q(x)q(x), q(x)λ aq(x) from which

the domain fermion mass is constructed and their chiral transforms q(x)γ5q(x), q(x)λ aγ5q(x).

These four classes of operators will be labeled S(x), Sa(x), P(x) and Pa(x).

Following Symanzik, we can add improvement terms to each of these six operators to insure that

their Green’s functions, when evaluated with an appropriately improved action, will agree with

the corresponding continuum Green’s functions up to errors of order an. For our present purposes,

accuracy up to O(am) where m is a quark mass in physical units, will be sufficient. Since mres

and m have a similar size, we are explicitly attempting to control the mresa corrections described

above. We do not attempt to explicitly remove O(a2) terms since these will be eliminated by the

final linear extrapolation a2 → 0.

In the discussion to follow we will recognize constraints on the required Symanzik improvement

terms and relations between the various renormalization constants by applying the approximate

chiral symmetry of domain wall fermions to Green’s functions containing these various operators.

For such arguments to be valid we will assume that these Green’s functions are evaluated at suf-

ficiently small distances that the effects of the vacuum chiral symmetry breaking of QCD can be
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ignored but at sufficiently large distances that the Symanzik improvement program can be applied.

Since this discussion is a theoretical one, constraining the form of the Symanzik improvement

terms, we need not be concerned about practical questions regarding the degree to which such

conditions can be realized in our present calculation.

Using the notation V Sa
µ , ASa

µ , SSa and PSa for the Symanzik-improved vector current, axial cur-

rent, scalar density and pseudoscalar density respectively, keeping improvement terms which are

nominally of order a and imposing charge conjugation symmetry, we find:

V Sa
µ = ZV V

a
µ +CV ∂ν qσ µνλ aq (B2)

ASa
µ = ZA A

a
µ +CA ∂µPa (B3)

V Sa
µ = ZVV a

µ +CV ∂ν qσ µνλ aq (B4)

ASa
µ = ZAAa

µ +CA∂µPa (B5)

SSa = ZSSa (B6)

PSa = ZPPa. (B7)

In contrast to the Symanzik-improved current operators, we have not specified a normalization

convention for the operators SSa and PSa. Adopting definitive conventions for SSa and PSa is not

needed here beyond the requirement that those conventions are consistent with SSa±PSa belonging

to the (3,3)/(3,3) representations of the SU(3)L×SU(3)R flavor symmetry.

Because the operators S and P contain no vector indices, any correction terms must increase the

dimension by two and we have chosen to neglect such O(a2) contributions. Thus, Eqs. (B6) and

(B7) are particularly simple. However, we can also drop the dimension four, O(a) correction terms

to Eqs. (B2)-(B5). This can be established by considering the chiral structure of the Symanzik

and conserved/partially conserved current operators. Ignoring effects of order m, the Symanzik

currents will couple to pairs of quarks which are either left- or right-handed. Likewise the domain

wall conserved/partially conserved current operators couple to a pair of quarks with the same

value of the coordinate s in the fifth dimension. For s = 0 these are left-handed fermions while for

s = Ls − 1 they are right-handed. As the coordinate s moves into the fifth-dimensional bulk, the

amplitude for coupling to such physical modes decreases until when s ≈ Ls/2 the amplitude will

be suppressed by two traversals half-way through the fifth dimension which implies a suppression

of order mresa. Of course, the s ≈ 0 and s ≈ Ls − 1 terms will dominate. The character of the

local vector and axial currents is simpler since they contain quark field strictly limited to s = 0

and Ls −1. Since the four, dimension-four improvement terms included in Eqs. (B2)-(B5) involve
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pairs of quarks with opposite handedness, such terms require a complete propagation across the

fifth dimension if they are to couple to the conserved/partially conserved or local currents. This is

true even for the terms with general s which appear in the former currents. Thus, these correction

terms involve an additional power of mresa and are of order mresa
2 and can be neglected in our

power counting scheme.

With this simplification, we can demonstrate that to this order the following relations hold:

ZV = 1 (B8)

ZV = ZA (B9)

ZS = ZP. (B10)

Equation (B8) follows easily from the fact that V a
µ is conserved at finite lattice spacing and has

been given the conventional normalization. Equations (B9) and (B10) can each be shown using

essentially the same argument which we will now review.

In the massless continuum theory the operators qcλ aγµ(1± γ5)qc are independent involving only

right-handed/left-handed degrees of freedom. Here the label c indicates continuum. This implies

the vanishing of the Symanzik-improved Green’s function:

〈
(V Sa

µ +ASa
µ )(x)(V Sa

ν −ASa
ν )(y)

〉
= 0. (B11)

This same property is obeyed by the local domain wall currents up to order (mresa)2 since non-

vanishing terms which can contribute to the DWF version of Eq. (B11) must connect both fermion

degrees of freedom between the left and right walls requiring two-traversals of the fifth dimension

and hence are of order (mresa)2 [17, 76]. It is then easy to see that these two behaviors can be

consistent through order mresa only if ZV = ZA through order mresa. We need only examine the

mixing between V Sa
µ ±ASa

µ that is generated by ZV −ZA:

〈
(V Sa

µ +ASa
µ )(x) · (V Sa

ν −ASa
ν )(y)

〉
(B12)

=
〈
(ZVV a

µ +ZAAa
µ)(x) · (ZVV a

ν −ZAAa
ν)(y)

〉

=
1

4

〈[
(ZV +ZA)(V a

µ +Aa
µ)(x)+(ZV −ZA)(V a

µ −Aa
µ)(x)

]

·
[
(ZV +ZA)(V a

ν −Aa
ν)(y)+(ZV −ZA)(V a

ν +Aa
ν)(y)

]〉
.

The product of the left-most operators in the square brackets on the right-hand side of Eq. (B12)

cannot mix at order mres because of their construction from domain wall quark fields as explained
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above. Likewise the product of the right-most terms also vanishes. However, the two cross terms

have non-zero correlators implying that for the entire expression to be of order m2
res, the difference

ZV −ZA must be of order (mresa)2, demonstrating the intended result. A very similar argument

can be constructed which shows that ZS = ZP through order mresa. One must invoke the flavor

structure and, for example, consider correlators between (S1 − iS2)(x)+(P1 − iP2)(x)) and (S1 +

iS2)(y) + (P1 + iP2)(y)) which also must vanish in the chiral limit. Here a = 1,2 is a specific

choice of the eight octet indices a = 1−8.

The relations in Eqs. (B8), (B9) and (B10) were established by considering the domain wall and

continuum theories in a limit in which the physical quark masses could be neglected, at sufficiently

short distances that vacuum chiral symmetry breaking could be ignored but at sufficiently long

distances that the Symanzik effective theory could be applied. While this is an excellent regime

in which to establish these theoretical constraints, it is not a practical one for calculations. Thus,

we will now employ these relations at low energies where vacuum chiral symmetry breaking is

important in order to provide a practical method to compute ZA .

Since at low energies the left- and right-hand sides of Eqs. (B4) and (B5) must have identical

matrix elements, the ratio of long-distance correlators computed with the Symanzik and local

currents must give identical constants: ZV = ZA. Thus, we have established:

〈
V Sa

i (x)V a
i (y)

〉
〈
V a

i (x)V a
i (y)

〉 =

〈
ASa

0 (x)Pa(y)
〉

〈
Aa

0(x)P
a(y)

〉 (B13)

where we have introduced the fixed spatial index i, the temporal index 0 and sources V a
i (y) and

Pa(y) that will correspond to those used in our actual calculation. Next we can use the long-

distance equality represented by Eqs. (B2) and (B3) to write

1 =

〈
V Sa

i (x)V a
i (y)

〉
〈
V a

i (x)V a
i (y)

〉 (B14)

ZA =

〈
ASa

0 (x)Pa(y)
〉

〈
A a

0 (x)Pa(y)
〉 . (B15)

Then we can combine Eqs. (B13), (B14) and (B15) to yield an equation for ZA which does not

involve the Symanzik currents:

ZA =

〈
Aa

0(x)P
a(y)

〉
〈
A a

0 (x)Pa(y)
〉 · 〈V

a
i (x)V a

i (y)〉〈
V a

i (x)V a
i (y)

〉 , (B16)

which determines ZA in terms of four correlators which we have evaluated directly in our lattice

calculation.
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In order to relate the discussion of the Symanzik improved operators given in Eqs. (B2)-(B7) with

the operators appearing in Eq. (B1), we should recognize that the quantity ZA has been introduced

in two places. The most important is in the relation between the Symanzik current and the partially

conserved domain wall operator in Eq. (B3). It is this quantity that is determined in Eq. (B16) and

which is needed to give a physical normalization to the axial current matrix elements determined in

our calculation. However, the quantity ZA also appears in the expression for J5q given in Eq. (B1).

For completeness, we will now demonstrate that these two quantities are in fact the same up to

order (mresa)2.

This is easily done by introducing a flavor-breaking mass term qMq into the DWF action, exam-

ining the divergence equations obeyed by V a
µ and A a

µ and using the relation ZS = ZP established

above. With the additional mass term the conserved/partially conserved vector and axial currents

obey the lattice divergence equations, through O(mresa):

∆µ
V

a
µ = q[λ a,M]q (B17)

∆µ
A

a
µ = q{λ a,M}γ5q+2mresqγ5q− (ZA −1)∆µ

A
a

µ . (B18)

Taking the ZA − 1 term to the left hand side and recognizing that the scalar and pseudoscalar

operators Sa and Pa are symmetrically normalized (ZS = ZP), we can conclude that the operators

V a
µ and ZA A a

µ must be related to the corresponding Symanzik currents by the same factor. This

establishes that our two definitions of ZA are consistent.

We will conclude this analysis with a brief discussion of the effects of the explicit quark mass,

m f , on the operator product expansion represented by Eq. (B1) and on the Symanzik-improved

operators given in Eqs. (B2)-(B7). Although m f explicitly connects the s = 0 and s = Ls − 1

walls, it can combine with the midpoint operator J5q appearing on the left hand side of Eq. (B1)

to create effects with arbitrary chiral properties. Thus, we expect multiplicative corrections of

the form (1 + bim f a)1≤i≤4 to each of the four terms on the right hand side of Eq. (B1). In the

case of the left-most term the correction is of order m f mresa while for the remaining three terms

the corrections are of order m f mresa
2 or m f mresa

3, all beyond the level of accuracy of the current

paper. The conclusion that ZV = 1 through order mresa
2 (and order m f a2) prevents the appearance

of a factor 1 +b(m f a) multiplying the ZV in Eq. (B2). The argument that ZA = ZV and ZS = SP

with corrections of order (mresa)2 applies equally well to the left-right mixings created by m f but

again the allowed m f mresa
2 and (m f a)2 terms are negligible within our present power counting

scheme so Eqs. (B4)-(B7) need no O(m f a) corrections. Lastly, consider adding a factor of the
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form (1 + b(m f a)) multiplying the ZA on the right-hand side of Eq. B3. As explained above, a

similar correction to ZA appearing in Eq. (B1) carries the additional suppression of one power

of mresa. Since the equality derived above between the ZA factors appearing in the divergence

equation, Eq. (B1), and the Symanzik-improved current A a
µ , in Eq. (B3), holds at order m f a such

a 1+b(m f a) factor is not allowed in Eq. (B3). Thus, no m f a terms need to be introduced into the

equations presented in this appendix.

2. Computational method and results

We have evaluated the two factors in Eq. (B16) to determine ZA on both the 323 ×64, β = 2.25

(ml = 0.004, 0.006 and 0.008) and the 243×64, β = 2.13 (ml = 0.005, 0.01 and 0.02) ensembles.

We used a small subset of these six ensembles and obtained the results given in Tab. XLIII. The

results presented for ZA/ZA duplicate those from the calculation of ZA described in Sections III

and IV. In this appendix we add the factor ZA in the denominator because we are now determining

the deviation of this factor from unity. We do not simply use the results presented earlier in the

paper because our calculation of ZV /ZV has been performed on a subset of the configurations

analyzed earlier and results for ZA/ZA are needed on this same subset of configurations if ratios

with meaningful jackknife errors are to be determined.

The ratio ZA/ZA was computed from the same ratio of current-pseudoscalar correlators studied in

Sections III and IV, using the method specified in Ref. [77]. Similar methods are used to compute

ZV /ZV using the ratio of vector correlators

ZV

ZV

=
∑3

i=1 ∑~x

〈
V a

i (~x, t)Va
i (~0,0)

〉

∑3
i=1 ∑~x

〈
V a

i (~x, t)V a
i (~0,0)

〉 , (B19)

an equation expected to be valid for time separations t much larger than one lattice spacing: t ≫ a.

Figure 58 shows the right-hand side of Eq. (B19) as a function of time for the case of the lightest

mass for each of the 323 and 243 ensembles. A constant fit to plateau regions identified by the

horizontal lines was then used to determine the ZV /ZV on the left-hand side of this equation.

Fig. 59 displays the chiral extrapolation of the two quantities ZA/ZA and ZV /ZV on both sets of

ensembles.

Two useful results follow from this Appendix. First the ratio ZV /ZA differs from unity on our

two ensembles and that difference decreases more rapidly than a2 with increasing β . Thus, we

will obtain more accurate results in our continuum extrapolation from both matrix elements of
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the local axial current and our NPR calculations which are normalized using off-shell Green’s

functions containing the local vector and axial currents if we convert the normalization of these

local currents to the usual continuum normalization by using the ratio ZV /ZV instead of the ratio

ZA/ZA , the quantity which we have used in previous work for such conversions. The values of

ZV /ZV presented in Table XLIII are therefore used to normalize the results presented in the current

paper and are the second result obtained in this appendix. Because these ratios were calculated

on a smaller subset of configurations than were used for our main results, we have included their

statistical fluctuations as independent within our superjackknife, statistical error analysis. Since

these fluctuations are at or below the 0.5% level, this omission of possible statistical correlations

is unimportant.

Appendix C: Statistical errors of reweighted quantities

In this appendix we discuss the statistical errors that should be expected when Monte Carlo data

is reweighted to obtain results for a gauge or fermion action that is different from that used to

generate the data. Throughout this discussion we will make the assumption that the reweighting

factors are not correlated with the data. Of course, if this assumption were exactly true then the

reweighting would not be needed. However, the correlation between the data and reweighting

factors is often small in practice and neglecting this correlation may well provide a reasonably

accurate view of the resulting errors. As we will show, with this assumption the usual analysis of

the statistical errors applies easily to reweighted data and yields simple, useful formula which we

present here.

Consider a quantity x and the corresponding ordered ensemble of N Monte Carlo configurations

with corresponding measured values {xn}, 1 ≤ n ≤ N. For each of these N configurations we will

determine a reweighting factor wn so that the final, reweighted quantity of interest is given by

〈x〉N =
∑N

n=1 xnwn

∑N
n=1 wn

. (C1)

Here the single brackets 〈. . .〉N indicate an average over a single Monte Carlo ensemble of N

samples. In this appendix we are interested in how the statistical fluctuations in the quantity 〈x〉N

are affected by the operation of reweighting. We can then express the true value for xN as

xN =
〈〈

〈x〉N

〉〉
(C2)
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where the double brackets 〈〈. . .〉〉 indicate a “meta” average over many equivalent Monte Carlo

ensembles. The statistical fluctuation present in a particular result 〈x〉N can then be characterized

by the average fluctuation of 〈x〉N about xN :

Error(x) =

√〈〈
(〈x〉N − xN)2

〉〉
. (C3)

A quantity such as 〈xN〉, defined in Eq. (C1) as a ratio of averages, will be a biased estimator

of the physical result which must be determined in the limit N → ∞. Thus, the meta average

xN = 〈〈〈x〉N〉〉 will differ from the true result by terms of order 1/N. While these 1/N corrections

are not difficult to enumerate and estimate from our data, these corrections are not the subject of

the present appendix and will not be considered further here. Instead we will study how the size

of the statistical fluctuations of 〈xN〉 about xN is affected by the reweighting. Thus, the quantity

Error(x) defined in Eq. (C3) describes the average deviation of 〈xN〉 from xN not from the N → ∞

limit of xN .

We will now work out an expression for Error(x) in the case that nearby measurements xn and

xn+l in a single Markov chain (or reweighting factors wn and wn+l) are correlated but with the

assumption that xn and wn+l are not:

〈〈(
〈x〉N − xN

)2〉〉
=

〈〈(
∑N

n=1 xnwn

∑n wn
− xN

)(
∑N

n′=1 xn′wn′

∑n′ wn′
− xN

)〉〉
(C4)

=

〈〈(
∑N

n=1 xnwn − xN ∑N
n=1 wn

)(
∑N

n′=1 xn′wn′ − xN ∑N
n′=1 wn′

)
(
∑N

n=1 wn

)(
∑N

n′=1 wn′
)

〉〉
(C5)

=

〈〈(
∑N

n=1(xn − xN)wn)
)(

∑N
n′=1(xn′ − xN)wn′

)
(
∑N

n=1 wn

)(
∑N

n′=1 wn′
)

〉〉
(C6)

=
∑N

n=1 ∑N−n
l=1−n

{〈〈
(xn − xN)(xn+l − xN)

〉〉〈〈
wnwn+l

〉〉}

〈〈
∑N

n=1 wn

〉〉2
, (C7)

where in the last line we have used our assumption of the lack of correlation between the xn and

wn to write the average of their product as the product of their separate averages. We have also

assumed that our sample size N is sufficiently large that correlated fluctuations of the averages in

the numerator and denominator will be sufficiently small that the average of the original ratios and

products can be replaced by the corresponding ratios and products of the individual averages.
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This result can be cast in a simple form if we define the three averages:

δx2 =
〈〈

(xn − xN)2
〉〉

(C8)

w =
〈〈

wn

〉〉
(C9)

w2 =
〈〈

w2
n

〉〉
(C10)

(where δx2 is the usual width of the distribution of the measured quantity xn) and the two autocor-

relation functions:

C(l) =

〈〈
(xn − xN)(xn+l − xN)

〉〉

δx2
(C11)

W (l) =

〈〈
wnwn+l

〉〉

w2
, (C12)

defined so that C(0) = W (0) = 1. Making the conventional assumption that the range of l over

which the correlation function C(l) is non-zero is small compared to the sample size N and using

the quantities defined above, we can rewrite Eq. (C7) as

〈〈(
〈x〉N − xN

)2〉〉
=

δx2 ∑
Lmax

l=−Lmax
C(l)W(l)w2

N (w)2
(C13)

= δx2 τcorr

N

w2

(w)2
(C14)

where the autocorrelation time τcorr is defined as

τcorr =
Lmax

∑
l=−Lmax

C(l)W(l). (C15)

The limit Lmax is chosen to be larger than the region within which C(l) is non-zero and has been

introduced as a reminder that when working with a single finite sample, one must take care to

evaluate the limit of large N before the limit of large Lmax. Finally, Eq. (C14) can be written in the

conventional form

Error(x) =

√
δx2

Neff

(C16)

where the effective number of configurations Neff is given by:

Neff =
N

τcorr

w2

w2
. (C17)

This result makes precise a number of aspects of reweighting that may be useful to understand.

In the case that there are no autocorrelations so τcorr = 1, the ratio w2/w2 expresses the degree to
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which the reweighting process selectively samples the original data and degrades the initial statis-

tics. The general inequality w2/w2 ≤ 1 (a consequence of the Schwartz inequality) is saturated

only in the case that the reweighting factors wn do not vary with n. In the extreme case that a

single sample wn dominates the averages then w2/w2 = 1/N and Neff = 1. Thus, in the case of

uncorrelated data (which is the case for most of the results presented here) we should expect the

statistical fluctuations to grow as the degree of reweighting increases by the factor w2/w2.

Including autocorrelations makes the effects of reweighting on the size of the statistical fluctu-

ations less certain because the behavior of the factors 1/τcorr and w2/w2 in Eq. (C17) become

entangled. In the limit in which the autocorrelation time associated with the measured quantity xn

alone,

τx =
Lmax

∑
l=−Lmax

C(l), (C18)

becomes much larger than that of the reweighting factor wn, then the majority of the sum in

Eq. (C15) contributing to τcorr will come from values of l where
〈〈

wnwn+l

〉〉
≈
〈〈

w
〉〉2

so that

τcorr ≈ τx
w2

w2
. (C19)

In this case the error given by Eq. (C16) reduces to the standard expression
√

δx2τx/N that holds

if no reweighting is performed! Of course, this is easy to understand. When such long autocorre-

lation times are involved, the average over the autocorrelation time is providing an average over

the reweighting factors wn which is sufficiently precise that the error-enhancing fluctuations in

the reweighting factors are averaged away. Given the large size of the fluctuations between the

reweighting factors and the relatively short autocorrelation times seen in our data, it is unlikely

that this averaging would be seen in the results presented here.

A second type of behavior for τcorr occurs if the wn are relatively uncorrelated and w2 ≫ w2 so that

only the l = 0 term contributes to the sum in Eq. (C15) giving τcorr = 1. In this case reweighting

has removed the effects of autocorrelation but increased the statistical fluctuations by the factor

w2/w2 which was assumed to be large. Here the fluctuation-enhancing effects of autocorrelations

and reweighting are not compounded.
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See Appendix C of [1] for an explanation of the notation.
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FIG. 1: Evolution of the average plaquette (left panel) and the chiral condensate (right panel) for the β =

2.25, 323 ×64, Ls = 16 ensembles. The chiral condensate is normalized such that 〈ψ̄ψ〉 ∼ 1/m in the heavy

quark limit.



84

0 100 200 300
MD units

0

20

40

60

80

100

Plaquette
 Chiral condensate
 Pseudoscalar(t=20)
 Topological charge(m

l
=0.004)

 Topological charge(m
l
=0.006)

 Topological charge(m
l
=0.008)
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the 323, ml = 0.004 ensemble and the global topological charge for all three 323 ensembles. The chiral
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section VII.
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FIG. 3: Logarithm of the reweighting factor, − ln(w), as a function of the number of divisions in the strange

quark mass, Nrw on the β = 2.13, 243 × 64, ml = 0.005 lattices, the 2,000th trajectory on the left panel

and the 4,000th trajectory on the right panel. The target and simulation quark masses are mh = 0.035

and m
(sim)
h = 0.040. For Nrw = 1, 5, 10, 20, 32, 40, the number of Gaussian samples per mass steps is set to

Nξ = 40, 8, 4, 4, 2, 2, respectively. The error bars shown are the standard deviations resulting from Nrw×Nξ

samples for det Ωi. We interpret the inconsistency between the values for Nrw = 1, 5 and 10 and those with

larger Nrw in the left-hand panel as resulting from insufficient statistics leading to under-estimated errors for

these three cases where the stochastic sampling is very poor.
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FIG. 4: The relative differences between the reweighting factors for Nrw = 20,Nξ = 4 and Nrw = 40,Nξ = 2

on five lattices. The target and simulation quark masses are mh = 0.035 and m
(sim)
h = 0.040.
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FIG. 6: Reweighted values for mπ (left) and fπ (right) for various numbers of reweighting hits, Nξ = 1 (blue),

Nξ = 2 (green), Nξ = 4 (red) ) on each ensemble. The squares are for the full data set (300 configurations)

and the circles are for the first and second half of the data (150 configurations.) The data is from the

323 × 64× 16, (ml,mh) = (0.004,0.03) ensemble with a light valence quark of mass 0.004. The black

symbols are the unreweighted observables.
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FIG. 8: Reweighted results for fπ (left) and fK (right) as functions of mh at three parameter sets (β ,ml):

green diamonds: (2.25, 0.008), red circles: (2.13, 0.005), blue squares: (2.25, 0.004).



88

0 0.002 0.004 0.006 0.008 0.01
m

l

0.003

0.00304

0.00308

0.00312

0.00316

0.0032
m

re
s’

0 0.002 0.004 0.006 0.008
m

l

0.00065

0.000655

0.00066

0.000665

0.00067

0.000675

0.00068

m
re

s’
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While the fit is only marginally acceptable for the 323 lattices, an additional uncertainty of O(5× 10−6) is

negligible.
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correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical

scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous

fit.
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FIG. 12: Effective kaon masses from the PP LW correlator (top left), PP WW correlator (top right), AP LW

correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical

scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous

fit.
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FIG. 16: Nucleon effective mass plots from the 243 ensembles. Results obtained using the Gaussian source

are marked by red squares and those from the box source by blue circles. The four plots correspond to

unitary light-quark masses 0.005 (top-left), 0.01 (top-right), 0.02 (bottom-left) and 0.03 (bottom-right).
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FIG. 17: Effective mass plots for the ∆ baryon from the 243 ensembles. The results were obtained using the

box source. The four plots correspond to unitary light-quark masses 0.005 (top-left), 0.01 (top-right), 0.02

(bottom-left) and 0.03 (bottom-right).
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significantly under reweighting to the physical strange mass.
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FIG. 19: Effective pion masses from the PP LW correlator (top left), PP WW correlator (top right), AP LW

correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical

scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous

fit.
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FIG. 20: Effective kaon masses from the PP LW correlator (top left), PP WW correlator (top right), AP LW

correlator (center left), AP WW (center right) and AA LW correlator (bottom). Note the different vertical

scale for the WW correlators. The horizontal bands represent the result for the mass from a simultaneous

fit.
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(mh = 0.03).

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

m
xx

x

0.0245 0.025 0.0255 0.026 0.0265 0.027 0.0275 0.028 0.0285 0.029 0.0295 0.03 0.0305
m

h

0.752

0.753

0.754

0.755

0.756

0.757

0.758

0.759

0.76

0.761

0.762

0.763

m
xx

x



96

FIG. 22: We display the fit to the Ω baryon mass with valence strange mass mx = 0.03 on the ml = 0.004,

mh = 0.03, 323 ensemble showing the quality of the fit with our box source (left panel). We also show the

weak dependence of the Ω baryon mass with fixed valence mass mx = 0.03 on our simulated mh inferred by

the reweighting procedure on the ml = 0.004, 323 ensemble (right panel).
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FIG. 23: The effective potential of the Wilson loops with a spatial extent of r = 2.45 on the ml = 0.004

ensemble at the physical strange-quark mass, overlaid by the fit to the range t = 4−8 (left panel). The right

panel shows the static inter-quark potential V (r) on this ensemble, again at the physical strange-quark mass,

as a function of the spatial extent of the Wilson loops, overlaid by the fit to the Cornell form over the range

r = 2.45−10.
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FIG. 24: Nucleon effective mass plots from the 323 ensembles.
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FIG. 25: ∆ effective mass plots from the 323 ensembles.
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FIG. 27: The fit to the light-quark mass behaviour of the Ω-baryon in the continuum limit obtained using

the analytic ansatz. The corresponding plots using the infinite and finite-volume SU(2) ChPT ansatz are
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FIG. 28: Global fits obtained using infinite volume NLO SU(2) chiral perturbation theory for the pion mass.

The top-left panel includes the partially quenched data from the ml = 0.005 ensemble on the 243 lattice and

the data points in the top-right panel are from the ml = 0.004 ensemble from the 323 lattice. In each case

the curves correspond to the appropriate value of the lattice spacing. The points marked by the circles were

included in the fit, whereas those marked by the diamonds were not. In the bottom two panels we zoom into

the low-mass region, illustrating the fits to the points which were included (243 points on the left and 323

points on the right). (For fixed m̃x, my decreases as (amxy)
2/m̃avg increases.)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

m
~

x

4.2

4.3

4.4

4.5

4.6

4.7

(a
m

xy
)2  / 

m~

av
g

m
y
 = 0.01

m
y
 = 0.005

m
y
 = 0.001

0 0.002 0.004 0.006 0.008 0.01

m
~

x

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

(a
m

xy
)2  / 

m~

av
g

m
y
 = 0.008

m
y
 = 0.006

m
y
 = 0.004

m
y
 = 0.002

FIG. 29: Global fits for the pion mass obtained using NLO SU(2) chiral perturbation theory with finite-

volume corrections. In this case we only include the points which were included in the fit (ml = 0.005,

243 points on the left and ml = 0.004, 323 points on the right) since the finite-volume corrections at larger

masses are small. (For fixed m̃x, my decreases as (amxy)
2/m̃avg increases.)
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FIG. 30: Global fit curves obtained using the analytic fit ansatz (49) overlaying the simulated pion masses

on the ml = 0.005, 243 ensemble (top-left) and the ml = 0.004, 323 ensemble (top-right). Points marked by

circles were included in the fit, those marked by diamonds were not. The simple linear expansion replicates

the entire range of lattice data reasonably well with the description being rather better than NLO chiral

perturbation theory at our larger masses. In the bottom two panels we zoom into the low-mass region,

illustrating the fits to the points which were included (243 points on the left and 323 points on the right).

(For fixed m̃x, my decreases as (amxy)
2/m̃avg increases.)
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FIG. 31: Left panel: Pion mass fit for the SU(2) NLO fit form in the continuum limit, both with and without

finite volume logarithms. We adjust the data points to the continuum limit using the a2 dependence in our

fit form and overlay these. Right panel: Chiral extrapolation of the pion mass using the analytic (52) and

infinite-volume NLO ChPT ansätze.
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FIG. 32: Global fits to the lattice data for the pion decay constant obtained using infinite-volume NLO

SU(2) chiral perturbation theory. The top-left and top-right panels correspond to the 243, ml = 0.005 and

323, ml = 0.004 ensembles respectively. Points marked by circles are included in the fits, while those with

heavier masses marked by diamonds are not. In the bottom two panels we zoom into the low-mass region,

illustrating the fits to the points which were included (243 points on the left and 323 points on the right).

(For fixed m̃x, my increases as a fxy increases.)
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FIG. 33: Global fits to the lattice data for the pion decay constant obtained using NLO SU(2) chiral pertur-

bation theory with finite-volume corrections. In this case we only include the points which were included

in the fit (ml = 0.005, 243 points on the left and ml = 0.004, 323 points on the right) since the finite-volume

corrections at larger masses are small. (For fixed m̃x, my increases as a fxy increases.)
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FIG. 34: Global fits to the lattice data for the pion decay constant obtained using the analytic ansatz in

Eq. (52). The top-left and top-right panels correspond to the 243, ml = 0.005 and 323, ml = 0.004 ensembles

respectively. Points marked by circles are included in the fits, while those with heavier masses marked by

diamonds are not. In the bottom two panels we zoom into the low-mass region, illustrating the fits to the

points which were included (243 points on the left and 323 points on the right). (For fixed m̃x, my increases

as a fxy increases.)
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FIG. 35: Unitary data for fπ adjusted to the continuum limit using each of the fit ansätze. The left panel

compares the infinite volume and finite volume forms of the NLO SU(2) fit, while the right panel com-

pares the analytic fit to the infinite volume NLO SU(2) fit. The horizontal solid line indicates the value

fπ−=130.4 MeV (the authors of ref. [45] quote fπ− = (130.4±0.04±0.2)MeV).
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FIG. 36: Chiral extrapolation of the pion decay constant using the analytic (52) and ChPT (42) fit ansätze.

Here, the lattice results from the 243 and 323 ensembles are shown along with the mass dependence we

infer both at each lattice spacing and in the continuum limit. The consistency of the two ensembles with

each other and with this continuum limit is indicative of the size of lattice artefacts. The horizontal solid

line indicates the value fπ− = (130.4±0.04±0.2)MeV [45].
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FIG. 37: An artificial data point (the left-most data point in each panel) corresponding to the physical value

of fπ [45], but including our uncertainties in the lattice spacing, is added to the data for the pion decay

constant from the five ensembles. The left-hand panel corresponds to the NLO SU(2) ChPT fits and the

right-hand panel to the analytic ansatz.
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FIG. 38: Dependence of the kaon mass on the mass of the light valence quark with fits performed using

infinite-volume NLO partially-quenched ChPT. The left panel shows the results from the 243, ml = 0.005

ensemble and the right panel from the 323, ml = 0.004 ensemble. In each case the results are for the physical

strange-quark mass.
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FIG. 39: Dependence of the kaon mass on the mass of the light valence quark with fits performed using

finite-volume NLO partially-quenched ChPT. The left panel shows the results from the 243, ml = 0.005

ensemble and the right panel from the 323, ml = 0.004 ensemble. In each case the results are for the

physical strange-quark mass.
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FIG. 40: Dependence of the kaon mass on the mass of the light valence quark with fits performed using the

analytic fit ansatz. The left panel shows the results from the 243, ml = 0.005 ensemble and the right panel

from the 323, ml = 0.004 ensemble. In each case the results are for the physical strange quark mass.
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FIG. 41: Chiral extrapolation of the kaon mass using unitary data points adjusted to the continuum limit by

the fitting ansätze. Here we compare results obtained using the infinite-volume NLO ChPT ansatz to that

using finite volume logarithms (left panel) and to the analytic ansatz (right panel).
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FIG. 42: Dependence of the kaon decay constant on the mass of the light valence quark with fits performed

using infinite-volume partially quenched NLO ChPT. The left panel shows the results from the 243, ml =

0.005 ensemble and the right panel from the 323, ml = 0.004 ensemble. In each case the results are for the

physical strange quark mass.

0 0.005 0.01 0.015 0.02

m
~

x

0.09

0.092

0.094

0.096

af
xh

0 0.002 0.004 0.006 0.008 0.01

m
~

x

0.067

0.068

0.069

0.07

0.071

0.072

af
xh



107

FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323, ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.
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FIG. 44: Dependence of the kaon decay constant on the mass of the light valence quark with fits performed

using the analytic fit ansatz. The left panel shows the results from the 243, ml = 0.005 ensemble and the

right panel from the 323, ml = 0.004 ensemble. In each case the results are for the physical strange quark

mass.
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FIG. 45: Chiral extrapolation of the kaon decay constant for unitary data in the continuum limit. We

compare the NLO ChPT ansatz to the corresponding ansatz with finite-volume logarithms.
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FIG. 46: Chiral extrapolation of the kaon decay constant for unitary data in the continuum limit. We

compare the NLO ChPT ansatz to the analytic ansatz. The left panel displays the data and fits at non-zero

lattice spacing, while the right panel displays the predicted results and correspondingly adjusted data points

for the continuum limit.
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FIG. 47: The scales r0 (left) and r1 (right) corrected to the continuum limit, overlaid by the chiral/continuum

fit. The extrapolated point at the physical light quark mass is shown as the grey cross. Here the lattice

spacings and physical light quark mass were obtained from the global fits using the analytic ansatz. The

fits using the quantities obtained with the ChPT and ChPT-fv global fit ansätze are almost indistinguishable

from those shown in these figures.
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FIG. 52: Monte Carlo time histories of the topological charge. The light sea quark mass increases from top

to bottom, (0.005 and 0.01, 243 (top two panels), and 0.004-0.008, 323). Data for the 243 ensembles up to

trajectory 5000 were reported originally in [1] and the results from the new ensembles are plotted in black.

Most of the data was generated using the RHMC II algorithm (red and black lines). The RHMC 0 (green

line) and RHMC I (blue line) algorithms were used for trajectories up to 1455 for the ml = 0.01 ensemble.

The small gap in the top panel represents missing measurements which are irrelevant since observables are

always calculated starting from trajectory 1000.
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FIG. 53: Topological charge distributions. Top: 323, ml = 0.004 − 0.008, left to right. Bottom: 243,

ml = 0.005 and 0.01.
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FIG. 54: Topological susceptibility (243 (squares), 323 (circles)). The dashed line is the prediction from LO

SU(2) chiral perturbation theory (Eq. (100)) with the chiral condensate computed from the finite volume

LEC’s given in Table XXVII. The solid line denotes the result of the single-parameter fit to the NLO

formula given in Eq. (102).
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FIG. 55: Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left

column) and masses (right column) on the 243 data set at ml = 0.005 (top row) and 0.01 (bottom row). Only

points marked with circles, corresponding to the range (mx + my)/2 ≤ 0.01 are included in the fits.
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FIG. 56: Combined SU(2) ChPT fits (without finite-volume corrections) for the meson decay constants (left

column) and masses (right column) on the 323 data set at ml = 0.004 (top row), 0.006 (middle row), and

0.008 (bottom row). Only points marked with circles, corresponding to the range (mx + my)/2 ≤ 0.008 are

included in the fits.
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FIG. 57: Results from separate fits (without finite-volume corrections) to the 243 and 323 data sets (black

points) and the naı̈ve continuum-limit extrapolation (blue asterisks) for selected quantities assuming a2-

scaling. For details see Subsec. A 3 and Tab. XLII.

FIG. 58: Plots of the correlator ratio which determines the renormalization factor ZV /ZV as a function of

time. The left panel shows results from the 323, ml = 0.004 ensemble while the right panel the result from

the 243, ml = 0.005 ensemble. The horizontal line with error bands in each panel shows the fitting range

and the result obtained in each case.
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FIG. 59: The quantities ZA/ZA and ZV /ZV extrapolated to the chiral limit for the 323 (left panel) and 243

(right panel) ensembles.

Tables

msa mla m̃s/m̃l ∆tlight τ(Ref.[1]) τ(MD) Acceptance 〈P〉 〈ψ̄ψ(ml)〉

V/a = 243 ×64, Ls = 16, β = 2.13,a−1 = 1.73(3) GeV, mresa = 0.003152(43),τ/traj = 1

0.04
0.005 5.3 1/6 4460 8980 73% 0.588053(4) 0.001224(2)

0.01 3.3 1/5 5020 8540 70% 0.588009(5) 0.001738(2)

V/a = 323 ×64, Ls = 16, β = 2.25,a−1 = 2.28(3) GeV, mresa = 0.0006664(76),τ/traj = 2

0.03

0.004 6.6 1/8 — 6856 72% 0.615587(3) 0.000673(1)

0.006 4.6 1/8 — 7650 76% 0.615585(3) 0.000872(1)

0.008 3.5 1/7 — 5930 73% 0.615571(4) 0.001066(1)

TABLE I: Simulation parameters as well as the average acceptance, plaquette (〈P〉) and value for the light-

quark chiral condensate (〈ψ̄ψ(ml)〉) for the ensembles studied in this paper. The fifth column shows the

number of time units in the ensembles that were included from Ref. [1]. The residual masses given explicitly

and those appearing in the ratio m̃l/m̃s are taken from Table VII appearing in Section III below.

ensemble m
(sim)
h mh Nrw Nξ

323 ×64 0.030 0.025 10 4

243 ×64 0.040 0.030 40 2
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TABLE II: Parameters chosen for the sea strange quark mass reweighting calculation.

ensemble max(wi) min(wi) NEff N∗
Eff Nconf

243 ×64,ml = 0.005 10.0 0.078 90.3 20.3 203

243 ×64,ml = 0.010 5.50 0.049 97.0 32.4 178

323 ×64,ml = 0.004 4.77 0.17 228 63.9 305

323 ×64,ml = 0.006 3.45 0.23 234 90.4 312

323 ×64,ml = 0.008 5.36 0.16 183 47.0 252

TABLE III: The maximum and minimum reweighting factors, the effective number of samples, Neff, ac-

cording to the formula derived in this paper, (Eq. (15)), the corresponding number, N∗
eff given by the

formula of Ref. [33] (defined in Eq. (16)) and the actual number of configurations Nconf in each en-

semble. The target sea strange quark mass and that of the simulation are mh = 0.0345, m
(sim)
h = 0.040

(mh = 0.0275, m
(sim)
h = 0.030) for 243 ×64 (323 ×64).

Volume (ml,mh) Total MD time Measurement range Measurement total

243 (0.005, 0.04) 0-8980 900-8980 every 40 203

243 (0.01, 0.04) 1455-8540 1460-8540 every 40 178

323 (0.004, 0.03) 0-6756 520-6600 every 20 305

323 (0.006, 0.03) 0-7220 1000-7220 every 20 312

323 (0.008, 0.03) 0-5930 520-5540 every 20 252

TABLE IV: Summary of the five ensembles used in this work.

mx ml

0.005 0.01

0.001 0.003194(16) 0.003286(28)

0.005 0.003154(15) 0.003259(26)

0.01 0.003079(14) 0.003187(24)

0.02 0.002939(12) 0.003042(21)

0.03 0.002822(12) 0.002919(19)

0.04 0.002725(11) 0.002818(17)
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TABLE V: m′
res(mx) measured on the 243 ensembles at the simulated strange quark mass mh = 0.04.

mx ml

0.005 0.001

0.001 0.003146(27) 0.003224(33)

0.005 0.003099(27) 0.003191(32)

0.01 0.003025(26) 0.003120(31)

0.02 0.002889(24) 0.002981(26)

0.03 0.002774(23) 0.002863(23)

0.04 0.002680(21) 0.002765(21)

TABLE VI: m′
res(mx) on the 243 ensembles at the physical strange quark mass.

mh m243

res m323

res

msim
h 0.003152(43) 0.0006664(76)

m
phys
h 0.003076(58) 0.0006643(82)

TABLE VII: mres in the two-flavor chiral limit on the 243 and 323 ensembles at the simulated and physical

strange sea-quark masses.

mh ZA(chiral) ZA(ml = 0.005) ZA(ml = 0.01)

msim
h = 0.04 0.71651(46) 0.71732(14) 0.71783(15)

m
phys
h 0.71689(51) 0.71746(17) 0.71781(17)

TABLE VIII: ZA on the 243 ensembles at the simulated and physical strange sea-quark masses.

mx my mxy(0.005) mxy(0.01) fxy(0.005) fxy(0.01)

0.04 0.04 0.4317(4) 0.4344(4) 0.1063(6) 0.1087(6)

0.03 0.04 0.4051(4) 0.4080(4) 0.1034(6) 0.1059(6)

0.02 0.04 0.3772(5) 0.3802(4) 0.1002(5) 0.1028(5)

0.01 0.04 0.3478(5) 0.3509(5) 0.0967(5) 0.0996(6)

0.005 0.04 0.3325(6) 0.3358(5) 0.0949(5) 0.0982(6)

0.001 0.04 0.3199(7) 0.3233(7) 0.0937(6) 0.0975(7)
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0.03 0.03 0.3771(4) 0.3800(4) 0.1006(5) 0.1031(5)

0.02 0.03 0.3472(5) 0.3502(4) 0.0974(5) 0.1001(5)

0.01 0.03 0.3152(5) 0.3184(4) 0.0939(5) 0.0969(5)

0.005 0.03 0.2983(5) 0.3016(5) 0.0920(5) 0.0954(6)

0.001 0.03 0.2843(6) 0.2877(6) 0.0908(6) 0.0946(6)

0.02 0.02 0.3149(5) 0.3179(4) 0.0943(5) 0.0971(5)

0.01 0.02 0.2794(5) 0.2826(5) 0.0908(5) 0.0938(5)

0.005 0.02 0.2603(5) 0.2636(5) 0.0889(5) 0.0923(5)

0.001 0.02 0.2440(6) 0.2475(6) 0.0876(5) 0.0915(6)

0.01 0.01 0.2389(5) 0.2422(5) 0.0872(5) 0.0905(5)

0.005 0.01 0.2161(5) 0.2195(5) 0.0853(5) 0.0889(5)

0.001 0.01 0.1960(6) 0.1997(6) 0.0840(5) 0.0879(5)

0.005 0.005 0.1904(6) 0.1940(6) 0.0834(5) 0.0871(5)

0.001 0.005 0.1669(6) 0.1709(6) 0.0819(5) 0.0858(5)

0.001 0.001 0.1391(6) 0.1434(7) 0.0802(5) 0.0840(5)

TABLE IX: Pseudoscalar masses mxy(ml) and decay constants fxy(ml) on the 243 ensembles at the simulated

strange-quark mass (mh = 0.04).

mx my mxy(0.005) mxy(0.01) fxy(0.005) fxy(0.01)

0.01 0.01 0.2378(8) 0.2420(7) 0.0867(5) 0.0900(6)

0.005 0.01 0.2149(9) 0.2192(7) 0.0848(6) 0.0882(6)

0.001 0.01 0.1948(10) 0.1994(8) 0.0833(6) 0.0871(6)

0.005 0.005 0.1891(10) 0.1936(8) 0.0828(5) 0.0863(6)

0.001 0.005 0.1656(11) 0.1704(8) 0.0813(6) 0.0850(6)

0.001 0.001 0.1377(12) 0.1427(9) 0.0796(6) 0.0832(7)

TABLE X: Pion masses mxy(ml) and decay constants fxy(ml) on the 243 ensembles at the physical strange-

quark mass ms = 0.0348(11).

mx mxh(0.005) mxh(0.01) fxh(0.005) fxh(0.01)

0.01 0.330(4) 0.334(4) 0.0947(7) 0.0978(8)

0.005 0.314(4) 0.318(4) 0.0928(7) 0.0963(9)
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0.001 0.301(4) 0.305(4) 0.0915(8) 0.0955(10)

TABLE XI: Kaon masses mxh(ml) and decay constants fxh(ml) on the 243 ensembles at the physical strange-

quark mass ms = 0.0348(11).

my mh mΩ(0.005) mΩ(0.01)

0.04 0.04 1.013(3) 1.028(4)

0.03 0.04 0.963(4) 0.978(4)

0.0348 0.0348 0.988(9) 1.001(7)

TABLE XII: Omega baryon masses on the 243 ensembles at the simulated strange quark mass mh = 0.04

(first two rows) and at the physical strange-quark mass (third row).

Quantity
mh = 0.04 mh = 0.0348

Q(0.005) Q(0.01) Q(0.005) Q(0.01)

r0 4.16(2) 4.10(2) 4.15(2) 4.12(3)

r1 2.82(3) 2.70(2) 2.83(3) 2.72(3)

r1/r0 0.678(8) 0.657(6) 0.682(9) 0.661(10)

TABLE XIII: The quantities r0, r1 and r1/r0 at the simulated (mh = 0.04) and physical (mh = 0.0348)

strange quark masses on the 243 ensembles. Q(ml) denotes the quantity measured with light-quark mass

ml .

size ml source type correlators source time slices configurations

243 0.005 Gaussian N 0,8,16,19,32,40,48,51 647

0.005 Box ∆, Ω 0,32 90

0.01 Gaussian N 0,8,16,19,32,40,48,51 357

0.01 Box ∆, Ω 0,32 90

0.02 Gaussian N 0,8,16,19,32,40,48,51 99

0.02 Box ∆, Ω 0,32 43

0.03 Gaussian N 0,8,16,19,32,40,48,51 106

0.03 Box ∆, Ω 0,32 44

323 0.004 Gaussian N, ∆ 10, 26, 42, 58 264
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0.004 Wall N, ∆ 0, 16, 32, 48 305

0.006 Wall N, ∆ 0,16,32, 48 224

0.008 Gaussian N, ∆ 10, 26, 42, 58 169

0.008 Wall N, ∆ 0, 16, 32, 48 254

TABLE XIV: Summary of the configurations used in the calculation of the baryon spectrum.

ml N (Gaussian) N (Box) ∆ (Box)

0.005 0.671(4) {6-12} 0.669(7) {4-12} 0.865(11) {4-12}

0.01 0.699(5) {9-15} 0.706(6) {4-12} 0.891(8) {4-12}

0.02 0.800(8) {8-15} 0.803(7) {4-12} 0.963(8) {4-12}

0.03 0.896(7) {8-15} 0.894(8) {5-12} 1.029(12) {5-12}

TABLE XV: Baryon mass in lattice units from the β = 2.13, 243 ensembles. {} denotes fit range.

mx ml

0.004 0.006 0.008

0.002 0.0006761(35) 0.0006688(34) 0.0006822(37)

0.004 0.0006697(34) 0.0006651(31) 0.0006791(36)

0.006 0.0006622(33) 0.0006589(30) 0.0006736(35)

0.008 0.0006550(32) 0.0006524(29) 0.0006676(34)

0.025 0.0006090(24) 0.0006089(21) 0.0006218(25)

0.03 0.0005993(23) 0.0005997(20) 0.0006115(24)

TABLE XVI: m′
res on the 323 ensemble set at the simulated strange quark mass mh = 0.03.

mx ml

0.004 0.006 0.008

0.002 0.0006718(39) 0.0006671(36) 0.0006781(44)

0.004 0.0006658(39) 0.0006633(33) 0.0006751(42)

0.006 0.0006586(37) 0.0006569(31) 0.0006696(40)

0.008 0.0006515(36) 0.0006503(30) 0.0006636(39)
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0.025 0.0006063(26) 0.0006058(24) 0.0006180(31)

0.03 0.0005967(24) 0.0005966(22) 0.0006080(29)

TABLE XVII: m′
res on the 323 ensemble set at the physical strange quark mass.

mh ZA(chiral) ZA(ml = 0.004) ZA(ml = 0.006) ZA(ml = 0.008)

msim
h = 0.03 0.74475(12) 0.745053(54) 0.745222(45) 0.745328(48)

m
phys
h 0.74469(13) 0.745059(52) 0.745239(47) 0.745384(56)

TABLE XVIII: ZA on the 323 ensembles at the simulated and physical strange sea-quark masses.

mx my mxy(0.004) mxy(0.006) mxy(0.008) fxy(0.004) fxy(0.006) fxy(0.008)

0.03 0.03 0.3212(3) 0.3216(2) 0.3224(3) 0.0801(3) 0.0804(3) 0.0809(3)

0.025 0.03 0.3073(3) 0.3078(2) 0.3086(3) 0.0786(3) 0.0789(3) 0.0794(3)

0.008 0.03 0.2561(3) 0.2565(2) 0.2579(4) 0.0723(3) 0.0729(3) 0.0738(3)

0.006 0.03 0.2496(3) 0.2500(3) 0.2516(4) 0.0715(3) 0.0721(3) 0.0731(3)

0.004 0.03 0.2430(4) 0.2434(3) 0.2452(5) 0.0707(3) 0.0714(3) 0.0725(3)

0.002 0.03 0.2363(5) 0.2367(3) 0.2388(6) 0.0701(3) 0.0709(4) 0.0723(4)

0.025 0.025 0.2930(3) 0.2934(2) 0.2943(3) 0.0770(3) 0.0775(3) 0.0780(3)

0.008 0.025 0.2392(3) 0.2396(2) 0.2410(4) 0.0709(3) 0.0715(3) 0.0724(3)

0.006 0.025 0.2323(3) 0.2327(3) 0.2342(4) 0.0701(3) 0.0707(3) 0.0717(3)

0.004 0.025 0.2252(4) 0.2256(3) 0.2273(5) 0.0693(3) 0.0700(3) 0.0711(3)

0.002 0.025 0.2180(4) 0.2184(3) 0.2203(5) 0.0686(3) 0.0695(3) 0.0708(4)

0.008 0.008 0.1708(3) 0.1714(2) 0.1727(4) 0.0649(3) 0.0657(3) 0.0666(3)

0.006 0.008 0.1610(3) 0.1616(3) 0.1629(4) 0.0641(3) 0.0648(3) 0.0659(3)

0.004 0.008 0.1506(3) 0.1513(3) 0.1526(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.002 0.008 0.1395(4) 0.1403(3) 0.1417(4) 0.0625(3) 0.0634(3) 0.0646(4)

0.006 0.006 0.1505(3) 0.1512(3) 0.1525(4) 0.0633(3) 0.0640(3) 0.0651(3)

0.004 0.006 0.1393(3) 0.1400(3) 0.1413(4) 0.0624(3) 0.0632(3) 0.0643(3)

0.002 0.006 0.1271(4) 0.1280(3) 0.1293(4) 0.0615(3) 0.0624(3) 0.0637(4)

0.004 0.004 0.1269(4) 0.1278(3) 0.1291(4) 0.0614(3) 0.0623(3) 0.0634(3)

0.002 0.004 0.1133(4) 0.1144(3) 0.1156(4) 0.0605(3) 0.0614(3) 0.0627(4)

0.002 0.002 0.0976(4) 0.0989(4) 0.1001(5) 0.0595(3) 0.0603(3) 0.0617(4)
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TABLE XIX: Pseudoscalar masses mxy(ml) and the decay constants fxy(ml) on the 323 ensembles at the

simulated strange-quark mass (mh = 0.03).

mx my mxy(0.004) mxy(0.006) mxy(0.008) fxy(0.004) fxy(0.006) fxy(0.008)

0.008 0.008 0.1706(3) 0.1711(3) 0.1725(5) 0.0645(3) 0.0653(3) 0.0662(4)

0.006 0.008 0.1608(4) 0.1613(3) 0.1628(5) 0.0636(3) 0.0645(4) 0.0654(4)

0.004 0.008 0.1503(4) 0.1510(3) 0.1526(5) 0.0628(4) 0.0636(4) 0.0647(4)

0.002 0.008 0.1392(4) 0.1401(3) 0.1417(5) 0.0620(4) 0.0630(4) 0.0641(4)

0.006 0.006 0.1503(4) 0.1509(3) 0.1524(5) 0.0628(4) 0.0636(4) 0.0646(4)

0.004 0.006 0.1390(4) 0.1398(3) 0.1414(5) 0.0619(4) 0.0628(4) 0.0638(4)

0.002 0.006 0.1268(4) 0.1278(3) 0.1295(5) 0.0611(4) 0.0620(4) 0.0632(4)

0.004 0.004 0.1267(4) 0.1276(3) 0.1292(5) 0.0609(4) 0.0618(4) 0.0630(4)

0.002 0.004 0.1131(4) 0.1142(4) 0.1158(5) 0.0601(4) 0.0610(4) 0.0622(4)

0.002 0.002 0.0974(4) 0.0988(4) 0.1003(5) 0.0590(4) 0.0598(4) 0.0612(5)

TABLE XX: Pion masses mxy(ml) and decay constants fxy(ml) computed on the 323 ensembles at the

physical strange-quark mass mh = 0.0273(7).

mx mxh(0.004) mxh(0.006) mxh(0.008) fxh(0.004) fxh(0.006) fxh(0.008)

0.008 0.247(2) 0.247(3) 0.249(3) 0.0712(4) 0.0718(5) 0.0727(5)

0.006 0.240(2) 0.240(3) 0.242(3) 0.0703(4) 0.0710(5) 0.0720(5)

0.004 0.233(3) 0.234(3) 0.235(3) 0.0695(4) 0.0703(5) 0.0713(5)

0.002 0.226(3) 0.227(3) 0.229(3) 0.0687(5) 0.0698(5) 0.0710(6)

TABLE XXI: Kaon masses mxh(ml) and decay constants fxy(ml) on the 323 ensembles at the physical

strange-quark mass mh = 0.0273(7).

my mh mΩ(0.004) mΩ(0.006) mΩ(0.008)

0.03 0.03 0.760(2) 0.765(2) 0.766(3)

0.025 0.03 0.733(2) 0.739(2) 0.740(3)

0.0273 0.0273 0.743(6) 0.749(5) 0.753(4)

TABLE XXII: Omega baryon masses on the 323 ensembles at the simulated strange quark mass mh = 0.03

(first two rows) and at the physical strange-quark mass (third row).
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Quantity
mh = 0.03 mh = 0.0273

Q(0.004) Q(0.006) Q(0.008) Q(0.004) Q(0.006) Q(0.008)

r0 5.52(2) 5.50(2) 5.53(2) 5.52(2) 5.52(2) 5.55(2)

r1 3.738(9) 3.718(8) 3.707(9) 3.754(12) 3.728(9) 3.723(10)

r1/r0 0.678(2) 0.676(2) 0.670(2) 0.680(2) 0.675(2) 0.670(2)

TABLE XXIII: The quantities r0, r1 and r1/r0 at the simulated (mh = 0.03) and physical (mh = 0.0273)

strange quark masses on the 323 ensembles. Q(ml) denotes the quantity measured with light-quark mass

ml .

ml N ∆

0.004 0.468(6) {4-20} 0.596(15) {4-15}

0.006 0.498(4) {4-20} 0.615(9) {4-15}

0.008 0.521(4) {4-20} 0.639(10) {4-15}

TABLE XXIV: Nucleon and ∆ masses in lattice units from the 323 ensembles obtained by two-exponential

correlated fits to Gaussian-source correlators. {} denotes fit range.

ml full corr. uncorr. bootstrap a LHP b

0.004 0.477(4) 0.465(5) 0.469(4) 0.474(4)

0.006 0.498(2) 0.486(10) 0.489(7) 0.501(2)

0.008 0.517(3) 0.524(4) 0.5254(16) 0.522(2)

TABLE XXV: Comparison of nucleon mass results from different analyses on the same 323 ensembles. Su-

perscript a denotes Ref. [40], where a frozen correlation matrix was used and superscript b denotes Ref. [41].

M (aml)
M (amh)

M (aml)
e (amh)

e Zl Zh Ra

323 0.004 0.03 0.00313(13) 0.03812(80) 0.980(15) 0.976(11) 0.7617(72)

323 0.006 0.03 0.00583(12) 0.03839(51) 0.981(9) 0.974(7) 0.7583(46)

323 0.008 0.03 0.00860(19) 0.03869(64) 0.979(10) 0.972(8) 0.7545(58)

243 0.005 0.04 0.00545(11) 0.03148(51) 0.985(12) 0.978(9) 0.7620(57)

243 0.01 0.04 0.00897(18) 0.03074(57) 0.974(11) 0.968(9) 0.7517(70)
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TABLE XXVI: Values of the quark mass ratios Zl and Zh and the lattice spacing ratio Ra determined by

matching at five points over both ensemble sets. The quark masses here are quoted without the additive mres

correction. The ensemble e 6= M.

Parameter No FV Corrections With FV Corrections

B 4.12(7) GeV 4.03(7) GeV

f 0.110(2) GeV 0.112(2) GeV

c f 0.05(7) GeV2 0.04(7) GeV2

L
(2)
4 -0.00000(7) -0.00005(7)

L
(2)
5 0.00050(5) 0.00047(5)

L
(2)
6 -0.00003(4) -0.00005(4)

L
(2)
8 0.00055(2) 0.00059(2)

m(K) 0.4856(4) GeV 0.4854(4) GeV

f (K) 0.141(3) GeV 0.143(3) GeV

c f (K) 0.01(6) GeV2 0.01(6) GeV2

λ1 0.0043(9) 0.0046(10)

λ2 0.023(1) 0.024(1)

λ3 -0.0018(9) -0.0016(10)

λ4 0.0058(2) 0.0057(2)

m(Ω) 1.666(2) GeV 1.666(2) GeV

cmΩ,ml
0.20(6) GeV−2 0.20(6) GeV−2

TABLE XXVII: Parameters of the global fit to our ensembles using NLO ChPT without finite-volume

corrections (second column) and with finite-volume corrections (third column). For the unitary theory the

parameters are defined in Sect. V B and for the partially quenched theory in appendix B of Ref. [1].

Ansatz χ2/dof

NLO 0.72(46)

NLO-fv 1.07(47)

Analytic 0.60(44)

TABLE XXVIII: Fit ansatze, mass ranges and uncorrelated χ2/dof obtained in our analyses. The fits were

performed for pion masses less than 420 MeV.
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Parameter Value Parameter Value

C
mπ
0 -0.001(1) GeV2 C

mK

1 3.67(4) GeV

C
mπ
1 7.45(9) GeV C

mK

2 0.7(1) GeV

C
mπ
2 0.43(8) GeV C

fK

0 0.149(2) GeV

C
fπ

0 0.123(2) GeV C fK
0.02(6) GeV2

C fπ 0.04(7) GeV2 C
fK

1 0.34(1)

C
fπ

1 0.85(2) C
fK

2 0.52(10)

C
fπ
2 0.56(9) C

mΩ
0 1.666(2) GeV

C
mK

0 0.2353(8) GeV2 C
mΩ
2 2.7(9)

TABLE XXIX: Parameters of the global fit to our ensembles using the analytic ansatz. The parameters are

defined in Eqs. (49) – (55).

NLO NLO fv Analytic

m̃l(323) 0.00100(3) 0.00102(3) 0.00105(6)

m̃s(323) 0.0280(7) 0.0280(7) 0.0279(7)

a−1(323) 2.280(28) GeV 2.281(28) GeV 2.282(28) GeV

m̃l(243) 0.00134(4) 0.00136(4) 0.00141(9)

m̃s(243) 0.0379(11) 0.0379(11) 0.0378(11)

a−1(243) 1.729(25) GeV 1.729(25) GeV 1.730(25) GeV

TABLE XXX: Unrenormalised physical quark masses in lattice units and the values of the inverse lattice

spacing a−1 for the 323 and 243 ensembles.

NLO NLO fv Analytic

f 243

π 0.121(2) 0.123(2) 0.128(2)

f 323

π 0.120(2) 0.122(2) 0.127(2)

f continuum
π 0.119(2) 0.121(2) 0.126(2)

TABLE XXXI: Predictions for fπ in GeV for each global fit ansatz at each simulated lattice spacing and in

the continuum limit.

NLO NLO fv Analytic

f 243

K 0.147(2) 0.148(2) 0.152(2)
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f 323

K 0.147(2) 0.148(2) 0.151(2)

f continuum
K 0.146(2) 0.147(2) 0.151(2)

TABLE XXXII: Predictions for fK in GeV for each global fit ansatz at each simulated lattice spacing and

in the continuum limit.

NLO NLO fv Analytic

( fK/ fπ)243

1.216(9) 1.205(9) 1.184(9)

( fK/ fπ)323

1.221(6) 1.209(6) 1.188(6)

( fK/ fπ)continuum 1.229(8) 1.215(7) 1.194(7)

TABLE XXXIII: Predictions for fK/ fπ for each global fit ansatz at each simulated lattice spacing and in the

continuum limit.

(a) r0

Parameter ChPT ChPT-fv Analytic

cr0
2.468(41) GeV−1 2.468(41) GeV−1 2.467(41) GeV−1

cr0,a -0.25(14) GeV -0.25(14) GeV -0.25(14) GeV

cr0,ml
0.42(1.23) GeV−2 0.44(1.23) GeV−2 0.47(1.23) GeV−2

(b) r1

Parameter ChPT ChPT-fv Analytic

cr1
1.694(29) GeV−1 1.694(29) GeV−1 1.693(29) GeV−1

cr1,a -0.15(11) GeV -0.15(11) GeV -0.15(12) GeV

cr1,ml
-1.76(64) GeV−2 -1.76(64) GeV−2 -1.76(64) GeV−2

TABLE XXXIV: Parameters of the chiral/continuum fits to r0 and r1.

Quantity ChPT ChPT-fv Analytic

r0 1.35(1.66) 1.34(1.65) 1.31(1.63)

r1 2.69(2.39) 2.68(2.38) 2.66(2.37)

TABLE XXXV: χ2/d.o.f of the chiral/continuum fits to r0 and r1.

Quantity ChPT ChPT-fv Analytic

r0 2.469(39) GeV−1 2.469(39) GeV−1 2.468(39) GeV−1
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r1 1.690(29) GeV−1 1.690(29) GeV−1 1.689(29) GeV−1

r1/r0 0.6844(96) 0.6844(97) 0.6843(97)

TABLE XXXVI: Continuum values of r0 and r1 and the ratio r1/r0 at physical quark masses determined

from a chiral/continuum fit using the lattice spacings and quark masses obtained from the global fits.

ensemble fine (322) coarse (243) coarse (163)[13]

intermediate scheme RI/SMOM RI/SMOM RI/MOM

PT truncation error 2.1% 2.1% 6%

ms 6= 0 0.1% 0.2% 7%

(ΛP −ΛS)/2 0.5% 0.6% N.A. (∞)

(ΛA −ΛV )/2 0.0% 0.0% 1%

total 2.2% 2.2% 9%

TABLE XXXVII: Systematic error budget for ZMS
m (2GeV) with intermediate RI/SMOM schemes (this

work) and RI/MOM scheme [13].

TABLE XXXVIII: Topological charge and susceptibility. The measurement frequency, “meas. freq.”, and

“block size” are given in units of Monte Carlo time.

ml meas. freq. block size 〈Q〉 〈Q2〉 χ (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000290 (14)

0.01 5 50 -0.22 (37) 45.2 (2.5) 0.000458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000148 (14)

0.006 4 200 -0.07 (64) 24.8 (4.3) 0.000322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000363 (72)

Allton et al. [1] increased statistics

no FV-corr. no FV-corr. incl. FV-corr.

Ω: ml ≤ 0.03 Ω: ml ≤ 0.03 Ω: ml ≤ 0.01 Ω: ml ≤ 0.01

1/a [GeV] 1.729(28) 1.731(19) 1.784(44) 1.784(44)

BMS(2GeV) [GeV] 2.52(0.11)(0.23)ren 2.63(0.06)(0.07)ren 2.69(0.09)(0.08)ren 2.63(0.09)(0.08)ren
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f [MeV] 114.8(4.1) 111.5(2.9) 114.8(4.0) 117.1(4.0)

l̄3 3.13(0.33) 2.76(0.24) 2.82(0.24) 2.59(0.27)

l̄4 4.43(0.14) 4.54(0.10) 4.61(0.10) 4.57(0.11)

fπ [MeV] 124.1(3.6) 121.2(2.5) 124.4(3.6) 126.4(3.6)

fK [MeV] 149.6(3.6) 147.9(2.6) 151.0(3.7) 152.1(3.7)

fK/ fπ 1.205(0.018) 1.220(0.011) 1.214(0.012) 1.204(0.012)

mMS
ud (2GeV) [MeV] 3.72(0.16)(0.33)ren 3.56(0.08)(0.10)ren 3.48(0.12)(0.10)ren 3.55(0.12)(0.11)ren

mMS
s (2GeV) [MeV] 107.3(4.4)(9.7)ren 101.0(1.9)(2.9)ren 99.0(3.0)(3.0)ren 98.8(3.0)(3.0)ren

m̃ud : m̃s 1:28.8(0.4) 1:28.37(0.27) 1:28.44(0.26) 1:27.89(0.28)

aB 2.414(61) 2.348(43) 2.349(44) 2.298(45)

a f 0.0665(21) 0.0644(14) 0.0643(14) 0.0656(14)

L
(2)
4 ×104 1.3(1.3) 2.2(0.9) 2.5(0.9) 2.2(0.9)

L
(2)
5 ×104 5.16(0.73) 5.00(0.47) 5.50(0.47) 5.36(0.48)

(2L
(2)
6 −L

(2)
4 )×104 -0.71(0.62) -0.09(0.45) 0.03(0.45) 0.01(.49)

(2L
(2)
8 −L

(2)
5 )×104 4.64(0.43) 4.86(0.30) 4.36(0.38) 5.34(0.33)

am̃ud 0.001300(58) 0.001331(43) 0.001251(71) 0.001274(72)

am̃s 0.0375(16) 0.0377(11) 0.0356(19) 0.0355(19)

TABLE XXXIX: Results from the SU(2) ChPT fits to the 243 data (without and with finite-volume correc-

tions) compared to those from [1] obtained with lower statistics (without finite-volume corrections). We also

quote in the lower part of the table the SU(2) ChPT fit parameters aB, a f , L
(2)
i (at the scale Λχ = 1GeV)

and bare quark masses am̃ud,s in lattice units. Only statistical uncertainties are quoted except for quark

masses and the LEC B renormalized in the MS-scheme at 2 GeV where also the systematic uncertainty

from the renormalization constant is quoted. (Mass renormalization constant at 1/a = 1.731(19)GeV:

Zm = 1.546(0.002)stat(0.044)ren and at 1/a = 1.784(44)GeV: Zm = 1.559(0.003)stat(0.047)ren.)

fπ [MeV] fK [MeV] fK/ fπ

no FV-corr. 243, β = 2.13 separate 124.4(3.6) 151.0(3.7) 1.214(0.012)

global 123(2) 150(2) 1.215(0.009)
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323, β = 2.25 separate 120.4(1.9) 147.1(2.0) 1.222(0.007)

global 121(2) 147(2) 1.222(0.006)

incl. FV-corr. 243, β = 2.13 separate 126.4(3.6) 152.1(3.7) 1.204(0.012)

global 126(2) 151(2) 1.204(0.009)

323, β = 2.25 separate 122.3(1.9) 148.1(2.0) 1.212(0.007)

global 123(2) 149(2) 1.210(0.006)

TABLE XL: Comparison of the pion and kaon decay constants and their ratios at finite lattice spacing from

separate (see Tabs. XXXIX, XLI) and global fits using our previous definition of ZA.

no FV-corr. FV-corr. incl.

1/a [GeV] 2.221(29) 2.221(29)

BMS(2GeV) [GeV] 2.62(0.05)(0.06)ren 2.57(0.05)(0.06)ren

f [MeV] 111.4(2.2) 113.7(2.2)

l̄3 2.84(0.21) 2.61(0.24)

l̄4 4.18(0.09) 4.10(0.09)

fπ [MeV] 120.4(1.9) 122.3(1.9)

fK [MeV] 147.1(2.0) 148.1(2.0)

fK/ fπ 1.222(0.007) 1.212(0.007)

mMS
ud (2GeV) [MeV] 3.58(0.07)(0.08)ren 3.64(0.07)(0.08)ren

mMS
s (2GeV) [MeV] 100.6(1.7)(2.2)ren 100.4(1.7)(2.2)ren

m̃ud : m̃s 1:28.08(0.19) 1:27.60(0.20)

aB 1.826(0.024) 1.790(0.025)

a f 0.0502(0.0007) 0.0512(0.0007)

L
(2)
4 ×104 -0.75(0.79) -1.21(.82)

L
(2)
5 ×104 5.14(0.40) 4.87(0.41)

(2L
(2)
6 −L

(2)
4 )×104 -0.93(0.42) -1.03(0.45)

(2L
(2)
8 −L

(2)
5 )×104 6.22(0.23) 7.37(0.24)

am̃ud 0.001040(31) 0.001057(32)



132

am̃s 0.0292(08) 0.0292(08)

TABLE XLI: Results from the SU(2) ChPT fits to the 323 data (without and with finite-volume corrections).

We also quote in the lower part of the table the SU(2) ChPT fit parameters aB, a f , L
(2)
i (at the scale

Λχ = 1GeV) and quark masses am̃ud,s in lattice units. Only statistical uncertainties are quoted except for

quark masses and the LEC B renormalized in the MS-scheme at 2 GeV where also the systematic uncertainty

from the renormalization constant is quoted. (Mass renormalization constant at 1/a = 2.221(29)GeV:

Zm = 1.550(0.002)stat(0.034)ren.)

no FV-corr.

separate fits naı̈ve CL comb. chiral/CL

243, β = 2.13 323, β = 2.25

a [fm] 0.1106(27) 0.0888(12) → 0 → 0

f [MeV] 114.8(4.0) 111.4(2.2) 105.2(10.4) 107(2)

l̄3 2.82(0.24) 2.84(0.21) 2.87(0.74) 2.81(0.16)

l̄4 4.61(0.10) 4.18(0.09) 3.39(0.36) 3.76(0.08)

fπ [MeV] 124.4(3.6) 120.4(1.9) 113.0(9.5) 117(2)

fK [MeV] 151.0(3.7) 147.1(2.0) 139.9(9.6) 144(2)

fK/ fπ 1.214(0.012) 1.222(0.007) 1.236(0.030) 1.233(0.008)

including FV-corr.

separate fits naı̈ve CL comb. chiral/CL

243, β = 2.13 323, β = 2.25

a [fm] 0.1106(27) 0.0888(12) → 0 → 0

f [MeV] 117.1(4.0) 113.7(2.2) 107.4(10.3) 110(2)

l̄3 2.59(0.27) 2.61(0.24) 2.64(0.83) 2.55(0.18)

l̄4 4.57(0.11) 4.10(0.09) 3.26(0.38) 3.83(0.09)

fπ [MeV] 126.4(3.6) 122.3(1.9) 114.8(9.4) 119(2)

fK [MeV] 152.1(3.7) 148.1(2.0) 140.9(9.6) 145(2)

fK/ fπ 1.204(0.012) 1.212(0.007) 1.226(0.029) 1.219(0.007)
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TABLE XLII: Selected results from separate fits to the 243 and 323 data sets (Ω masses from ml ≤ 0.1 for

243 data set, cf. Tabs. XXXIX and XLI) and their naı̈ve continuum limit assuming a2-scaling (see Fig. 57)

compared to results from the combined chiral-continuum extrapolation using the previous definition of ZA.

The top table contains results without finite-volume corrections whereas the results in the bottom table were

obtained by including finite-volume effects.

β ml ZA/ZA ZV /ZV ZV /ZA Fit range Nmeas

2.13 0.02 0.71900(20) 0.6956(17) 1.0336(25) 9-54/9-17 50

2.13 0.01 0.71759(16) 0.6998(20) 1.0254(29) 9-54/9-17 50

2.13 0.005 0.71743(30) 0.6991(17) 1.0262(25) 9-54/10-19 105

2.13 −mres 0.71615(36) 0.7019(26) 1.0208(40)

2.25 0.008 0.74526(12) 0.73802(55) 1.0098(7) 9-54/9-20 85

2.25 0.006 0.74523(12) 0.73853(64) 1.0090(9) 9-54/9-18 76

2.25 0.004 0.74513(15) 0.73871(77) 1.0087(10) 9-54/10-19 166

2.25 −mres 0.74499(34) 0.7396(17) 1.0073(23)

TABLE XLIII: Results for the ratios ZA/ZA , ZV/ZV and ZV /ZA computed on six ensembles. The rows

with quark mass −mres contain the chiral extrapolation to the light quark mass ml = −mres. The left-hand

portion of the fit range gives that used for the axial current ratio while the right hand portion that for the

vector current. For the ZV /ZV calculation the data at t and 63− t were combined for 0 ≤ t < 32.


