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Abstract

We present an analysis of the loop-induced magnetic dipole operator in the Randall-
Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR
brane localized Higgs. These operators are finite at one-loop order and we explicitly
calculate the branching ratio for µ → eγ using the mixed position/momentum space
formalism. The particular bound on the anarchic Yukawa and KK scales can depend
on the flavor structure of the anarchic matrices. It is possible for a generic model
to either be ruled out or unaffected by these bounds without any fine tuning. We
quantify how these models realize this surprising behavior. We also review tree-level
lepton flavor bounds in these models and show that these are on the verge of tension
with the µ→ eγ bounds from typical models with a 3 TeV Kaluza-Klein scale. Further,
we illuminate the nature of the one-loop finiteness of these diagrams and show how to
accurately determine the degree of divergence of a 5D loop diagram using both the 5D
and KK formalism. This power counting can be obfuscated in the 4D Kaluza-Klein
formalism and we explicitly point out subtleties that ensure that the two formalisms
agree. Finally, we remark on the existence of a perturbative regime in which these
one-loop results give the dominant contribution.
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1 Introduction

The Randall-Sundrum (RS) set up for a warped extra dimension is a novel framework for models of
electroweak symmetry breaking [1]. When fermion and gauge fields are allowed to propagate in the
bulk, these models can also explain the fermion mass spectrum through the split fermion proposal
[2]. In these anarchic flavor models each element of the Yukawa matrices can take natural O(1)
values because the hierarchy of the fermion masses is generated by the exponential localization of
the fermion wave functions away from the Higgs field [3, 4].

The same small wavefunction overlap that yields the fermion mass spectrum also gives hierar-
chical mixing angles [3, 5] and suppresses tree-level flavor-changing neutral currents (FCNCs) by
the RS-GIM mechanism [3, 4]. This built-in protection, however, may not always be sufficient to
completely protect against the most dangerous types of experimental FCNC constraints. In the
quark sector, for example, the exchange of Kaluza-Klein (KK) gluons induces left-right operators
that contribute to CP violation in kaons and result in generic bounds of O(10− 20 TeV) for the
KK gluon mass [6, 7, 8, 9]. To reduce this bound one must either introduce additional structure
(such as horizontal symmetries [10] or flavor alignment [11]) or alternately gain several O(1) fac-
tors [12] by promoting the Higgs to a bulk field, inducing loop-level QCD matching, etc. This
latter approach is limited by tension with loop-induced flavor-violating effects [13].

The leptonic sector of the anarchic model is similarly bounded by FCNCs. Agashe, Blechman
and Petriello recently studied the two dominant constraints in the lepton sector: the loop-induced
µ→ eγ photon penguin from Higgs exchange and the tree-level contribution to µ→ 3e and µ→ e
conversion from the exchange of the Z boson KK tower [14]. These processes set complementary
bounds due to their complementary dependence on the overall magnitude of the anarchic Yukawa
coupling, Y∗. While µ → eγ is proportional to Y 3

∗ due to two Yukawa couplings and a chirality-
flipping mass insertion, the dominant contribution to µ → 3e and µ → e conversion comes from
the non-universality of the Z boson near the IR brane. In order to maintain the observed mass
spectrum, increasing the Yukawa coupling pushes the bulk fermion profiles away from the IR
brane and hence away from the flavor-changing part of the Z. This reduces the effective 4D
FCNC coupling so that these processes are proportional to Y −1

∗ . For a given KK gauge boson
mass, these processes then set an upper and lower bound on the Yukawa coupling which are usually
mutually exclusive.

A key feature of the lepton sector is that one expects large mixing angles rather than the
hierarchical angles in the CKM matrix. One way to obtain this is by using a global flavor symmetry
for the lepton sector [15] (see also [16]). Including these additional global symmetries can relax the
tension between the two bounds. For example, imposing an A4 symmetry on the leptonic sector
completely removes the tree-level constraints [15]. Another interesting possibility for obtaining
large lepton mixing angles is to have the wavefunction overlap for the neutrino Yukawa peak near
the UV brane [17]. For generic models with anarchic fermions, however, [14] found that the tension
between µ → eγ and tree-level processes (µ → 3e and µ → e conversion) push the gauge boson
KK scale to be on the order of 5–10 TeV. The main goal of this paper is to present a detailed
one-loop calculation of the µ→ eγ penguin in the RS model with a brane-localized Higgs and to
show that this amplitude is finite.

To perform the calculation and obtain a numerical result we choose to work in the 5D mixed
position/momentum space formalism [18, 19]. This setup is natural for calculating processes on an
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interval with brane-localized terms, as shown in Fig. 1. In particular, there are no sums over KK
modes, the chiral boundary conditions are fully incorporated in the 5D propagators, and the UV
behavior is clear upon Wick rotation where the basis of Bessel functions become exponentials in
the 4D loop momentum. The physical result is, of course, independent of whether the calculation
was done in 5D or in 4D via a KK decomposition. We show explicit one-loop finiteness in the KK
decomposed theory and remark upon the importance of taking into account the correct number
of KK modes relative to the momentum cutoff when calculating finite 5D loops.

flavor rotations. In this basis the only source for flavor violation are the Yukawa couplings, thus
every contribution to the amplitude contains brane-localized Yukawa vertices. If the loop extends
into the bulk then it must be finite by locality. Thus the only potentially divergent contributions
are 4D loops that are fully localized on the IR brane. However, the theory restricted to the IR
brane is a renormalizable 4D theory with no tree-level dipole operators. Thus one can apply
the usual argument that absence of suitable localized counter-terms requires that the µ → eγ
amplitude must be finite in the full 5D theory as well. The behavior of the theory in its UV
limit, i.e. at energies much greater than the curvature of the space, is effectively flat so that our
argument for finiteness holds for a generic 5D theory on an interval, irrespective of warping.

To perform the calculation and get a numerical result we choose to work in the 5D mixed
position/momentum space formalism [10, 11]. This setup is natural for calculating processes on
an interval with brane-localized terms, as shown in Fig. 1. In particular, there are no sums over KK
modes, the chiral boundary conditions are fully incorporated in the 5D propagators, and the UV
behavior is clear upon Wick rotation where the basis of Bessel functions become exponentials in
the 4D loop momentum. The physical result is, of course, independent of whether the calculation
was done in 5D or in 4D via a KK decomposition. We comment briefly in the appendices on the
4D calculation and show explicitly that the KK sum also converges.

µ

γ

e

Figure 1: A contribution to µ→ eγ from a brane-localized Higgs. The dashed line represents the
Higgs while the cross represents a Yukawa coupling with a Higgs vev.

The paper is organized as follows: We begin in Section 2 by establishing our conventions
and reviewing the general flavor structure of anarchic Randall-Sundrum models. In Section 3 we
summarize tree-level constraints on the anarchic Yukawa scale and discuss the effect of imposing a
custodial symmetry on the leptonic sector. We then proceed with the main purpose of this work,
the analysis of µ → eγ. The dipole operators involved in this process are discussion in Section 4
and the relevant coefficient is calculated using 5D methods in Section 6. We discuss the origin of
the finiteness of these operators in in Section 5 and conclude with an outlook for further directions
in Section 8. Appendices B and C provide details on the derivation of the 5D position/momentum
space propagators in flat and warped intervals. These results are used in Appendix D to explicitly
demonstrates the cancellation of of the µ→ eγ penguin diagrams in the UV limit where the theory
is effectively flat. Finally, in Appendix E we discuss the origin of this finiteness from the point of
view of a KK decomposition.
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Figure 1: A contribution to µ→ eγ from a brane-localized Higgs. The dashed line represents the
Higgs while the cross represents a Yukawa coupling with a Higgs vev.

The paper is organized as follows: We begin in Sections 2 and 3 by reviewing the flavor
structure of anarchic Randall-Sundrum models and summarizing tree-level constraints on the
anarchic Yukawa scale. We then proceed the analysis of µ→ eγ. The dipole operators involved in
this process are discussed in Section 4 and the relevant coefficient is calculated using 5D methods
in Section 5. In Section 6 we discuss the origin of finiteness in these operators in both the 5D
and 4D frameworks. We remark on subtleties in counting the superficial degree of divergence, the
matching of the number of KK modes with any effective 4D momentum cutoff, and remark on
the expected two-loop degree of divergence. We conclude with an outlook for further directions in
Section 7. In Appendix A we highlight the matching of local 4D effective operators to non-local 5D
amplitudes. Next in Appendix B we provide analytic expressions for the (next-to)leading µ→ eγ
diagrams. Appendices C, D, and E focus on the formalism of quantum field theory in mixed
position/momentum space, respectively focusing on a discussion of power counting, a summary
of RS Feynman rules, and details on the derivation of the bulk fermion propagators. Finally, in
Appendix F we explicitly demonstrate a subtle cancellation in the single-mass insertion neutral
Higgs diagram that is referenced in Section 6.

2 Review of anarchic Randall-Sundrum models

We now summarize the main results for anarchic RS models. For a review see, e.g. Refs [20]. We
consider a 5D warped interval z ∈ [R,R′] with a UV brane at z = R and an IR brane at z = R′.
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The metric is

ds2 =

(
R

z

)2

(dxµdxνη
µν − dz2), (2.1)

where we see that R is also the AdS curvature scale so that R/R′ ∼ TeV/MPl. These conformal
coordinates are natural in the context of the AdS/CFT correspondence but differ from the classical
RS conventions z = R exp(ky) and k = 1/R. The relevant scales have magnitudes R−1 ∼ MPl

and R′−1 ∼ TeV. Fermions are bulk Dirac fields which propagate in the full 5D space and can be
decomposed into left- and right-handed Weyl spinors χ and ψ̄ via

Ψ(x, z) =

(
χ(x, z)
ψ̄(x, z)

)
. (2.2)

In order to obtain a chiral zero mode spectrum, these fields are subject to the chiral (orbifold)
boundary conditions

ψL(xµ, R) = ψL(xµ, R′) = 0 χR(xµ, R) = χR(xµ, R′) = 0, (2.3)

where the subscripts L and R denote the SU(2)L doublet (L) and singlet (R) representations, i.e.
the chirality of the zero mode. The fermion bulk masses are given by c/R where c is a dimensionless
parameter controlling the localization of the normalized 5D zero mode profiles,

χ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
fc χ

(0)
c (x) and ψ(0)

c (x, z) = χ
(0)
−c(x, z), (2.4)

where we have defined the usual RS flavor function

fc =

√
1− 2c

1− (R/R′)1−2c
. (2.5)

We assume that the Higgs is localized on the IR brane. The Yukawa coupling is

SYuk =

∫
d4x

(
R

R′

)4

Ēi (RYij)Lj ·H + h.c. (2.6)

where Yij is a dimensionless 3×3 matrix such that (Y5)ij = RYij is the dimensionful parameter
appearing in the 5D Lagrangian. In the anarchic approach Y is assumed to be a random matrix
with average elements of order Y∗. After including all warp factors and rescaling to canonical
fields the effective 4D Yukawa and mass matrices for the zero modes are

ySM
ij = fcLiYijf−cRj mij =

v√
2
ySM
ij , (2.7)

so that the fermion mass hierarchy is set by the f1 � f2 � f3 structure for both left- and
right-handed zero modes. In other words, the choice of c for each fermion family introduces
additional flavor structure into the theory which generates the zero mode spectrum while allowing
the fundamental Yukawa parameters to be anarchic.
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In the Standard Model the diagonalization of the fermion masses transmits the flavor structure
of the Yukawa sector to the kinetic terms via the CKM matrix where it is manifested in the
flavor-changing charged current through the W± boson. We shall use the analogous mass basis
in Section 3 for our calculation of the Yukawa contraints from µ → 3e and µ → e conversion
operators. The key point is that in the gauge basis the interaction of the neutral gauge bosons is
flavor diagonal but not flavor universal. The different fermion wave functions cause the overlap
integrals to depend on the bulk mass parameters. Once we rotate into the mass eigenbasis we
obtain flavor changing couplings for the neutral KK gauge bosons.

In the lepton sector this does not occur for the zero mode photon since its wavefunction remains
flat after electroweak symmetry breaking and hence µ→ eγ remains a loop-level process. Thus for
the primary analysis of this paper we choose a basis where the 5D fields are diagonal with respect
to the bulk masses while the Yukawas are completely general. In this basis all of the relevant
flavor-changing effects occur due to the Yukawa structure of the theory with no contributions from
W loops. In the Standard Model, this corresponds to the basis before diagonalizing the fermion
masses so that all flavor-changing effects occur through off-diagonal elements in the Yukawa matrix
manifested as mass insertions or Higgs interactions. This basis is particularly helpful in the 5D
mixed position/momentum space framework since the Higgs is attached to the IR brane, which
simplifies loop integrals.

3 Tree-level constraints from µ→ 3e and µ→ e conversion

For a fixed KK gauge boson mass MKK, limits on µ → 3e and µ → e conversion in nuclei
provide the strongest lower bounds on the anarchic Yukawa scale Y∗. These tree-level processes
are parameterized by Fermi operators generated by Z and Z ′ exchange, where the prime indicates
the KK mode in the mass basis. The effective Lagrangian for these lepton flavor-violating Fermi
operators are traditionally parameterized as [21]

L =
4GF√

2
[g3(ēRγ

µµR)(ēRγµeR) + g4(ēLγ
µµL)(ēLγ

µeL) + g5(ēRγ
µµR)(ēLγµeL)

+g6(ēLγ
µµL)(ēRγµeR)] +

GF√
2
ēγµ(v − aγ5)µ

∑
q

q̄γµ(vq − aqγ5)q, (3.1)

where we have only introduced the terms that are non-vanishing in the RS set up, and use
the normalization where vq = T q3 − 2Qq sin2 θ. The axial coupling to quarks, aq, vanishes in the
dominant contribution coming from coherent scattering off the nucleus. The g3,4,5,6 are responsible
for µ → 3e decay, while the v, a are responsible for µ → e conversion in nuclei. The rates are
given by (with the conversion rate normalized to the muon capture rate):

Br(µ→ 3e) = 2(g2
3 + g2

4) + g2
5 + g2

6 , (3.2)

Br(µ→ e) =
peEeG

2
FF

2
pm

3
µα

3Z4
eff

π2ZΓcapt

Q2
N(v2 + a2), (3.3)

where the parameters for the conversion depend on the nucleus and are calculated in the Feinberg-
Weinberg approximation [22] and we write the charge for a nucleus with atomic number Z and
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neutron number N as

QN = vu(2Z +N) + vd(2N + Z). (3.4)

. The most sensitive experimental constraint comes from muon conversion in 48
22Ti, for which

Ee ∼ pe ∼ mµ, Fp ∼ 0.55, Zeff ∼ 17.61, Γcapt ∼ 2.6 · 106

s
. (3.5)

We now consider these constraints for a minimal model (where feL = feR , fµL = fµR) and for a
model with custodial protection.

3.1 Minimal RS model

In order to calculate the coefficients in the effective Lagrangian (3.1), we need to estimate the
flavor-violating couplings of the neutral gauge bosons in the theory. In the basis of physical
KK states all lepton flavor-violating couplings are the consequence of the non-uniformity of the
gauge boson wave functions. Let us first consider the effect of the ordinary Z boson, whose wave
function is approximately (we use the approximation (2.19) of [23] with a prefactor for canonical
normalization)

h(0)(z) =
1√

R log R′
R

[
1 +

M2
Z

4
z2
(

1− 2 log
z

R

)]
. (3.6)

The coupling of the Z to fermions can be calculated by performing the overlap integral with the
fermion profiles in (2.4) and is found to be

gZff = gZSM

(
1 +

(MZR
′)2 log R′

R

2(3− 2c)
f 2
c

)
. (3.7)

After rotating the fields to the mass eigenbasis we find that the off-diagonal coupling of the Z
boson to charged leptons is given by the non-universal term and is approximately

gZeµL,R ≈
(
gZSM

)L,R
∆(0)
eµ ≡

(
gZSM

)L,R (MZR
′)2 log R′

R

2(3− 2c)
feL,RfµL,R . (3.8)

Using these couplings one can estimate the coefficients of the 4-Fermi operators in (3.1),

g3,4 = 2g2
L,R∆(0)

eµ g5,6 = 2gLgR∆(0)
eµ (v ± a) = 2gL,R∆(0)

eµ , (3.9)

where the gL,R are proportional to the left- and right-handed charged lepton couplings to the Z
in the Standard Model, gL = −1

2
+ s2

W and gR = s2
W . The Z ′ exchange contribution to µ → 3e

(µ→ e) is a 15% (5%) correction and the γ′ exchange diagram is an additional 5% (1%) correction;
we shall ignore both here. We make the simplifying assumption that feL = feR and fµL = fµR
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and then express these in terms of the Standard Model Yukawa couplings as f =
√
λ/Y∗. The

expressions for the lepton flavor-violating processes are then

Br(µ→ 3e) = 10−13

(
3 TeV

MKK

)4(
2

Y∗

)2

(3.10)

Br(µ→ e)Ti = 2 · 10−12

(
3 TeV

MKK

)4(
2

Y∗

)2

. (3.11)

The current experimental bounds are Br(µ → 3e) < 10−12 [24] and Br(µ → e)Ti < 6.1 · 10−13

[25] so that µ− e conversion provides the most stringent constraint,(
3 TeV

MKK

)2(
2

Y∗

)
< 0.5. (3.12)

For a 3 TeV Z ′, the anarchic Yukawa scale must satisfy Y∗ & 3.7, which agrees with [14].

3.2 Custodially protected model

Since the bound in (3.12) is model dependent, one might consider weakening this constraint by
having the leptons transform under the custodial group

SU(2)L × SU(2)R × U(1)X × PLR, (3.13)

where PLR is a discrete L ↔ R exchange symmetry. Such a custodial protection was introduced
in [26] to eliminate large corrections to the Zbb̄ vertex in the quark sector. It was later found
that this symmetry also eliminates some of the FCNCs in the Z sector [8] so that one might
also expect it to alleviate the lepton flavor violation bounds. We shall now estimate the extent
to which custodial symmetry can relax the bound on Y∗. Further discussion including neutrino
mixing can be found in [27].

To custodially protect the charged leptons one choses the (L,R)X representation (2,2)0 for the
left-handed leptons, (3,1)0⊕(1,3)0 for the charged right-handed leptons, and (1,1)0 for the right-
handed neutrinos. There are two neutral zero mode gauge bosons, the Standard Model Z and γ,
and three neutral KK excitations, γ′, Z ′ and ZH , where the latter two are linear combinations of
the Z and ZX boson modes. The coupling of the left handed leptons to the ordinary Z and the
Z ′ are protected since those couplings are exactly flavor universal in the limit where PLR is exact.
The breaking of PLR on the UV brane leads to small residual contributions which we neglect. The
remaining flavor-violating couplings for the left-handed leptons come from the exchange of ZH
and the γ′, while the right-handed leptons are unprotected.

Since (v− a) couples to right-handed leptons its coupling is unprotected and is the same as in
(3.9). For (v + a), on the other hand, the leading-order effect comes from the Z(1) component of
the ZH , whose composition in terms of gauge KK states is [8]

ZH = cos ξZ(1) + sin ξZ
(1)
X + βZ(0), (3.14)

where Z(0) is the flat zero mode Z-boson which does not contribute to FCNCs, cos ξ ≈
√

1
2
− s2

W/cW ,

and β is a small correction of order O(v2/M2
KK). The flavor-changing coupling of the KK gauge
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bosons is analogous to that of KK gluons in [6],

gZ
(1)eµ

L,R ≈ (gZSM

)L,R
∆L,R(1)
eµ ≡ (gZSM)L,R√log

R′

R
γc feL,RfµL,R , (3.15)

where

γc =

√
2

J1(x1)

∫ 1

0

dx x1−2cJ1(x1 x) ≈
√

2

J1(x1)

0.7x1

2(3− 2c)
(3.16)

and x1 = MKKR
′ is the first zero of J0(x). The analogous γ(1) coupling is given by gZSM → e.

Taking into account the ZH and γ(1), the (v + a) effective coupling to left-handed leptons is

(v + a) = 2gL gKK
M2

Z

M2
KK

(
cos2 ξ +

QZX
N

QN

cos ξ sin ξ

)
∆L(1)
eµ + 2s2

W c
2
W gKK

M2
Z

M2
KK

Qγ
N

QN

∆L(1)
eµ . (3.17)

The cos ξ sin ξ term in the parenthesis represents the Z
(1)
X component of the ZH which couples to

the quarks in the nucleus via

QZX
N = − 1√

2
cW cos ξ (5Z + 7N)− 2

√
2

cos ξ
sW

g′

g
(Z +N), gKK =

1√
logR′/R

. (3.18)

The gKK factor gives the universal (flavor-conserving) coupling of KK gauge bosons to zero mode
fermions. Qγ

N is the electric charge of the nucleus normalized according to (3.3), Qγ
N = 2Z.

Minimizing over the flavor factors feL,R and fµL,R subject to the zero mode fermion mass
spectrum and comparing to the experimental bound listed above (3.12), we find that the conversion
rate must satisfy (

3 TeV

MKK

)2(
2

Y∗

)
< 1.6. (3.19)

lowering the bound to Y∗ & 1 for a 3 TeV KK gauge boson scale.

4 Operator analysis of µ→ eγ

We work in ’t Hooft-Feynman gauge (ξ = 1) and a flavor basis where all bulk masses ci are
diagonal. The 5D amplitude for µ→ eγ takes the form

CH · L̄iσMNEjFMN , (4.1)

where it is understood that the 5D fields should be replaced by the appropriate external states
which each carry an independent z position in the mixed position/momentum space formalism.
These positions must be separately integrated over when matching to an effective 4D operator
so that (4.1) can be thought of as a dimension-8 5D scattering amplitude whose prefactor C is
a function of the external state positions, as explained in Appendix A. When calculating this
amplitude in the mixed position/momentum space formalism, the physical external state fields
have definite KK number, which we take to be zero modes. The external field profiles and internal

7



propagators depend on 4D momenta and z-positions so that vertex z-positions are integrated from
z = R to z = R′ while loop momenta are integrated as usual.

After plugging in the wave functions for the fermion and photon zero modes, including all
warp factors, matching the gauge coupling, and expanding in Higgs-induced mass insertions, the
leading order 4D operator and coefficients for µ→ eγ is

R′2
e

16π2

v√
2
fLi

(
ak`YikY

†
k`Y`j + bijYij

)
f−Ej L̄

(0)
i σµνE

(0)
j F (0)

µν + h.c. (4.2)

The term proportional to three Yukawa matrices comes from the diagrams shown in Fig. 2, while
the single-Yukawa term comes from those in Fig. 3. In the limit where the bulk masses are
universal, we may treat the Yukawas as spurions of the U(3)3 lepton flavor symmetry and note
that these are the products of Yukawas required for a chirality-flipping, flavor-changing operator.

In anarchic flavor models, however, the bulk masses for each fermion species is independent and
introduce an additional flavor structure into the theory so that the U(3)3 lepton flavor symmetry
is not restored even in the limit Y → 0. The indices on the dimensionless ak` and bij coefficients
encode this flavor structure as carried by the internal fermions of each diagram. Because the
lepton hierarchy does not require very different bulk masses, both ak` and bij are nearly universal.

Next note that the zero-mode mass matrix (2.7) introduces a preferred direction in flavor space
which defines the mass basis. In fact, up to the non-universality of bij, the single-Yukawa term in
(4.2) is proportional to—or aligned—with (2.7). Hence upon rotation to the mass basis, the off-
diagonal elements of this term are typically much smaller than its value in the flavor basis [28] and
would be identically zero if the bulk masses were universal. Given a set of bulk mass parameters,
the extent to which a specific off-diagonal element of the bij term is suppressed depends on the
particular structure of the anarchic 5D Yukawa matrix. This is a novel feature since the structure
of the underlying anarchic Yukawa is usually washed out in observables by the hierarchies in the
fc flavor functions.

On the other hand, a product of anarchic matrices typically indicates a very different direction
in flavor space from the original matrix so that the aij term is not aligned and we may simplify
the product to ∑

k,`

ak`YikY
†
k`Y`j = aY 3

∗ (4.3)

for each i and j. Here we have defined the prefactor a; different definitions can include an overall
O(1) factor from the sum over anarchic matrix elements. We have used the anarchic limit and the
assumption that neither ak` nor bij vary greatly over realistic bulk mass values. This assumption
is justified in Section 5 where we explicitly calculate these coefficients to leading order. Further,
we have assumed that the scale of the anarchic electron and neutrino Yukawa matrices are the
same so that (YE)ij ∼ (YN)ij ∼ Y∗.

To determine the physical µ→ eγ amplitude from this expression we must go to the standard
4D mass eigenbasis by performing a bi-unitary transformation to diagonalize the Standard Model
Yukawa,

λSM = ULλ
(diag)U †R, (4.4)
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where the magnitudes of the elements of the unitary matrices UL,R are set, in the anarchic scenario,
by the hierarchies in the flavor constants

(UL)ij ∼ fLi
fLj

for fLi < fLj . (4.5)

For future simplicity, let us define the relevant part of the bijYij matrix after this rotation,

bY∗ =
∑
k,`

(UL)2kbk`Yk`(U
†
R)`1. (4.6)

The traditional parameterization for the µ→ eγ amplitude is written as [14]

−iCL,R
2mµ

ūL,R σ
µν uR,LFµν , (4.7)

where uL,R are the left- and right-handed Dirac spinors for the leptons. Comparing (4.2) with
(4.7) and using the magnitudes of the off-diagonal terms in the UL rotation matrix in (4.5), we
find that in the mass eigeinbasis the coefficients are given by

CL =
(
aY 3
∗ + bY∗

)
R′2

e

16π2

v√
2

2mµfL2f−E1 , (4.8)

CR =
(
aY 3
∗ + bY∗

)
R′2

e

16π2

v√
2

2mµfL1f−E2 . (4.9)

The µ→ eγ branching fraction and its experimental bound is given by

Br(µ→ eγ)thy =
12π2

(GFm2
µ)2

(|CL|2 + |CR|2), (4.10)

Br(µ→ eγ)exp < 1.2 · 10−11. (4.11)

While the generic expression for Br(µ→ eγ) depends on the individual wave functions fL,−E, the
product CLCR is fixed by the physical lepton masses and the relation C2

L + C2
R ≥ 2CLCR so that

one can put a lower bound on the branching ratio

Br(µ→ eγ) ≥ 6
∣∣aY 2
∗ + b

∣∣2 α

4π

(
R′2

GF

)2
me

mµ

≈ 5.1 · 10−8
∣∣aY 2
∗ + b

∣∣2(3 TeV

MKK

)4

. (4.12)

Thus for a 3 TeV KK gauge boson scale we obtain an upper bound on Y∗

|aY 2
∗ + b|

(
3 TeV

MKK

)2

≤ 0.015. (4.13)

Note that the b coefficient is independent of Y∗ so that sufficiently large b can rule out the assump-
tion that the 5D Yukawa matrix can be completely anarchic—i.e. with no assumed underlying
flavor structure—at a given KK scale no matter how small one picks Y∗. This is a new type of
constraint on anarchic flavor models in a warped extra dimension. Conversely, if b is of the same
order as a and has the opposite sign, then the bounds on the anarchic scale Y∗ are alleviated. We
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Figure 2: Leading order diagrams contributing to the a coefficient and an estimate of their suppres-
sion as described in the text. Arrows indicate fermion helicity and crosses represent Higgs-induced
mass insertions. The W–Goldstone–photon coupling is proportional to v so that the HW diagram
carries an additional factor of A beyond the explicit mass insertion.

will show below that b is typically suppressed relative to a but can, in principle, take a range of
values between b = −0.5 and 0.5. For simplicity we may use the case b = 0 as a representative
and plausible example, in which case the bound on the anarchic Yukawa scale is

Y∗ ≤ 0.12 |a|− 1
2 . (4.14)

In Section 5.3 we quantify the extent to which the b term may affect this bound. Combined with
the lower bounds on Y∗ from tree-level processes in Section 3, this bound typically introduces a
tension in the preferred value of Y∗ depending on the value of a. In other words, it can force one
to either increase the KK scale or introduce additional symmetry structure into the 5D Yukawa
matrices which can reduce a in (4.3) or force a cancellation in (4.13).

5 Calculation of µ→ eγ in a warped extra dimension

In principle, there are a large number of diagrams contributing to the a and b coefficients even
when only considering the leading terms in a mass-insertion expansion. These are depicted in
Figs. 2 and 3. Fortunately, many of these diagrams are naturally suppressed and the dominant
contribution to each coefficient is given by the three diagrams shown in Fig. 4. Analytic expressions
for the leading and next-to-leading diagrams are given in Appendix B. The order-of-magnitude
suppression mechanisms are as follows:

A. Mass insertion, ∼ 10−1/insertion. Each fermion mass insertion on an internal line intro-
duces a factor of O(vR′). This comes from the combination of dimensionful factors in the
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Figure 3: Leading order diagrams contributing to the b coefficient and an estimate of their suppres-
sion as described in the text. Arrows indicate fermion helicity and crosses represent Higgs-induced
mass insertions. The WH diagram has a mass insertion suppression due to the form of the W–
Goldstone–photon coupling.

Yukawa interaction and the additional fermion propagator.

B. Equation of motion, ∼ 10−4. Diagrams without an explicit chirality-flipping internal mass
insertion must swap chirality using the muon equation of motion ū(p)/p = mµu(p). This is
the analog of an external line mass insertion. This gives a factor of O(mµR

′).

C. Higgs/Goldstone cancellation, ∼ 10−3. The H0 and G0 one-mass-insertion loops cancel
up to O ((m2

H −m2
Z)/m2

KK) because the two Goldstone couplings appear with factors of i
relative to the neutral Higgs couplings1.

D. Proportional to charged scalar mass, ∼ 10−2. The leading loop-momentum term in
the one-mass-insertion brane-localized H± loop cancels due to the form of the photon cou-
pling relative to the propagators. The gauge-invariant contribution from such a diagram is
proportional to (MW R′)2. This is shown explicitly in (5.4).

E. No sum over internal flavors, ∼ 10−1. The W diagrams contributing to the b coefficient
are more aligned by an additional order of magnitude relative to the Z diagrams because
they only contain a single internal c-dependent propagator.

The use of the equation of motion converts a left-handed plane wave spinor into a right-handed
spinor and vice versa, but does not change the 5D profiles. This changes flavor functions in
(4.2) so that the coefficient has the form f−Ei

· · · f−Ej
. In particular, one can no longer use the

relation between the geometric and arithmetic means in (4.13) to convert these flavor functions
into fermion masses except for minimal models2 with cL = −cE. For µ→ eγ this is not a problem
since the diagrams suppressed by (mµR

′) do not give the leading contributions, but this subtlety
becomes relevant for τ → eγ and b→ sγ.

1We thank Yuko Hori and Takemichi Okui for pointing this out.
2Models with custodial protection can have significant differences between cL and c−E , but in these models one

pushes the right-handed fermions away from the IR brane so that the right-handed flavor functions f−Ei
are much

smaller. Thus in these models the diagrams which invoke the external fermion equation of motion become more
negligible.
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since the diagrams suppressed by (mµR
′) do not give the leading contributions, but this subtlety

becomes relevant for τ → eγ and b→ sγ.
The diagrams with weak gauge bosons carry an additional factor of (g2 lnR′/R) ∼ 10 from

the 5D gauge couplings. While this factor is common to all the diagrams contributing to the b
coefficient, it appears to make the three-mass-insertion Z contribution to the a coefficient an order
of magnitude larger than the one-mass-insertion H± contribution. We will see below that this
difference is cancelled by the an order of magnitude difference in the numerical integrals.

The flavor structure of the diagrams contributing to the b coefficient is aligned with the fermion
zero-mode mass matrix [4, 14, 12]. The rotation of the external states to mass eigenstates thus
suppresses these diagrams up to the flavor-dependent numerical factors coming from the external
fermion profiles and the c-dependence of internal propagators. For realistic lepton bulk masses
around cL,−cR ∈ (0.51, 0.75), the one-mass-insertion Z loop is typically only aligned by a factor
of 10−1 because of the bulk mass dependence coming from two independent sums over internal
fermion flavors. The other diagrams in Fig. 3 only contain a single sum over internal fermion flavors
and are thus typically aligned by an additional factor of 10−1. We provide a precise definition of
the term ‘typically’ in Section 5.2.

The Ward identity requires that the physical amplitude for a muon of momentum p to decay
into a photon of polarization ε and an electron of momentum p′ takes the form

M = εµMµ ∼ εµūp′ [(p+ p′)µ − (mµ +me)γ
µ]up. (5.1)

This is the combination of masses and momenta that gives the correct chirality-flipping tensor
amplitude in (4.7). This simplifies the calculation of this process since one only has to identify
the coefficient of the ūp′(p + p′)µu term to determine the entire amplitude, all other terms are
redundant by gauge invariance [29]. In Section 6.1 we will further use this observation to explain
the finiteness of this amplitude in 5D.

In addition to the diagrams in Figs. 2 and 3, there are higher-order diagrams with an even
number of additional mass insertions and brane-to-brane propagators. Following the Feynman
rules in Appendix D, each higher-order pair of mass insertions is suppressed by an additional
factor of (

/k

k

R′4

R4
· (−i)R

3

R′3
RY∗

v√
2

)2

∼ 1

2
(Y∗R′v)

2 ∼ O(10−2), (5.2)

since we assume anarchic Yukawa matrices, Y∗ ∼ 2. We are thus justified in considering only the
leading-order terms in the mass insertion approximation.

We now present the leading contributions to the a and b coefficients in the minimal model
regime, cL ≈ −cR. Other diagrams are on the order of 10% of these results. We provide explicit
formulae and numerical estimates for the next-to-leading order corrections in Appendix B.

5.1 Calculation of a

We now calculate the leading-order contribution to the amplitude to determine the a coefficient
in (4.3). As discussed above, it is sufficient to compute the coefficient of the (p+ p′)µ term in the
amplitude. Our general strategy is to use the Clifford algebra and the equations of motion for the
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(a) H± with a single mass insertion and Z with three mass insertions
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Eµ

(b) Z with a single mass insertion

Figure 4: The dominant diagrams contributing to the a and b coefficients defined in (4.3) and
(4.6), respectively. All three diagrams contribute with independent signs.

external spinors to determine this coefficient. This allows us to directly write the finite physical
contribution to the amplitude without worrying about the regularization of potentially divergent
terms which are not gauge invariant. In Section 6 we will discuss the properties of 5D penguins
that forces these divergences to cancel.

Using the 5D Feynman rules and mixed position/momentum space in Appendix D and E.2,
the amplitude for the one-mass-insertion charged Higgs diagram in Fig. 4a is

Mµ = −R2

(
R

R′

)6
ev√

2
fcLµ

Y 3
∗ f−cEe

∫
d4k

(2π)4
ūp′∆R

k ∆L
k up

(2k − p− p′)µ

[(k − p′)2 −M2
W ][(k − p)2 −M2

W ]
, (5.3)

where we have assumed that the product of anarchic matrices has structure independent of any
individual matrix so that (YEY †

NYN)µe = Y 3
∗ . Note that this matrix element can have arbitrary

sign. Remembering that the 5D fermion propagators go like ∆ ∼ /k/k, this amplitude näıvely
appears to be logarithmically divergent. However, the Ward identity forces the form of the photon
coupling to the charged Higgs to be such that the leading order term in k2 cancels. This can be
made manifest by expanding the charged Higgs terms in p and p′,

(2k − p− p′)µ

[(k − p′)2 −M2
W ][(k − p)2 −M2

W ]
=

(p + p′)µ

(k2 −M2
W )2

[
k2

k2 −M2
W

− 1

]
=

M2
W (p + p′)µ

(k2 −M2
W )3

, (5.4)

where we have dropped terms of order O(m2
µ/M

2
W ). Thus we manifestly identify the coefficient

of the gauge-invariant contribution and have also shown that the d4k integral is finite by power
counting. After Wick rotation, the one-mass insertion charged Higgs (1MIH±) amplitude takes
the form

Mµ(1MIH±)
∣∣
(p+p′) =

2i

16π2
(R′)2fcLµ

Y 3
∗ f−cEe

ev√
2
(R′MW )2I1MIH± ūp′(p + p′)up, (5.5)

where the dimensionless integral is given by

I1MIH± =

∫ ∞

0

dy FL
y,+(y, y, cLi

)FR
y,−(y, y, cNj

)
y5

[y2 + (MW R′)2]3
(5.6)
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Figure 4: The dominant diagrams contributing to the a and b coefficients defined in (4.3) and
(4.6), respectively. All three diagrams contribute with independent signs.

external spinors to determine this coefficient. This allows us to directly write the finite physical
contribution to the amplitude without worrying about the regularization of potentially divergent
terms which are not gauge invariant. In Section 6 we will discuss the properties of 5D penguins
that forces these divergences to cancel.

Using the 5D Feynman rules and mixed position/momentum space in Appendix D and E.2,
the amplitude for the one-mass-insertion charged Higgs diagram in Fig. 4a is
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ev√
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k ∆L
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where we have assumed that the product of anarchic matrices has structure independent of any
individual matrix so that (YEY

†
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∗ . Note that this matrix element can have arbitrary
sign. Remembering that the 5D fermion propagators go like ∆ ∼ /k/k, this amplitude näıvely
appears to be logarithmically divergent. However, the Ward identity forces the form of the photon
coupling to the charged Higgs to be such that the leading order term in k2 cancels. This can be
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W ). Thus we manifestly identify the coefficient

of the gauge-invariant contribution and have also shown that the d4k integral is finite by power
counting. After Wick rotation, the one-mass insertion charged Higgs (1MIH±) amplitude takes
the form

Mµ(1MIH±)
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(p+p′) =

2i

16π2
(R′)2fcLµY

3
∗ f−cEe

ev√
2

(R′MW )2I1MIH± ūp′(p+ p′)up, (5.5)

where the dimensionless integral is given by
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y,−(y, y, cNj)

y5

[y2 + (MWR′)2]3
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and the F s are functions associated with the internal fermion propagators defined in Appendix
E.2 and which behave as 1/y for large y. The precise value of I1MIH± depends on the bulk
mass c parameters of the internal modes. As a conservative estimate we shall use values of cNi
corresponding to 1 eV neutrinos, for which

I1MIH± ≈ 0.65. (5.7)

The second diagram in Fig. 4a is given by the three-mass-insertion Z loop,

Mµ(3MIZ)|(p+p′) =
i

16π2
(R′)2fcLµY

3
∗ f−cEe

ev√
2

(
g2 ln

R′

R

)(
R′v√

2

)2

I3MIZ ūp′(p+ p′)up, (5.8)

where I3MIZ is an integral whose closed form is given in (B.5–B.7). While we have written the
Yukawa flavor structure as (YEY

†
EYE)µe = Y 3

∗ , it is important that the flavor structure is indepen-
dent of that in the charged Higgs loop. Thus these diagrams add with independent signs. Further,
slight hierarchies in the anarchic scale for leptons and neutrinos can change the relative size of
each contribution. The value of the dimensionless integral I3MIZ , averaged over minimal model
bulk masses, is

I3MIZ ≈ −0.045. (5.9)

In order to estimate the contributions of these diagrams to the a coefficient in (4.3), we take
the approximate values

(R′MW ) ≈ 0.08
R′v√

2
≈ 0.1 g2 ln

R′

R
≈ 17. (5.10)

The result of such an estimate is that the coefficients coming from the charged Higgs aH0 and the
Z-boson aZ are of the same order of magnitude,

|aH0 | ≈ |aZ | ≈ 0.008. (5.11)

Thus the net contribution to the a coefficient is a = aH0 + aZ , which may either cancel or sum to
a ≈ 0.02.

5.2 Calculation of b

As discussed above, the diagrams contributing to b are sensitive to the structure of the anarchic
Yukawa matrix relative to that of the non-universal internal bulk fermion masses. For leptons this
internal flavor structure is typically very weak and the amplitudes are suppressed. The sign of
the resulting off-diagonal term is a function of the initial anarchic matrix so that the b term may
interfere constructively or destructively with the a term calculated above. One can numerically
generate anarchic matrices whose elements have random sign and random values between 0.5 and
2 to determine the distribution of probable Yukawa structures. Such a distribution is peaked
about zero so that the choice b = 0 is a reasonable simplifying assumption. For a more detailed
description of the range of bounds accessible by the anarchic RS scenario, one may use the 1σ
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value of |b| as characteristic measure of how large an effect one should expect from generic anarchic
Yukawas.

The one-mass-insertion Z loop amplitude takes the form

Mµ(1MIZ)|(p+p′) =
i

16π2
(R′)2fcLµY∗f−cEe

ev√
2

(
g2 ln

R′

R

)
I1MIZ ūp′(p+ p′)up, (5.12)

where the integral is given by (B.6) and is approximately |I1MIZ | ≈ 0.1. Upon rotating with respect
to randomly generated anarchic matrices, the 1σ value for the absolute value of this integral is
approximately |I1MIZ |1σ ≈ 0.03. With the values in (5.10), this give a contribution to the b
coefficient of

|b|1σ = 0.5. (5.13)

5.3 Constraints and tension

We can now estimate the upper bound on the anarchic Yukawa scale Y∗ in (4.13),

∣∣aY 2
∗ + b

∣∣ (3 TeV

MKK

)2

≤ 0.015. (4.13)

Recall that due to independent flavor structures (YEY
†
NYN , YEY

†
EYE, and YE) the relative sign of

each diagram in Fig. 4 is independent so that there is significant flexibility in how these coefficients
sum.

First let us consider the case where the b coefficient takes its statistical mean value, b = 0.
This gives a bound

|aH0 + aZ |Y 2
∗

(
3 TeV

MKK

)2

≤ 0.015. (5.14)

If aH0 and aZ have opposite signs these leading order contributions to a may largely cancel leading
to very weak constraints. If we make the rough estimate that these terms completely cancel then
the leading contribution to the a coefficient would come from the terms in (B.8–B.10) which we
have estimated in Fig. 2 to be an order of magnitude smaller. In this case we would expect
a ∼ O(0.001) so that the bound is relaxed to

Y∗ . 4 (5.15)

for a 3 TeV KK scale. This approaches the generic Y∗ & 3.7 lower bound in (3.12).
On the other hand, if aH0 and aZ have the same sign then the bound for b = 0 and a 3 TeV

KK scale is

Y . 1, (5.16)

which approaches the Y∗ & 1 upper bound in custodially-protected models. We assume that the
extra structure of the custodial model does not significantly affect the physics associated with
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µ → eγ which is localized near the IR brane. In this case we see that the typical range of a
coefficients are permitted in custodially-protected models with b = 0.

We now consider the effect of the b coefficient which is sensitive to the particular flavor structure
of the anarchic 5D Yukawa matrix. We showed that the 1σ range of b values for randomly
generated anarchic matrices is b ∈ (−0.5, 0.5). Note that the extreme values of this range dwarf
the a coefficient and the bound in (4.13). Thus it is possible for statistically likely values of b of
either sign to violate the bound independent of the value of Y∗. For such a value this directly
constrains the KK scale. For the 1σ value this sets MKK & 17 TeV.

The most interesting range for b, however, is the statistically likely region near b ≈ 0. In
particular, it is possible that the flavor structure contributing to the b coefficient is such that the
aligned diagram in Fig. 4 is of the same order of magnitude and opposite sign as the other two
diagrams. In this case one can relax the constraints on Y∗ and MKK. Of course it is equally likely
that such a term would exacerbate these constraints and hence for any specific choice of Yukawa
matrices it is necessary to check the b term. For broad model-building purposes, however, the
key point is that the flavor structure for each diagram in Fig. 4 is effectively independent and so
one can find appreciable regions of flavor-space (spanned by the spurions YE and YN) where one
avoids significant tension between the tree- and loop-level constraints.

µ → eγ which is localized near the IR brane. In this case we see that the typical range of a
coefficients are permitted in custodially-protected models with b = 0.

We now consider the effect of the b coefficient which is sensitive to the particular flavor structure
of the anarchic 5D Yukawa matrix. We showed that the 1σ range of b values for randomly
generated anarchic matrices is b ∈ (−0.5, 0.5). Note that the extreme values of this range dwarf
the a coefficient and the bound in (4.13). Thus it is possible for statistically likely values of b of
either sign to violate the bound independent of the value of Y∗. For such a value this directly
constrains the KK scale. For the 1σ value this sets MKK ! 17 TeV.

The most interesting range for b, however, is the statistically likely region near b ≈ 0. In
particular, it is possible that the flavor structure contributing to the b coefficient is such that the
aligned diagram in Fig. 4 is of the same order of magnitude and opposite sign as the other two
diagrams. In this case one can relax the constraints on Y∗ and MKK. Of course it is equally likely
that such a term would exacerbate these constraints and hence for any specific choice of Yukawa
matrices it is necessary to check the b term. For broad model-building purposes, however, the
key point is that the flavor structure for each diagram in Fig. 4 is effectively independent and so
one can find appreciable regions of flavor-space (spanned by the spurions YE and YN) where one
avoids significant tension between the tree- and loop-level constraints.
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Figure 5: Bounds on the anarchic Yukawa and KK scales from tree- and loop-level constraints,
(3.12), (3.19), and (4.13). Each curve rules out the region to its left. The thin solid hyperbolae are
the generic and custodially protected tree-level bounds, as labelled. The thick solid straight lines
are the loop-level bounds for b = 0 and either a0

H and aZ having opposite signs (a = .001), or the
same sign (a = .016). The red dashed (blue dotted) curves are the a = .016 loop-level bounds in
the case where b has the same (opposite) sign as a and takes on its 1σ magnitude |b| = |b|1σ = .5.

The combined constraints on Y∗ and MKK are shown in Fig. 5. Let us make the caveat that
the above values are estimates at O(10%) accuracy. Specific results depend on model-dependent
factors such as the extent to which the matrices are anarchic, the relative scale of the charged
lepton and neutrino anarchic values, or extreme values for bulk masses. For completeness we
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lepton and neutrino anarchic values, or extreme values for bulk masses. For completeness we
provide analytic formulae for the leading and next-to-leading order diagrams in Appendix B.

6 Power counting and finiteness

We now develop an intuitive understanding of the finiteness of this 5D process, highlight some
subtleties associated with the KK versus 5D calculation of the loop diagrams3, and estimate the
degree of divergence of the two-loop result. Our primary tool is näıve dimensional analysis, from
which we may determine the superficial degree of divergence for a given 5D diagram. Special care
is given to the treatment of brane-localized fields and the translation between the manifestly 5D
and KK descriptions.

6.1 4D and 5D theories of bulk fields

It is instructive to review key properties of µ → eγ in the Standard Model. This amplitude was
calculated by several authors [29, 31]. Two key features are relevant for finiteness:

1. Gauge invariance cancels the leading order divergences. The Ward identity requires
qµMµ = 0 where Mµ is the amplitude with the photon polarization peeled off and qµ
is the photon momentum. This imposes a nontrivial q-dependence on M and reduces the
superficial degree of divergence by one.

2. Lorentz invariance prohibits divergences which are odd in the loop momentum, k. In other
words,

∫
d4k /k/k2n = 0. After accounting for the Ward identity, the leading contribution to

the dipole operator is odd in k and thus must vanish. Specifically, one of the /k terms in a
fermion propagator must be replaced by the fermion mass m.

Recall that the chiral structure of this magnetic operator requires an explicit internal mass
insertion. In the Standard Model this is related to both gauge and Lorentz invariance so that it
does not give an additional reduction in the superficial degree of divergence. Before accounting for
these two features, näıve power counting in the loop integrals appears to suggest that the Standard
Model amplitude is logarithmically divergent from diagrams with two internal fermions and a single
internal boson. Instead, one finds that these protection mechanisms force the amplitude to go as
M−2 where M is the characteristic loop momentum scale.

We can now extrapolate to the case of a 5D theory. First suppose that the theory is modified
to include a non-compact fifth dimension: then we could trivially carry our results from 4D
momentum space to 5D except that there is an additional loop integral. By the previous analysis,
this would give us an amplitude that goes as M−1 and is thus finite. Such a theory is not
phenomenologically feasible but accurately reproduces the UV behavior of a bulk process in a
compact extra dimension so long as we consider the UV limit where the loop momentum is much
larger than the compactification and curvature scales. This is because the UV limit of the loop

3The finiteness of dipole operators has been investigated in gauge-higgs unified models where a higher-
dimensional gauge invariance can render these terms finite [30]. Here we do not assume the presence of such
additional symmetries.
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probes very small length scales that are insensitive to the compactification and any warping.
This confirms the observation that µ→ eγ in Randall-Sundrum models with all fields (including
the Higgs) in the bulk is UV finite [14]. In the case where there are brane-localized fields, this
heuristic picture is complicated since the µ→ eγ loop is intrinsically localized near the brane and
is sensitive to its physics; we address this issue below.

6.2 Bulk fields in the 5D formalism

We may formalize this power counting in the mixed position/momentum space formalism. This
also generalizes the above argument to theories on a compact interval. Each loop carries an
integral d4k and so contributes +4 to the superficial degree of divergence. We can now consider
how various features of particular diagrams can render this finite.

1. Gauge invariance (p + p′). As argued above and shown explicitly in (5.1), the Ward
identity identifies the gauge invariant contribution to this process to be proportional to
(p+ p′)µ which reduces the overall degree of divergence by one.

2. Bulk Propagators. The bulk fermion propagators in the mixed position/momentum space
formalism have a momentum dependence of the form /k/k ∼ 1 while the bulk boson propa-
gators go like 1/k. This matches the power counting from summing a tower of KK modes.
Note that this depends on k =

√
k2 so that the Lorentz invariance in Section 6.1 for a

non-compact extra dimension is no longer valid.

3. Bulk vertices (dz), overall z-momentum conservation. Each bulk vertex carries an
integral over the vertex position which brings down an inverse power of the momentum
flowing through it. This can be seen from the form of the bulk propagators, which depend
on z in the dimensionless combination kz up to overall warp factors. In the Wick-rotated UV
limit, the integrands reduce to exponentials so that their integrals go like 1/k. In momentum
space this suppression is manifested as the momentum-conserving δ-function in the far UV
limit where the loop momentum is much greater than the curvature scale.

An alternate and practical way to see the 1/k scaling of an individual dz integral comes
from the Jacobian as one shifts to dimensionless integration variables,

y = kER
′ x = kEz (6.1)

so that y ∈ [0,∞] plays the role of the loop integrand and x ∈ [yR/R′, y] plays the role of
the integral over the interval extra dimension. These are the natural objects that appear as
arguments in the Bessel functions contained in the bulk field propagators, as demonstrated
in Appendix E.3. In these variables each dx brings down a factor of 1/y from the Jacobian
of the integration measure. These variables are natural choices because they relate distance
intervals in the extra dimension to the scales that are being probed by the loop process. The
physically relevant distance scales are precisely these ratios.

4. Overall z-momentum conservation. We must make one correction to the bulk vertex
suppression due to overall z-momentum conservation. This is most easily seen in momen-
tum space where one δ-function from the bulk vertices conserves overall external momentum
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in the extra dimension and hence does not affect the loop momentum. In mixed posi-
tion/momentum space this is manifested as one dz integral bringing down an inverse power
of only external momenta without any dependence on the loop momentum. We review this
in Appendix C, where we discuss the passage between position and momentum space. The
overall z-momentum conserving δ-function thus adds one unit to the superficial degree of
divergence to account for the previous overcounting of dz ∼ 1/k suppressions.

5. Derivative coupling. The photon couples to charged bosons through a derivative coupling
which is proportional to the momentum flowing through the vertex. This gives a contribution
that is linear in the loop momentum, kµ.

6. Chirality: mass insertion, equation of motion. To obtain the correct chiral structure
for a dipole operator, each diagram must either have an explicit fermion mass insertion
or must make use of the external fermion equation of motion (EOM). For a bulk Higgs
field, each fermion mass insertion carries a dz integral which goes like 1/k. As described in
Section 5, the use of the equation of motion (EOM) corresponds to an explicit external mass
insertion. Thus fermion chirality reduces the degree of divergence by one unit.

We may now straightforwardly count the powers of the loop momentum to determine the
superficial degree of divergence for the case where the photon is emitted from a fermion (one
boson and two fermions in the loop) or a boson (two bosons and one fermion in the loop). The
latter case differs from the former in the number of boson propagators and the factor of kµ in the
photon Feynman rule.

Neutral Charged
Boson Boson

Loop integral (d4k) +4 +4
Gauge invariance (p+ p′) −1 −1
Bulk fermion propagators 0 0

Bulk boson propagator −1 −2
Bulk vertices (dz) −3 −3

Overall z-momentum +1 +1
Derivative coupling 0 +1

Mass insertion/EOM −1 −1
Total degree of divergence −1 −1

The WH± diagram in Fig. 3 is a special case since it has neither a derivative coupling nor an
additional chirality flip, but these combine to make no net change to the superficial degree of
divergence. We confirm our counting in Section 6.1 that the superficial degree of divergence for
universal extra dimension where all fields propagate in the bulk is −1 so that the flavor-changing
penguin is manifestly finite.

Before moving on to the case of a brane-localized boson, let us remark that this bulk counting
may straightforwardly be generalized to the case of a bulk boson with brane-localized mass inser-
tions. To do this, we note that the brane-localized mass insertion breaks momentum conservation
in the z direction and this no longer contributes +1 to the degree of divergence. On the other
hand, each mass insertion no longer contributes −1 from the dz integral so that the changes in the
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“overall z-momentum” and “mass insertion/EOM” counting cancel out. We find that diagrams
with a bulk gauge boson and brane-localized mass insertions have the same superficial degree of
divergence as the lowest order diagrams in a bulk mass insertion expansion.

6.3 Bulk fields in the KK formalism

All of the power counting from the 5D position/momentum space formalism carries over directly
to the KK formalism with powers of mKK treated as powers of k. The position/momentum space
propagators already carry the information about the entire KK tower as well as the profiles of
each KK mode. Explicitly converting from a 5D propagator to a KK reduction,

∆5D(k, z, z′) =
∑
n

f (n)(z)∆
(n)
KK(k)f (n)(z′), (6.2)

where f (n) is the profile of the nth KK mode. The sum over KK modes is already accounted for in
the 5D propagator; for example, for a boson ∆

(n)
KK ∼ 1/k2 while ∆5D ∼ 1/k. The vertices between

KK modes is given by the dz integral over each profile, which reproduces the same counting since
each profile depends on z as a function of m

(n)
KKz. Conservation of z-momentum is replaced by

conservation of KK number in the UV limit of large KK number.
Indeed, it is almost tautological that the KK and position/momentum space formalisms should

match for bulk fields since the process of KK reducing a 5D theory implicitly passes through
the position/momentum space construction. This will become slightly more non-trivial in the
case of brane-localized fields. We shall postpone a discussion of mixing between KK states until
Section 6.5.

6.4 Brane fields in the 5D formalism

The power counting above appears to fail for loops containing a brane-localized Higgs field. The
brane-localized Higgs propagator goes like 1/k2 rather than 1/k for the bulk propagator, but this
comes at the cost of two vertices that must also be brane-localized, thus negating the suppression
from the dz integrals. The charged Higgs has two brane-localized Higgs propagators, but loses
a third dz integral from the brane-localized photon emission. Finally, there are no additional
contributions from the brane-localized fermion mass insertions nor are there any corrections from
the conservation of overall z-momentum since it is manifestly violated by the brane-localized
vertices (see Appendix C for a detailed discussion). In the absence of any additional brane effects,
both types of loops would be logarithmically divergent, as discussed in [14].

Fortunately, two such brane effects appear. First consider the two neutral Higgs diagrams in
Fig. 2. The diagram with no mass insertion requires the use of an external fermion equation of
motion which still reduces the superficial degree of divergence by one so that it is finite. The
diagram with a single mass insertion is finite in the Standard Model due to a cancellation between
the Higgs and neutral Goldstone diagrams, as discussed in Section 5. More generally, even for a
single type of brane-localized field, there is a cancellation between diagrams in Fig. 6 where the
photon is emitted before and after the mass insertion. This can be seen by writing down the Dirac
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(a) Mass insertion before photon

H0

(b) Mass insertion after photon

Figure 6: One-mass-insertion neutral scalar diagrams. The leading order k-dependence of each
diagram cancels when the two are summed together.

structure coming from the fermion propagators to leading order in the loop momentum,

Ma ∼ /kγµ/k/k − kγµk/k = k2 (/kγµ − γµ/k) (6.3)

Mb ∼ /k/kγµ/k − /kkγµk = k2 (γµ/k − /kγµ) (6.4)

The terms with three factors of /k are contributions where ‘correct-chirality’ fermions propagate
into the bulk, while the terms with only one /k are contributions where ‘wrong-chirality’ fermions
propagate into the bulk. The structure of the latter terms come from the γ5∂z term in the
Dirac operator. The structures above multiply scalar functions which, to leading order in k, are
identical for each term. From the Clifford algebra it is clear that (6.3) and (6.4) cancel so that the
contribution that is non-vanishing in the UV must be next-to-leading order in the loop momentum.
In Appendix F this cancellation is connected to the chiral boundary conditions on the brane and is
demonstrated with explicit flat-space fermion propagators. We thus find that the brane-localized
neutral Higgs diagrams have an additional −1 contribution to the superficial degree of divergence.

Next we consider the charged Goldstone diagrams. These diagrams have an additional mo-
mentum suppression coming from a positive power of the charged Goldstone mass M2

W appearing
in the numerator due to a cancellation within each diagram. In fact, we have already seen in
Section 5.1 how such a cancellation appears. For the single-mass-insertion charged Goldstone dia-
gram in Fig. 4a, we saw in (5.4) that the form of the 4D scalar propagators and the photon-scalar
vertex cancels the leading-order loop momentum term multiplying the required (p + p′)µ. The
cancellation introduces an additional factor of M2

W /(k2 −M2
W ) so that the superficial degree of

divergence is reduced by two. Note that the position/momentum space propagators for a bulk
Higgs have a different form than that of the 4D brane-localized Higgs and do not display the same
cancellation. In the KK picture this is the observation that the cancellation in (5.4) takes the
form M2

KK/(k2 −M2
KK), which does not provide any suppression for heavy KK Higgs modes.

Finally, the diagrams where the photon emission vertex mixes the W and brane-localized
charged Goldstone are special cases. The photon vertex carries neither a dz integral nor a kµ

Feynman rule and hence makes no net contribution to the degree of divergence. A straightforward
counting including the brane-localized Goldstone, bulk W , and the single bulk vertex thus gives
a degree of divergence of −1.

We summarize the power counting for a brane-localized Higgs as follows:
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cancellation introduces an additional factor of M2
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W ) so that the superficial degree of
divergence is reduced by two. Note that the position/momentum space propagators for a bulk
Higgs have a different form than that of the 4D brane-localized Higgs and do not display the same
cancellation. In the KK picture this is the observation that the cancellation in (5.4) takes the
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KK), which does not provide any suppression for heavy KK Higgs modes.
Finally, the diagrams where the photon emission vertex mixes the W and brane-localized

charged Goldstone are special cases. The photon vertex carries neither a dz integral nor a kµ

Feynman rule and hence makes no net contribution to the degree of divergence. A straightforward
counting including the brane-localized Goldstone, bulk W , and the single bulk vertex thus gives
a degree of divergence of −1.

We summarize the power counting for a brane-localized Higgs as follows:
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Neutral Charged W–H±

boson boson mixing
Loop integral (d4k) +4 +4 +4

Gauge invariance (p+ p′) −1 −1 −1
Brane boson propagators −2 −4 −2

Bulk boson propagator 0 0 −1
Bulk vertices (dz) −1 0 −1

Photon Feynman rule 0 +1 0
Brane chiral cancellation −1 0 0

Brane M2
W cancellation 0 −2 0

Total degree of divergence −1 −2 −1

It may seem odd that the brane-localized charged Higgs loop has a different superficial degree of
divergence than the other 5D cases, which heretofore have all been −1. This, however, should not
be surprising since the case of a brane-localized Higgs is manifestly different from the universal
extra dimension scenario. It is useful to think of the brane-localized Higgs as a limiting form of
a KK reduction where the zero mode profile is sharply peaked on the IR brane. The difference
between the bulk and brane-localized scenarios corresponds to whether or not one includes the
rest of the KK tower.

6.5 Brane fields in the KK formalism

Let us now see how the above power counting for the brane-localized Higgs manifests itself in the
Kaluza-Klein picture [14]. Observe that this power counting for both the W–H± and the charged
boson loops are trivially identical to the 5D case due to the arguments in Section 6.3. For example,
the M2

W cancellation is independent of how one treats the bulk fields. The neutral Higgs loop,
however, is somewhat subtle since the ‘chiral cancellation’ is not immediately obvious in the KK
picture.

We work in the mass basis where the fermion line only carries a single KK sum (not independent
sums for each mass insertion) and the zero mode photon coupling preserves KK number due to
the flat A(0) profile. In this basis the internal fermion line carries one KK sum and it is sufficient
to show that for a single arbitrarily large KK mode the process scales like 1/M2

KK. The four-
dimensional power counting in Section 6.1 appears to give precisely this, except that Lorentz
invariance no longer removes a degree of divergence. This is because this suppression came from
the replacement of a loop momentum /k by the fermion mass m. For an arbitrarily large KK
mode, the fermion mass itself is the loop momentum scale and so does not reduce the degree of
divergence. In the absence of any additional suppression coming from the mixing of KK modes, it
would appear that the KK power counting only goes like 1/MKK so that the sum over KK modes
should be logarithmically divergent, in contradiction with the power counting for the same process
in the 5D formalism.

We shall now show that the pair of Yukawa couplings for the neutral Higgs also carry the
expected 1/k factor that renders these diagrams finite and allows the superficial degrees of diver-
gence to match between the KK and 5D counting. It is instructive to begin by defining a basis
for the zero and first KK modes in the weak (chiral) basis. We denote left (right) chiral fields of
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ŷJ1

Figure 7: The fermion line in the mass basis for diagrams with an internal KK mode (J > 3). For
simplicity we do not show the internal photon insertion.

KK number a by χ
(a)
L,R (ψ

(a)
L,R) where the L, R refers to SU(2)L doublets and singlets respectively.

We can arrange these into vectors

χ =
(
χ

(0)
Li

,χ
(1)
Ri

,χ
(1)
Li

)
ψ =

(
ψ

(0)
Ri

,ψ
(1)
Ri

,ψ
(1)
Li

)
, (6.5)

where i runs over flavors. It is helpful to introduce a single index J = 3a + i where i = 1, 2, 3
according to flavor and a = 0, 1, 2 according to KK mode (writing a = 2 to mean the first KK
mode with opposite chirality as the zero mode). Thus the external muon and electron are χ2 and
ψ1 respectively, while an internal KK mode takes the form χJ or ψJ with J > 3. This convention
in (6.5) differs from that typically used in the literature (e.g. [14]) in the order of the last two
elements of ψ. This basis is useful because the KK terms are already diagonal in the mass matrix
(ψMχ+ h.c.),

M =

m11 0 m13

m21 MKK,1 m23

0 0 MKK,2

 (6.6)

where each element is a 3× 3 block in flavor space and we have written

m =
v√
2
f

(a)
Ri

Y∗f
(b)
Lj
#MKK, (6.7)

with indices as appropriate and MKK diagonal. Let us define ε = v/MKK to parameterize the
hierarchies in the mass matrix. For a bulk Higgs, these terms are replaced by overlap integrals
and the M32 block is nonzero, though this does not affect our argument. Note that MKK,1 and
MKK,2 are typically not degenerate due to O(m) differences in the doublet and singlet bulk masses.
In the gauge eigenbasis the Yukawa matrix is given by

y =

√
2

v
M

∣∣∣∣∣
MKK=0

∼
1 0 1

1 0 1
0 0 0

 , (6.8)

where we have assumed fL, fR, Y∗ ∼ O(1) for simplicity since the hierarchies in the f (0)s do not
affect our argument. The 1 elements thus refer to blocks of the same order of magnitude that are
not generically diagonal. The 0 blocks must vanish by gauge invariance and chirality.

We now rotate the fields in (6.5) to diagonalize the mass matrix (6.6); we indicate this by a
caret, e.g. χ̂. In this basis the Yukawa matrix is also rotated y → ŷ. The fermion line for this
process is showin Fig. 7; the Yukawa dependence of the amplitude is

M ∼ ŷ1J ŷJ2. (6.9)
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caret, e.g. χ̂. In this basis the Yukawa matrix is also rotated y → ŷ. The fermion line for this
process is showin Fig. 7; the Yukawa dependence of the amplitude is

M∼ ŷ1J ŷJ2. (6.9)
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First let us note that in the unrealistic case where ŷ = y, one of the Yukawa factors in (6.9) is
identically zero for all internal KK modes, J > 3. One might then expect that the mass rotation
would induce a mixing of the zero modes with the KK modes that induces O(ε) blocks into the
Yukawa matrix,

ŷ
?∼
1 ε 1

1 · · · · · ·
ε · · · · · ·

 . (6.10)

If this were the case then the product ŷ1J ŷJ2 would not vanish, but would be proportional to
ε ∼ 1/MKK, which is precisely the KK dependence that we wanted to show. While this intuition
is correct and captures the correct physics, the actual Yukawa matrix in the mass basis has the
structure (c.f. (67) in [14])

ŷ ∼
 1 1 + ε −1 + ε

1 + ε · · · · · ·
1− ε · · · · · ·

 . (6.11)

The new O(1) elements come from the large rotations induced by the m21 and m13 blocks. These
factors cancel out so that we still have the desired ŷ1J ŷJ2 ∼ ε relation. Physically this is because
theseO(1) factors come from the ‘large’ rotation from chiral zero modes to light Dirac SM fermions.
Thus they represent the ‘wrong-chirality’ coupling of the external states induced by the usual
mixing of Weyl states from a Dirac mass. This does not include the mixing with the heavy KK
modes, which indeed carries the above ε factors so that the final result is indeed

ŷ1J ŷJ2 ∼ ε ∼ 1

MKK

(6.12)

giving the correct −1 contribution to the superficial degree of divergence for the neutral Higgs
diagrams to render them manifestly finite.

A few remarks are in order. First let us emphasize again that promoting the Higgs to a bulk
field makes the 3–2 block of the y matrix nonzero. This does not affect the above argument so
that the KK decomposition confirms the observation that the amplitude with a bulk Higgs is also
finite [14]. Of course, for a bulk Higgs the power counting in Section 6.2 gives a more direct check
of finiteness. Next, note that without arguing the nature of the zeros in the gauge basis Yukawa
matrix or the physical nature of the ε mixing with KK modes, it may appear that the 1/MKK

dependence of ŷ1J ŷJ2 requires a ‘miraculous’ fine tuning between the matrix elements of (6.11).
Our discussion highlights the physical nature of this cancellation as the mixing with heavy states
that is unaffected by the O(1) mixing of light chiral states.

Finally, let us point out that the above arguments are valid for the neutral Higgs diagram
where y = yE, the charged lepton Yukawa matrix. The analogous charged Higgs diagram contains
neutrino Yukawa matrices yN so that there is no additional 1/k from mixing.

6.6 Matching KK and loop cutoffs

There is one particularly delicate point in the single-mass-insertion neutral Higgs loop in the KK
reduction that is worth pointing out because it highlights the relation between the KK scales
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M
(n)
KK and the 5D loop momentum. To go from the 5D to the 4D formalism we replace our

position/momentum space propagators with a sum of Kaluza-Klein propagators,

∆5D(k, z, z′) =
N∑
n=0

f (n)(z)
/k +Mn

k2 −M2
n

f (n)(z′). (6.13)

The full 5D propagator is exactly reproduced by summing the infinite tower of states, N → ∞.
More practically, the 5D propagator with characteristic momentum scale k is well-approximated
by at least summing up to modes with mass Mn ≈ k. Modes that are much heavier than this
decouple and do not give an appreciable contribution. Thus, when calculating low-energy, tree-
level observables in 5D theories, it is sufficient to consider only the effect of the first few KK
modes. On the other hand, this means that one must be careful in loop diagrams where internal
lines probe the UV structure of the theory. In particular, significant contributions from internal
propagators near the threshold Mn ≈ k would be missed if one sums only to a finite KK number
while taking the loop integral to infinity. This is again a concrete manifestation of the remarks
below (6.1) that the length scales probed by a process depends on the characteristic momentum
scale of the process.

Indeed, a Kaluza-Klein decomposition for a single neutral Higgs yields

|M|(p+p′)µ =
gv

16π2
fµf−eūe(p+ p′)µuµ × 1

M2

[
c0 + c1

( v
M

)2

+O
( v
M

)3
]

(6.14)

for some characteristic KK scale M ≈ MKK and dimensionless coefficients ci that include a loop
integral and KK sums. In order to match the 5D calculation detailed above, we shall work in the
mass insertion approximation so that there are now two KK sums in each coefficient. The leading
c0 term is especially sensitive to the internal loop momentum cutoff Λ relative to the internal KK
masses,

c0 = −λ2

N∑
n=1

N∑
m=1

λ2 (n2 +m2) + 2n2m2

4 (n2 + λ2)2 (m2 + λ2)2 ≡ −
1

λ2

N∑
n=1

N∑
m=1

ĉ0(n,m), (6.15)

where we have written mass scales in terms of dimensionless numbers with respect to the mass
of the first KK mode: Mn ∼ nMKK and Λ ∼ λMKK. It is instructive to consider the limiting
behavior of each term ĉ(n,m) for different ratios of the KK scale (assume n = m) to the cutoff
scale λ:

ĉ0(n, n) −→
(n
λ

)2

for n� λ (6.16)

ĉ0(n, n) −→
(n
λ

)0

for n ≈ λ (6.17)

ĉ0(n, n) −→
(
λ

n

)4

for n� λ. (6.18)

We see that the dominant contribution comes from modes whose KK scale is near the loop mo-
mentum cutoff while the other modes are suppressed by powers of the ratio of scales. In particular,
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if one calculates the loop for any internal mode of finite KK number while taking the loop cutoff
to infinity, then the c0 contribution vanishes because the n ≈ λ contributions are dropped. From
this one would incorrectly conclude that the leading order term is c1 and that the amplitude is
orders of magnitude smaller than our 5D calculation. Thus one cannot consistently take the 4D
momentum to infinity without simultaneously taking the 5D momentum (i.e. KK number) to in-
finity. Or, in other words, one must always be careful to include the non-zero contribution from
modes with n ≈ λ. One can see from power counting on the right-hand side of (6.15) that so long
as the highest KK number N and the dimensionless loop cutoff λ are matched, c0 gives a non-zero
contribution even in the λ→∞ limit.

This might seem to suggest UV sensitivity or a non-decoupling effect. However, we have already
shown that µ → eγ is UV-finite in 5D. Indeed, our previous arguments about UV finiteness tell
us that the overall contribution to the amplitude from large loop momenta (and hence high KK
numbers) must become negligible; we see this explicitly in the UV limit of (6.15). The key
statement is that the KK scale and the UV cutoff of the loop integral must be matched, N & λ.
This can be understood as maintaining momentum-space rotational invariance in the microscopic
limit of the effective theory (much smaller than the curvature scale). Further, the prescription that
one must match our KK and loop cutoffs N & λ is simply the statement that we must include all
the available modes of our effective theory. It does not mean that one must sum a large number
of modes in an effective KK theory. In particular, one is free to perform the loop integrals with a
low cutoff Λ ∼MKK so that only a single KK mode runs in the loop. This result gives a nonzero
value for c0 which matches the order of magnitude of the full 5D calculation and hence confirms
the decoupling of heavy modes.

6.7 Two-loop structure

As with any 5D effective theory, the RS framework is not UV complete. This non-renormalizability
means that it is possible for processes to be cutoff-sensitive. Since an effective µ → eγ operator
(in the sense of Appendix A) cannot be written at tree level, there can be no tree-level counter
term and so we expect the process to be finite at one-loop order, as we have indeed confirmed
above. In principle, however, higher loops need not be finite.

The one-loop analysis presented thus far assumes that we may work in a regime where the
relevant couplings are perturbative. In other words, we have assumed that higher-loop diagrams
are negligible due to an additional g2/16π2 suppression, where g is a generic internal coupling. This
naturally depends on the divergence structure of the higher-loop diagrams. If such diagrams are
power-law divergent then it is possible to lose this window of perturbativity even for relatively low
UV cutoff Λ ∼ MKK. We have shown that even though näıve dimensional analysis suggests that
the µ→ eγ amplitude should be linearly divergent in 5D, the one-loop amplitudes are manifestly
finite.

Here we argue that the two-loop diagrams should be no more than logarithmically divergent
for bulk bosons so that there is an appreciable region of parameter space where the process is
indeed perturbative and the one-loop analysis can be trusted. This case is also addressed in [14].
The relevant topologies are shown in Fig. 8. In this case, the power counting arguments that
we’ve developed in this section carry over directly to the two-loop diagrams:
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Figure 8: Yin-Yang and double rainbow topologies of two-loop diagrams. The dotted line repre-
sents either a gauge or Higgs boson. We have omitted the photon emission and an odd number
of mass insertions.

Loop integrals (d4k) +8
Gauge invariance (p + p′) −1
Bulk boson propagators −2

Bulk vertices (dz) −5
Total degree of divergence 0

We find that the superficial degree of divergence is zero so that the process is, at worst, logarith-
mically divergent.

The power counting for the brane-localized fields is more subtle, as we saw above. Näıve power
counting suggests that the two-loop, brane-localized diagrams are no more than quadratically
divergent. However, just as additional cancellations manifested themselves in the one-loop, brane-
localized case, it may not be unreasonable to expect that those might cancellations carry over to
the two-loop diagrams. Checking the existence of such cancellations requires much more work we
leave this to a full two-loop calculation.

7 Outlook and Conclusion

We have presented a detailed calculation of the µ → eγ amplitude in a warped RS model using
the mixed position/momentum representation of 5D propagators and the mass insertion approx-
imation, where we have assumed that the localized Higgs VEV is much smaller than the KK
masses in the theory. Our calculation reveals a new sensitivity to the specific flavor structure of
the anarchic Yukawa matrices since this affects the relative signs of coefficients that may interfere
constructively or destructively. We thus find that while generic flavor bounds can be placed on
the lepton sector of RS models, one can systematically adjust the structure of the YE and YN

matrices to evade the bounds while simultaneously maintaining anarchy. In other words, there
are wide regions of parameter space which satisfy experimental constraints without fine tuning.
Conversely, it is easy to generate anarchic flavor structures which—for a given KK scale—cannot
satisfy the µ → eγ constraints for any value of the anarchic scale Y∗. Over a range of randomly
generated anarchic matrices, the parameter controlling this Y∗-independent structure has a mean
value of zero (meaning no effect) and a 1σ value which would push the KK scale to 17 TeV. It is
interesting to consider the case where MKK = 3 TeV where KK excitations are accessible to the
LHC.

Within the regime of this generic structure we have also addressed the tension between the
bounds on Y∗ from the loop-level µ→ eγ process and tree-level lepton flavor violating processes.
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leave this to a full two-loop calculation.
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We have presented a detailed calculation of the µ → eγ amplitude in a warped RS model using
the mixed position/momentum representation of 5D propagators and the mass insertion approx-
imation, where we have assumed that the localized Higgs VEV is much smaller than the KK
masses in the theory. Our calculation reveals a new sensitivity to the specific flavor structure of
the anarchic Yukawa matrices since this affects the relative signs of coefficients that may interfere
constructively or destructively. We thus find that while generic flavor bounds can be placed on
the lepton sector of RS models, one can systematically adjust the structure of the YE and YN
matrices to evade the bounds while simultaneously maintaining anarchy. In other words, there
are wide regions of parameter space which satisfy experimental constraints without fine tuning.
Conversely, it is easy to generate anarchic flavor structures which—for a given KK scale—cannot
satisfy the µ → eγ constraints for any value of the anarchic scale Y∗. Over a range of randomly
generated anarchic matrices, the parameter controlling this Y∗-independent structure has a mean
value of zero (meaning no effect) and a 1σ value which would push the KK scale to 17 TeV. It is
interesting to consider the case where MKK = 3 TeV where KK excitations are accessible to the
LHC.
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Within the regime of this generic structure we have also addressed the tension between the
bounds on Y∗ from the loop-level µ→ eγ process and tree-level lepton flavor violating processes.
These latter constraints impose

Y∗ & 3.7 Y∗ & 1 (7.1)

for general and custodially protected models respectively. In the regime where the Y∗-independent
parameter is negligible, we find that the ‘worst case’ scenario where the leading diagrams add
constructively sets an upper bound on Y∗,

Y∗ . 1, (7.2)

which approaches the lower bound of the custodial model. In the case where the leading diagrams
add destructively and next-to-leading order effects (assumed to be 10% of the leading contribution)
dominate, we estimate that the upper bound is more forgiving,

Y∗ . 4, (7.3)

and approaches the general lower bound. We thus find that the generic one-loop and tree-level
constraints are on the verge of tension with one another. The impact of current experiments on
this bound will be very interesting.

On the other hand, we know that anarchic models generically lead to small mixing angles (see
however [17]). These fit the observed quark mixing angles well but are in stark contrast with
the lepton sector where neutrino mixing angles are large, O(1), and points to additional flavor
structure in the lepton sector. For example in [15] a bulk A4 non-abelian discrete symmetry
is imposed on the lepton sector. This leads to a successful explanation of both the lepton mass
hierarchy and the neutrino mixing angles (see also [32]) while all tree-level lepton number violating
couplings are absent, so the only bound comes from the µ→ eγ amplitude.

We have also provided different arguments for the one-loop finiteness of this amplitude which
we verified explicitly through calculations. We have illuminated how to correctly perform the
power counting to determine the degree of divergence from both the 5D and 4D formalisms. The
transition between these two pictures is instructive and we have demonstrated the importance of
matching the number of KK modes in a 4D EFT to any 4D momentum cutoff in loop diagrams.
The power-counting analysis can be particularly subtle for the case of brane-localized fields and we
have shown how one-loop finiteness can be made manifest. Finally, we have addressed the existence
of a perturbative regime in which these one-loop results give the leading result by arguing that
the bulk field two-loop diagrams should be at most logarithmically divergent and that it is at least
feasible that the brane-localized two-loop diagrams may follow this power-counting.

In addition to µ→ eγ is an analogous process mediated by the same penguin diagrams, b→ sγ.
There are additional gluon diagrams with the same topology as the Z diagrams described here.
Because of operator mixing, connecting the b → sγ amplitude to QCD observables require the
Wilson coefficients for both the photon penguin C7γ and the gluon penguin C8g. A discussion
can be found in [4], though there it was expected that these penguins would be logarithmically
divergent. We leave the explicit evaluation of the b → sγ amplitude in warped space to future
work [33].
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A Matching 5D amplitudes to 4D EFTs

The standard procedure for comparing the loop-level effects of new physics on low energy ob-
servables is to work with a low-energy effective field theory in which the UV physics contributes
to the Wilson coefficient of an appropriate local effective operator by matching the amplitudes
of full and effective theories. In this appendix we briefly remark on the matching of 5D mixed
position/momentum space amplitudes to 4D effective field theories, where some subtleties arise
from notions of locality in the extra dimension.

The only requirement on the 5D amplitudes that must match to the 4D effective operator is
that they are local in the four Minkowski directions. There is no requirement that the operators
should be local in the fifth dimension since this dimension is integrated over to obtain the 4D
operator. Thus the 5D amplitude should be calculated with independent external field positions
in the extra dimension. Heuristically, one can write this amplitude as a nonlocal 5D operator

O5(x, zH , zL, zE, zA) = H5(x, zH) · L̄5(x, zL)σMN E5(x, zE)FMN(x, zA). (A.1)

Note that this object has mass dimension 8. In the 5D amplitude the fields are replaced by external
state wavefunctions and this is multiplied by a ‘nonlocal coefficient’ c5(zH , zL, zE, zA) which in-
cludes integrals over internal vertices and loop momenta as well as the mixed position/momentum
space propagators to the external legs. To match with the low-energy 4D operator we impose that
the external states are zero modes and decompose them into 4D zero-mode fields multiplied by a
5D profile f(z) of mass dimension 1/2,

Φ5(x, z)→ Φ(0)(x)f (0)(z). (A.2)

Further, we must integrate over each external field’s z-position. Thus the 4D Wilson coefficient
and operator are given by

c4O4(x) =

∫ [∏
i

dzi

]
c5(zH , zE, zL, zA)f

(0)
H (zH)f

(0)
E (zE)f

(0)
L (zL)f

(0)
A (zA) H · L̄ σµν EFµν , (A.3)
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where the fields on the right-hand side are all zero modes evaluated at the local 4D point x. Note
that these indeed have the correct 4D mass dimensions, [O4] = 6 and [c] = −2.

Finally, let us remark that we have treated the 5D profiles completely generally. In particular,
there are no ambiguities associated with whether the Higgs field propagates in the bulk or is
confined to the brane. One can take the Higgs profile to be brane-localized,

fH(zH) ∼
√
R′δ(z −R′), (A.4)

where the prefactor is required by the dimension of the profiles. With such a profile (or any
limiting form thereof) the passage from 5D to 4D according to the procedure above gives the
correct matching for brane-localized fields.

B Analytic expressions

We present analytic expressions for the leading and next-to-leading diagrams contributing to
µ→ eγ. We label the diagrams according to the number of Higgs-induced mass insertions and the
internal gauge boson in Fig. 9. Estimates for the size of each contribution are given in Section 5.
We shall neglect diagrams which are estimated to give corrections on the order of one percent of
the leading effect, namely the zero- and two-mass-insertion Z and W diagrams (0MIZ, 0MIW ,
2MIZ, 2MIW ) and the one-mass-insertion W–Goldstone diagram (HW ). We shall only write
the coefficient of the ūp′(p + p′)µup term since this completely determines the gauge-invariant
contribution.

As discussed in Section 5, the leading diagrams contributing to the a and b coefficients are

M(1MIH±)
∣∣
(p+p′)µ =

i

16π2
(R′)2

fcLYEY
†
NYNf−cE

ev√
2
× 2I1MIH± (B.1)

M(3MIZ)|(p+p′)µ =
i

16π2
(R′)2

fcLYEY
†
EYEf−cE

ev√
2

(
g2 ln

R′

R

)(
R′v√

2

)2

× I3MIZ (B.2)

M(1MIZ)|(p+p′)µ =
i

16π2
(R′)2

fcLYEf−cE
ev√

2

(
g2 ln

R′

R

)
× I1MIZ . (B.3)

We have explicitly labelled the 4D (dimensionless) anarchic Yukawa matrices whose elements
assumed to take values of order (YE)ij ∼ (YN)ij ∼ Y∗, but have independent flavor structure. This
implies that the two terms contributing to the a coefficient may have different signs. Further,
since both of these flavor structures are independent of the mass matrix, all three contributions
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0MIH0 1MIH0 0MIH± 1MIH±

2MIZ 3MIZ 2MIW HW

0MIZ 1MIZ 0MIW WH

Figure 9: Leading order diagrams contributing to µ → eγ and their labels corresponding to the
explicit formulae in the text. Crosses represent Higgs-induced mass insertions. The top two
rows correspond to contributions to the anarchic a coefficient while the last row correspond to
contributions to the aligned b coefficient. Estimates for the relative order of magnitudes of these
diagrams can be found in Figs. 2 and 3.

can have arbitrary relative signs. The relevant dimensionless integrals are given by

I1MIH± =

∫
dy F̃Lyy

+,y F̃Ryy
+,y

y5

(y2 + (MW R′)2)3
(B.4)

I3MIZ =− I1MIZ + Inew
3MIZ (B.5)

I1MIZ =−
∫

dy dx1dx2dx3

(
y

x1

)cL+2(
x2

y

)cE−2(
y

x3

)4(
∂G12

∂kE

)
y

y3×(
− D̃+F̃R23

+,y D̃−F̃R3y
−,y F̃Ly1

+,y + F̃R2x3−,y F̃R3y
−,y F̃Ly1

+,y

− F̃R2y
−,y D̃−F̃Ly3

−,y D̃+F̃L31
+,y + F̃R2y

−,y F̃Ly3
+,y F̃L31

+,y

)
(B.6)

Inew
3MIZ =−

∫
dy dx1dx2dx3

(
y

x1

)cL+2(
x2

y

)cE−2(
y

x3

)4(
∂G12

∂kE

)
y

y5×(
F̃R2y
−,y F̃L′y3

+,y F̃L′3y
+,y F̃R′yy

−,y F̃Ly1
+,y + F̃R2y

−,y D̃−F̃L′y3
−,y D̃+F̃L′3y

+,y F̃R′yy
−,y F̃Ly1

+,y

− F̃R2y
−,y F̃L′yy

+,y F̃R′y3
−,y F̃R′3y

−,y F̃Ly1
+,y + F̃R2y

−,y F̃L′yy
+,y D̃+F̃R′y3

+,y D̃−F̃R′3y
−,y F̃Ly1

+,y

)
, (B.7)
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Figure 9: Leading order diagrams contributing to µ → eγ and their labels corresponding to the
explicit formulae in the text. Crosses represent Higgs-induced mass insertions. The top two
rows correspond to contributions to the anarchic a coefficient while the last row correspond to
contributions to the aligned b coefficient. Estimates for the relative order of magnitudes of these
diagrams can be found in Figs. 2 and 3.
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3MIZ =−

∫
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y

x1

)cL+2(
x2

y

)cE−2(
y

x3

)4(
∂G12

∂kE
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y
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F̃R2y
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+,y F̃L′3y

+,y F̃R′yy
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−,y F̃Ly1
+,y

− F̃R2y
−,y F̃
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+,y F̃R′y3
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+,y + F̃R2y
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where y = kER
′ and x = kEz. The significance of these dimensionless variables is discussed

below (6.1). The dimensionless Euclidean-space propagator functions F̃ are defined in (E.39-
E.40), where the upper indices of the F functions define the propagation positions. For example,
FR3y represents a propagator from z = R′ to z = z3. Similarly, Gy is defined in (D.4). Terms in
Inew

3MIZ with a prime have independent cL and cR values coming from the off-diagonal elements in
the Yukawa matrices associated with mass insertions. The I1MIZ term in I3MIZ comes from adding
two consecutive internal brane-to-brane propagators to the 1MIZ diagram; the structure of these
additional propagators only give percent-level corrections to the 1MIZ result so that we may
neglect them here. Similarly, we neglect the contribution of the fifth component of the internal
gauge boson since this mode vanishes on the IR brane where most of the loop contribution to
µ→ eγ is localized.

Let us make some general remarks about this calculation. The closed form expressions for the
bulk propagators hold in the absence of masses induced by electroweak symmetry breaking so that
we work in a mass insertion approximation for the fermion masses. In a KK reduction this means
that the contribution to internal propagators coming from zero modes are massless and hence may
suffer from infrared divergences. In the cases where this happens, one may isolate the zero mode
in the 5D formalism by taking the infrared asymptotic form of the relevant Bessel functions and
identifying the term that matches the zero mode. One may then subtract this term by hand from
the full 5D expression. One can then add the correct 4D propagator (including the Higgs-induced
mass), but this is not necessary for the fermion zero mode since the pure zero mode contribution
is flavor aligned. For gauge bosons, however, this may be useful for precision calculations since
MW and MZ is only an order of magnitude smaller than the KK scale. One can subtract zero and
KK modes without Higgs-induced masses and systematically add the corrected 4D propagators
and 5D profiles to generalize the calculation to arbitrary precision.

According to the order-of-magnitude estimates in Section 5, the next-to-leading order contri-
butions to the anarchic a coefficient are the zero-mass-insertion scalar diagrams and the one-mass-
insertion neutral scalar diagram,

M(0MIH±)
∣∣
(p+p′)µ =

i

16π2
(R′)2

f−c′EmµYNY
†
Nf−cEe× I0MIH± (B.8)

M(0MIH0)
∣∣
(p+p′)µ =

i

16π2
(R′)2

f−c′EmµYNY
†
Nf−cEe× I0MIH0 (B.9)

M(1MIH0)
∣∣
(p+p′)µ =

i

16π2
(R′)2

fcLYEY
†
EYEf−cE

ev√
2
× I1MIH0 . (B.10)

For the zero-mass-insertion diagrams we have written mµ to mean the matrix coming from the
rotation of the zero mode mass to the gauge eigenbasis. Note in these diagrams that the amplitude
contains two right-handed flavor functions leading to a different structure than assumed in (4.13).
As discussed in Section 5 this structure matches (4.13) in the limit where cL = −cR for each
lepton flavor and only becomes further suppressed in the extreme custodially-protected limit
where fcL � f−cR .

There are two types of intermediate boson in the one-mass-insertion neutral scalar diagram:
the neutral Higgs and the neutral Goldstone boson. The Goldstone carries an additional factor
of i in its Yukawa coupling so that these terms have a relative minus sign. Note that the internal
mass insertion is crucial for this cancellation or else the two boson vertices would be Hermitian
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conjugates of one another and there would be no sign difference. The only difference between the
two diagrams is the scalar mass so that the diagrams cancel up to order (m2

H −m2
Z)/m2

KK

The dimensionless integrals associated with (B.8 – B.10) are

I0MIH± =

∫
dy F̃Ryy

−,y
y5

(y2 + (MHR′)2)3
(B.11)

I0MIH0 =

∫
dy dx y2

(y
x

)4

F̃Lyx
+,y F̃

Lxy
+,y

y2

(y2 + (MHR′)2)2
(B.12)

I1MIH0 =

∫
dy dx y2

(y
x

)4 [
− 2F̃Lyx

+,y F̃
Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MHR′)2

+ F̃Lyx
+,y F̃

Lxy
+,y F̃

Ryy
−,y

y4

(y2 + (mHR′)2)2
− 1

2

∂F̃Lyx
+,y′

∂y′

∣∣∣∣∣
y

F̃Lxy
+,y F̃

Ryy
−,y

y3

y2 + (MHR′)2

− 1

2

∂D̃−F̃
Lyx
−,y′

∂y′

∣∣∣∣∣
y

D̃+F̃
Lxy
+,y F̃

Ryy
−,y

y

y2 + (MHR′)2
+ 2F̃Lyy

+,y D̃+F̃
Ryx
+,y D̃−F̃

Rxy
−,y

1

y2 + (MHR′)2

− F̃Lyy
+,y D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

y2

(y2 + (MHR′)2)2
+

1

2

∂F̃Lyy
+,y′

∂y′

∣∣∣∣∣
y
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y

y2 + (MHR′)2
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Ryx
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2

∂F̃Lyy
+,y′

∂y′

∣∣∣∣∣
y
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Rxy
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+,y
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y

F̃Rxy
−,y

y3
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+
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F̃Lyy

+,y

∂D̃+F̃
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+,y′

∂y′

∣∣∣∣∣
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D̃−F̃
Rxy
−,y
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y2 + (MHR′)2

]
.

(B.13)

Finally, the next-to-leading-order contribution to the b coefficient is the zero-mass-insertion
W–Goldstone mixing diagram,

M(WH)|(p+p′)µ =
i

16π2
(R′)2

fcLYEf−cE
ev√

2

(
g2 ln

R′

R

)
1

4
× IWH . (B.14)

The dimensionless integral is

IWH =

∫
dy dx

(y
x

)2+cL
(
∂Gyx

∂kE

)
y

F̃Lyx
+,y

y3

y2 + (MWR′)2
. (B.15)

Näıvely this gives the same order contribution as the one-mass-insertion Z loop, but this diagram is
more closely aligned with the zero-mode mass matrix because it only contains a single internal sum
over bulk masses. Numerically this gives an additional factor of 10 suppression in the contribution
to the b function based on the 1σ value of randomly generated anarchic matrices.

To estimate the order of magnitude of the dimensionless integrals, we provide sample values
for a ‘minimal’ cLi = cRi model with bulk mass parameters in Table 1. For integrals containing a
charged boson, H±, the right-handed neutrino bulk masses are fixed by requiring a 1 eV zero-mode
mass according to (2.7). In each integral all internal fermion lines are assumed to carry the same
flavor so I can be estimated by taking an average over all three values.

33



ce = .667 cµ = .587 cτ = .537
I1MIH± 0.37 0.38 0.58
I1MIZ −0.11 −0.12 −0.12
Inew

3MIZ −0.052 −0.076 −0.079
I0MIH± −1.4 −1.5 −1.7
I0MIH0 0.21 0.23 0.36
IWH −0.24 −0.23 −0.25
I1MIH0 −0.49 −0.49 −0.49

Table 1: Table of integrals where all internal fermion lines correspond to a flavor with ‘minimal
model’ bulk mass parameter. The single-mass-insertion neutral scalar integral I1MIH0 corresponds
to MHR

′ = .2 but only changes at the 0.5% level between MHR
′ = .2 and MZR

′ = .08 so that
the Higgs and neutral Goldstone loops cancel to this level.

C Position, momentum and position/momentum space

In order to elucidate the power counting in Section 6 and to provide some motivation for the
structure of the propagators in Appendix E.1, we review the passage between Feynman rules in
position, momentum, and mixed position/momentum space. For simplicity we shall work with
massless scalar fields on a flat (Minkowski) d-dimensional background, but the generalization of
the salient features to higher spins is straightforward. In position space, the two-point Green’s
function for a particle propagating from x′ to x is

D(x, x′) =

∫
d̄ dk

i

k2
e−ik·(x−x

′), (C.1)

a momentum-space integral over a power-law in k times a product of exponentials in k ·x and k ·x′.
Each vertex carries a ddx integral representing each spacetime point at which the interaction may
occur. When some dimensions are compact, the associated integrals are reverted to discrete sums
and the particular linear combination of exponentials is shifted to maintain boundary conditions.
Further, when dimensions are warped the exponentials become Bessel functions. In this Appendix
we will neglect these differences and focus on general features since the UV behavior of each of
the aforementioned scenarios (i.e. for momenta much larger than any mass, compactification, or
warping scales) reduces to the flat non-compact case presented here.

In 4D it is conventional to work in full momentum space where the Feynman rules are derived
by performing the ddx integrals at each vertex over the exponential functions from each propagator
attached to the vertex and amputating the external propagators. This generates a momentum-
conserving δ-function at each vertex which can be used to simplify the d̄ dk integrals in each
propagator. For each diagram one such δ-function imposes overall conservation of the external
momenta and hence has no dependence on any internal momenta. For a loop diagram this means
that there is a leftover d̄ dk which corresponds to the integration over the loop momentum. Thus
the momentum space formalism involves separating the exponentials in k · x from the rest of the
Green’s function and performing the ddx integral to obtain δ-functions.

To go to the mixed position/momentum space formalism we pick one direction, z, and leave
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the dependence on that position in the propagator while integrating over the z-component of the
momentum, kz in (C.1). We shall write the Minkowski scalar product of the (d− 1) momentum-
space directions as k2 so that the full d-dimensional scalar product is k2 − k2

z . The Feynman rule
for each vertex now includes an explicit dz integral which must be performed after including each
of the position/momentum space propagators, which take the form

∆(k, z, z′) =

∫
d̄ kz

i

k2 − k2
z

eikz(z−z′). (C.2)

The (d − 1) other exponentials and momentum integrals are accounted in the usual momentum
space formalism. This object goes like ∆ ∼ 1/k, which indeed has the correct dimensionality for
the sum over a KK tower of scalar propagators. Similarly, the massless bulk fermion propagator
is

∆(k, z, z′) =

∫
d̄ kz

i(/k − kzγ5)

k2 − k2
z

eikz(z−z′), (C.3)

where we may now identify the scalar functions F ∼ dkze
ikz(z−z′)/(k2 − k2

z) in (E.6) and (E.23).
It is thus apparent that the mixed formalism contains all of the same integrals and factors as

the momentum-space formalism, but that these are packaged differently between vertex and prop-
agator Feynman rules. By identifying features between the two pictures one may glean physical
intuition in one picture that is not manifest in the other. For example, the observation in the
mixed formalism that each bulk vertex on a loop brings down a power of 1/k is straightforwardly
understood to be a manifestation of momentum conservation in the momentum space picture.

On the other hand, the mixed formalism is much more intuitive for brane-localized effects.
Interactions with fields on the brane at z = L carry δ(z−L) factors in the vertex Feynman rules.
Such interactions violate momentum conservation in the z direction. In the KK formalism this
manifests itself as the question of when it is appropriate to sum over an independent tower of
KK modes. This is easily quantified in the mixed formalism since the dz integrals are not yet
performed in the Feynman rules and we may directly insert δ(z − L) terms in the expression for
the amplitude.

As a concrete example, consider the loop diagram with three vertices shown in Fig. 10. It is
instructive to explicitly work out loop z-momentum structure of this diagram in the case where
all vertices are in the bulk and observe how this changes as vertices are localized on the brane.
To simplify the structure, let us define the product of momentum-space propagators

f(k1, k2, k3) ≡
3∏
i=1

i

k2
i − (kzi )

2
. (C.4)

Using
∫
dz exp(izk) = δ(k), the bulk amplitude is proportional to

M∼
∫
dz1 dz2 dz3 dk

z
1 dk

z
2 dk

z
3 f(k1, k2, k3) eiz1(k1+p1−k2)z eiz2(k2+p3−k3)z eiz3(k3+p3−k1)z (C.5)

∼
∫
dz2 dz3 dk

z
2 dk

z
3 f(k2 − p1, k2, k3) eiz2(k2+p3−k3)z eiz3(k3+p3−k2+p1)z (C.6)

∼
∫
dz3 dk

z
3 f(k3 − p2 − p1, k3 − p2, k3) eiz3(p1+p2+p3)z . (C.7)
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Figure 10: A simple loop diagram to demonstrate the power counting principles presented. The
lines labelled pi represent the net external momentum flowing into each vertex so that pz

i corre-
sponds to the KK mass of the ith external particle.

We have implicitly performed the associated d(d−1)x integrals at each step. The final dz3 integral
gives the required δ-function of external momenta while leaving an unconstrained dkz

3 loop integral.
Each dkz/(k2 − k2

z) ∼ 1/k represents the entire KK tower associated with an internal line. The
removal of two dkz integrals by δ-functions is a manifestation of the 1/k suppression coming from
each dz integral with the caveat that the ‘last’ dz integral only brings down powers of external
momenta and hence does not change the power of loop momenta. This explains the ‘overall
z-momentum’ contribution to the superficial degree of divergence in Section 6.2.

Next consider the case when the z3 vertex is brane localized so that its Feynman rule is
proportional to δ(z3 − L). This only affects the last line of the simplification by removing the
dz3 integral. Physically this means that z-momentum (KK number) needn’t be conserved for this
process. Since the z3 exponential is independent of any loop momenta, this does not affect the
superficial degree of divergence.

On the other hand, if z2 is also brane localized, then the δ(z2 − L) from the vertex prevents
the dz2 integral in the second line from giving the δ(k2 + p2 − k3) that cancels the dkz

2 integral.
Thus the process has an additional dkz

2 integral which now increases the degree of divergence. In
the 4D formalism this is manifested as an additional independent sum over KK states. It is now
also clear that setting z1 to be brane localized prevents the dkz

1 from being cancelled and hence
adds another unit to the degree of divergence. This counting is trivially generalized to arbitrary
number of vertices and different types of internal propagators. For a loop with V vertices, VB of
which are in the bulk, the key points are:

1. If V = VB, then the dz integrals reduce the superficial degree of divergence by (VB − 1).

2. If, on the other hand, V > VB so that there is at least one brane-localized vertex, then the
dz integrals reduce the superficial degree of divergence by VB.

Intuitively the z-momentum non-conservation coming from brane-localized interactions can be
understood as the particle picking up an arbitrary amount of momentum as it bounces off the
brane (a similar picture can be drawn for the orbifold [34]). Alternately, it reflects the uniform
spread in momentum associated with complete localization in z-position. While this may seem
to imply sensitivity to arbitrarily high scale physics on the brane, a negative degree of divergence
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Next consider the case when the z3 vertex is brane localized so that its Feynman rule is
proportional to δ(z3 − L). This only affects the last line of the simplification by removing the
dz3 integral. Physically this means that z-momentum (KK number) needn’t be conserved for this
process. Since the z3 exponential is independent of any loop momenta, this does not affect the
superficial degree of divergence.

On the other hand, if z2 is also brane localized, then the δ(z2 − L) from the vertex prevents
the dz2 integral in the second line from giving the δ(k2 + p2 − k3) that cancels the dkz2 integral.
Thus the process has an additional dkz2 integral which now increases the degree of divergence. In
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adds another unit to the degree of divergence. This counting is trivially generalized to arbitrary
number of vertices and different types of internal propagators. For a loop with V vertices, VB of
which are in the bulk, the key points are:

1. If V = VB, then the dz integrals reduce the superficial degree of divergence by (VB − 1).

2. If, on the other hand, V > VB so that there is at least one brane-localized vertex, then the
dz integrals reduce the superficial degree of divergence by VB.

Intuitively the z-momentum non-conservation coming from brane-localized interactions can be
understood as the particle picking up an arbitrary amount of momentum as it bounces off the
brane (a similar picture can be drawn for the orbifold [34]). Alternately, it reflects the uniform
spread in momentum associated with complete localization in z-position. While this may seem
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to imply sensitivity to arbitrarily high scale physics on the brane, a negative degree of divergence
will prevent the loop from being sensitive to UV physics. In other words, we are free to treat
brane-localized fields as having δ-function profiles independent of the physics that generates the
brane.

Finally, note that we have assumed that each fermion mass insertion is brane localized. In
5D this means that higher-order diagrams in the fermion mass-insertion approximation are not
suppressed by momentum since each additional brane-to-brane propagator goes like ∼ /k/k after
accounting for the dkz integrals. Instead, these mass insertions are suppressed only by the relative
sizes of the Higgs vev and compactification scale, (vR′)2 ∼ .01. It is perhaps interesting to note
that our analysis further suggests that in 6D with a Higgs localized on a 4D subspace, there are two
additional momentum integrals coming from a mass insertion so that each vev-to-vev propagator
goes like a positive power of the momentum ∼ /k causing the mass-insertion approximation to
break down.

D Bulk Feynman Rules

This is a reference of relevant 5D position/momentum space Feynman rules used to derive the
amplitudes in this paper. All couplings are written in terms of 5D quantities. We assume the case
of a brane-localized Higgs field.
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= ig5

(
R

z

)4

γµ

= ie5(p+ − p−)µ

=
i

2
e5g5 v ηµν

= i

(
R

R′

)3

Y5

= ∆k(z, z′)

= −iηµνGk(z, z
′)

= εµ(q)f
(0)
A

=
fc√
R′

( z

R

)2 ( z

R′

)−c

u(p)

= ū(p′)
fc√
R′

( z

R

)2 ( z

R′

)−c

The 5D Lagrangian parameters are related to the usual Standard Model parameters by

g2
5 = g2

SMR ln R′/R (D.1)

e5f
(0)
A = eSM (D.2)

Y5 = RY, (D.3)

where Y represents an anarchic 4D Yukawa matrix that is related to the Standard Model Yukawa
by (2.7). The fc fermion flavor functions are defined in (2.5). The vector propagator function

38

The 5D Lagrangian parameters are related to the usual Standard Model parameters by

g2
5 = g2

SMR lnR′/R (D.1)

e5f
(0)
A = eSM (D.2)

Y5 = RY, (D.3)

where Y represents an anarchic 4D Yukawa matrix that is related to the Standard Model Yukawa
by (2.7). The fc fermion flavor functions are defined in (2.5). The vector propagator function

37



Gk(z, z
′) is explicitly derived in [35], which also contains generic formulae for analogous functions

for fields of general spin and additional gauge boson vertices. Using the dimensionless x and y
variables defined in (6.1) and assuming z > z′, the Euclidean space vector Green’s function is

Gk(z, z
′) =

(R′)2

R
Gy(x, x

′) =
(R′)2

R

xx′

y

T (x, y)T (x′, y)

S(wy, y)
, (D.4)

where

T (x, y) = I1(x)K0(y) + I0(y)K1(x) (D.5)

S(x, y) = I0(x)K0(y) + I0(y)K0(x) (D.6)

and w = R/R′. For z < z′ the above formula is modified by x ↔ x′. The fermion propagator
∆k(z, z

′) is derived in Appendix E with the relevant Euclidean space expression in (E.41).

E Derivation of fermion propagators

General formulae for the scalar function associated with bulk propagators of arbitrary-spin fields
in RS can be found in [35]. The special case of bulk fermion propagators with endpoints on
the UV brane is presented in [36]. The Green’s function equation for the general RS fermion
propagator can be solved directly from the Strum-Liouville equation, though this can obscure
some of the intuition of the results. Here we provide a pedagogical derivation of the 5D bulk
fermion propagator in a flat and warped interval extra dimension. See also the discussion in
Appendix C which relate this construction to the usual pure momentum space formalism.

E.1 Flat 5D fermion propagator

First we derive the chiral fermion propagator in a flat interval extra dimension z ∈ (0, L) as a
model calculation for the warped fermion propagator which is presented in Appendix E.2. A
complete set of propagators for a flat 5D interval was derived in [18] using finite temperature field
theory techniques.

We derive these results by directly solving the Green’s function equations. The propagator
from a given point x′ to a another point x is given by the two point Green’s function of the 5D
Dirac operator,

D∆(x, x′) ≡ (iγM∂M +m
)

∆(x, x′) = iδ(5)(x− x′), (E.1)

where M runs over 5D indices. We shall treat the noncompact dimensions in momentum space
and the finite dimension is in position space. In this formalism, the Green’s function equation is(−/p+ i∂5γ

5 +m
)

∆(p, z, z′) = iδ(z − z′), (E.2)

where we use γ5 = diag(i12,−i12).
This is a first-order differential equation with non-trivial Dirac structure. To solve this equation

we define a pseudo-conjugate Dirac operator (which is neither a complex nor Hermitian conjugate),

D̄ = −iγM∂M +m. (E.3)
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Using this to ‘square’ the Dirac operator, we can swap the Dirac equation for a simpler Klein-
Gordon equation that is second order and diagonal on the space of Weyl spinors,

DD̄ =

(
∂2 − ∂2

5 +m2

∂2 − ∂2
5 +m2

)
. (E.4)

It is straightforward to solve for the Green’s functions F (p, z, z′) of the DD∗ operator in mixed
position/momentum space,

DD̄F (p, z, z′) =

(−p2 − ∂2
5 +m2

−p2 − ∂2
5 +m2

)(
F+

F−

)
= iδ(z − z′). (E.5)

From these we can trivially construct a solution for the Green’s function of (E.1),

∆(p, z, z′) ≡ D̄F (p, z, z′) =

(
(∂5 +m)F+ σµpµF−
σ̄µpµF+ (−∂5 +m)F−

)
. (E.6)

We solve this by separating F±(z) into pieces

F±(p, z, z′) =

{
F<
± (p, z, z′) if z < z′

F>
± (p, z, z′) if z > z′

(E.7)

and then solving the homogeneous Klein-Gordon equations for each F< and F>. The general
solution is

F<,>
± (p, z, z′) = A<,>± cos(χpz) +B<,>

± sin(χpz), (E.8)

where the eight coefficients A<,>± and B<,>
± are determined by the boundary conditions at 0, L and

z′. The factor χp is the magnitude of p5 and is defined by

χp =
√
p2 −m2. (E.9)

We impose matching boundary conditions at z = z′. By integrating the Green’s function
equation (E.5) over a sliver z ∈ [z′ − ε, z′ + ε] we obtain the conditions

∂5F
>
± (z′)− ∂5F

<
± (z′) = −i, (E.10)

F>
± (z′)− F<

± (z′) = 0. (E.11)

These are a total of four equations. The remaining four equations imposed at the branes impose
the chirality of the fermion zero mode and are equivalent to treating the interval as an orbifold.
We denote the propagator for the 5D fermion with a left-chiral (right-chiral) zero mode by ∆L

(∆R). We impose that the Green’s function vanishes if a “wrong-chirality” state propagates to
either brane,

PR ∆L(p, z, z′)
∣∣
z=0,L

= PRD̄ FL(p, z, z′)
∣∣
z=0,L

= 0, (E.12)

PL ∆R(p, z, z′)
∣∣
z=0,L

= PLD̄ FR(p, z, z′)
∣∣
z=0,L

= 0, (E.13)
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AL<+ = sp(L− z′)spL AL>+ = spz
′cpL AR<+ = 0 AR>+ = −cpz

′spL
BL<

+ = 0 BL>
+ = spz

′spL BR<
+ = −cp(L− z′) BR>

+ = −cpz
′cpL

AL<− = 0 AL>− = −cpz
′spL AR<− = sp(L− z′) AR>− = −spz

′cpL
BL<
− = cp(L− z′) BL>

− = −cpz
′cpL BR<

− = 0 BR>
− = spz

′spL

Table 2: Flat case coefficients in (E.8) upon solving with the boundary conditions (E.10–E.13).
We have used the notation cpx = cosχpx and spx = sinχpx.

where PL,R = 1
2
(1∓ iγ5) are the usual 4D chiral projection operators. Note from (E.6) that each

of these equations is actually a set of two boundary conditions on each brane. For example, the
left-handed boundary conditions may be written explicitly as

FL
−(p, z, z′)

∣∣
z=0,L

= 0, (E.14)

(∂5 +m)FL
+(p, z, z′)

∣∣
z=0,L

= 0, (E.15)

where we have used that pµ is arbitrary. It is well-known that only one boundary condition for
a Dirac fermion needs to be imposed in order not to overconstrain the first-order Dirac equation
since the bulk equations of motion convert boundary conditions for χ into boundary conditions
for ψ [37]. In this case, however, we work with a second -order Klein-Gordon equation that does
not mix χ and ψ. Thus the appearance and necessity of two boundary conditions per brane for a
chiral fermion is not surprising; we are only converting the single boundary condition on ∆(p, z, z′)
into two boundary conditions for F (p, z, z′).

Solving for the coefficients A<,>± (p, z) and B<,>
± (p, z) for each type of fermion (left- or right-

chiral zero modes) one finds the results in Table 2. Using trigonometric identities one may combine
the z < z′ and z > z′ results to obtain4

FX
± =

−i cosχp (L− |z − z′|) + γ5℘X cosχp (L− (z + z′))
2χp sinχpL

, (E.16)

where X = {L,R} with ℘L = +1 and ℘R = −1. The fermion Green’s function can then be
obtained trivially from (E.6).

Let us remark that the leading UV behavior of a brane-to-brane propagator (where the k5γ
5

term vanishes) goes like

∆ ∼ /k

χk
. (E.17)

E.2 Warped 5D fermion propagator

We now derive the chiral fermion propagator in a warped interval extra dimension following the
same strategy as Appendix E.1. The Dirac operator is obtained from the variation of the Randall-
Sundrum free fermion action,

SRS(fermion) =

∫
dx

∫ R′

R

dz

(
R

z

)4

Ψ̄

(
iγM∂M − i2

z
γ5 +

c

z

)
Ψ, (E.18)

4This result differs from that of [18] by a factor of 2 since that paper treats the compactified space as an orbifold
over the entire S1 rather than just an interval [0, πR].
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where c = mR and we have integrated the left-acting derivatives by parts. The Dirac operator is
a product of the (R/z)4 prefactor coming from the AdS geometry and an operator D given by

D = iγM∂M − i2
z
γ5 +

c

z
. (E.19)

We would like to find the mixed position/momentum space two-point Green’s function satisfying

(R/z)4D∆(p, z, z′) = iδ(z − z′). (E.20)

Following (E.3) we define a pseudo-conjugate Dirac operator

D̄ = −iγM∂M + i
2

z
γ5 +

c

z
(E.21)

and ‘square’ D into a diagonal second-order operator,

DD̄ =

(DD̄ − 0
0 DD̄ +

)
DD̄ ± = ∂2 − ∂2

5 +
4

z
∂5 +

c2 ± c− 6

z2
. (E.22)

Next we follow (E.5) and solve for the Green’s function of this squared operator in mixed posi-
tion/momentum space where ∂2 → −p2,

(R/z)4DD̄F (p, z, z′) =

(
R

z

)4(DD̄ −
DD̄ +

)(
F−

F+

)
= iδ(z − z′). (E.23)

The solution to the Dirac Green’s function equation (E.20) is then given by ∆(p, z, z′) = D̄F (p, z, z′).
We shall separate F (p, z, z′) into solutions for the cases z > z′ and z < z′ following (E.7). The
general solution to the homogeneous equation (E.23) with z 6= z′ is

F<,>
± (p, z, z′) = A<,>± z

5
2Jc± 1

2
(pz) +B<,>

± z
5
2Yc± 1

2
(pz), (E.24)

where Jn and Yn are Bessel functions of the first and second kinds, A<,>± and B<,>
± are coefficients

to be determined by boundary conditions, and p is the analog of χp defined by p =
√
pµpµ. Note

that this differs from (E.9) since there is no explicit bulk mass dependence. In (E.24) the bulk
masses enter only in the order of the Bessel functions as (c± 1

2
).

The matching boundary conditions at z = z′ are given by (E.10) and (E.11) modified by a
factor of (R/z′)4 from (E.23),

∂5F
>
± (z′)− ∂5F

<
± (z′) = −i(R/z′)−4, (E.25)

F>
± (z′)− F<

± (z′) = 0. (E.26)

The chiral boundary conditions are the same as in the flat case, (E.12) and (E.13) with the
appropriate insertion of (E.21).

We may now solve for the A and B coefficients. It is useful to write these in terms of common
factors that appear in their expressions. To this end, let us define the prefactors

αL =
iπ

2R4

1

S−c (pR, pR′)
αR =

iπ

2R4

1

S+
c (pR, pR′)

(E.27)
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AL<+ = −αLz′ 52Yc− 1
2

(pR) S̃+
c (pz′, pR′) AR<+ = −αRz′ 52Yc+ 1

2
(pR)S+

c (pz′, pR′)

BL<
+ = αLz

′ 5
2Jc− 1

2
(pR) S̃+

c (pz′, pR′) BR<
+ = αRz

′ 5
2Jc+ 1

2
(pR)S+

c (pz′, pR′)

AL<− = −αLz′ 52Yc− 1
2

(pR)S−c (pz′, pR′) AR<− = −αRz′ 52Yc+ 1
2

(pR) S̃−c (pz′, pR′)

BL<
− = αLz

′ 5
2Jc− 1

2
(pR)S−c (pz′, pR′) BR<

− = αRz
′ 5
2Jc+ 1

2
(pR) S̃−c (pz′, pR′)

Table 3: Left-handed RS fermion propagator coefficients: the z > z′ coefficients are obtained by
swapping R↔ R′ in the arguments of the functions, leaving the αL,R constant.

and a set of antisymmetric functions

S±c (x, y) = Jc± 1
2
(x)Yc± 1

2
(y)− Jc± 1

2
(y)Yc± 1

2
(x) (E.28)

S̃±c (x, y) = Jc± 1
2
(x)Yc∓ 1

2
(y)− Jc∓ 1

2
(y)Yc± 1

2
(x) (E.29)

With these definitions the coefficients for the left- and right-handed F functions are given in
Table 3. The FL,R

± functions may thus be written out succinctly for z ≤ z′ as

FL<
+ = αL (zz′)5/2

S̃+
c (pz′, pR′) S̃−c (pR, pz) (E.30)

FL<
− = αL (zz′)5/2

S−c (pz′, pR′)S−c (pR, pz) (E.31)

FR<
+ = αR (zz′)5/2

S+
c (pz′, pR′)S+

c (pR, pz) (E.32)

FR<
− = αR (zz′)5/2

S̃−c (pz′, pR′) S̃+
c (pR, pz) (E.33)

The expressions for z > z′ are obtained by making the replacement {R ↔ R′} in the arguments
of the Sc functions. We now use the notation in (E.7) and drop the <,> superscripts. From these
the fermion Green’s function can be obtained trivially from the analog of (E.6),

∆(p, z, z′) ≡ D̄F (p, z, z′) =

(
D+F− σµpµF+

σ̄µpµF− D−F+

)
, D± ≡ ±

(
∂5 − 2

z

)
+
c

z
. (E.34)

Note that in the UV limit (χp � 1/R) the Bessel functions reduce to phase-shifted trigonometric
functions so that we indeed recover the flat 5D propagators.

E.3 Euclidean warped 5D fermion propagator

Finally, it is convenient to write the Wick-rotated form of the fermion propagators since these
will provide the relevant Feynman rules in loop diagrams such as µ→ eγ. We shall write out the
scalar F functions in a convenient form that we use throughout the rest of this document. The
derivation is identical to that outlined above with the replacement p2 = −p2

E (i.e. ∂ = i∂E) in the
Green’s function equation so that we shall simply state the results. The Euclidean scalar functions
are written in terms of the modified Bessel functions I and K which behave like exponentials in
the UV. Let us define the auxiliary functions

Sc(x±, x′±) = Ic±1/2(x)Kc±1/2(x′)− Ic±1/2(x′)Kc±1/2(x) (E.35)

Sc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x′)− Ic∓1/2(x′)Kc±1/2(x) (E.36)

Tc(x±, x′∓) = Ic±1/2(x)Kc∓1/2(x′) + Ic∓1/2(x′)Kc±1/2(x). (E.37)
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Since we would like to write dimensionless loop integrals, let us define the dimensionless variables
y ≡ kER

′ and x = kEz, which are the natural quantities which appear as arguments of the Bessel
functions. We write the warp factor as w = (R/R′). It is convenient to pull out overall factors to
write the F functions as

F±(kE, z, z
′) = iw−4R′F̃ xx′

±,y . (E.38)

The Euclidean scalar functions for x > x′ (i.e. z > z′) are given by

F̃L
− =

(xx′)5/2

y5

ScL(x−, y−)ScL(x′−, wy−)

ScL(y−, wy−)
F̃L

+ = −(xx′)5/2

y5

TcL(x+, y−)TcL(x′+, wy−)

ScL(y−, wy−)
(E.39)

F̃R
− = −(xx′)5/2

y5

TcR(x−, y+)TcR(x′−, wy+)

ScR(y+, wy+)
F̃R

+ =
(xx′)5/2

y5

ScR(x+, y+)ScR(x′+, wy+)

ScR(y+, wy+)
. (E.40)

The functions for x < x′ are given by replacing x ↔ x′ in the above formulae. With these
definitions the Euclidan fermion propagator given by the analog of (E.34),

∆(kE, z, z
′) ≡ i

R′

w4
D̄F̃ xx′

y =

(
yD̃+F̃− σµyµF̃+

σ̄µyµF̃− yD̃−F̃+

)
, D̃± ≡ ±

(
∂x − 2

x

)
+
c

x
. (E.41)

F Finiteness of the brane-localized neutral Higgs diagram

As explained in Section 6.4, the finiteness of the one-loop result and logarithmic divergence at
two-loop order becomes opaque to näıve 5D power counting arguments when the Higgs is brane-
localized. Additional cancellations of leading-order terms in loop momentum are required to
sensibly interpolate between the superficial degree of divergence of the bulk and brane-localized
scenarios. For the charged Higgs this cancellation mechanism came from an M2

W insertion, which
led to an additional 1/k2 factor relative to the bulk field. Here we shall elucidate the finiteness of
the single-mass-insertion brane-localized neutral scalar loop.

At one-loop order this finiteness can be seen explicitly by the cancellation between the neutral
Higgs and the neutral Goldstone. However, there is an additional chiral cancellation that occurs
between the two diagrams associated a single intermediate neutral boson. Indeed, because the
Higgs and neutral Goldstone do not appear to completely cancel at two-loop order, this additional
cancellation is necessary for the power-counting arguments given in Section 6.7.

We highlight this cancellation in two ways. The pure momentum space calculation highlights
the role of the chiral boundary conditions, while the mixed position/momentum space calculation
shows an explicit cancellation while including the full scalar structure the amplitude.

F.1 Momentum space

Here we shall see that 4D Lorentz invariance combined with the chiral boundary conditions forces
the UV divergence of the two diagrams in Fig. 6 to cancel.

We first note that the propagators to the photon vertex each have an endpoint in the bulk. This
implies that the leading-order contributions to these propagators in the UV limit are proportional
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to the uncompactified flat space 5D propagators,

∆ =

(
∆ψχ ∆ψψ

∆χχ ∆χψ

)
∼ 1

k2 − k2
5

(
ik5 kµσ

µ

kµσ̄
µ −ik5

)
=
kµγ

µ + k5γ
5

k2 − k2
5

, (F.1)

where we’ve written ∆ψχ to mean the propagation of a left-handed Weyl spinor χ into a right-
handed spinor ψ. The terms along the diagonal come from k5γ

5 and represent the chirality-flipping
part of the propagator. The boundary conditions require the wrong-chirality modes, the SU(2)
doublet ψL and SU(2) singlet χR, to vanish on the IR brane. Thus, the fermion may propagate
to the wrong-chirality spinor in the bulk only if it propagates back to the correct-chirality spinor
when it returns to the brane. For an internal left-handed Weyl fermion χL, the portion of the
amplitude coming from the photon emission takes the form

∆χχσ
µ∆χχ + ∆χψσ̄

µ∆ψχ ∼ (kασ̄
α)σµ

(
kβσ̄

β
)

+ (k5)2σ̄µ. (F.2)

Combining with the analogous expression for a right-handed Weyl fermion in the loop, the relevant
part of the photon emission amplitude can be written as

/kγµ/k + (k5)2γµ

(k2 − k2
5)2

, (F.3)

where these terms correspond to a fermion of the correct and incorrect chirality propagating into
the brane. The second term can be simplified using∫

dk5
(k5)2

(k2 − k2
5)2

=

∫
dk5

−k2

(k2 − k2
5)2

, (F.4)

which can be confirmed by Wick rotating both sides, k2 → −k2
E, and performing the dk5 integral

explicitly. Now it is easy to see that the divergent contributions from the diagrams in Fig. 6
cancel. The boundary conditions force brane-to-brane propagators to go like /k with no γ5 part.
Thus we may write the internal fermion structure of the amplitudes as

M(a) +M(b) ∼ /k
(
/kγµ/k − k2γµ

)
+
(
/kγµ/k − k2γµ

)
/k = 0. (F.5)

The key minus sign between the two terms in the photon emission comes from the chiral boundary
conditions that force the second term to pick up the relative sign between the two diagonal blocks
of γ5.

Let us remark that it is crucial that the denominator in (F.4) contains exactly two propagators
or else the equality would not hold. One might be concerned that the brane-to-brane propagator
should also contribute an additional factor of (k2−k2

5) to the denominator (the k5γ
5 term vanishes

in the numerator from boundary conditions). Such a factor is indeed present in the full calculation,
but because 5D Lorentz invariance is broken on the brane, k5 is not conserved there and this factor
actually includes a different, uncorrelated 5th momentum component, k̃5, which can be taken the
be independent of the dk5 integral. This is a manifestation of the principles in Appendix A. As a
check, one can perform the dk̃5 integral for this brane-to-brane propagator and obtain the same
/k/|k| UV behavior found in the careful derivation performed in Appendix E.1.
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F.2 Position/momentum space

In Appendix E.1 we derived the flat-space bulk fermion propagator,

∆(p, x5, x
′
5) =

(
/p− iγ5∂5 +m

) −i cosχp (L− |x5 − x′5|) + γ5℘(X) cosχp (L− (x5 + x′5))

2χp sinχpL
, (F.6)

where the zero mode chirality is given by X = {L,R} with ℘(L) = +1 and ℘(R) = −1. We then
argued at the end of Appendix E.2 that the propagators in a warped extra dimension reduce to
this case up to overall phases. Thus we expect the amplitudes to have the same UV behavior up
to finite factors. The relevant flat-space one-loop diagrams contributing to the operator (4.1) are
shown in Fig. 6. We start with Fig. 6a and assume that the decay is from µL to eR. The loop
propagators with (x5, x

′
5) = (L, z), (z, L) and (L,L) can be written as

∆(k′, L, z) = −i /k
′ cosχk′z − iγ5χk′ sinχk′z

χk′ sinχk′L
PR (F.7)

∆(k, z, L) = −i /k cosχkz + iγ5χk sinχkz

χk sinχkL
PR (F.8)

∆(k, L, L) = −i /k cosχkL

χk sinχkL
PR, (F.9)

where k′ = k + q. We have used the chiral boundary conditions to simplify ∆(k, L, L). Since we
are interested in the UV behavior we have dropped the terms proportional to the bulk mass m
from the internal propagators because these are finite. Combining the propagators together and
doing the same calculation for Fig. 6b, the amplitudes become

Mµ
(a) =

∫
d4k

(2π)4
dz ū(p′)

{
/k′ γµ /k f(k, z) + χkχk′ γ

µ g(k, z)

χkχk′ [(p+ k)2 −m2
H ]

}
/k cotχkL

χk
u(p) (F.10)

Mµ
(b) =

∫
d4k

(2π)4
dz ū(p′)

/k′ cotχk′L

χk′

{
/k′ γµ /k f(k, z) + χkχk′ γ

µ g(k, z)

χkχk′ [(p+ k)2 −m2
H ]

}
u(p) (F.11)

where we have written

f(k, z) = −cos(χk+qz) cos(χkz)

sinχk+qL sinχkL
(F.12)

g(k, z) = −sin(χk+qz) sin(χkz)

sinχk+qL sinχkL
. (F.13)

Note that all of the z dependence is manifestly contained in sines and cosines. Further we have
neglected the flavor-dependence of the χk factors since these also come from the bulk masses via
(E.9) and are negligible in the UV.

Upon Wick rotation the trigonometric functions become hyperbolic functions which are expo-
nentials in the Euclidean momentum,

cosχkz → cosh(χkEz) =
1

2

(
eχkE z + e−χkE z

)
(F.14)

sinχkz → i sinh(χkEz) =
i

2

(
eχkE z − e−χkE z) . (F.15)
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We may now replace the trigonometric functions with the appropriate Euclidean exponentials.
Since we are concerned with the UV behavior, we may drop terms which are exponentially sup-
pressed for large k over the entire range of z. The remaining terms are simple exponentials and
can be integrated over the interval. One finds that the trigonometric terms in (F.10) and (F.11)
yield the expression

i

χkE+q + χkE
→ −1

χk+q + χk
, (F.16)

where on the right we have reversed our Wick rotation to obtain a Minkowski space expression for
the terms which are not exponentially suppressed in Euclidean momentum. After doing this, the
leading order term in cotχL in (F.10) and (F.11) equals i−1 and the terms in the braces become{

(/k + /q) γµ /k − χk+qχk γ
µ

χkχk+q (χk + χk+q) [(p+ k)2 −m2
H ]

}
, (F.17)

which gives the numerator of (F.5).
In terms of these quantities the potentially divergent amplitudes can be written as

Mµ
(a) =

∫
d4k

(2π)4

1

(χk+q + χk)[(p+ k)2 −m2
H ]
ū(p)

{
(/k + /q)

χk+q

γµ − γµ /k
χk

}
u(p+ q) (F.18)

Mµ
(b) =

∫
d4k

(2π)4

1

(χk+q + χk)[(p+ k)2 −m2
H ]
ū(p)

{
γµ

/k

χk
− (/k + /q)

χk+q

γµ
}
u(p+ q), (F.19)

therefore these two terms cancel each other in the UV and the operator (4.1) is finite.
Higher mass insertions do not spoil this cancellation since these are associated with internal

brane-to-brane propagators whose UV limit goes like ∆(k) ∼ /k/χk. The chiral structure of
the effective operator (4.1) requires that only diagrams with an odd number of mass insertions
contribute. Using the UV limit ∆(k)2 → 1 one notes that the divergence structure reduces to the
case above.
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