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The electromagnetic decay Σ0(1385) → Λγ was studied using the CLAS detector at the Thomas
Jefferson National Accelerator Facility. A real photon beam with a maximum energy of 3.8 GeV
was incident on a proton target, producing an exclusive final state of K+Σ∗0. We report the
decay widths ratio Σ0(1385) → Λγ/ Σ0(1385) → Λπ0 = 1.42 ± 0.12(stat)+0.11

−0.07(sys)%. This ratio
is larger than most theoretical predictions by factors ranging from 1.5-3, but is consistent with the
only other experimental measurement. From the reported ratio we calculate the partial width and
electromagnetic transition magnetic moment for Σ0(1385) → Λγ.

PACS numbers: 13.40.Em,14.20.Jn,13.30.Ce,13.40.Hq

I. INTRODUCTION

One well-known success of the constituent quark model
(CQM) is its prediction of the low-mass baryon magnetic
moments, using just the SU(6) wavefunctions [1, 2]. Cal-
culations of the magnetic moments [3], assuming that
quarks behave as point-like Dirac dipoles, are typically
within ∼10% of the current measured values [4]. How-
ever, today we know that the spin of the proton is much
more complex than the CQM representation, with only
about one-third of the proton’s spin coming from the
quarks and the rest of the spin resulting from a combina-
tion of the gluon spins and the orbital angular momen-
tum of the quarks [5, 6]. Clearly, the CQM is an over-
simplification of the spin dynamics inside baryons, yet
somehow the CQM captures the degrees of freedom that
are relevant to the measured magnetic moments. Further
measurements of baryon magnetic moments, utilizing the
electromagnetic decays of excited baryons, will continue
to test our understanding of baryon wavefunctions.

Experimentally, it is difficult to measure the electro-
magnetic (EM) transitions of decuplet-to-octet baryons
because of the competition between EM and strong de-
cays. For example, the branching ratio for EM decay of
the ∆ resonance has been measured to be about 0.55%
[4] and branching ratios for other decuplet baryons are
predicted to be of the same order of magnitude. The
EM transition form factors for the ∆ may be directly
measured via pion photoproduction [7, 8].

It has been shown [9] that pion cloud effects contribute
significantly (∼40%) to the γp → ∆+ magnetic dipole
transition form factor, GM (Q2), at low Q2 (below ∼ 0.1
GeV2). In the naive non-relativistic quark model [10],
the value of GM (0) is directly proportional to the pro-
ton magnetic moment, and measurements of GM near
Q2 = 0 can only be explained (within this quark model)
if the experimental magnetic moment is lowered by about

∗Current address:Skobeltsyn Nuclear Physics Institute, Skobeltsyn

Nuclear Physics Institute, 119899 Moscow, Russia
†Current address:INFN, Sezione di Genova, 16146 Genova, Italy

30%. This again suggests that the CQM is an over-
simplification of reality.

To extend these measurements to the other decuplet
baryons, which have non-zero strangeness, hyperons must
be produced through strangeness-conserving reactions.
Then their EM decay, which has a small branching ra-
tio, must be measured directly. Although these measure-
ments are difficult, it is important to measure the EM
decays of strange baryons to extract information on their
wavefunctions, which in turn, constrains theoretical mod-
els of baryon structure. The measurements of EM tran-
sition form factors for decuplet baryons with strangeness
may also be sensitive to meson cloud effects. A com-
parison of the EM decay measurements to predictions of
quark models for decay of decuplet hyperons, Σ∗, to octet
hyperons, Y , can provide a measure of the importance of
meson cloud diagrams in the Σ∗ → Y γ transition.

Here, we present measurements of the EM decay
Σ∗0 → Λγ normalized to the strong decay Σ∗0 → Λπ0.
The present results can be compared to previous mea-
surements of the Σ∗0 EM decay [11] (also from CLAS
data) that had a larger uncertainty (∼25% statistical
and ∼15% systematic uncertainty). The smaller uncer-
tainties here are due to a larger data set (more than 10
times bigger) and, subsequently, better control over sys-
tematic uncertainties. The reduced uncertainty is impor-
tant because, as mentioned above, meson cloud effects
are predicted to be on the order of ∼30-40%. In order
to quantify the effect of meson clouds for baryons with
non-zero strangeness, it is desirable to keep measurement
uncertainties below ∼10%.

There are many theoretical calculations of the EM de-
cays of decuplet hyperons such as: the non-relativistic
quark model (NRQM) [12, 13], a relativized constituent
quark model (RCQM) [14], a chiral constituent quark
model (χCQM) [15], the MIT bag model [16], the bound-
state soliton model [17], a three-flavor generalization
of the Skyrme model that uses the collective approach
[18, 19], an algebraic model of hadron structure [20], and
heavy baryon chiral perturbation theory (HBχPT) [21],
among others. Table I summarizes the theoretical pre-
dictions and experimental branching ratios for the EM
transitions of interest.
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TABLE I: Theoretical predictions for the models referenced in the text and the experimental values for the electromagnetic
decay widths (in keV).

Model ∆(1232) → Nγ Σ(1193) → Λγ Σ(1385) → Λγ

NRQM [12, 13, 16] 360 8.6 273
RCQM [14] 4.1 267
χCQM [15] 350 265
MIT Bag [16] 4.6 152
Soliton [17] 243
Skyrme [18, 19] 309-326 157-209
Algebraic model [20] 341.5 8.6 221.3
HBχPT [21]† (670-790) 290-470

Experiment [4] 660±47 8.9±0.9 470±160
† Normalized to experiment for the ∆ → Nγ range shown.

A comprehensive study of electromagnetic strangeness
production has been undertaken using the CLAS detec-
tor at the Thomas Jefferson National Accelerator Facil-
ity. Many data on ground-state hyperon photoproduc-
tion have already been published [22–24] using data from
the CLAS run group g1 and g11 data sets. The g1 exper-
iment had an open trigger [22] and a lower data acqui-
sition speed, whereas the g11 experiment required that
at least two particles be detected [24], and used a higher
beam current, resulting in much higher data acquisition
speed. The result is that the g11 data set had over 20
times more reconstructed events than the g1 data set.
The present results use the g11 data set, whereas Taylor
et al. [11] used the g1 data set. Published CLAS re-
sults [24] from g11 demonstrate the accurate calibration
of this data set, and that the cross section of γp → K+Λ
matches previous CLAS data.
The EM decay of the Σ∗0 is only about 1% of the total

decay width. To isolate this signal from the dominant
strong decay Σ∗0 → Λπ0, the missing mass of the de-
tected particles, γp → K+Λ(X), is calculated. Because
of its proximity to the π0 peak in the mass spectrum from
strong decay, the EM decay signal is difficult to separate
using simple peak-fitting methods. The strategy here is
to understand and eliminate as much background as pos-
sible using standard kinematic cuts, and then use a kine-
matic fitting procedure for each channel. As described
below, by varying the cut points on the confidence lev-
els of each kinematic fit, the systematic uncertainty as-
sociated with the extracted ratio for EM decay can be
quantitatively determined. The increased statistics for
the g11 data helps greatly to study and to determine the
systematic uncertainty associated with the measurement.

II. THE EXPERIMENT

For the present measurements, a bremsstrahlung pho-
ton beam was produced from a 4.019 GeV electron beam,
resulting in a photon energy range of 1.6-3.8 GeV. The

photon energy was deduced from a magnetic spectrom-
eter [25] that “tagged” the electron with an energy res-
olution of ∼ 0.1%. A liquid-hydrogen target was used
that was 40 cm long and placed such that the center of
the target was 10 cm upstream from the center of CLAS.
As mentioned above, a trigger requiring two charged par-
ticles in coincidence with the tagged electron was used.
The data acquisition recorded approximately 20 billion
events. Details of the experimental setup are given else-
where [24, 26].

A. Event Selection

We selected events for the reaction γp → K+Σ∗0,
where the Σ∗0 decays with 87.0±1.5% probability to Λπ0

and 1.3±0.4% probability to Λγ [4]. The Λ then decays
weakly with 63.9±0.5% probability to pπ− [4], leading
to the final states γp → K+pπ−π0 and γp → K+pπ−γ,
respectively. The charged particles are tracked by the
CLAS drift chambers through the magnetic field of the
spectrometer, giving their momentum, and are detected
by the time-of-flight scintillators, giving their velocity.
The drift chamber tracking covariance matrix is obtained
for each track. This contains the uncertainty in each mea-
sured variable used in track reconstruction along with the
appropriate correlations. The π0 and γ must be deduced
indirectly using conservation of energy and momentum
via the missing mass technique.
In the present analysis, two positively charged parti-

cles and one negatively charge particle are selected. The
mass of the detected particles was calculated from the
measured velocity and momentum. The mass is given by

mcal =

√

p2(1− β2)

β2
, (1)

where β = L/tmeas for path length L and measured time-
of-flight tmeas, and the speed of light is set to 1. The
pions, kaons, and protons were identified using mass cuts
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FIG. 1: Missing mass squared (M2
x) for the reaction γp →

pπ+π−(X), where the π+ was a potentially misidentified
kaon. Events above the dotted line at 0.01 GeV2 were kept.

of 0.0 ≤ Mπ− ≤ 0.3 GeV, 0.3 < MK+ < 0.8 GeV, and
0.8 ≤ Mp ≤ 1.2 GeV, respectively. From this initial
identification it is possible to incorporate additional tim-
ing information to improve event selection. The time-
of-flight tmeas is the time difference between the event
vertex time and the time at which the particle strikes
the time-of-flight scintillator wall at the outside of the
CLAS detector. We define ∆t = tmeas − tcal, where tcal
is the time-of-flight calculated for an assumed mass such
that

tcal = L

√

1 +

(

m

p

)2

, (2)

where m is the assumed mass for the particle of interest
and p is the momentum magnitude. A cut on ∆t or mcal

should be effectively equivalent.
Using ∆t for each particle it is possible to reject events

that are not associated with the correct RF beam bunch,
which are separated by 2 ns. This is done by accepting
only events with |∆t| ≤1 ns.
A ∆β cut also helps to clean up the identification

scheme. ∆β is the difference between the above measured

β and the calculated βc defined by βc = p/
√

p2 +m2,
where p is the particle momentum and m is the known
particle mass. The good events were required to have
−0.02 ≤ ∆β ≤ 0.02.
The energy lost by charged particles passing through

the CLAS detector was accounted for by adjusting the
measured particle’s energy according to the average
dE/dx losses in the target material, target wall, target
scattering chamber, and the start counter scintillators
surrounding the target. After correcting for energy loss,
several kinematic cuts are applied as described below.
Due to the finite resolution of the measured velocity

and momentum, in addition to particle decay-in-flight,
it is possible that some pions could be misidentified as
kaons. To clean up the kaon signal for the analysis,
it is common to recalculate the energy of the identified
kaon using the mass of the pion. Then the missing mass
squared is studied for the reaction γp → pπ+π−(X),

(cm)
0 2 4 6 8 10 12 14 16 18

50

100

150
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310×

FIG. 2: The distance of closest approach between the proton
and π− shown in cm. The cut used at 5 cm is indicated by
the dotted line.

FIG. 3: The invariant mass of the p-π− showing the Λ peak
with a Gaussian fit giving a σ = 1.3 MeV. A cut of ±0.005
GeV around the PDG mass of the Λ is used indicated by the
dotted lines.

where the π+ is actually identified by the above mass
cuts as a K+. A spike at zero mass squared indicates
that the reaction γp → pπ+π− is prominent. Most
particle misidentified events can be removed by cutting
slightly above zero, as shown in Fig. 1. The events
above 0.01 GeV2 are kept as a cleaner sample of the
γp → pK+π−(X) events. Reactions involving decays
such as ρ → π+π−, where the π+ is mistakenly identified
as a K+, are vastly reduced by this cut.
The four-momentum of the detected Λ was recon-

structed from the proton and π− four-momenta. The
distance of closest approach (DOCA) from the proton
and π− four-momenta is found and restricted to be less
than 5 cm (see Fig. 2). A Gaussian fit to the pπ− invari-
ant mass peak shown in Fig. 3 resulted in a σ = 1.3 MeV,
which is consistent with the instrumental resolution. Af-
ter restricting the Λ mass to be 1.1157± 0.005 GeV, the
remaining events were used to construct the missing mass
off the K+, giving the excited-state hyperon mass spec-
trum shown in Fig. 4.



5

FIG. 4: Missing mass for the reaction γp → K+(X), for
events passing the cut on the Λ mass. The dotted lines show
the 1.34 GeV to 1.43 GeV cut used to select the Σ(1385).

FIG. 5: Missing mass for the reaction γp → Λ(X) for events
passing cuts on the Λ and Σ∗ masses. The dotted line at
0.55 GeV shows the cut used to remove the γp → K+Λ chan-
nel. (A looser timing cut was used to illustrate that these
accidentals are at the K+ mass.)

After making a cut on the Σ∗ peak from 1.34-1.43 GeV,
as shown in Fig. 4, one can study the missing mass off
of the Λ, such that γp → Λ(X), shown in Fig. 5. Small
peaks are seen at the mass of the kaon and the K∗(892).
The kaon peak is from exclusive γp → K+Λ production
due to accidentals under the TOF peak, and can easily
be cut out. The dotted line shows the Mx(Λ) > 0.55
GeV event selection used to eliminate this background.

After including all of the cuts listed above, the missing
mass of the reaction γp → K+Λ(X) is shown in Fig. 6.
A very prominent peak is seen at the mass of the π0 with
a very small number of counts about zero missing mass
due to the EM decay. The counts above the π0 peak
are mostly due to the γp → K+Σ0(X) reaction from
photoproduction of higher-mass hyperons.

A small fraction of the events near zero missing mass in
the spectrum of Fig. 6 come from accidentals and double
bremsstrahlung. In the case of double bremsstrahlung it
is possible for false EM decay signals caused by the reac-

FIG. 6: Missing mass squared for the reaction γp →

K+pπ−(X) after all kinematic cuts.
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FIG. 7: (A) Transverse missing momentum and (B) trans-
verse missing momentum squared for the reaction γp →

K+Λ(X). The dashed line shows the cut used at P 2
xy > 0.0009

GeV2.

tion γ1 + γ2p → K+Λ+ γ1 to mimic the final state of in-
terest γp → K+Λγ. The γ1 from double bremsstrahlung
will point down the z-axis (along the beam), which can
also occur if the event is accidental or due to ineffi-
ciencies in the tagger plane from incorrect electron se-
lection. By calculating the transverse missing momen-
tum (P 2

xy = P 2
x + P 2

y ), it is possible to eliminate double
bremsstrahlung. The peak at small values in the distri-
bution in Fig. 7 was removed by requiring P 2

xy > 0.0009

GeV2 as illustrated by the dashed line. Clearly the effect
is quite small, however this step is critical for an accurate
measure.

In Fig. 6 the tail of the π0 peak continues into the
zero missing mass region. Resolving the two contribu-
tions with a simple Gaussian fit does not give systemati-
cally consistent results. A technique involving kinematic
fitting is required to separate the background from the
events of interest, as well as to separate the π0 events
from the radiative signal.
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III. SIMULATIONS

A Monte Carlo simulation of the CLAS detector was
performed using GEANT [28], set up for the g11 run
conditions. Events were generated for the radiative
channel (Σ0(1385) → Λγ), the normalization reaction
(Σ0(1385) → Λπ0), and several background reactions; see
Table II for a complete list. Using the data as a guide,
the photon beam energy dependence of K+ production
and the K+ angular dependence were used iteratively to
tune the Monte Carlo to match the data. After recon-
struction, the Monte Carlo momentum distributions for
the proton, π−, and K+ matched (within error bars) to
that of the data. The generated Monte Carlo events were
analyzed using the same analysis procedure used for the
data.
After studying the various channels of interest and

background, a constant t-slope (dσ/dΩ ∼ e−bt) of b =2.0
GeV−2 was used for the generated γp → K+Λ(1405)
channel. The form of the angular distributions of the
cross section from data were used in the generator to
produce all the Σ∗ simulations.

IV. KINEMATIC FITTING

The kinematic fitting employed in this analysis tech-
nique takes advantage of the information in the measured
kinematic variables and their uncertainties to fit con-
straints of energy and momentum conservation, thereby
improving the measured quantities using constraint equa-
tions. This procedure is useful to improve the separation
of signal from background. The method of Lagrange mul-
tipliers is the approach implemented here to fit the con-
straints with a least squares criteria [27].
Assume there are n independently measured data val-

ues y, which in turn are functions of m unknown vari-
ables qi, with m ≤ n. The condition that y = fk(qi)
is introduced, where fk is a function dependent on the
data points that are being tested for each k independent
variable at each point.
Because each yk is a measurement with a correspond-

ing standard deviation σk, the equation yk = fk(qi) can-
not be satisfied exactly for m < n. It is possible to
require that the relationship be satisfied by defining the
χ2 relation such that

χ2 =
∑

k

(yk − fk(q))
2

σ2
k

, (3)

and require that the preserved values are qi, which are
the values of q that minimize χ2.
The unknowns are divided into a set of measured vari-

ables (~η), such as the measured momentum components,
and unmeasured variables (~u), such as the missing mo-
mentum or the four-vector of an undetected particle in
the reaction. The variable Li is introduced to be used
for each constraint equation. The Lagrange multipliers

(Li) are used to write the equation for χ2 for a set of
constraint equations F such that,

χ2(~η, ~u,L) = (~η0 − ~η)TV −1(~η0 − ~η) + 2LTF(~η, ~u), (4)

where ~η0 is a vector of initial measured quantities and
V −1 is the inverse of the covariance matrix containing all
of the resolutions and correlations of the measured vari-
ables from the drift chamber tracking for each charged
particle.
The χ2 minimization occurs by differentiating χ2 with

respect to each of the variables, while linearizing the con-
straint equations and obtaining improved measured val-
ues from the fit. These values are used as the input for a
series of iterations. The iteration procedure is continued
until the difference in magnitude between the current χ2

and the previous value is smaller than ∆χ2
test (≤0.001).

The implemented covariance matrix V was corrected
for multiple scattering and energy loss in the target cell,
the scattering chamber, and the start counter. These
corrections to the diagonal terms in the covariance ma-
trix are applied according to the distance each charged
particle travels through the corresponding material.

V. ANALYSIS PROCEDURE

A useful kinematic fit for a topology that has a par-
ticle that is not detected is the 1C fit. Such a fit re-
quires that a missing mass hypothesis be used to con-
strain the detected four-momentum, leading to three un-
knowns from the non-detected particle momentum and
four constraints from conservation of energy and momen-
tum. To ensure only high quality Λ events, an additional
constraint can be implemented on the proton and π−

tracks to constrain the invariant mass to be the known
mass of the Λ. After the detected particle tracks are kine-
matically fit, the events can be filtered with a confidence
level cut. In this fit there are three unknowns (~px) and
five constraint equations, four from conservation of en-
ergy and momentum and the additional invariant mass
condition. No additional constraints are required. This
makes it a 2C kinematic fit.
To separate the contributions of the Σ∗0 EM decay and

the strong decay, the events were fit using the hypotheses
for each topology with the constraint equations,

F =





(Eπ + Ep)
2 − (~pπ + ~pp)

2 −M2
Λ

Ebeam +Mp − EK − Ep − Eπ − EX

~pbeam − ~pK − ~pp − ~pπ − ~pX



 = ~0, (5)

where ~pX and EX are the momentum and energy of the
undetected π0 or γ.
To test the functionality of the kinematic fit used to

separate the radiative signal from the overwhelming π0

background, the probability density function [27] is used
to fit the resulting χ2 distribution. The additional con-
straint on the invariant mass of the Λ takes the proba-
bility density function from the more difficult to fit one
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FIG. 8: (A) χ2 distribution and (B) confidence level distribu-
tion for a missing π0 hypothesis in the kinematic fit.

degree of freedom χ2 distribution (containing a singular-
ity) to the more manageable two degrees of freedom. The
fit function takes the form,

f(χ2) =
P0

2
e−P1χ

2/2 + P2, (6)

where P2 is a background term, P1 is a quantitative close-
ness parameter (which gives a measure of how close the
distribution in the histogram is to the ideal theoretical
χ2 distribution), and P0 is for normalization. For a kine-
matic fit to a missing γ with significant background con-
tamination from the π0, the χ2 distribution will be highly
distorted. The ideal P1 from a fit to a χ2 distribution
with no background is determined from simulations. The
deviation of the P1 fit parameter from the ideal P1 is used
as an indicator of the signal to background contribution
going into the kinematic fit under the radiative hypoth-
esis and how effective a confidence level cut is expected
to be for that given deviation.
Using the π0-hypothesis for the kinematic fit, the χ2

distribution follows the trend of the probability density
function for two degrees of freedom from Eq. (6), see Fig.
8A. The confidence level in Fig. 8B is reasonably flat for
the vast majority of events. The spike at zero confidence
level in Fig. 8B is from events that do not satisfy the
hypothesis in the kinematic fit.
For the γ-hypothesis, without any cuts to reduce the

π0 background, the χ2 distribution is not consistent with
the expected probability density function for a 2C fit.
Simulations indicate that the P1 parameter should be
P1 ∼ 0.9, but due to the sensitive nature of the χ2 dis-
tribution for two degrees of freedom, a fit to obtain the
P1 parameter does not return a realistic value. This can
be seen in the distorted shape of the distribution in Fig.
9A. Additionally, the confidence level distribution rises
up near the low confidence end (Fig. 9B) and is clearly
not as flat as the distribution in Fig. 8B. This is an indi-
cation that the vast majority of data being kinematically
fit at this stage are not satisfying the base assumption of
a massless missing particle. This suggests that, even with
a high confidence level cut, there is still an overwhelming
amount of π0 events leaking through. However, it is pos-

sible to take an additional step in the kinematic fitting
procedure for a cleaner separation.
A two-step kinematic fitting procedure is used to sys-

tematically reduce the large π0 background and optimize
the extraction of the number of radiative events. First,
a fit to a π0-hypothesis is done and only the low confi-
dence level (P a

π (χ
2)) events are retained, followed by a fit

of these candidate events to a γ-hypothesis and retaining
the high confidence level (P b

γ (χ
2)) events. Because of the

previous kinematic cuts, there should now be primarily a
π0 background and the true EM decay signal. Any other
background is expected to be very small relative to the
radiative signal and will be accounted for through simu-
lations. By first fitting to a π0-hypothesis and taking the
low confidence level candidates, one reduces the proba-
bility that the surviving candidates will have a missing
mass of the π0 before they are fit to a γ-hypothesis.
The selection of the confidence level cuts P a

π (χ
2) and

P b
γ (χ

2) is derived using simulations. After testing the
ability to recover various mixed ratios on the order of
the expected experimental ratio (∼ 1%), a Monte Carlo
(MC) simulation of the data was studied for a given ra-
tio of the γp → K+Σ∗0 → K+Λπ0 and γp → K+Σ∗0 →
K+Λγ channels. The optimization occurs when consid-
ering both the increase in statistical uncertainty from a
higher P a

π (χ
2) cut and the increase in MC ratio “recov-

ery” uncertainty from a lower P a
π (χ

2) cut. The “recov-
ery” uncertainty is defined by the difference in the MC
generated ratio and the measured ratio or “recovered”
ratio found by analyzing the MC with a given P a

π (χ
2)

and P b
γ (χ

2). The final confidence level cut in P b
γ (χ

2) is
determined by the fit parameter P1 indicating how much
π0 background is left after the P a

π (χ
2) cut. Again, the

statistical uncertainty and the MC ratio “recovery” un-
certainty are considered in the optimization of the P b

γ (χ
2)

cut.
The results of the optimization study indicate that a

confidence level cut of P a
π (χ

2) < 1% sufficiently reduces
the π0 background so that a P b

γ (χ
2) > 10% cut can be

used to isolate the radiative signal in the kinematic fit to
γ.
After the two-step kinematic fitting procedure, one can

again study the γ-hypothesis χ2 fit. It now looks more
like a standard distribution for two degrees of freedom,
returning a value of P1 = 0.87 ± 0.06, see Fig. 9C. The
confidence level now appears relatively flat in Fig. 9D,
as it should. This is an indication that an improvement
has been made on the quality of candidates going into
the fit with respect to the hypothesis. This gives some
assurance that the candidates going into the secondary
fit can be accurately filtered with a confidence level cut.
To ensure the quality of the π0 extraction, the same

two-step kinematic fitting procedure is done by first fit-
ting to a γ hypothesis and taking the low confidence level
P a
γ (χ

2) candidates, then fitting to the π0 hypothesis and

taking only the high confidence level P b
π(χ

2) candidates.
Once the confidence level cuts are optimized for ex-

tracting both the π0 and radiative signal, the final se-
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FIG. 9: (A) The χ2 distribution and (B) the confidence level
distribution for a missing γ hypothesis in the kinematic fit
before the two-step kinematic fit. (C) The χ2 distribution
and the (D) the confidence level distribution for a missing γ
hypothesis in the kinematic fit after the P a

π (χ
2) < 1% cut.
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FIG. 10: (A) The nπ counts extracted using the confidence
level cuts P a

γ < 1% and P b
π > 10%. (B) The nγ counts

extracted using the confidence level cuts P a
π < 1% and P b

γ >
10%. (C) The counts nπ and nγ shown in the spectrum before
any kinematic fit.

lected candidates for each case can be seen in the miss-
ing mass spectrum, see Fig. 10. The extracted counts
are shown for (A) the π0, (B) the electromagnetic sig-
nal, and (C) together in the full spectrum of the missing
mass squared. The final raw yields taken directly from
the kinematic fit are nγ = 635 and nπ = 13950.

The π0 leakage into the γ channel is the dominant cor-
rection to the branching ratio. The final result also needs
to be corrected for backgrounds, such as K∗ → K+X
and decays to Σ+π−, as well as the contributions from
Λ(1405) → Λγ. Taking these backgrounds into consid-
eration, and following the notation of Taylor et al. [11],

the branching ratio R = N(Λγ)/N(Λπ) is

R =
1

∆nπAΣ
γ (Λγ)−∆nγAΣ

π (Λγ)

×

[

∆nγ

(

AΣ
π (Λπ) +

RΣπ
Λπ

2
AΣ

π (Σπ)

)

−∆nπ

(

AΣ
γ (Λπ) +

RΣπ
Λπ

2
AΣ

γ (Σπ)

)]

, (7)

where terms starting with A are acceptance factors (given
below) and

∆nπ = nπ −Nπ(Λ
∗ → Σ+π−)−Nπ(Λ

∗ → Σ0π0)

−Nπ(Λ
∗ → Σ0γ)−Nπ(Λ

∗ → Λγ)

−Nπ(K
∗ → Kπ0), (8)

∆nγ = nγ −Nγ(Λ
∗ → Σ+π−)−Nγ(Λ

∗ → Σ0π0)

−Nγ(Λ
∗ → Σ0γ)−Nγ(Λ

∗ → Λγ)

−Nγ(K
∗ → Kγ), (9)

with nγ (nπ) equal to the yield of the kinematic fits,
representing the measured number of photon (pion) can-
didates. In the notation used, lower case n represents
an observed number of counts, while upper case N rep-
resents the acceptance corrected or derived quantities.
Here the π and γ subscripts indicate the kinematic fit
hypothesis and the decay channel is shown in parenthe-
ses (note that Λ∗ denotes the Λ(1405)). These corrections
are necessary to take into account due to the fact that the
background underneath the Σ(1385) is not zero, which
could lead to an over-counting of the Σ(1385) contribu-
tion. For the detector acceptance, the notation has the
pion (photon) hypothesis from the Σ(1385) decay given
by AΣ

π (AΣ
γ ), so that AΣ

γ (Λπ) denotes the relative leakage

of the Σ∗0 → Λπ decay channel into the Λγ extraction
and AΣ

π (Λγ) denotes the relative leakage of the Λγ decay
channel into the Λπ extraction. The form of the ratio
given in Eq. (7) is developed in more detail in the Ap-
pendix.

VI. BACKGROUND CONTRIBUTIONS

Table II lists all decay channels taken into considera-
tion and the value of the acceptance for the confidence
level cuts P a

π (χ
2) < 1% followed by P b

γ (χ
2) > 10%

for the γ-hypothesis and P a
γ (χ

2) < 1% followed by

P b
π(χ

2) > 10% for the π0-hypothesis. To use these ac-
ceptance terms to correct the signal yields, an estimate
of the number nΛ for the Λ(1405) in the event sample is
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TABLE II: Acceptances (in units of 10−3) for the channels used in the calculation of the branching ratio. Here there is a
P a(χ2) < 1% confidence level used with a P b(χ2) > 10% cuts. The uncertainties listed are statistical only.

Reaction Aπ Aγ Aγπ

Λ(1405) → Σ0π0 0.0495±0.0031 0.001±0.0001 1.189±0.019
Λ(1405) → Σ+π− 0.029±0.002 0.0013±0.0001 0.0078±0.001
Λ(1405) → Λγ 0.0011±0.0001 1.65±0.031 0.0223±0.002
Λ(1405) → Σ0γ 0.170±0.012 0.191±0.009 0.437±0.013
Σ(1385) → Λπ 1.421±0.0278 0.0321±0.002 0.0312±0.002
Σ(1385) → Σ+π− 0.161±0.01 0.00254±0.001 0.00138±0.0006
Σ(1385) → Λγ 0.0184±0.002 2.335±0.039 0.0704±0.005
Σ(1385) → Σ0γ 0.191±0.011 0.058±0.0001 0.225±0.015
ΛK∗+

→ K+π0 0.213±0.010 0.010±0.006 2.931±0.051
ΛK∗+

→ K+γ 0.0022±0.0001 0.158±0.003 2.351±0.046

required. The corrections for the γ channel are given by

Nγ(Λ
∗ → Λγ) =

AΛ
γ (Λγ)BR(Λ∗ → Λγ)nΛ

AΛ
γπ(Σ

0π0) +AΛ
γπ(Σ

+π−)
, (10)

Nγ(Λ
∗ → Σ0γ) =

AΛ
γ (Σ

0γ)BR(Λ∗ → Σ0γ)nΛ

AΛ
γπ(Σ

0π0) +AΛ
γπ(Σ

+π−)
,(11)

Nγ(Λ
∗ → Σ0π0) =

AΛ
γ (Σ

0π0)nΛ

AΛ
γπ(Σ

0π0) +AΛ
γπ(Σ

+π−)
, (12)

Nγ(Λ
∗ → Σ+π−) =

AΛ
γ (Σ

+π−)nΛ

AΛ
γπ(Σ

0π0) +AΛ
γπ(Σ

+π−)
, (13)

where BR is the branching ratio for the decay shown,
and likewise for the π0 channel.
Isospin symmetry is assumed so that BR(Σ0π0) =

BR(Σ+π−) = BR(Σ−π+) ≈ 1/3 for the Λ(1405) de-
cay channels. The subscript “γπ” denotes the accep-
tance for events that do not satisfy the confidence level
cuts for either hypotheses of the kinematic fit (i.e. it
is likely to come from some background reaction). The
values for BR(Λ(1405) → Λγ) = 5.4 ± 0.2 × 10−4% and
BR(Λ(1405) → Σ0γ) = 2.0±0.1×10−4% are taken from
Ref. [29].
Contributions from the Σπ decay of the Σ0(1385) are

also considered. The term in Eq. (7) that takes the Σ∗ →
Σ+π− counts into consideration uses RΣπ

Λπ = 0.135±0.011
[4], with the acceptance for the individual channels sub-
ject to the radiative (π0) hypothesis and denoted as
AΣ

γ (Σπ) (A
Σ
π (Σπ)). The Σ∗ → Σ0γ decay branch is also

considered, however no measured branching ratio cur-
rently exists for this channel. The acceptances are very
small and using the higher theoretical prediction of the
Algebraic model [20] yielded only negligible contributions
to the background.
In order to find nΛ, one can look at the events for which

neither the γ nor the π0 hypothesis is satisfied. The
value of nΛ is difficult to determine due to the non-Breit-
Wigner shape of the Λ(1405) decay. A better approach is
to use a Monte Carlo simulation to fill the background ac-
cording to its internal decay kinematics and normalize it
to the data such that the MC matches the data, thereby
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FIG. 11: Missing mass of γp → K+Λ(X) for data (points
with error bars) and Monte Carlo simulations for the γp →

K+Λ(1405) reaction (histogram) normalized to the data.

giving an estimate of nΛ. Figure 11 shows the MC sim-
ulation normalized to the data, giving the estimate used
for nΛ. This can be used to correct all backgrounds ex-
cept for the K∗. The final estimate found is nΛ = 4085.
The γp → K∗0Σ+ reaction was investigated with the

MC simulation and compared with data. This back-
ground was determined to have a negligible effect on the
final result, since there is no Λ in the final state. For the
γp → K∗+Λ reaction, few events survive all of the cuts.
To include corrections for the few events that do survive,
an estimate of the K∗+ background must be established.
The correction for this background has the form

Nπ(K
∗ → K+π0) = (14)

Aπ0(K∗+ → K+π0)n(K∗+ → K+π0)

Aπ(K∗+ → K+π0)
,

where Aπ(K
∗+ → K+π0) is the acceptance for the

K∗+ → K+π0 channel under the π0-hypothesis while
A(K∗+ → K+π0) is the acceptance of the K∗+ → K+π0

channel which is dependent on the extraction method to
obtain the K∗+ → K+π0 counts. n(K∗+ → K+π0) is
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FIG. 12: Missing mass off the Λ fit with a Gaussian for the
mass off of the K+ in the window of 1.35-1.5 GeV.

the estimated number of K∗+ → K+π0 events in the
data sample. Similarly, the radiative decay of the K∗

has the form

Nγ(K
∗ → Kγ) =

3

2
R(K∗+ → K+γ) (15)

×
Aγ(K

∗+ → K+γ)

A(K∗+ → K+π0)
n(K∗+ → K+π0),

with Nπ(K
∗ → Kπ0) from Eq. (15) and BR(K∗+ →

K+γ) ≃ 9.9 × 10−4. An estimate of the number of K∗

events was obtained by matching the MC simulations to
the data. The K∗+ → K+π0 mass distribution has been
fit as shown in Fig. 12. In addition a fit is more easily
obtained over the range that allows the higher part of the
excited state mass spectrum to pass through. Using the
resulting Gaussian fit of the K∗ peak while studying the
mass off of the K+ for mass windows ranging from 1.34-
1.5 GeV to 1.34-1.8 GeV, we are able to extrapolate down
to the nominal Σ∗0 mass cut (1.34-1.43 GeV), see Fig. 4.
Both methods gave similar results for n(K∗+ → K+π0)
used for the background correction in the final ratio. The
extrapolated number of K∗ → K+π0 events present were
1207, 14.8 of which passed the π0-hypothesis.
Each background contribution is enumerated in Table

III. The table gives the final breakdown of statistics for
each term used in Eqs. (8)-(9) to achieve the corrected
counts.

A. RESULTS

The resulting corrected counts ∆nγ = 623.92 ± 25.23
and ∆nπ = 13654.56 ± 118.95 are used in Eq. (7) to
obtain a ratio of 1.42 ±0.12(stat)%. The value of each
cut was varied to study the effect on the final acceptance
corrected ratio. For each variation the new acceptance
terms along with the background contributions in Eq.
(7) were also recalculated. Each major systematic uncer-

TABLE III: Breakdown of statistics for each term in Eqs. (8)-
(9) for the Λ(γ) and Λ(π0) hypotheses. Each listed channel
is subtracted from the raw counts found from the kinematic
fit in each case. The uncertainties are statistical only. The
Σ(1385) → Σ+π− contributions are of the order of 10−5 and
smaller and are not included in the table.

Reaction Λ(γ) Λ(π0)
Raw counts 635 13950
Λ(1405) → Σ0π0 3.41±0.36 168.94±11.65
Λ(1405) → Σ+π− 4.44±1.09 98.98±7.80
Λ(1405) → Λγ 3.04±0.59 0.01±0.00
Λ(1405) → Σ0γ 0.13±0.04 0.12±0.04
ΛK∗+

→ K+π0 0.00±0.00 27.41±1.71
ΛK∗+

→ K+γ 0.03±0.00 0.00±0.00
Corrected counts 623.92±25.23 13654.56±118.95

tainty contribution is listed in Table IV, as described in
detail below.
Particle identification was done by calculating the ve-

locity for a particle of a given mass, using the measured
momentum, and compared with that expected from the
measured path length and time-of-flight. Kaons, protons
and pions are selected based on the difference of the cal-
culated and measured velocity, called ∆β. Variations of
the width of the ∆β cut to identify particles gave slightly
different values of the final ratio, shown in line (1) of Ta-
ble IV.
The distance of closest approach (DOCA) cut for the

proton and π−, used to reconstruct the Λ momentum,
was varied and the stability of the final ratio was exam-
ined. In the stable region, corresponding to cuts in the
range from 3 cm to 14 cm, the effect on the final ratio
is mostly toward higher values, for a larger DOCA cut
value, as listed in line (2).
Similarly, the value of the cut on the transverse mo-

mentum, Pxy, was varied. The ratio stabilizes starting
at the cut point shown in Fig. 7. A series of cuts were
used starting at 0.0009 GeV2 and ending at 0.0025 GeV2

to study the effect on the final ratio, given by line (3).
The Monte Carlo simulations for various background

reactions were done assuming a t-dependent slope of 2.0
GeV−2 for the differential cross sections, based on Regge
theory, as described earlier. The value of the t-slope is
not known precisely, and was varied by ±25%. The effect
on the final ratio is shown in line (4).
The number of counts for the Λ(1405) and K∗ back-

grounds were determined from fits to the data, using
comparisons of shapes from Monte Carlo simulations
with the data shown in Figs. 11 and 12. The uncertainty
in the number of counts for these backgrounds also affects
the final ratio, as shown in lines (5) and (6).
To look at the systematic dependence on the choice of

the confidence level cuts, the range defined by the uncer-
tainty for P b

π(χ
2) was checked. As previously described,

the Monte Carlo studies lead to the set of optimal P a
π

cuts for a given P b
γ . These optimal cuts allow one to re-
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cover, in our standard analysis framework, the ratio of
Λγ to Λπ0 decay that was used as input into the Monte
Carlo simulations. To maximize counting statistics while
minimize this uncertainty, the optimal cuts chosen for
the analysis were P b

π < 1% and P b
γ > 10%.

The variation in the branching ratio is studied by se-
lecting the confidence level cuts that lie slightly outside
the optimization region found in simulations. In this way
the largest range for P b

γ and P a
π can be tested while still

respecting the cuts derived from the optimization map.
Using the full range of ratios in Table V, the largest and
smallest values show the variation for different choices of
confidence level cuts, and is listed in line (7).
The branching ratio of the radiative decay of the

Λ(1405) affects the final result. Because this value is
not measured directly, but is taken from the calculated
value in Ref. [29], there is some uncertainty in it. Using
the range of values for this branching ratio given in the
literature, and recalculating its effect on our result, leads
to the uncertainty quoted in line (8).
Table IV shows a summary of the systematic studies

and the higher and lower value of the extracted ratio
based on the variations mentioned for each type of un-
certainty. The deviation of the ratio is defined by the
difference from the quoted ratio of R = 1.42%. These
deviations, shown in columns 3 and 5 of Table IV, are
added in quadrature to give the total systematic uncer-
tainty.
The range of the systematic uncertainty for R in Ta-

ble IV is smaller than the statistical uncertainty, in part
because each combination of cuts has a large overlap of
events (i.e. the same subset of events is present for all
choices of cuts). Since the kinematic fit requires a con-
straint on the Λ mass, the kinematic cut on the invariant
mass of the pπ− has no effect.
The final calculated ratio, given in percent, is

RΛγ
Λπ = Γ[Σ0(1385)→Λγ]

Γ[Σ0(1385)→Λπ0]

= 1.42± 0.12(stat)+0.11
−0.07(sys)%. (16)

Previously published work [11] on this branching ratio
yielded a ratio of 1.53±0.39+0.15

−0.17 %. The value given here
is consistent within uncertainties of the previous value,
but has smaller uncertainties. The smaller uncertainty is
important, as the previous uncertainty was on the same
order as the theoretical meson cloud corrections to the
EM decay of the ∆. If similar meson cloud corrections
are to be proven true for EM decay of the Σ∗0 baryon,
then the smaller experimental uncertainty is a significant
improvement.
The width for the branching ratio achieved comes

from the use of the full width of the Σ∗0, which is
Γ(Σ∗0)Full = 36.0 ± 5.0 MeV with the branching ratio
that the radiative signal is being normalized to, which is
the R(Σ∗0 → Λπ0) = 87.0± 1.5% [4]. The partial width
calculation is then

ΓΣ∗0→Λγ = RΛγ
ΛπR(Σ∗0 → Λπ0)Γ(Σ∗0)Full

= 445± 80 keV, (17)

where a systematic uncertanty in RΛγ
Λπ of ±0.11% is use in

combination with the statistical uncertainty. Note that
a large part of the uncertainty in Eq. (17) comes from
the uncertainty of the full width Γ(Σ∗0)Full.
These results verify that the partial width is indeed

significantly larger than leading theoretical predictions,
indicating that meson cloud effects are an important con-
sideration for future calculations.
The radiative decay Σ∗0 → Λγ is made up of M1 and

E2 electromagnetic transitions. Assuming that the E2
amplitude is very small, one can calculate the transition
magnetic moment from the measured radiative width
[30],

µΣ∗0→Λγ =

√

2M2
pΓΣ∗0→Λγ

αp3γ
µN = 2.75± 0.25µN , (18)

where pγ is the photon momentum, Mp is the mass of the
proton, α = e2/4π ∼ 1/137, and µN is the nuclear mag-
neton. The value for the transition magnetic moment
is larger than most model predictions even within the
experimental uncertainty. For example the naive quark
model predicts µΣ∗0→Λγ = 2.28µN [31]. We hope that
this measurement, along with others to come, will moti-
vate theorists to understand the effect of the meson cloud
on the magnetic moment and hence extend our knowl-
edge of the quark wavefunctions in the decuplet baryons.
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TABLE IV: Ranges of systematic variation of the final ratio, given in percent, along with the deviation from the central value.

Source Low Value Low Deviation High Value High Deviation
(1)Particle identification 1.380 −0.040 1.490 +0.070
(2)pπ− DOCA cut point 1.350 −0.007 1.480 +0.060
(3)Transverse momentum Pxy 1.415 −0.005 1.433 +0.013
(4)Monte Carlo t-dependence 1.380 −0.040 1.440 +0.020
(5)Λ(1405) counts 1.420 −0.000 1.470 +0.050
(6)K∗ counts 1.420 −0.000 1.431 +0.011
(7)P (χ2) cut points 1.388 −0.032 1.448 +0.028
(8)Λ(1405) → Λγ correction 1.390 −0.030 1.420 +0.000
Total Uncertainty −0.072 +0.112
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TABLE V: Dependence of corrected branching ratio for vari-
ation of the confidence level cuts shown.

P b
γ (%) P a

π (%) R(%)
15 7.5 1.388± 0.12
15 5 1.390± 0.12
10 5 1.422± 0.12
10 1 1.420± 0.12
10 0.5 1.421± 0.12
5 0.1 1.448± 0.12
5 0.05 1.436± 0.12
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1. Appendix: Ratio Derivation

To calculate the ratio in Eq. (7), the leakage of the
π0 region into the γ region (and vice-versa) is the dom-
inant correction. Taking just these two channels into
consideration, the number of true counts can be repre-

sented as N(Λγ) for the Σ∗0 → Λγ channel and N(Λπ)
for the Σ∗0 → Λπ0 channel. The acceptance under the
Σ∗0 → Λγ hypothesis can be written as Aγ(X), with the
subscript showing the kinematic fit hypothesis type and,
in parentheses, the channel used in the Monte Carlo for
the acceptance. For example, the calculated acceptance
for the Σ∗0 → Λγ channel under the Σ∗0 → Λγ hypothe-
sis is Aγ(Λγ), whereas under the Σ∗0 → Λπ0 hypothesis
it is Aπ(Λγ). It is now possible to express the measured

values nγ and nπ as

nγ = Aγ(Λγ)N(Λγ) +Aγ(Λπ)N(Λπ) (19)

nπ = Aπ(Λπ)N(Λπ) +Aπ(Λγ)N(Λγ). (20)

The desired branching ratio of the radiative channel
to the π0 channel using the true counts is then R =
N(Λγ)/N(Λπ). This can be obtained by dividing Eq.
(19) by Eq. (20) expressed in terms of R as

nγ

nπ
=

RAγ(Λγ) +Aγ(Λπ)

Aπ(Λπ) +RAπ(Λγ)
, (21)

then solving for R. Expressed in terms of measured val-
ues and acceptances, the branching ratio is

R =
nγAπ(Λπ)− nπAγ(Λπ)

nπAγ(Λγ)− nγAπ(Λγ)
. (22)

Equation (22) uses the assumption that contributions
from the Σ(1385) will only show up as Λγ or Λπ0, ne-
glecting the Σ(1385) → Σπ channel. An estimate of the
total number of Σ(1385)’s produced using the Λπ0 chan-
nel is

N(Σ∗0) =
N(Σ∗ → Λπ0)

R(Σ∗ → Λπ0)A(Σ∗ → Λπ0)
, (23)

where R(Σ∗ → Λπ0) is the branching ratio of the Σ(1385)
decay to Λπ0 and A(Σ∗ → Λπ0) is the acceptance for
that channel. An estimate of the number of Σ(1385) →
Σ+π− → pπ0π− counts that would contribute to the π0

peak is then:

N(Σ∗ → Σ+π−)

= R(Σ∗ → Σ+π−)A(Σ∗ → Σ+π−)N(Σ∗0)

= R(Σ∗→Σ+π−)A(Σ∗→Σ+π−)
R(Σ∗→Λπ0)A(Σ∗→Λπ0) N(Σ∗ → Λπ0) , (24)

where R(Σ∗ → Σ+π−) is the branching ratio of the
Σ(1385) to decay into Σ+π− and A(Σ∗ → Σ+π−) is the
corresponding acceptance after all cuts. It is possible to
simplify the expression by using,

RΣπ
Λπ =

R(Σ∗ → Σ±π∓)

R(Σ∗ → Λπ0)
= 0.135± 0.011,
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using the PDG average value [4]. The two charged com-
binations of the Σπ decay have equal probability. The
Clebsch-Gordon coefficient for the Σ∗ → Σ0π0 decay is
zero, assuming isospin symmetry. The observed counts,
expressed in terms of true counts and corresponding ac-
ceptances for each hypothesis, becomes

nγ = Aγ(Λγ)N(Λγ) + (Aγ(Λπ) +
RΣπ

Λπ

2
Aγ(Σπ))N(Λπ)

(25)
and

nπ = (Aπ(Λπ)+
RΣπ

Λπ

2
Aπ(Σπ))N(Λπ)+ (Aπ(Λγ))N(Λγ).

(26)
Solving for R will result in a branching ratio that includes
all needed information from the Σ(1385). Although the
corrections to R from other contamination should be
small, it is necessary to include them in the calculation.
There is some probability that contamination for these
other channels can leak through, and acceptance stud-
ies were done for all channels under both the Λγ and
Λπ0 hypotheses. Results from the acceptance for each
hypothesis are shown in Table II. The branching ratio
must include corrections for the K∗+ → K+X and the
Λ(1405) → Σπ contamination, as well as a contribution
to the numerator of R from Λ(1405) → Λγ decay. The
leakage of the Σγ channel is assumed to be small relative
to the Λγ signal. However, this channel is still considered
in the acceptance studies, see Table II.
The branching ratio, taking these backgrounds into

consideration, is Eq. (7). The nγ (nπ) terms come di-
rectly from the yield of the kinematic fits and represent
the measured number of photon (pion) candidates. A
similar notation is used so that the pion (photon) chan-
nel identifications are denoted AΣ

π (Σ
+π−) (AΣ

γ (Σ
+π−)),

where AΣ
γ (Λπ) is the relative leakage of the Λπ channel

into the Λγ extraction, AΣ
π (Λγ) is the relative leakage of

the Λγ channel into the Λπ extraction, AΣ is the accep-
tance strictly for the Σ(1385), and AΛ is the acceptance
for the Λ(1405).
Table II shows the acceptance terms for the other back-

ground channels that are considered in the ratio calcula-
tion. The table lists three columns sorted by hypothesis:
Aγ , Aπ, and the counts that made all other cuts but did
not satisfy either the γ or π0 hypothesis, Aγπ. The latter

is used to obtain an estimate of counts for the specific
backgrounds listed.
To obtain the values of N(Λ∗) from Eqs. (10)-(13)

that must be subtracted from nγ or nπ, the number of
observed counts of Λ∗ → Σ0π0 are used with the accep-
tances from the third column and the acceptance of the
background channel of interest. As an example consider
N(Λ∗ → Σ+π−) under the π hypothesis. The number of
observed counts n(Σ0π0) above the π0 peak is given by

N(Λ∗) =
nΛ

R(Λ∗ → Σ0π0)AΛ(Σ0π0)
. (27)

The notation nΛ here is shorthand for n(Σ0π0), while
R(Λ∗ → Σ0π0) is the probability that the Λ(1405) will
decay to Σ0π0 and AΛ(Σ0π0) is the probability that
this decay channel will be observed after all the applied
cuts. Isospin symmetry is assumed so that R(Σ0π0) =
R(Σ+π−) = R(Σ−π+) ≈ 1/3 for the Λ(1405) decay chan-
nels. An estimate of the number of counts in the π0 peak
coming from the reaction Λ∗ → Σ+π−, using Eq. (27),
is

Nπ(Λ
∗ → Σ+π−)

= R(Λ∗ → Σ+π−)AΛ
π (Σ

+π−)N(Λ∗)

= AΛ
π (Σ

+π−)nΛ/A
Λ
γπ(Σ

0π0). (28)

A small adjustment is made to ensure that the Λ∗ →
Σ+π− contributions are also included by adding in
the relative acceptance AΛ(Σ+π−) to the denominator.
These acceptance terms are found by independently using
Monte Carlo for the γp → K+Λ(1405) → K+Σ0π0 and
γp → K+Λ(1405) → K+Σ+π− reactions. The counts
that survive all cuts but did not satisfy either the γ or
π0 hypothesis contribute to Aγπ. The leakage for the
γp → K+Λ(1405) → K+Σ+π− channel is very small but
is included for completeness. The final result is

Nπ(Λ
∗ → Σ+π−) =

AΛ
π (Σ

+π−)nΛ

AΛ
γπ(Σ

0π0) +AΛ
γπ(Σ

+π−)
. (29)

From this example it becomes transparent how to express
all other associated Λ(1405) corrections using only the
observed nΛ counts and the corresponding acceptance
for this channel.


