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Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters
from the energy-dependent elastic phase-shift computed using the Lüscher technique. In this letter,
as a trial of the method, we report on the extraction of the non-resonant phase-shift for S and
D-wave ππ isospin-2 scattering from dynamical lattice QCD computations. We define a variational
basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of
excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are
performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no
significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement
with the available experimental data at low momentum.

a. Introduction: The hadron spectrum and interac-
tions of QCD can be studied from first principles using
numerical simulation of the quark and gluon fields on a fi-
nite lattice. While significant progress has been made in
studying isolated excited meson states with qq̄-like op-
erators [1, 2], it remains challenging to extract proper-
ties of resonances that appear in the scattering of stable
hadrons. One procedure, due to Lüscher [3], maps the
discrete spectrum of eigenstates of QCD in a finite cubic
volume to the phase shift for elastic scattering. By ex-
tracting multiple excited eigenstates within a given quan-
tum number sector, one can map out the phase shift as a
function of scattering momentum and, if present in that
channel, observe resonant behaviour.

In this letter, we demonstrate the feasibility of the
technique in a simple sector, that of ππ scattering in
isospin-2 (I = 2), where the interaction is not strong
enough to form a resonance, but rather is weak and re-
pulsive. For the first time using this method, we extract
the S- and D-wave phase shifts as a function of scatter-
ing momentum. This procedure is carried out indepen-
dently on multiple volumes to validate the finite-volume
method. We find through computations at a range of
quark masses that at the level of precision attained the
phase shift is largely quark mass independent.

Previous lattice QCD calculations of ππ scattering
have limited themselves to extracting the phase shift at
near-zero energy, more conveniently expressed via the
scattering length [4, 5], or by performing the same cal-
culation in a moving frame, a single phase shift point at
non-zero energy [6].

In contrast, we use the “distillation” method [7] to con-
struct both creation and annihilation operators of defi-
nite ππ relative momentum, and employ them to form
a variational basis of composite QCD operators that re-
semble pairs of pions. This enables us to extract a spec-

∗Electronic address: dudek@jlab.org

trum of multiple states with I = 2, `P = 0+, 2+ (` is the
partial wave and P the parity) and, using the Lüscher
technique, we find the phase shift as a discrete function
of the scattering momentum. This sets the groundwork
for investigating resonances in other meson-meson scat-
tering channels.

Experimentally, ππ I = 2 phase shifts have been
extracted from πN → ππN ′ charge-exchange scattering
reactions, treating the dominantly-exchanged pion as
approximately on-shell owing to the proximity of the
t-channel pole to the physical small-t region. The extant
data [8–11] for δ`=0 and δ`=2 are broadly consistent
in the low-energy region measured and there is little
statistically significant evidence for inelasticity.

b. Finite volume analysis: Lüscher’s method relates
the discrete spectrum of energy levels in a finite volume to
phase shifts evaluated at the scattering momenta corre-
sponding to the extracted energy values. Complications
arise from the cubic symmetry of the lattice boundary
which reduces the irreducible symmetry channels from
the set of all integer spins to a finite set of irreducible rep-
resentations. The relevant irreps, Γ, for ππ isospin-2 scat-
tering at low momentum are A+

1 which contains contin-
uum spins ` = 0, 4 . . ., T+

2 (` = 2, 4 . . .), E+(` = 2, 4 . . .)
and T+

1 (` = 4 . . .). Odd ` do not contribute due to Bose
symmetry.

Once the finite volume energy levels, Eππ are ob-
tained from an explicit Monte-Carlo calculation on a
fixed volume (L3) lattice, the scattering momenta fol-
low assuming a continuum-like dispersion relation, k =√

(Eππ/2)2 −m2
π. The desired phase-shifts are embed-

ded in an equation

det
[
e2iδ(k) −UΓ

(
k L

2π

)]
= 0, (1)

where UΓ

(
k L

2π

)
is a matrix in the space of partial waves,

`, of known functions particular to this irrep, Γ, evalu-
ated at the scattering momentum, k. e2iδ(k) is a diagonal
matrix featuring phase-shifts, δ`(k), for all partial waves
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contributing to the irrep Γ. The dimension of these ma-
trices is formally infinite, since there are an infinite num-
ber of possible partial waves contributing to each irrep
Γ. However, one can argue that, since higher waves typ-
ically contribute less at low momentum, one can cut-off
the dimension at some low-spin and, provided the results
are reasonably insensitive to this cutoff, reliably extract
the phase shift for low partial waves. This is the core of
the Lüscher method [3].

The aim then is to solve for some set of phase-shifts
{δ`(k)}, but since Equation 1 is one equation (per energy
level) in several unknowns, this will not be possible.
Instead we will attempt to bound the size of all δ`(k)
for ` higher than the lowest in each irrep using other
information. In practice we will assume that, in the
energy region accessible to us, δ`>4 ≈ 0 and consider
only the effect of a non-zero δ4(k).

c. Correlator construction and variational analysis:
In order to obtain the finite-volume energy spectrum, we
form a matrix of correlators using a basis of ππ operators
that is then diagonalised using the variational method
[2, 12, 13]. The operators are constructed to resemble
a pair of pions with total momentum zero and definite
relative momentum:

OΓ,γ
ππ (|~p|) =

∑
m

S`,mΓ,γ

∑
p̂

Y m` (p̂)Oπ(~p)Oπ(−~p).

The subduction coefficients, S`,mΓ,γ , project operators of
definite ` into definite irreps, Γ - their explicit forms can
be found in Appendix A of [2]. The sum over directions
of momentum, p̂, at a fixed magnitude is limited to those
allowed by the periodic cubic boundary conditions. On
a lattice with spatial extent L these are ~p = 2π

L ~n for a
vector of integers ~n.

In this first study we utilise only a simple operator
capable of interpolating a pion at momentum ~p from the
vacuum,

Oπ(~p) =
∑
~x

ei~p·~x
[
ψ̄�σγ

5�σψ
]

(~x),

where the quark fields are acted upon by a distillation
smearing operator that emphasises the low momentum
quark and gluon modes that dominate low mass hadrons.

In this study we use �σ =
∑Nvecs

n=1 eσ
2λn/4ξnξ

†
n where

λn, ξn are the eigenvalues and eigenvectors of the gauge-
covariant three-dimensional Laplacian operator (see [2, 7]
for details; σ = 0 was used in [1, 2]). It is distillation that
factorises the construction of correlators in such a way as
to make possible the projection onto definite inter-pion
momentum at both source and sink, something that is
not possible in the traditional “point-all” method. De-
tails of the distillation correlator construction can be
found in [7].

Our variational basis in the irrep A+
1 consists of opera-

tors with |~p|2 =
(

2π
L

)2
(0, 1, . . . 4) each with two smearing

radii σ = 0.0, 4.0, giving a ten dimensional basis. For E+

mπ/MeV (L/as)
3 × (T/at) Ncfgs Ntsrcs Nvecs

524
163 × 128 496 4 64

203 × 128 377 4 96

444
163 × 128 605 5 64

203 × 128 321 3 128

396
163 × 128 439 16 64

203 × 128 535 3 128

243 × 128 548 4 162

TABLE I: Lattices used in this study. Nvecs indicates the
number of eigenvectors of the laplacian used in the distillation
method.

we have |~p|2 =
(

2π
L

)2
(1, 2, 4) and two smearings and T+

2

with |~p|2 =
(

2π
L

)2
(2, 3) and two smearings. The T+

1 irrep
has lowest spin ` = 4 for two pions. However the lowest
momentum from which a T+

1 operator can be constructed

is |~p|2 = 5
(

2π
L

)2
and this is the only one we used. With

these operators at source and sink, we form all correlators
using Wick contractions relevant for I = 2.

Computations are performed on anisotropic lattices
with three dynamical flavors of Clover fermions with spa-
tial lattice spacing as ∼ 0.12 fm and finer temporal spac-
ing, a−1

t ∼ 5.6 GeV, see Table I and [14]. A precise mea-
sure of the anisotropy, ξ = as/at, is required to determine
the spatial length of the lattice in temporal lattice units,
L/at = ξL/as. Fitting single-pion correlators at finite
momentum, as~p = 2π

L/as
~n, determines atEπ(|~n|) and ξ

follows from fitting the dispersion relation(
atEπ(|~n|)

)2
= (atmπ)2 + 1

ξ2

(
2π
L/as

)2

|~n|2,

for multiple values of |~n| and L/as. Explicitly we
find ξ = 3.459(4), 3.454(5), 3.459(3) on respectively the
mπ = 396, 444, 524 MeV lattices, showing the lack of
quark mass dependence observed previously and utilised
in the dynamical tuning of the lattice action[15]. Mass-
dimension quantities multiplied by the temporal lattice
spacing, at, are scale-set using the procedure outlined in
[2], using the Ω-baryon mass determined on the same lat-

tice, m = atm
atmΩ

· mphys.
Ω . The continuum scaling of the

results is not investigated in this calculation at a single
lattice spacing.

In Figure 1 we show the finite-volume spectra ob-
tained with mπ = 396 MeV and L/as = 16, 20, 24.
We clearly observe shifts relative to the energy of two
non-interacting pions with back-to-back momentum of
~p = 2π

L ~n, Eππ = 2
√
m2
π + |~p|2. It is this energy shift

that Lüscher’s method relates to the scattering phase
shift through Equation 1. It is the fact that we are able
to resolve excited energy levels with a statistical preci-
sion below 1% that makes possible an extraction of the
scattering phase shift as a function of scattering momen-
tum.
d. Phase shift: For each ππ energy level in each ir-

rep in Figure 1 we can set up an Equation 1 to be solved
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FIG. 1: Low-lying spectrum, in units of the temporal lat-
tice spacing, of finite volume states in irreps A+

1 , E
+, T+

2 at
mπ = 396 MeV for L/as = 16, 20, 24. The box height indi-
cates the statistical uncertainty on the energy. Orange boxes
correspond to states suspected of being ππ? scattering states.
Dashed lines indicate the non-interacting energy of pion pairs
with the allowed lattice momenta between them.

for the phase shifts, δ`. The simplest way to solve these
equations is to neglect the contribution of ` ≥ 4 to ob-
tain δ0 from A+

1 and δ2 from T+
2 or E+. Doing so gives

the red, green and blue colored points in Figure 2. The
small discrepancies between E+ and T+

2 extractions of δ2
at k2 ∼ 0.35, 0.55, 0.85 GeV2 (corresponding to the levels
at atE ∼ 0.25, 0.29, 0.36 in Figure 1), have a possible ori-
gin in the neglect of a non-negligible value of δ4. We can
estimate the size of this δ4 by solving the coupled system
of Equations 1 for T+

2 and E+ at the relevant energy for
the two unknowns, δ2, δ4. The values of δ4 so extracted
are shown by the pink points in Figure 2.

For a direct estimate of δ4 from T+
1 , only the L/as = 24

lattice has a point within our plotted range of scattering
momentum. The extracted point is shown by the pink
diamond in Figure 2, and is in good agreement with the
other estimates, showing that |δ4| is less than 2◦ over the
whole of the explored momentum range.

With an estimated magnitude of δ4(k) in hand (from
interpolation between the determined points), we can
solve Equation 1 including the effect of the ` = 4 wave.
This gives rise to the orange, light green and cyan colored
points in Figure 2 which are seen to differ relatively little
from the points with δ4 assumed to be zero. For final
presentation we enlarge the errorbar to include the effect
of the estimated δ4 giving rise to asymmetric errorbars
in Figure 3.

As indicated in Figure 2, the 4π threshold opens
within the energy range of our extracted phase-shifts
and technically for energies above this the formalism
leading to Equation 1 is not rigorously correct. On the
other hand, there is relatively little evidence experimen-
tally for considerable inelasticity in the ππ isospin-2
channel in the energy range so-far probed - what little
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FIG. 2: Phase-shifts extracted from spectra with mπ =
396 MeV. Red (A+

1 ), green (E+), blue (T+
2 ) colored points

assume δ4 = 0; orange (A+
1 ), light green (E+), cyan (T+

2 )
colored points (shifted slightly to the right) used estimated
δ4 as described in the text: note that the corrected δ2 val-
ues from E+, T+

2 coincide by construction at momenta near

|~p|2 = 2 ·
(
2π
L

)2
. Estimated δ4 shown by pink points. Also

indicated are the positions of inelastic thresholds into 4π and
ρρ.

data there is does not show statistically significant devi-
ation from an elastic approximation [9, 10]. As an initial
approximation, we shall assume that the inelasticity is
negligible and continue to use Equation 1 above the
inelastic threshold. The ` = 2 phase-shift extracted from
E+, T+

2 irreps should be less sensitive to any inelasticity
since the effective threshold in finite-volume is higher as
it requires at least one unit of relative momentum in the
4π system. Future calculations should test the elasticity
assumption by computing correlators using operators
that resemble four pions projected into isospin-2 in the
appropriate partial waves.

e. Results: In Figure 3 we show our results for S
and D-wave phase shifts, at a range of pion masses,
along with experimental data taken from [8–11]. We ob-
serve reasonable agreement with the experimental data at
lower scattering momenta, where the scattering is purely
elastic, for all the pion masses computed. This suggests
that it is possible that the phase-shift is only mildly de-
pendent upon pion mass. Of course, one requires lattice
computations at smaller pion masses to verify that the
agreement with experiment continues.

Using only ππ and π correlators at zero momentum
we can perform the extraction of the scattering length
using the methodology of [4, 5]. The scattering lengths
so obtained are shown in Figure 4, where they are seen to
be in reasonable agreement with the precision data of [4],
computed on a lattice of similar spatial lattice spacing.

We can also obtain estimates for the scattering length
and effective range by fitting the k dependence of δ0(k),
where we find that scattering lengths largely agree with
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FIG. 3: Phase-shift in degrees for ππ I = 2 scattering with
` = 0(δ0) and ` = 2(δ2). Lattice results at various pion masses
and volumes. Experimental data from [8–11].

the estimates from the simple method above, while the
effective range is small but only poorly determined.

f. Summary and prospects: We have demonstrated
the feasibility of an explicit application of the Lüscher
finite-volume framework in dynamical lattice QCD. Us-
ing multiple excited state energy levels extracted in a
single volume, we have determined the S- and D-wave
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FIG. 4: S-wave scattering length. Blue points from ~p = ~0
correlators, pink points from effective range fits to δ(k). Com-
parison to lattice results of [4, 5] and Roy equations analysis
of experimental data [16].

ππ isospin-2 phase shifts as a function of scattering mo-
mentum. Multiple volumes are then used for validation
and estimation of the effect of neglected higher partial
waves. We estimate that |δ4| . 2◦ for k < 1 GeV.

We observe no significant pion mass dependence in the
phase shift below k ∼ 1 GeV, with results for mπ &
400 MeV being in reasonable agreement with experimen-
tal data at low scattering momentum. For precision cov-
erage of experimentally relevant kinematics, we would
require still larger volumes to sample points at smaller
scattering momentum in the elastic region.

This calculation sets the groundwork for an investiga-
tion of the resonances in meson-meson scattering that
arise from the strong interaction. Inclusion of quark
annihilation diagrams in the calculation of correlators
[17] will enable the I = 1 ππ sector to be studied, where
one expects to see the ρ resonance appearing as a rapidly
rising phase shift. Some attempts in this direction have
been made [18–20], but using only a small basis of
operators and subsequently extracting a very limited
number of phase-shift points. Distillation and stochastic
variants [7, 21, 22] will allow us to efficiently construct
a large basis and thus map out many points on the
phase-shift curve. In future work, we will explore a range
of different scattering hadrons in various partial-waves.
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