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We report on a search for CP violation in the decay D¥ — K2n* using a data set corresponding to
an integrated luminosity of 469 fb~! collected with the BABAR detector at the PEP-II asymmetric

energy ete” storage rings.

The CP-violating decay rate asymmetry Acp is determined to be

(—0.44 £ 0.13(stat) £ 0.10(syst))%, consistent with zero at 2.7 o and with the standard model
prediction of (—0.332 4 0.006)%. This is currently the most precise measurement of this parameter.

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

In the standard model (SM), CP violation (CPV)
arises from the complex phase of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [1]. Measure-
ments of the CPV asymmetries in the K and B meson
systems are consistent with expectations based on the
SM and, together with theoretical inputs, lead to the de-
termination of the parameters of the CKM matrix. CPV
has not yet been observed in the charm sector, where the
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theoretical predictions based on the SM for CPV asym-
metries are at the level of 1073 or below [2].

In this Letter we present a search for CPV in the decay
D* — K% by measuring the CPV parameter Acp
defined as:

ot — Kot -T(D~ — ng_)
Acp = — -, (1)

(Dt = Ko t) +T(D~ — K%7~)
where I is the partial decay width for this decay. This de-
cay mode has been chosen because of its clean experimen-
tal signature. Although direct CP violation due to inter-
ference between Cabibbo-allowed and doubly Cabibbo-
suppressed amplitudes is predicted to be negligible within
the SM [3], K° — K° mixing induces a time-integrated
CP violating asymmetry of (—0.332 £ 0.006) % [4]. Con-
tributions from non-SM processes may reduce the value
of the measured Acp or enhance it up to the level of
one percent [3, 5]. Therefore, a significant deviation of




the Acp measurement from pure K9 — K° mixing effects
would be evidence for the presence of new physics beyond
the SM. Due to the smallness of the expected value, this
measurement requires a large data sample and precise
control of the systematic uncertainties. Previous mea-
surements of Agp have been reported by the CLEO-c
((—0.6 == 1.0(stat) £ 0.3(syst))% [6]) and Belle collabora-
tions ((—0.71 £ 0.19(stat) + 0.20(syst))% [7])-

The data used in this analysis were recorded at or near
the YT(4.5) resonance by the BABAR detector at the PEP-II
storage rings. The BABAR detector is described in detail
elsewhere [8]. The data sample corresponds to an inte-
grated luminosity of 469 fb~!. To avoid any bias from
adapting the analysis procedure to the data, we perform
a “blind” analysis where all aspects of the analysis, in-
cluding the statistical and systematic uncertainties, are
validated with data and Monte Carlo (MC) simulation
based on GEANT4 [10] before looking at the value of
Acp. The MC samples include ete™ — qq (¢ = u, d, s, ¢)
events, simulated with JETSET [11] and BB decays sim-
ulated with the EvtGen generator [12]. The coordinate
system defined in [8] is assumed throughout the Letter.

We select D* — K%7% decays by combining a K2
candidate reconstructed in the decay mode K9 — wFm~
with a charged pion candidate. A K? candidate is re-
constructed from two oppositely charged tracks with an
invariant mass within £10 MeV/c? of the nominal K9
mass [4], which is equivalent to slightly more than +2.5¢
in the measured K? mass resolution. The x? probability
of the 77~ vertex fit must be greater than 0.1%. To
reduce combinatorial background, we require the mea-
sured flight length of the K candidate to be greater
than 3 times its uncertainty. A reconstructed charged
track that has pr > 400 MeV/c is selected as a pion
candidate, where pr is the magnitude of the momen-
tum in the plane perpendicular to the z axis. At BABAR,
charged hadron identification is achieved through mea-
surements of ionization energy loss in the tracking sys-
tem and the Cherenkov angle obtained from a detector of
internally reflected Cherenkov light. A CsI(Tl) electro-
magnetic calorimeter provides photon detection, electron
identification, and neutral pion reconstruction [8]. In our
measurement, the pion candidate is required not to be
identified as a kaon, a proton, or an electron. These
selection criteria for the pion candidate are very effec-
tive in reducing the charge asymmetry from track recon-
struction and identification, as inferred from studying the
large control sample described later. A kinematic vertex
fit to the whole decay tree is then performed with no ad-
ditional constraints [9]. We retain only D* candidates
having a x? probability for this fit greater than 0.1% and
an invariant mass m(K°%7%) within +65MeV/c? of the
nominal D" mass [4], which is equivalent to more than
+8 ¢ in the measured D* mass resolution. Motivated by
Monte Carlo simulation studies, we further require the
magnitude of the D candidate momentum in the ete™
center-of-mass (CM) system, p*(D¥), to be between 2
and 5 GeV/c. This criterion reduces the combinatorial

background to an acceptable level, but also keeps some
D* mesons from B mesons decays (they are ~ 8% of
the selected sample)[13]. Additional background rejec-
tion is obtained by requiring that the impact parameter
of the DT candidate with respect to the beam-spot [8],
projected onto the plane perpendicular to the z axis, be
less than 0.3 cm and the D lifetime 7,,(D*) be be-
tween —12.5 and 31.3 ps. The lifetime is measured using
Lyy(D%), defined as the distance of the D* decay vertex
from the beam-spot projected onto the plane perpendic-
ular to the z axis.

To further improve the search sensitivity, a Boosted
Decision Tree (BDT) algorithm [14] is constructed from
seven discriminating variables for each D* candidate:
Toy(DF), Lyy(DF), the CM momentum magnitude
p*(D*), the momentum magnitudes and transverse com-
ponents with respect to the beam axis for both the K9
and pion candidates. Because all the input variables con-
tains no charge information, no charge bias is expected
to be introduced by the algorithm and this assumption
has been verified using a large sample of MC simulated
events. The final selection criteria are based on the BDT
output and optimized using truth-matched signal and
background candidates from the MC sample. For the
optimization, we maximize the S/+/S + B ratio, where
S and B are the numbers of signal and background can-
didates whose invariant mass is within £31 MeV/c? of the
nominal D* mass.

A Dbinned maximum likelihood (ML) fit to the
m(K%7%) distribution for the retained D* candidates
is used to extract the signal yield. The total probability
density function (PDF) is the sum of signal and back-
ground components. The signal PDF is modeled as a sum
of three Gaussian functions, the first two of them with
common mean. The background PDF is taken as a sum
of two components: a background from D — KIK¥*
where the K* is misidentified as 7%, and a combina-
torial background from other sources. Based on MC
studies, the yield of D* — 77 Fr* decays in the fi-
nal data sample is estimated to be 0.02% of the signal
and the estimated Acp for this source to be less than
0.002%. Therefore a PDF to model this component is
not included in the fit. The background from the decay
DF — K9K* is modeled using a PDF sampled from the
MC histogram for this mode. The combinatorial back-
ground is described as a second-order polynomial. The
fit to the m(K%rT) distribution yields (807 + 1) x 103
signal events. The data and the fit are shown in Fig. 1.
All of the fit parameters are extracted from the fit to the
data sample apart from the normalization of the back-
ground due to DF¥ — KYK* which is fixed to the value
predicted by the MC simulation.

We determine Acp by measuring the signal yield asym-
metry A defined as:

-~ TN (2)

where Np+(Np-) is the number of fitted DT —
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FIG. 1: Invariant mass distribution for ngi candidates in
the data (black points). The solid curve shows the fit to the
data. The dashed line is the sum of all backgrounds, while
the dotted line is combinatorial background only. The vertical
scale of the plot is logarithmic.

K2t (D™ — K97~) decays. The quantity A is the re-
sult of two other contributions in addition to Acp. There
is a physics component due to the forward-backward
(FB) asymmetry (App) in ete” — c¢, arising from
v*-Z° interference and high order QED processes in
ete™ — ce. This asymmetry will create a difference in
the number of reconstructed D' and D~ decays due to
the FB detection asymmetries arising from the boost of
the CM system relative to the laboratory frame. There
is also a detector-induced component due to the differ-
ence in the reconstruction efficiencies of D¥ — K97+
and D~ — K7~ generated by differences in the track
reconstruction and identification efficiencies for 7+ and
7. While App is measured together with Acp using the
selected dataset, we correct the dataset itself for the re-
construction and identification effects using control data
sets.

In this analysis we have developed a data-driven
method to determine the charge asymmetry in track re-
construction as a function of the magnitude of the track
momentum and its polar angle. Since B mesons are pro-
duced in the process ete™ — Y(4S) — BB nearly at rest
in the CM frame and decay isotropically in the B rest
frame, these events provide a very large control sample
essentially free of any physics-induced charge asymme-
try. However, data recorded at the Y (4S5) resonance also
include continuum production ete™ — qg (¢ = u, d, s, ¢),
where there is a non-negligible FB asymmetry due to
the interference between the single virtual photon pro-
cess and other production processes, as described above.
The continuum contribution is estimated using the off-
resonance data rescaled to the same luminosity as the
on-resonance data sample. Subtracting the number of
reconstructed tracks in the rescaled off-resonance sam-
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FIG. 2: Map of the ratio between detection efficiency for =+
and 7~ (top) plus the corresponding statistical errors (bot-
tom). The map is produced using the numbers of 7~ and 7™
tracks in the selected control sample.

ple from the number of tracks in the on-resonance one,
we obtain the number of tracks corresponding to the B
meson decays only. Therefore, the relative detection and
identification efficiencies of the positively and negatively
charged particles for given selection criteria can be de-
termined using the numbers of positively and negatively
reconstructed tracks directly from data.

Using samples of 8.5 fb™! on-resonance and 9.5 fb~!
off-resonance data, applying the same charged pion track
selection criteria used in the reconstruction of D* —
K9* decays, and subtracting the off-resonance sam-
ple from the on-resonance sample, we obtain a sample
of more than 20 million tracks. We use this sample to
produce a map for the ratio of detection efficiencies for
7t and 7~ as a function of the track-momentum mag-
nitude and cos 8, where 6 is the polar angle of the track
in the laboratory frame. The map and associated statis-
tical errors are shown in Fig. 2. Since the charm meson
production is azimuthally uniform, the ¢ dependence of
this ratio is found to be very small and uncorrelated with
momentum magnitude and polar angle. Therefore, the
ratio of detection efficiencies is averaged over the ¢ coor-
dinate. The statistical uncertainties can be reduced by
increasing the control sample size, but this would bring
a negligible reduction in the final systematic error. In
the fit procedure described below, the D~ yields, in in-
tervals of pion-momentum and cos@, are weighted with
this relative efficiency map to correct for the detection
efficiency differences between 7 and 71—, leaving only
FB and CP asymmetries. The average correction factor
for each interval is —0.09%.



Neglecting the second-order terms that contain the
product of Acp and Arp, the resulting asymmetry can
be expressed simply as the sum of the two. The parame-
ter Acp is independent of kinematic variables, while App
is an odd function of cos 6},, where 607, is the polar angle
of the D* candidate momentum in the ete™ CM frame.
If we compute A(+|cosf%)]|) for the DF candidates in a
positive cos 0%, bin and A(—|cosf%5]|) for the candidates
in its negative counterpart, the contribution to the two
asymmetries from Agp is the same, while the contribu-
tion from App has the same magnitude but opposite sign.
Therefore Acp and App can be written as a function of
| cos 0% as follows:

A(+]|cosbp|) — A(—|cos 03

Arp(|costp|) = 5 (3)
and
Acp (| cos ) = A(+|cos9D|)+A(—|c059D)' (4)

2

Furthermore, the small fraction of the D¥ signal yields
produced from B meson decays have zero FB asymme-
try. As a result, the measured App from the ete™ — cc
production is slightly diluted, but the Acp value is unaf-
fected.

The selected sample is divided into ten subsamples cor-
responding to ten cos 07, bins of equal width and a simul-
taneous binned ML fit is performed on the invariant mass
distributions of D* and D~ candidates for each subsam-
ple to extract the signal yield asymmetries. The PDF
shape that describes the distribution in each subsample
is the same as that used in the fit to the full sample,
but the following parameters are allowed to float sepa-
rately in each subsample: the yields and the asymme-
tries for signal and combinatorial events, the mean of the
second and third Gaussians for the signal PDF, and the
first order coefficient for the polynomial of the combina-
torial background. The relative fractions corresponding
to the second Gaussian are allowed to float only for three
high-statistics subsamples, while they have been fixed to
zero for other ones in order to have a converged fit. The
means of the three Gaussians for the signal PDF, the
width of the first Gaussian, and the second order coeffi-
cient for the polynomial of the combinatorial background
are allowed to float, but they have the same values for all
the subsamples. Therefore, the final fit involves a total
of 78 free parameters. Using the asymmetry measure-
ments in five positive and in five negative cos 7, bins,
we obtain five App and five Agp values. As Acp does
not depend upon cosf7},, we compute a central value of
this parameter using a x? minimization to a constant:
Acp = (—0.39 £ 0.13)%, where the error is statistical
only. The Acp and App values are shown in Fig. 3, to-
gether with the central value and +1 o confidence interval
for Acp.

We perform two tests to validate the analysis proce-
dure. The first involves generating ensembles of toy MC
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FIG. 3: Acp (top) and Arp (bottom) asymmetries for DT —
K97% candidates as a function of | cos 0| in the data sample.
The solid line represents the central value of Acp and the
hatched region is the 41 ¢ interval, both obtained from a x?2
minimization assuming no dependence on |cos0p].

experiments and extracting Acp for each experiment. We
determine that the fitted value of the Acp parameter is
unbiased, and that the fit returns an accurate estimate
of the statistical uncertainty. The second test involves
fitting a large number of MC events from the full BABAR
detector simulation. We measure Acp from this MC sam-
ple to be within +1 ¢ from the generated value of zero.

The primary sources of systematic uncertainty are the
contamination in the composition of particles for the data
control sample used to determine the charge asymmetry
in track reconstruction efficiencies and statistical uncer-
tainties in the detection efficiency ratios used to weight
the D~ yields. The charged pion sample selected to de-
termine the ratio of detection efficiencies for 7~ and 7+
contains a contamination of kaons, electrons, muons, and
protons at the percent level due to particle misidentifi-
cation and inefficiencies. This contamination introduces
a small bias in the Acp measurement due to the slightly
different particle identification efficiencies between pos-
itively and negatively charged non-pion particles. The



particle identification efficiencies, measured in the data
for positively and negatively charged tracks using the
method described in the previous paragraphs, are found
to be in a good agreement with the MC simulation. We
therefore study this bias using the MC simulated events
and determine the bias to be +0.05%. As a result, we
shift the measured Acp by —0.05% to correct for the
bias and then, conservatively, include the same value as
a contribution to the systematic uncertainty. Therefore
the bias-corrected value of Acp is (—0.44 £ 0.13)%.

The technique used here to remove the charge asym-
metry from detector-induced effects produces a small
systematic uncertainty in the measurement of Acp due
to the statistical error in the relative efficiency map
(£0.06%). Using MC simulation, we evaluate an addi-
tional systematic uncertainty of 4+-0.01% due to a possi-
ble charge asymmetry present in the control sample be-
fore applying the selection criteria. Combining these two
contributions with the systematic contribution from the
difference in the composition of the control sample com-
pared to the signal sample (£0.05%), as described ear-
lier, the total contribution from the correction technique
is 0.08%, which is the dominant source of systematic er-
ror. We also consider a possible systematic uncertainty
due to the regeneration of K° and K° mesons in the ma-
terial of the detector. K° and K° mesons produced in the
decay process can interact with the material around the
interaction point before they decay. Following a method
similar to that described in [15], we compute the proba-
bility for K° and K° to interact inside the BABAR track-
ing system. We numerically integrate the interaction
probability distribution, which depends on the measured
nuclear cross-section for K* (assuming isospin symme-
try), the amount of material in the BABAR beam-pipe and
tracking detectors, the K°/ KV time evolutions, and the

K9 kinematic distribution and reconstruction efficiency
as determined from simulation studies. From the dif-
ference between the interaction probabilities for K° and
K9, we estimate a systematic uncertainty of +0.06%. Mi-
nor systematic uncertainties from the simultaneous ML
fit are also considered: the choice of the signal and back-
ground PDF, the limited MC data set to estimate the
normalization of D¥ — K9K¥* and the choice of bin-
ning in cos @3, for a total contribution of £0.01%. The
combined systematic uncertainty in the CP asymmetry
measurement including all the contributions is calculated
as the quadrature sum and is found to be +0.10%.

In conclusion, we measure the direct CP asymmetry,
Acp, in the D¥ — K9%r% decay using approximately
800,000 D* signal candidates. We obtain

Acp = (—0.44+0.13+0.10) %, (5)

where the first error is statistical and the second is sys-
tematic. The result is consistent with the prediction of
(—0.332 £ 0.006)% for this mode based on the SM.
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