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The effective field theory of massive gravity had long been formulated in a generally covariant way
[1]. Using this formalism, it has been found recently that there exists a class of massive nonlinear
theories that are free of the Boulware-Deser ghosts, at least in the decoupling limit [2]. In this work
we study other recently proposed models that go under the name of ”gravitational Higgs theories” [3].
We show that these models, although seemingly different from the effective field theories of massive
gravity, are in fact equivalent to them. Furthermore, based on the results obtained in the effective
field theory approach, we conclude that the gravitational Higgs theories need the same adjustment
of the Lagrangian to avoid the ghosts. We also show the equivalence between the noncovariant mode
decomposition used in the Higgs theories, and the covariant Stückelberg parametrization adopted
in the effective field theories, thus, proving that the presence or absence of the ghost is independent
of the parametrization used in either theory.

In order for the theory of a massive spin-2 particle
to be consistent with four-dimentional Poincaré symme-
try, it should propagate five physical degrees of freedom:
helicity-±2, helicity-±1 and helicity-0. The only ghost-
free and tachyon-free quadratic potential that describes
these modes is that of Fierz and Pauli [4, 5].

As it is well known in the Fierz-Pauli theory, even
in zero-mass limit, the helicity-0 mode couples to the
trace of the matter energy-momentum tensor with the
same strength as the helicity-2 does [6], causing incon-
sistency with current observations. However, it has been
argued by Vainshtein [7] that this discontinuity can be
removed by non-linear effects as a result of the screening
of the helicity-0 mode at observable scales, which on the
other hand would make the theory compatible with the
known empirical data [8]. But because of the same non-
linearities the theory is afflicted with ghost [9], sometimes
called the Boulware-Deser mode. Although it is infinitely
heavy in a Minkowski space, it emerges as a light sixth
degree of freedom on any locally nontrivial background
[10–12].

The easiest way to see this is to proceed in analogy
with a massive non-Abelian vector field [13]. In massive
gravity, after taking the decoupling limit[22] [1]

m → 0, Mpl → ∞, Λ5 ≡ (Mplm
4)1/5 − fixed, (1)

with m the mass of graviton, the helicity-0 mode, ϕ, de-
couples from the rest of the constituents of the physical
graviton and is described by the following schematic La-
grangian

Lϕ =
3

2
ϕ�ϕ +

(∂2ϕ)3

Λ5
5

. (2)

To see the existence of more than one degree of freedom
in the theory given by (2), one could notice that there
appear fourth derivatives of ϕ in equations of motion,
meaning that the two initial conditions are not enough for
the Cauchy problem to be well-defined [11]. Moreover,
on a locally nontrivial background with �ϕ ∝ T 6= 0,
the cubic interaction could generate the four derivative

quadratic term (∂2ϕ)2 in effective action. This will lead
to the existence of a ghost which is light enough for mak-
ing the theory ill-defined before it reaches the strong cou-
pling regime [10].

However recently in [2] it was realized that the par-
ticular completions of Fierz-Pauli that have the highest
possible high energy cutoff (Λ3 ≡ (Mplm

2)1/3) are ghost-
free at least in the decoupling limit (when Λ3 is fixed and
Mpl → ∞ and m → 0). This provides us with a neces-
sary condition that must be satisfied by any theory of
massive gravity to be stable.

It is therefore reasonable to ask whether a given model
fulfills this criterion, and we try to answer this question
for the rather attractive candidate of mass generation
through Higgs mechanism [3, 14–16]. The crucial ob-
servation is that while a homogeneous Higgs condensate
can only give rise to cosmological constant, a coordinate
dependent one generates different non-derivative gravi-
ton self-couplings via the Higgs kinetic term that nec-
essarily involves metric. In particular [15] and [3] have
proposed models which reproduce the correct Fierz-Pauli
mass term up to quadratic order, and in [16] possible ex-
tensions of [3] to get lower Vainshtein radius [7] has been
studied.

We first briefly review the effective theory of massive
gravity [1] and the findings of [2]. Defining

Hµν = gµν − ∂µφA∂νφBηAB, (3)

where A, B = 0, 1, 2, 3, ηAB = diag(−1, 1, 1, 1) and φA

transform as scalar fields under the general coordinate
transformations, a gauge invariant Lagrangian for mas-
sive gravity can be constructed in the following way

L = M2
pl

√
−gR −

m2M2
pl

4

√
−g V (gµν , Hµν) . (4)

Here V (gµν , Hµν) is a polynomial in Hµν and up to the
cubic order is given by

V (Hµν) = H2
µν − H2 + c1H

3
µν + c2HH2

µν + c3H
3, (5)



2

with all indices contracted using gµν . This theory pos-
sesses the background solution gµν = ηµν and φA =
δA
µ xµ. Considering perturbations hµν ≡ gµν − ηµν and

πα ≡ xα − φα one obtains

Hµν = hµν + ∂µπν + ∂νπµ − ∂µπα∂νπα , (6)

with πα = ηαβπβ . Note that in the unitary gauge πα

is set to zero, so that Hµν = hµν , and the potential (5)
gives the correct ghost-free quadratic Fierz-Pauli term.

The dynamics of helicity-0 and helicity-1 modes can be
extracted by making the decomposition

πα = Aα + ∂αϕ , (7)

in Hµν . Doing so in pure Fierz-Pauli action, m2M2
pl(H

2−
H2

µν)/4, one can see that the kinetic term for ϕ is ob-
tained from the mixing ϕ(ηµν� − ∂µ∂ν)hµν . After di-
agonalization, canonical normalization ϕc ≡ Λ3

3ϕ, and
keeping only the most strongly coupled interactions, the
Lagrangian for ϕ becomes [1]

Lϕ = −1

2
(∂µϕc)2 +

1

2Λ5
5

[(�ϕc)3 − �ϕc(∂µ∂νϕc)2] . (8)

The interactions of the form (∂2ϕ)3, however, result in a
ghost [10, 11].

The observation of [2] was that if one tunes the coeffi-
cients in the expansion of V to all orders, so as to push
the cutoff to Λ3 ≡ (Mplm

2)1/3 then
i) The dangerous terms (∂2ϕ)n, that may give rise to a

ghost on a local background vanish from the Lagrangian,
up to total derivatives.

ii) In the new decoupling limit:

m → 0, Mpl → ∞, Λ3 − fixed, (9)

the Bianchi’s identities continue to hold. That is, the
terms which mix helicity-0 and helicity-2, hµνXµν(ϕ),
satisfy the transversality condition ∂µXµν = 0. Here
Xµν is a symmetric tensor which is a function of the
longitudinal degree of freedom and is given in [2, 17].

These two points guarantee the absence of the ghost
in the decoupling limit (9). For instance the fine-tuned
cubic coefficients selected in this way are[23]

c1 = 2c3 + 1/2, c2 = −3c3 − 1/2. (10)

Unitarity Check: We use this result to analyze the
models of [15] and [3, 16]. To this end the unitary gauge,
in which all auxiliary fields have been absorbed inside the
metric perturbations, provides the best framework since
it unifies all different possible ways of introducing scalars
(or pions in the language of effective theory [1]).

In [3] the dynamical generation of the graviton mass
term is achieved by adding four scalar fields φA, A =
0, 1, 2, 3, with high-derivative interaction terms to general
relativity. These terms are considered to be a function of
the following field space tensor

HAB = gµν∂µφA∂νφB , (11)

with field space indices being raised and lowered by
ηAB = diag(−1, 1, 1, 1). The Lagrangian is then given
by

L = M2
pl

√
−gR +

m2M2
pl

4

√
−g V

(

HAB
)

, (12)

V
(

HAB
)

= 3
(

(H/4)
2 − 1

)2

− H̃A
BH̃B

A , (13)

where H ≡ ηABHAB, and H̃A
B ≡ HA

B− 1

4
δA
BH denotes the

traceless part of HAB. The background solution of the
equations of motion which corresponds to the Minkowski
space is given by gµν = ηµν and φA = δA

µ xµ.
For further analysis it is useful to rewrite the La-

grangian in terms of a new variable h̄AB ≡ HAB − ηAB.
The latter field redefinition is useful because it vanishes
on the vacuum, thus making it easy to truncate the ex-
pansion of the potential at desired order. The expression
for the potential (13) in terms of the new variable reads

V =
(

h̄2 − h̄A
Bh̄B

A

)

+
3

42
h̄3 +

3

44
h̄4. (14)

And in general, any V (HAB) can be expanded in terms
of products of monomials of the form

h̄A1B1 . . . h̄AnBnηBnA1
. . . ηBn−1An

. (15)

But in unitary gauge, (11) implies that h̄AB = gAB−ηAB

so that

ηAC h̄CB = ηAC(gCB − ηCB) = −gCB(gCA − ηCA)

= −gCBhCA = −gCBδµ
Cδν

AHµν , (16)

with Hµν defined in (3). Notice that the first and last
equalities hold only in unitary gauge. Therefore in this
gauge

h̄A1B1 . . . h̄AnBnηBnA1
. . . ηBn−1An

= (−1)nHµ1ν1
. . . Hµnνn

gνnµ1 . . . gνn−1µn (17)

and any potential written in terms of h̄AB can readily be
translated in terms of Hµν and its coefficients be com-
pared to (5). In particular (14) propagates ghosts be-
yond quadratic order, because it does not coincide with
(5) for any value of c3, after taking into account (10). In
the appendix we will show that (17) holds in arbitrary
gauge which means that the scalar fields introduced to
restore diffeomorphism invariance are closely related in
two theories.

In [16] the problem of constructing potentials V (HAB)
with smaller Vainshtein radius (RV ) around a static
source of mass M0, (or equivalently larger high energy
cut-off) has been studied. It was observed that while in
the original model RV = (M0/M

2
plm

4)1/5 (correspond-

ing to a cut-off equal to Λ5 = (Mplm
4)1/5), it can

be lowered by order by order adjustment of terms in
the perturbative expansion of V (h̄AB), until the asymp-
totic value of RV = (M0/M

2
plm

2)1/3 (cut-off equal to
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Λ3 = (Mplm
2)1/3) is reached. However according to

[2] the only completion of Fierz-Pauli that is potentially
ghost-free is the one with the cut-off pushed to the high-
est possible value, namely Λ3. Therefore we expect all
completions of V (h̄AB) except the very last one with Λ3

cut-off to suffer from ghosts.
The massive gravity proposed in [15] is also based on

high derivative kinetic terms for a set of scalar fields
φA, A = 0, 1, 2, 3. With a little change of notation
and restriction to 4D, the Lagrangian is considered to
be given by

SY =
∫

d4x
√−g

(

M2
plR − 3

2
M2

plm
2VY (Y, U/

√−g)
)

,

Y ≡ gµνYµν ≡ gµν∂µφA∂νφBηAB ,

U ≡
√

−det(Yµν) . (18)

The potential VY is chosen in a way to yield the back-
ground with gµν = ηµν and φA = δA

µ xµ.
This theory may be compared to (4) in unitary gauge in

which the perturbations of φ fields vanish and Yµν = ηµν .
To this end it is necessary to expand

√−g as well as
VY in terms of metric perturbations since the latter, in
general, contains constant and linear terms in hµν . As
an illustration we consider the simplest possible potential
that gives rise to Fierz-Pauli on a Minkowski background
at quadratic level, namely VY = Λ+Y +λY 2 with Λ = −2
and λ = −1/12. After proper normalization, to cubic
order

6
√
−gVY = 4 + h2

µν − h2 − 4

3
h3

µν + 2hh2
µν − 5

12
h3 ,(19)

while (4),(5) and (10) lead to
√
−gV = h2

µν − h2 + (2c3 − 3/2)h3
µν − (3c3 − 2)hh2

µν

+ (c3 − 1/2)h3 , (20)

where all contractions have been done with ηµν (note that
gµν had been used for contraction in (5)). Equations (19)
and (20) do not coincide for any value of c3, therefore
the dynamics of the helicity-0 mode in the decoupling
limit is schematically given by (2), resulting in a ghost
at cubic level. Note that the inclusion of higher order
terms in the expansion (19) cannot cure the instability
since their contributions to (2) are suppressed by higher
scales. Nevertheless it is in principle possible to construct
VY such that it reproduces the expansion (20).

We would also like to make a general comment regard-
ing Higgs mechanism. If the mechanism is indeed higgs-
like there must be heavy degree(s) of freedom (higgs
bosons) that unitarize amplitudes at high energy. In
other words, with increasing energy, operators with di-
mension > 4 become more and more important and even-
tually the theory of massive gravity becomes strongly
coupled, unless the higgs boson starts to contribute and
keeps the theory perturbative. Otherwise graviton ceases
to exist as an asymptotic degree of freedom. The models
shown to have ghost are similar to the Fierz-Pauli grav-
ity in the sense that the only candidate for the above-
mentioned heavy degree of freedom is a ghost [11]. On

the other hand the procedure of reducing the Vainshtein
scale, outlined in [16] tends to remove the ghost order by
order in the decoupling limit, leaving only five degrees of
freedom which become strongly coupled in the vicinity
of Λ3. Hence the models discussed should be considered
as effective field theoretic descriptions of massive gravity
rather than the Higgs mechanism for it.

Is the Ghost a Result of Bad Parametrization?

One may wonder whether the ghost appearing in theo-
ries of massive gravity with non-tuned coefficients is an
artifact of the Stückelberg parametrization (7), since it
contains time derivatives. Here we show, using another
parametrization of πα without time derivatives, that once
auxiliary fields are integrated out the presence of ghost
becomes evident and therefore it is not a byproduct of
parametrization. As an illustration first consider the La-
grangian of a massive vector field amended by a new
quadratic term

L = −1

4
F 2

µν − 1

2
m2A2

µ +
1

2
α(∂µAµ)2 . (21)

Substituting Aµ = aµ + ∂µϕ, the last term gives rise to
a high derivative kinetic term for ϕ. In particular after
canonical normalization, ϕc ≡ mϕ, and taking the de-
coupling limit m, α → 0 with α/m2 = const one obtains

Ldecouple = −1

4
Fµν(aµ)2 − 1

2
(∂µϕ)2 +

1

2

α

m2
(�ϕ)2 ,(22)

which clearly describes four degrees of freedom, one of
them being a ghost.

On the other hand consider the parametrization A0 =
χ and Ai = aT

i + ∂iϕ̃ with ∂ia
T
i = 0. Inserting this into

(21), the Lagrangian for the scalar fields, which decou-
ple from aT

i due to transversality of the vector mode,
becomes

Lscalar =
1

2
(∂i

˙̃ϕ − ∂iχ)2 +
1

2
m2[χ2 − (∂iϕ̃)2]

+
1

2
α(χ̇ − ∆ϕ̃)2 . (23)

However after integrating out χ and taking the decou-
pling limit this reduces to the second and third terms on
the r.h.s. of (22). In this limit χ = ˙̃ϕ, therefore ϕ̃ in
the second decomposition becomes equivalent to ϕ in the
first one.

The situation is similar in massive gravity. Substitut-
ing (6) in Fierz-Pauli term one obtains up to quadratic
order

1

4
m2M2

pl(H
2 − H2

µν) = m2M2
pl[

1

4
(h2 − h2

µν) + h∂µπµ

−hµν∂µπν − 1

4
(∂µπν − ∂νπµ)2 + cubic] ,(24)

where indices are raised by ηµν . Instead of (7), πµ may
be decomposed into 3-scalar and 3-vector parts in the
following non-covariant way

π0 = χ , πi = aT
i + ∂iϕ̃ . (25)
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The part of (24) which contains χ then reads

Lχ = m2M2
pl

[

1

2
(∂i

˙̃ϕ − ∂iχ)2 − χ̇h + ∂µχhµ
0 + cubic

]

(26)

and varying with respect to χ one finds χ = ˙̃ϕ + (ḣ −
∂µhµ

0 )/∆ + quadratic. The appearance of ˙̃ϕ on the r.h.s.
ensures that after substituting χ back in (24) and taking
decoupling limit one recovers (8) for ϕ̃.

It is easy to show that the parametrizations (7) and
(25) are physically equivalent regardless of the form of
the potential V (Hµν): In Coulomb gauge (∂iAi = 0),
the Lagrangians obtained using (7) and (25) are the
same, except that A0 + ϕ̇ in the first is replaced by χ
in the second. Thus, integrating out A0 and χ from
corresponding Lagrangians result in identical theories
since the solution for χ is ˙̃ϕ plus the solution for A0[24].
Therefore, although parametrizations which contain time
derivative seem to introduce fake ghosts in the theory,
the one caught in [10, 11] is not of this kind because (7)
is invariant under a new U(1) gauge symmetry.
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Appendix: In this section we derive the above
mentioned equivalence relation (17)[25]. In what follows
all repeated space-time indices are contracted by inverse
metric gµν , while the field-space ones by ηAB. We also
adobt a notation [. . .] to denote the trace of the tensor.
It is easy to check that the following identities hold

H ≡ Hµνgµν = −h̄ABηAB ≡ −h̄, [H2
µν ] = [h̄2

AB]. (27)

Taking this into account, we can use induction to prove
the identity [Hn+1

µν ] = (−1)n+1[h̄n+1

AB ], assuming

[Hn
µν ] = (−1)n[h̄n

AB]. (28)

A simple calculation shows that

[Hn+1
µν ] = [Hn

µν ] − Hn−1
µα gµνgαβ∂βφA∂νφB h̄AB

= [Hn
µν ] + Hn−2

µα gµνgαβ∂βφA∂νφC h̄ABh̄BC =

. . .

= [Hn
µν ] + (−1)k+1Hn−k

µα gµνgαβ∂βφA∂νφB h̄k
AB.

From the last equality one obtains [Hn+1
µν ] = [Hn

µν ] −
(−1)n[h̄n

AB] + (−1)n+1[h̄n+1

AB ], which after using (28) re-
duces to (17).
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