
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Holographic quantum critical transport without self-duality
Robert C. Myers, Subir Sachdev, and Ajay Singh

Phys. Rev. D 83, 066017 — Published 31 March 2011
DOI: 10.1103/PhysRevD.83.066017

http://dx.doi.org/10.1103/PhysRevD.83.066017


Preprint typeset in JHEP style - PAPER VERSION arXiv:1010.0443 [hep-th]

Holographic Quantum Critical Transport

without Self-Duality

Robert C. Myers,a Subir Sachdev b and Ajay Singh a,c

a Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5,
Canada
b Department of Physics, Harvard University, Cambridge MA 02138, USA
c Department of Physics & Astronomy and Guelph-Waterloo Physics Institute,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract: We describe general features of frequency-dependent charge transport

near strongly interacting quantum critical points in 2+1 dimensions. The simplest

description using the AdS/CFT correspondence leads to a self-dual Einstein-Maxwell

theory on AdS4, which fixes the conductivity at a frequency-independent self-dual

value. We describe the general structure of higher-derivative corrections to the

Einstein-Maxwell theory, and compute their implications for the frequency depen-

dence of the quantum-critical conductivity. We show that physical consistency con-

ditions on the higher-derivative terms allow only a limited frequency dependence in

the conductivity. The frequency dependence is amenable to a physical interpretation

using transport of either particle-like or vortex-like excitations.



1. Introduction

The AdS/CFT correspondence has become a powerful framework for the study of

strongly coupled gauge theories [1, 2, 3]. While it is still in a nascent stage, an

‘AdS/Condensed Matter’ duality is also being developed. That is, the AdS/CFT

correspondence is proving to be a useful tool to study a range of physical phenomena

which bear strong similarity to those at strongly coupled critical points in condensed

matter systems. A variety of holographic models displaying interesting properties,

including superfluidity, superconductivity and Hall conductivity, have now been stud-

ied [4]. Further interesting models of various types of nonrelativistic CFT’s have also

been constructed [5].

One advantage of the AdS/CFT correspondence is the ‘uniformity’ of the holo-

graphic approach, i.e., a single set of calculations can describe the system in different

disparate regimes (e.g., ω/T → 0 versus T/ω → 0). This can be contrasted with

more conventional field theory analysis of conformal fixed points [6]. However, a

surprising result of the original transport calculations [7] was that the frequency

dependence was rather trivial. In particular, the conductivity (at zero momentum)

showed no frequency dependence, i.e., it was a constant. The authors of [7] traced the

origin of this remarkable result to the electromagnetic (EM) self-duality of the bulk

Einstein-Maxwell theory in four dimensions. Again this holographic result stands in

contrast with those from more conventional field theory analysis [6, 8].

One perspective on these results is regard them as predictions of the AdS/CFT

analysis on the behavior of nearly perfect fluids . Such fluids are strongly inter-

acting quantum systems, found near scale-invariant quantum critical points, which

respond to local perturbations by relaxing back to local equilibrium in a time of order

~/(kBT ), which is the shortest possible [6]. They are expected to have a shear viscos-

ity, η, of order η ∼ ~s/kB [9], where s is the entropy density, and many experimental

systems behave in this manner [10]. At the same footing, we can then predict that

2+1 dimensional quantum critical systems with a conserved charge should have a

conductivity which is nearly frequency-independent. Furthermore, in paired electron

systems where the Cooper pair charge is 2e, the self-dual value of the conductivity

is [11] 4e2/h, and this is close to the value observed in numerous experimental sys-

tems [12]. There has been no previous rationale why self-duality should be realized

in these experiments, and the AdS/CFT theory of perfect fluids offers a potential

explanation.

Measurements of the frequency dependence of the quantum critical conductivity

in two spatial dimensions have so far been rather limited [13, 14]. Engel et al. [13]

performed microwave measurements at the critical point between two quantum Hall

plateaus. Their results at the critical point do not show appreciable ω dependence

as ~ω is scanned through kBT . However, they did not pay particular attention to

the value of the quantum critical conductivity (they focused mainly on the width of
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the conductivity peak between the plateaus), and it would be useful to revisit this

more carefully in future measurements. In any case, if confirmed, the AdS/CFT

perspective appears to be the natural explanation for this weak frequency depen-

dence. Graphene also has characteristics of a quantum-critical system with moder-

ately strong interactions [15], and its conductivity has been measured [16, 17] in the

optical regime where ω � T ; a frequency-independent conductivity was found, equal

to that of free Dirac fermions. This is as expected, because the Coulomb interactions

are marginally irrelevant in graphene [15]. However, for ω ∼ T , the interactions are

expected to be more important, and graphene may well behave like a nearly per-

fect fluid [18]. A test of this hypothesis would be provided by measurements of the

conductivity of graphene in this frequency regime, under conditions in which the

electron-electron scattering dominates over disorder-induced scattering. There have

also been discussions of duality in non-linear transport near quantum critical points

[19, 20, 21]. Again, there is no natural basis for this in the microscopic theory, while

it can emerge easily from an AdS/CFT analysis [22, 23].

Given these motivations, it is clearly useful to understand the robustness of the

AdS/CFT self-duality beyond the classical Einstein-Maxwell theory on AdS4. As was

pointed out in [7], in many constructions emerging from string theory, the Maxwell

field would have an effective coupling depending on a scalar field and the EM self-

duality would be lost if the scalar had a nontrivial profile. From the perspective

of the holographic CFT, one would be extending the theory by introducing a new

scalar operator, and couplings between the new operator and the original currents

holographically dual to the Maxwell field. Further, the nontrivial scalar profile would

indicate that one is now studying physics away from the critical point as (the expec-

tation value of) the scalar operator will introduce a definite scale into the problem.

However, we wish to understand the limitations of self-duality, while remaining

at the critical point. For this, a possible approach is to simply modify the CFT

through introducing new higher derivative interactions in the bulk action for the

metric and gauge field, e.g., see [24, 25]. The latter are readily seen to change

the n-point functions of current and the stress tensor in the CFT. While conformal

symmetry imposes rigid constraints on the two- and three-point functions of these

operators, they are only determined up to a finite number of constant parameters,

e.g., the central charges, which characterize the particular fixed point theory [26].

These parameters are reflected in the appearance of dimensionless couplings in the

bulk gravitational theory. Hence, to explore the full parameter space of the holo-

graphic CFT’s, one must go beyond studying the Einstein-Maxwell theory and begin

to investigate the effect of higher derivative interactions in the bulk action. This

is the approach which we examine in the present paper. In particular, we investi-

gate the effects on the charge transport properties of the holographic CFT resulting

from adding a particular bulk interaction coupling the gauge field to the spacetime

curvature – see eq. (2.6).
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Our main results for the frequency dependence of the conductivity without self-

duality are given in Fig. 1. Here γ is the sole parameter controlling the pertinent
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Figure 1: The (dimensionless) conductivity σ̃ = g2
4σ is plotted versus the (dimensionless)

frequency w = ω/(4πT ) for various values of γ (the coupling g4 is defined in Section 2).
Various consistency conditions imply that γ ∈ [−1/12, 1/12] – see discussion surrounding
eq. (5.14).

higher derivative terms in the bulk action; we will argue that physical consistency

conditions imply the constraint |γ| < 1/12.

For γ > 0, the frequency dependence has the same non-monotonic form as

that expected by extrapolation from the weak-coupling Boltzmann analysis [6]: a

collision-dominated Drude peak at small ω, which is then smoothly connected to

the collisionless ω-independent conductivity at large ω. This similarity implies that

a description of transport in terms of collisions of charged particles is a reasonable

starting point for γ > 0.

On the other hand, for γ < 0, we observe that it is the inverse of the conductivity,

i.e., the resistivity, which has a Drude-like peak at small ω. Under particle-vortex

duality, the resistivity of the particles maps onto the conductivity of the vortices [11],

as we will review here in Section 6.1. Thus, for γ < 0, we conclude that a better

description of charge transport is provided by considering the motion and collisions of

vortices . In other words, for γ < 0, it is the excitations of the dual holographic CFT,

obtained under the EM duality of the bulk theory, which provide a Boltzmann-like

interpretation of the frequency dependence of the conductivity.

An outline of the rest paper is as follows: In section 2, we review some basic

background material, mainly to motivate the introduction of the higher derivative

interaction for the gauge fields. In section 3, we calculate the charge diffusion con-

stant and susceptibility for the dual CFT. We turn to the conductivity in section 4
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and in particular, we demonstrate that in the modified theory, the conductivity is a

nontrivial function of ω/T . In section 5, we derive constraints that arise on the cou-

pling to the new gauge field interaction by imposing certain consistency conditions

in the dual CFT. We examine electromagnetic duality in the modified gauge theory

in section 6. We conclude with a brief discussion of our results and future directions

in section 7. A discussion of the Green’s functions at finite frequency and finite

momentum is presented in appendix A. In particular, we examine the relationship

between the Green’s functions in the two boundary theories related by EM duality

in the bulk.

2. Preliminaries

As with many of the recent excursions in the AdS/CMT, our starting point is the

standard Einstein-Maxwell theory (with a negative cosmological constant) in four

dimensions. Hence the action may be written as

I0 =

∫
d4x
√
−g
[

1

2`2P

(
R +

6

L2

)
− 1

4g2
4

FabF
ab

]
.act0 (2.1)

The four-dimensional AdS vacuum solution of the above theory corresponds to the

vacuum of the dual three-dimensional CFT. Of course, the theory also has (neutral)

planar AdS black hole solutions:

ds2 =
r2

L2
(−f(r) dt2 + dx2 + dy2) +

L2dr2

r2f(r)
, eqn1 (2.2)

where f(r) = 1− r3
0/r

3. In these coordinates, the asymptotic boundary is at r →∞
and the event horizon, at r = r0. This solution is dual to the boundary CFT at

temperature T , where the temperature is given by the Hawking temperature of the

black hole

T =
3r0

4πL2
.eqn2 (2.3)

At a certain point in the following analysis, it will also be convenient to work with

a new radial coordinate: u = r0/r. In this coordinate system, the black hole metric

becomes

ds2 =
r2
0

L2u2
(−f(u) dt2 + dx2 + dy2) +

L2du2

u2f(u)
, eqn3 (2.4)

where f(u) = 1 − u3. Now the asymptotic boundary is at u = 0 and horizon at

u = 1.

As discussed in the introduction, we wish to extend the bulk theory by adding

higher derivative interactions. As usual in quantum field theory, it is natural to orga-

nize the interactions by their dimension or alternatively by the number of derivatives.

The Einstein-Maxwell action (2.1) contains all covariant terms up to two derivatives,

– 4 –



which preserve parity, i.e., which are constructed without using the totally antisym-

metric ε tensor. Hence it is natural to next consider the possible interactions at fourth

order in derivatives [27]. In all, one can construct 15 covariant parity-conserving

terms using the metric curvature, the gauge field strength and their derivatives [27].

However, using integration by parts,1 as well as the identities ∇[aFbc] = 0 = R[abc]d,

the general four-derivative action can be reduced to eight independent terms

I4 =

∫
d4x
√
−g
[
α1R

2 + α2RabR
ab + α3

(
F 2
)2

+ α4F
4 + α5∇aFab∇cFc

b

+α6RabcdF
abF cd + α7R

abFacFb
c + α8RF

2
]

act14 (2.5)

where F 2 = FabF
ab, F 4 = F a

bF
b
cF

c
dF

d
a and the αi are some unspecified coupling

constants.

In a string theory context, one might expect all of these interactions to emerge

in the low-energy effective action as quantum (i.e., string-loop) or α′ corrections to

the two-derivative supergravity action – see, for example, [28]. In such a context,

these terms would be part of a perturbative expansion where the contribution of

the higher order terms is suppressed by powers of, e.g., the ratio of the string scale

over the curvature scale. From the perspective of the dual conformal gauge theory,

these contributions would represent corrections suppressed by inverse powers of the

‘t Hooft coupling and/or the number of colours. Within this perturbative framework,

one is also free to use field redefinitions to simplify the general bulk action (2.5). In

the present case, field redefinitions can be used to set to zero all of the couplings

except three, e.g., α3, α4 and α6 [27]. Examining the remaining three terms, the

α3 and α4 terms involve four powers of the field strength and so would not modify

the conductivity, at least if we study the latter at zero density. Hence we are left

to consider only the α6 term which couples two powers of the field strength to the

spacetime curvature. The latter will certainly modify the charge transport properties

of the CFT and, as we discuss in detail in section 6, it also ruins the EM self-duality

of the bulk Maxwell theory.

While these string theory considerations naturally lead us to focus our atten-

tion on a single new four-derivative interaction, they are limited to the perturbative

framework described above. However, we would also like to extend our analysis to

the case where the new interactions are making finite modifications of the transport

properties. In this case, we should think of the holographic theory as a toy model

whose behaviour might be indicative of that of a complete string theory model. Re-

cently the utility of this approach has been shown in holographic investigations with

various higher curvature gravity theories – see, for example, [25, 29, 30, 31, 32].

Further, while the couplings of the higher derivative interactions are finite in this

1Note that we also treat the four-dimensional Euler density, RabcdR
abcd − 4RabR

ab + R2, as
trivial since it does not effect the equations of motion.

– 5 –



approach, consistency of the dual CFT prevents these couplings of from becoming

very large, at least in simple models, as we discuss in section 5.

So given this perspective of constructing a toy model with finite couplings, let

us re-examine each of the terms in the general action (2.5). The first two terms

are curvature-squared interactions which do not involve the gauge field. Hence from

the CFT perspective, these terms would only modify the n-point functions of the

stress tensor and so are not relevant to the charge transport. Again, the third and

fourth terms involve four field strengths and so these would only modify the four-

point correlator of the dual current. Hence, as noted above, these terms will again

be irrelevant to the charge transport, if we limit ourselves to the case of a vanishing

chemical potential. Considering next the α5 term, we note that it contains two

powers of the field strength and so will modify the charge transport. However, this

term produces higher derivative equations of motion for the gauge field and so, as

explained in detail in [33], the dual CFT will contain nonunitary operators. Hence

we discard this term in the analysis at finite coupling to avoid this problem. Finally,

the last two terms in the action (2.5) also involve F 2 and again modify the charge

transport. However, as we discuss in more detail in section 7, they only do so in a

trivial way by renormalizing the overall coefficient of the Maxwell term. Therefore we

are again naturally lead to consider the α6 interaction alone in studying the transport

properties of dual CFT.

Hence we will study the holographic transport properties with the following

effective action for bulk Maxwell field:

Ivec =
1

g2
4

∫
d4x
√
−g
[
−1

4
FabF

ab + γ L2CabcdF
abF cd

]
, eqn4 (2.6)

where we have formulated the extra four-derivative interaction in terms of the Weyl

tensor Cabcd. That is, it is constructed as a particular linear combination of the α6,7,8

terms in the general action (2.5). This particular interaction has the advantage that it

leaves the charge transport at zero temperature unchanged since the Weyl curvature

vanishes in the AdS geometry. Further the factor of L2 was introduced above so that

the coupling γ is dimensionless. From this action, we find the generalized vector

equations of motion:

∇a

[
F ab − 4γL2CabcdFcd

]
= 0 .eqn5 (2.7)

Note that the AdS vacuum and (neutral) planar black hole solution (2.2) are still

solutions of the modified metric equations produced by the new action.

In closing this discussion, we must note that the four-derivative interaction in

eq. (2.6) has also appeared in previous holographic studies [24, 34, 35]. In particular,

[24, 34] considered the restrictions that must be imposed on the coupling γ in order

that the dual CFT is physically consistent. While [35] focussed primarily on a five-

dimensional bulk theory, there is considerable overlap between the latter and the
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present paper. In particular, [35] considered the charge diffusion constant and (zero-

frequency) conductivity, as in section 3, and bounds arising from requiring micro-

causality of the dual CFT, as in section 5.

3. Diffusion Constant and Susceptibility

In this section, we calculate the charge diffusion constant and susceptibility, which

are quantities which control the two point Green’s function of the dual current in

the limit of low frequency and long wavelength [7]. We follow [30, 35] to extend the

analysis of [36] to accommodate our modified Maxwell action (2.6). We begin by

writing a generalized action which is quadratic in the field strength:

I =

∫
d4x
√
−g

(
− 1

8g2
4

FabX
abcd Fcd

)
, general (3.1)

where the background tensor Xabcd necessarily has the following symmetries,

Xabcd = X [ab][cd] = Xcdab . (3.2)

The standard Maxwell theory would be recovered by setting

Xab
cd = Iab

cd = δa
cδb

d − δadδbc , eqnx2 (3.3)

where we can think of I as the identity matrix acting in the space of two-forms (or

anti-symmetric matrices). That is, given an arbitrary two-form fab = −fba, then

fab = 1
2
Iab

cdfcd. With the generalized action in eq. (3.1), the theory of interest (2.6)

is constructed by setting

Xab
cd = Iab

cd − 8γL2Cab
cd .eqn77 (3.4)

Extending the discussion of the membrane paradigm in [36] to this generalized

framework is straightforward [30]. One defines the stretched horizon at r = rH (with

rH > r0 and rH − r0 � r0) and the natural conserved current to consider is then

ja =
1

4
nbX

abcd Fcd
∣∣
r=rH

, (3.5)

where na is an outward-pointing radial unit vector. Then following the analysis in

[36], one arrives at the following expression for the charge diffusion constant [30]:2

D = −
√
−g
√
−XxtxtXxrxr

∣∣∣
r=r0

∫ ∞
r0

dr√
−g X trtr

.diffusion (3.6)

2As noted in [30], there are two conditions required for the following general formulae to hold.
The tensor Xab

cd is: i) nonsingular on the horizon and ii) ‘diagonal’ in the sense discussed in section
6. Of course, in the present case, both of this requirements are satisfied by eq. (3.4). footy
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Further applying Ohm’s law on stretched horizon, the conductivity at zero frequency

is given by [35]

σ0 ≡ σ(ω = 0, k = 0) =
1

g2
4

√
−g
√
−XxtxtXxrxr

∣∣
r=r0

.eqn5x2 (3.7)

Lastly, the susceptibility is easily determined using the Einstein relation D = σ0/χ.

Combining this relation with eqs. (3.6) and (3.7), an expression for χ is easily read

off as [35]

χ−1 = −g2
4

∫ ∞
r0

dr√
−gX trtr

.suss (3.8)

Of course, if one replaces Xab
cd = Iab

cd as in eq. (3.3), then these expressions reduce

to the expected results for Einstein-Maxwell theory, e.g., see [7].

In the present case, we are interested in X as given in eq. (3.4) where the Weyl

tensor is evaluated for the planar AdS black hole (2.2). Hence we find
√
−g
√
−XxtxtXxrxr

∣∣
r=r0

= 1 + 4γ and

1√
−gX trtr

= − L2 r

r3 − 8r3
0γ
.eqn5x5 (3.9)

Combining these expressions in eq. (3.6), we find the diffusion constant to be

D =
1 + 4γ

16πT γ1/3

(√
3π − 2

√
3 arctan

[
1 + γ1/3

√
3γ1/3

]
+ log

[
1− 8γ

(1− 2γ1/3)3

])
.eqn5x7 (3.10)

A plot of this result is given in Fig. 2. If we consider γ � 1, this expression simplifies

to

D ' 3

4πT

(
1 + 6γ +

120

7
γ2 +O(γ3)

)
.eqn5x8 (3.11)

A perturbative result for D to linear order in γ was presented in [35] for arbitrary

dimensions and our results above match that for the case of a three-dimensional

CFT.

Next using (3.7), we find

σ0 =
1

g2
4

(1 + 4γ) .eqn5x3 (3.12)

Note that this expression is the exact result for arbitrary γ. The simple γ-dependence

appearing in the conductivity contrasts with the complicated formula for the diffusion

constant (3.10). Of course, the diffusion constant still varies very smoothly with γ in

the physical regime, as shown in Fig. 2. We will confirm the above result by directly

evaluating the two-point function of the dual current in the next section.

Given these results and the Einstein relation D = σ0/χ, the susceptibility is

easily determined to be

χ−1 =
g2
4

16πT γ1/3

(√
3π − 2

√
3 arctan

[
1 + γ1/3

√
3γ1/3

]
+ log

[
1− 8γ

(1− 2γ1/3)3

])
.chi (3.13)
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Figure 2: The charge diffusion constant is plotted versus the coupling γ. The vertical
dashed lines denote the boundaries of the physical regime, γ ∈ [−1/12, 1/12] – see discussion
surrounding eq. 5.14.

Again considering small γ, the susceptibility reduces to

χ ' 4πT

3g2
4

(
1− 2γ − 36

7
γ2 +O(γ3)

)
.eqn5x9 (3.14)

4. Conductivity

In this section, we calculate the conductivity for the CFT dual to the bulk action

(2.6). We begin by decomposing the gauge field as

Aa(t, x, y, u) =

∫
d3q

(2π)3
eiq·xAa(u,q) , eqn6 (4.1)

where q · x = −ωt + qxx + qyy. For convenience and without loss of generality, we

choose three-momentum vector to be qµ = (ω, q, 0). Further we choose the gauge

in which Au(u,q) = 0. Then evaluating modified Maxwell’s equations (2.7) in the
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planar black hole background (2.4), we find

A′t +
qf(3− 16u2γf ′′)

ω(3 + 32u2γf ′′)
A′x = 0eqn7 (4.2)

A′′t +
4uγ (2f ′′ + uf ′′′)

3 + 4u2γf ′′
A′t −

L4

r2
0

q (3− 2u2γf ′′)

f (3 + 4u2γf ′′)
(qAt + ωAx) = 0eqn8 (4.3)

A′′x +
f ′(3− 2u2γf ′′)− 2uγf(2f ′′ + uf ′′′)

f(3− 2u2γf ′′)
A′x +

L4

r2
0

ω

f 2
(qAt + ωAx) = 0eqn8x1(4.4)

A′′y +
f ′(3− 2u2γf ′′)− 2uγf(2f ′′ + uf ′′′)

f(3− 2u2γf ′′)
A′y

+
L4

r2
0

(3ω2 − 3q2f − 2u2γ (ω2 + 2q2f) f ′′)

f 2 (3− 2u2γf ′′)
Ay = 0 .eqn9 (4.5)

Now we can use equations (4.2) and (4.3) to decouple equation of motion for At(u,q):

A′′′t + g1(u)A′′t + g2(u)A′t = 0 , eqn10 (4.6)

where

g1(u) =
f ′(9 + 6u2γf ′′ − 64u4γ2f ′′2) + 2uγf(15− 4u2γf ′′)(2f ′′ + uf ′′′)

f(3− 2u2γf ′′)(3 + 2u2γf ′′)
,

g2(u) =
1

r2
0f

2(3− 2u2γf ′′)(3 + 4u2γf ′′)

(
L4ω2(9 + 6u2γf ′′ − 64u4γ2f ′′2)

+ f(3− 2u2γf ′′)(−3q2L4 + 2uγ(q2L4u+ 4r2
0f
′)f ′′ + 4r2

0u
2γf ′f ′′′)

+8r2
0γf

2(3f ′′ + 2u2γf ′′2 + 6uf ′′′ + u4γf ′′′2)
)
.eqn11 (4.7)

At this point, recall that in the analysis of the Maxwell theory in [7], the equa-

tions of motion for Ay(u,q) and A′t(u,q), i.e., the γ = 0 limit of eqs. (4.5) and (4.6),

were identical. This was a result of the EM self-duality of this bulk theory. However,

clearly eqs. (4.5) and (4.6) are no longer identical with nonvanishing γ, indicating

that the new interaction in eq. (2.6) breaks the EM self-duality in the present case.

We return to examine the EM duality in detail in section 6.

Next we solve eq. (4.5) with an infalling boundary condition at the horizon.

Near the horizon, we can write Ay(u,q) = (1−u)bF (u,q) where F (u,q) is regular at

u = 1. Inserting this ansatz in eq. (4.5), we find that b = ±iL2ω/(3r0). The ingoing

boundary condition at the horizon fixes

b = −iL
2ω

3r0
= −iw , eqn12 (4.8)

where we have defined the dimensionless frequency

w ≡ ω

4πT
.eqn13 (4.9)
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As we wish to calculate the conductivity with ω 6= 0 but q = 0 (recall that q is spatial

momentum along x-direction), we simplify the notation by denoting Aa(u, ω, q = 0)

and F (u, ω, q = 0) by Aa(u) and F (u). With b given by (4.8), for q = 0, the equation

of motion for F (u) reduces to

0 = F ′′ +

(
3u2(1− 4(1− 2u3)γ)

(1− u3)(1 + 4u3γ)
− 2iw

1− u

)
F ′eqn14 (4.10)

+
iw ((1 + u+ u2)(1 + 2u+ 2u2(3 + 4u+ 5u2)γ)− i(2 + u)(4 + u+ u2)(1 + 4u3γ)w)

(1− u)(1 + u+ u2)2(1 + 4u3γ)
F .

To proceed further, we need to recall the relation of the conductivity to the

retarded Green’s function Gyy for the dual current Jy:

σ = −Im

(
Gyy(q)

ω

)
, eqn16 (4.11)

Of course, we wish to calculate Gyy using the AdS/CFT correspondence, following

[37]. Briefly, integrating by parts in the action (2.6), the bulk contribution vanishes

by the equations of motion (2.7) and so the result reduces to a surface term. At the

asymptotic boundary, one has the following contribution for Ay

Iyy = − 1

2g2
4

∫
d3x
√
−gguugyy

(
1− 8γL2Cuy

uy
)
Ay(u,x)∂uAy(u,x)

∣∣∣∣
u→0

= −2πT

3g2
4

∫
d3xAy(u,x)∂uAy(u,x)

∣∣∣∣
u→0

.eqn18 (4.12)

The simple expression in the second line results from explicitly evaluating the ex-

pression with the black hole metric (2.4) for which

Cuy
uy = − u3

2L2
.eqn19 (4.13)

The Fourier transform of Ay is required to compare the above expression with the

standard AdS/CFT result

Iyy =

∫
d3q

(2π)3

1

2
Ay(−q)Gyy(q)Ay(q)

∣∣∣
u→0

.eqn20x3 (4.14)

Hence we can arrive at the usual result, i.e., the coupling γ makes no explicit ap-

pearance here,

Gyy(q) = −4πT

3g2
4

Ay(u,−q) ∂uAy(u,q)

Ay(u,−q)Ay(u,q)

∣∣∣∣
u→0

.eqn20x4 (4.15)

Focussing our attention on the case qµ = (ω, 0, 0) and adopting the notation intro-

duced above eq. (4.10), the retarded Green’s function becomes

Gyy(ω, q = 0) = −4πT

3g2
4

∂uAy(u, ω)

Ay(u, ω)

∣∣∣
u→0

.eqn21 (4.16)
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Then eq. (4.11) yields the conductivity at q = 0 as

σ =
1

3g2
4

Im

(
∂uAy
wAy

)
u→0

.eqn22 (4.17)

Given the above expression, it is straightforward to calculate conductivity for

small ω analytically and confirm the result (3.12) for σ0 = σ(ω = 0, q = 0) derived

in the previous section using the membrane paradigm. First, we make a Taylor

expansion of F (u) in w and substitute the ansatz F (u) = F1(u)+wF2(u) into (4.10).

Then, we find that F1 and F2 should satisfy the following

F ′′1 −
3u2(1− 4(1− 2u3)γ)

(1− u3)(1 + 4u3γ)
F ′1 = 0, eqn22x1 (4.18)

F ′′2 −
3u2(1− 4(1− 2u3)γ)

(1− u3)(1 + 4u3γ)
F ′2 +

2i

1− u
F ′1

+
i(1 + 2u+ 4u2γ(3 + 4u+ 5u2))

(1− u3)(1 + 4u3γ)
F1 = 0 .eqn22x2 (4.19)

After solving eq. (4.18) for F1, we can fix one of the integration constants demanding

that F1 is regular at the horizon. This yields F1(u) = C, where C is an arbitrary

constant. Given F1, we solve eq. (4.19) for F2. In this case, we fix the two integra-

tion constants by imposing the following two conditions: First, F2 is regular at the

horizon. Second, we normalize F (u) such that its value at the horizon is independent

of w, i.e., F2(u = 1) = 0. The final result is given by

F2(u) = − iC

(
π√
3
−
√

3 arctan

[
1 + 2u√

3

]
− 1

2
log

[
1 + u+ u2

3

]
eqn22x3 (4.20)

+ 2
√

3 21/3γ2/3

(
arctan

[
1− 2 22/3uγ1/3

√
3

]
− arctan

[
1− 2 22/3γ1/3

√
3

])
+ 21/3γ2/3 log

[
(1 + 22/3γ1/3)3

1 + 4γ

]
− 21/3γ2/3 log

[
(1 + u 22/3γ1/3)3

1 + 4u3γ

])
.

Now we can simply use Ay(u) ' (1−u)b(F1(u)+wF2(u)) in eq. (4.17), take the limit

w→ 0 and find

σ0 =
1

g2
4

(1 + 4γ) , eqn22x4 (4.21)

which agrees with our previous result (3.7).

To study frequency dependant conductivity, we must solve eq. (4.10) numerically.

Our numerical integrations run outward from the horizon and so we need to fix the

initial conditions at u = 1. To determine the latter we solve eq. (4.10) for u � 1,

finding

F (u) = 1− (1− u)
iw(i+ 2w+ 8γ(2i+ w))

(1 + 4γ)(i+ w)
.eqn22x5 (4.22)
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Numerical integration is used to determine F (u) out to the boundary at u = 0 for

fixed values of w (and γ) and then we use the complete solution Ay(u) = (1−u)bF (u)

and eq. (4.17) to calculate conductivity σ(w). In figure 1, we show our results for

various values of coupling constant γ.

5. Bounds on the Coupling

In this section, we find the constraints that are imposed on the coupling γ by de-

manding that the dual CFT respects causality, following the analysis described in

[31, 29, 35]. We also examine if there are any unstable modes of the vector field, as

discussed in [38, 30], which would result in our calculations of the charge transport

properties being unreliable. From a dual perspective, such unstable modes indicate

that the uniform neutral plasma is an unstable configuration in the dual CFT.

To examine causality, the first step is to re-express the equations of motion of

the two independent vector modes, i.e., eqs. (4.5) and (4.6), in the form of the

Schrödinger equation. We begin by considering eq. (4.6). Recall that we are working

in the gauge where Au(u,q) = 0 and we have chosen qµ = (ω, q, 0). Now if we make

a coordinate transformation to z(u) such that

z′ =
3

1− u3
, eqn23 (5.1)

and write A′t(u,q) = G1(u)ψ1(u,q) where

G′1(u)− 6u2γ (5 + 8u3γ)

1− 4u3γ(1− 64u3γ)
G1(u) = 0 , eqn24 (5.2)

then eq. (4.6) takes the form

−∂2
zψ1(z) + V (z)ψ1(z) = w2ψ(z) .eqn25 (5.3)

In this Schrödinger form, the effective potential V (z) can be expressed in terms of u

as

V (u) = q2V0(u) + V1(u) , eqn26 (5.4)

where

q ≡ q

4πT
(5.5)

V0(u) =
(1− u3)(1 + 4u3γ)

(1− 8u3γ)
eqn27 (5.6)

V1(u) = −2u(1− u3)γ(2− 2u6γ − 5u3(1 + 2γ))

3(1 + 4u3γ)2
.eqn28 (5.7)

It is easiest to consider the limit q → ∞, in which case one can solve for ψ1

in a WKB approximation [31]. In this limit, V0(u) will dominate the potential and
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we want to examine how its properties change as γ is varied, e.g., following [29].

In Fig. 3, we have plotted potential V0(u) for various values of γ. We observe that

if γ is too large, the potential develops a maximum with V0,max > 1 at some point

between u = 0 and u = 1. In that case, there will be ‘super-luminal’ modes with

w/q = ω/q > 1 indicating that causality is violated in the dual CFT [31, 29]. One

can easily verify that this new maximum appears for γ > 1/12 by examining the

behaviour of V0(u) near the boundary, i.e., near u = 0, where eq. (5.6) yields

V0(u) ' 1− (1− 12γ)u3 + · · · .eqn27a (5.8)

Γ = 1 � 12

Γ = 0

Γ = -1 � 4

Γ = -5 � 12

Γ = 1 � 9

0.2 0.4 0.6 0.8 1.0
u0.0

0.2

0.4

0.6

0.8

1.0

1.2
V0

Γ = -1 � 8

Γ = -1 � 12

Γ = 0

Γ = 1 � 8

Γ = 1 � 4

0.2 0.4 0.6 0.8 1.0
u0.0
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1.0

1.2
W0

Figure 3: Left: V0(u) for longitudinal At mode for various values of γ. Right: W0(u) for
transverse Ay mode for various values of γ. Consistency conditions discussed in the text
for the longitudinal mode imply γ ∈ [−1/4, 1/12] in V0. Similarly for transverse mode,
γ ∈ [−1/12, 1/8] in W0.

Next we turn to the transverse vector mode satisfying eq. (4.5). As above,

we make a change of coordinate to z(u) satisfying eq. (5.1) and we write Ay(u) =

G2(u)ψ2(u) where

G′2(u) +
6u2γ

1 + 4u3γ
G2(u) = 0 .eqn29 (5.9)

With these choices, eq. (4.5) reduces to the desired Schrödinger form

−∂2
zψ2(z) +W (z)ψ2(z) = w2ψ2(z) , eqn30 (5.10)

where

W (u) = q2W0(u) +W1(u)eqn31 with (5.11)

W0(u) =
(1− u3)(1− 8u3γ)

(1 + 4u3γ)
eqn32 (5.12)

W1(u) =
2u(1− u3)γ(2− 5u3 + 2γu3(1− 7u3))

3(1 + 4u3γ)2
.eqn33 (5.13)
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We again consider the WKB limit where W0 dominates the potential. The shape of

this potential is also shown in Fig. 3 for various values of γ. Examining the potential

(5.12) as above, we find that a maximum develops for γ < −1/12, indicating that

causality is violated in the dual CFT in this regime.

Combining the results from both modes, we find that the dual CFT is only

consistent (i.e., respects causality) if

− 1

12
≤ γ ≤ 1

12
.eqn34 (5.14)

We also note that these bounds coming from the violation of micro-causality pre-

cisely match the bounds derived for the dual parameter in the CFT derived in [24, 34].

There, various thought experiments were proposed to constrain CFT’s in four dimen-

sions. However, their discussion is readily adapted to the three dimensions, as we

consider here. The relevant experiment consists of first producing a disturbance,

which is localized and injects a fixed energy, with an insertion of the current εi Ji,

where εi is a constant (spatial) polarization tensor. Then one measures the energy

flux escaping to null infinity in the direction indicated by a unit vector n:

E(n) = lim
r→+∞

r

∫ +∞

−∞
dt T ti(t, r n) ni .flux0a (5.15)

The final result takes the form

〈E(n)〉 =
〈0|(ε∗ · j†) E(n) (ε · J)|0〉
〈0|(ε∗ · J†) (ε · j)|0〉

=
E

2π

[
1 + a2

(
|ε · n|2

|ε|2
− 1

2

)]
=

E

2π

[
1 + a2

(
cos2 θ − 1

2

)]
, eqn34x1 (5.16)

where E is the total energy and θ is the angle between the direction n and the polar-

ization ε. The structure of this expression is completely dictated by the symmetry of

the construction and the (constant) coefficient a2 is a parameter which characterizes

the underlying CFT. Given eq. (5.16), it is clear that a2 is related to the parameters

appearing in the general three-point correlator 〈Tab(x)Jc(y)Jd(z)〉 – see discussion

in section 7. Now, the interesting observation of [24] was that if the coefficient a2

becomes too large, the energy flux measured in various directions will become nega-

tive. Hence demanding that the energy flux should be positive in all directions for a

consistent CFT leads to the constraints

−2 ≤ a2 ≤ 2 .eqn34x2 (5.17)

Of course, to relate this result to that in eq. (5.14), we must find the relation between

a2 for our holographic CFT and the bulk coupling γ. The simplest approach is to

use the AdS/CFT correspondence to examine the bulk dual of the thought exper-

iment presented above. As noted above, in calculating the flux expectation value
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in eq. (5.16), we are essentially determining a specific component of the three-point

function of the stress tensor with two currents. Hence in our holographic description,

we must introduce an appropriate metric fluctuation hµν and two gauge field pertur-

bations Aµ in the AdS4 bulk, which couple to the boundary insertions of Tab and Ja.

We then evaluate the on-shell contribution for these three insertions with the action

(2.6). We do not present the details here, as the analogous calculations for d = 4 are

presented in Appendix D of [24] – the interested reader may also find the discussion

in the first reference in [25] useful. In the end, the holographic calculations yield a

very simple final result

a2 = −24γeqn34x4 (5.18)

and hence we find the bounds in eqs. (5.14) and (5.17) are equivalent.

Next we turn to possible instabilities in the neutral plasma. If we examine the

potential V0 in more detail, we find that another interesting feature develops for

γ < −1/4. That is, the potential develops a minimum at some radius close to the

horizon where V0(u) < 0. The appearance of this potential well can be verified

analytically by expanding V0(u) near u = 1,

V0(u) ' 3
1 + 4γ

1− 8γ
(1− u) + · · · .eqn27b (5.19)

While V0 always vanishes at u = 1, we see that for γ < −1/4, V0 < 0 immediately in

front of the horizon indicating the presence of the negative potential well there. In

the WKB limit, this potential well leads to bound states with a negative (effective)

energy, which correspond to unstable quasinormal modes in the bulk theory [38].

While these modes do not signal a fundamental pathology with the dual CFT, they

do indicate that the uniform neutral plasma is unstable in this regime. Hence our

calculation of the conductivity would be unreliable here. Of course, our previous

constraints (5.14) have already ruled out γ < −1/4 as being physically interesting

and so we need not worry about these instabilities.

On the other hand, one may worry that additional instabilities will appear out-

side of the WKB regime, considered above. In particular for small momentum, the

effective potential will also receive an important contribution from V1(u). We find

that for γ ∈ (−1/4, 0), V1(u) also develops a negative minimum close to the horizon

and so there might be some unstable modes in the plasma in this regime as well.

We have plotted the potential V1(u) for various values of the coupling constant γ

in Fig. 4. While the WKB approximation may be less reliable in this regime, the

analysis in [38] suggests that it is sufficient to determine the appearance of unstable

modes. According to WKB approximation, a zero energy bound state can appear in
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this potential well for(
n− 1

2

)
π '

∫ ∞
z0

dz
√
−V1(z)

=

∫ u=1

u=u0

3du

(1− u3)

√
−V1(u) ≡ I , eqn28x1 (5.20)

where n is a positive integer and the integration is over the values of u for which

the potential is negative. A plot of ñ ≡ I/π + 1/2 is given in Fig. 4. We see that ñ

reaches a maximum value of approximately 0.86, implying that the potential well is

never able to support a negative energy bound state. Hence we conclude that there

are no unstable modes in this low momentum regime.
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Γ = -1 � 20

Γ = -1 � 20
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Figure 4: Left: V1(u) for various values of γ. Right: ñ = I/π+ 1/2 plotted versus γ – see
eq.(5.20). Here potentials V1(u) is plotted for various values of γ. We see that a negative
dip appears in V1(u) close to the horizon for γ ∈ (−1/4, 0). We have also plotted ñ in this
range of γ and the plot clearly indicates that it always remains less than one.

While we have discussed both small and large momenta limit of our effective

potential V (u), one may still imagine that instabilities can still arise at some finite

momenta. However, such a possibility can be eliminated by considering the structure

of our complete potential V (u). That is, for any finite momenta and for γ ∈ [−1/4, 0],

the negative dip in potential V (u) is smaller than the dip in V1(u) because of the

positive contribution coming from V0(u). Hence there are no instabilities coming

from the longitudinal vector mode in the regime (5.14) of physical interest.

Of course, one must also consider possible instabilities in the transverse vector

mode. In this case, examining the potential W0, we find that a negative minimum

again develops for γ > 1/8. So again instabilities appear in the large momentum limit

but only for values of the coupling outside of the physical regime (5.14). As above,

one can also consider the low and finite momentum regimes, however, again one finds

that there are no additional instabilities in the physical regime. Hence although both

the transverse and longitudinal modes of the vector exhibit instabilities, these only

appear in a regime where our previous constraints already indicate that the CFT is

pathological.
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Examining eq. (5.19), one sees that the potential V0 is also negative in front of

the horizon for γ > 1/8 (as well as for γ < −1/4, as discussed above). However,

this behaviour is not indicative of a negative potential well in this case. Rather a

closer examination of the full potential (5.6) shows that a simple pole appears at

u = 1/(2γ1/3), which lies in the physical interval 0 ≤ u ≤ 1 for γ > 1/8. The

potential W0 exhibits a similar behaviour for γ < −1/4. The analysis and physical

interpretation of the modes in this case are more elaborate along the lines of that

given in [25]. However, we do not consider these issues further here since our previous

constraints (5.14) already indicate that γ > 1/8 and γ < −1/4 are outside of the

physically viable regime.

6. EM Self-Duality Lost

In this section, we examine in more detail the loss of electromagnetic (EM) self-

duality for the U(1) gauge theory defined by the bulk action (2.6). Recall from

[7] that this EM self-duality was the key property of the standard four-dimensional

Maxwell theory which lead to the simple relation:

KT (ω, q)KL(ω, q) = constant , eqnx1 (6.1)

where KT and KL are the scalar functions determining the transverse and longi-

tudinal components of the retarded current-current correlator – see appendix A for

further discussion. As a result, the conductivity (at zero momentum) was a fixed

constant for all values of ω/T . In examining the explicit equations of motion, (4.5)

and (4.6), we already noted that self-duality is lost in the new theory. However,

in the context of any U(1) gauge theory, one can think of EM duality as simply a

change of variables in the corresponding path integral. Even if our new gauge theory

(2.6) is not self-dual, we can still implement this change of variables and construct

the EM dual theory, as we will demonstrate below.

We begin by introducing a (vector) Lagrange multiplier Ba in the generalized

action (3.1) as follows

I =

∫
d4x
√
−g
(
− 1

8g2
4

FabX
abcdFcd +

1

2
εabcdBa∂bFcd

)
.eqn67 (6.2)

Here εabcd is totally antisymmetric tensor, with ε0123 =
√
−g. The fundamental fields

in the path integral for this action are the two-form Fab and the one-form Ba. Now

the EM duality comes from simply treating the integration over these fields in two

different orders.

If we evaluate the path integral by first integrating over the Lagrange multiplier

Ba, the latter integration enforces the Bianchi identity on the two-form Fab, i.e.,

εabcd∂bFcd = 0 .eqn70 (6.3)
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If Fab is to satisfy this constraint,3 then on a topologically trivial background, it

must take the form Fab = ∂aAb − ∂bAa. Hence the remaining path integral reduces

to the ‘standard’ gauge theory where the fundamental field is the Maxwell potential

Aa with generalized action given in eq. (3.1).

Alternatively, one can perform the path integral over the two-form Fab first. In

this case, we first integrate by parts in the second term in the action (6.2)

I =

∫
d4x
√
−g
(
− 1

8g2
4

FabX
abcdFcd +

1

4
εabcdFabGcd

)
.eqn67x (6.4)

where we have defined the new field strength Gab ≡ ∂aBb − ∂bBa. We can now shift

the original two-form field to

F̂ab = Fab −
g2
4

4

(
X−1

)
abcd

εcdefGef shift (6.5)

where X−1 is defined by

1

2
(X−1)ab

cdXcd
ef ≡ Iab

ef .inverse (6.6)

Recall the definition of Iab
cd given in eq. (3.3). With this shift, one has a trivial

Gaussian integral over the field F̂ab after which one is left with the path integral over

the one-form Ba with the action

I =

∫
d4x
√
−g
(
− 1

8ĝ2
4

X̂abcdGabGcd

)
, eqn67xx (6.7)

where ĝ2
4 ≡ 1/g2

4 and

X̂ab
cd = −1

4
εab

ef (X−1)ef
gh εgh

cd

= (X−1)ab
cd +

1

2
(X−1)ef

ef Iab
cd

kinetic (6.8)

−
[
(X−1)ae

ceδb
d − (X−1)ae

deδb
c − (X−1)be

ceδa
d + (X−1)be

deδa
c
]
.

In the second equality above, the two ε-tensors have been eliminated with the four-

dimensional identity of the form εabcd ε
efgh = −(δa

e δb
f δc

g δd
h + · · · ) – note that the

overall minus sign appears because we are working in Minkowski signature. Hence

Ba now plays the role of the gauge potential in the EM dual theory with the action

(6.7).

The relation between the gauge fields in the two dual EM theories is implicit in

the equations of motion for Fab or F̂ab. From eq. (6.5), we see that setting F̂ab = 0

yields

Fab =
g2
4

4

(
X−1

)
ab
cd εcd

ef Gef .duality (6.9)

3Note that we are justified in using ordinary (rather than covariant) derivatives both here and
in the action (6.2) because of the antisymmetry of the indices.

– 19 –



Recall that in the usual Maxwell theory, X takes the simple form given in eq. (3.3).

In this case, X−1 = X and one can easily show that eq. (6.8) also yields X̂ab
cd = Iab

cd.

Hence for the Maxwell theory, the form of the two actions, (3.1) and (6.7), as well

as the corresponding equations of motion for Aa and Ba, are identical. This is then

a demonstration that the Maxwell theory is self-dual. Further, the duality relation

between the two field strengths in eq. (6.9) corresponds to the usual Hodge duality,

as expected for this case.

Of course, in general, we will find that X̂ 6= X and so this self-duality property

is lost. That is, the form of the action and the equations of motion in the original

theory and its dual now have different forms, i.e.,

∇b

(
XabcdFcd

)
= 0 and ∇b

(
X̂abcdGcd

)
= 0 .eom2 (6.10)

For the action of interest (2.6), X is given in eq. (3.4) and at least in a regime where

we treat γ as small, we can write(
X−1

)
ab
cd = Iab

cd + 8γL2Cab
cd +O(γ2) .Xinverse (6.11)

Further because of the traceless property of the Weyl tensor, one finds

X̂ab
cd =

(
X−1

)
ab
cd +O(γ2) .Xhat (6.12)

With the change in sign of the order γ contribution between eqs. (3.4) and (6.11), it

is clear that our gauge theory is no longer self-dual.

Actually given the planar black hole background (2.4), it is straightforward to

calculate X−1 exactly. First, we define a six-dimensional space of (antisymmetric)

index pairs with, i.e., A,B ∈ {tx, ty, tu, xy, xu, yu} – note both the ordering of both

the indices and the index pairs presented here. Then X given in eq. (3.4) becomes a

diagonal six-by-six matrix

XA
B = diag (1 + α, 1 + α, 1− 2α, 1− 2α, 1 + α, 1 + α) Xdiag (6.13)

where α = 4γ u3. Since X is a diagonal matrix, X−1 is also a diagonal matrix whose

entries are simply the inverses of those given in eq. (6.13). Note that α takes its

maximum value at the horizon u = 1, i.e., αmax = 4γ. Hence we must constrain

−1
4
< γ < 1

8
in order for the inverse to exist everywhere in the region outside of the

horizon. Of course, it is not a coincidence that the effective Schrödinger equation in

section 5 became problematic (i.e., the effective potentials contained a pole) precisely

outside of the same interval. In any event, the physical regime (5.14) for γ determined

in section 5 lies well within this range.
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Using this notation and the background metric (2.4), εab
cd becomes the following

‘anti-diagonal’ six-by-six matrix

εA
B =



r0f
L2

− r0f
L2

L2

r0

− r0
L2

L2

r0f

− L2

r0f


.antie (6.14)

Combining these expressions, we can easily evaluate the duality transformation (6.9),

which is expressed using the new notation as

FA = g2
4

(
X−1

)
A
B εB

C GC .duality2 (6.15)

The final result is

Ftx =
g2
4

1 + α

r0f

L2
Gyu , Fty = − g2

4

1 + α

r0f

L2
Gxu ,

Ftu =
g2
4

1− 2α

L2

r0
Gxy , Fxy = − g2

4

1− 2α

r0
L2
Gtu , duality3 (6.16)

Fxu =
g2
4

1 + α

L2

r0f
Gty , Fyu = − g2

4

1 + α

L2

r0f
Gtx .

This duality transformation gives us a precise analytic relation between the original

gauge field Aa and that, Ba, in the EM dual theory. Of course, it would be less

straightforward to express these duality relations in a covariant construction using

the Weyl curvature tensor.

As discussed in [7], from the perspective of the boundary field theory, we can

describe the CFT in terms of the original conserved current Ja (dual to the bulk

vector Aa) or a new current Ĵa (dual to Ba). In the case of the Maxwell theory, the

EM self-duality means that both currents have identical correlators. In the present

case, where EM self-duality is lost, the correlators still have a simple relation which

is summarized by

KT (ω, q) K̂L(ω, q) = 1 , slow1 (6.17)

K̂T (ω, q) KL(ω, q) = 1 .

The detailed derivation for these relations can be found in appendix A. The self-dual

version of eq. (6.17), with K = K̂, appeared in [7]. However, the conventions for

the EM duality transformation were different there, i.e., they chose ĝ4 = g4. This

choice changes the normalization of the dual currents and so changes the constant

on the right-hand-side of eq. (6.17) to (g4)
−4. In any event, these relations imply,

the longitudinal correlator in one theory is traded for the transverse correlator in
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the dual theory, as reflected in eq. (6.16). Notably, eq. (6.17) has precisely the same

form as that obtained from general considerations of particle-vortex duality, but

without self-duality, in the condensed matter context, as we review in the following

subsection.

6.1 Particle-Vortex Duality

Above, we discussed EM duality as a change of variables which allows us to formulate

of the bulk theory in terms of two different gauge potentials. This reformulation of

the bulk theory implies that the boundary CFT can be developed in terms of two

‘dual’ sets of currents, whose correlators are simply related using eq. (6.17). As noted

in [7], the latter is reminiscent of the structure of the correlators in systems exhibiting

particle-vortex duality. The discussion there focused on self-dual examples, however,

the latter is an inessential feature to produce eq. (6.17), as we illustrate with the

following simple example – see also appendix B of [7].

Consider the field theory of a complex scalar z coupled to a U(1) gauge field

S =

∫
d2x dt

[
|(∂µ − iAµ) z|2 + s|z|2 + u|z|4 +

1

2e2
(
εµνλ∂νAλ

)2]
. (6.18)

We now look at the structure of the conserved U(1) currents of S, and their correla-

tors. For simplicity, we will restrict our discussion to T = 0 to make the main point

in the simplest context. There is a natural generalization to T > 0, which is needed

to obtain the full structure of the relationship in eq. (6.17), and which was discussed

in [7].

The theory S has the obvious conserved U(1) current

Jµ =
1

i
z∗ [(∂µ − iAµ)z]− 1

i
[(∂µ − iAµ)z∗] z (6.19)

Because of current conservation, we can write the two-point correlator of this current

in the form (reminder, we are at T = 0)

〈Jµ(p)Jν(−p)〉 =

(
δµν −

pµpν
p2

)√
p2K(p2). (6.20)

Here, we note that this correlator has been defined to be irreducible with respect to

the propagator of the photon, Aµ.

The theory S has a second conserved U(1) current; this is the ‘topological’ current

Ĵµ =
1

2π
εµ

νλ ∂νAλ (6.21)

We can interpret Ĵµ as the current of dual set of particles which are the Abrikosov-

Nielsen-Olesen vortices of the Abelian-Higgs model in eq (6.18). Each such vortex
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carries total Aµ flux of 2π, and hence the prefactor above. Indeed, there is a dual

formulation of the theory in eq (6.18) in which the vortices become the fundamental

complex scalar field ẑ:

Ŝ =

∫
d2x dt

[
|∂µẑ|2 + ŝ|ẑ|2 + û|ẑ|4

]
(6.22)

This dual theory has no gauge field because the vortices of S only have short-range

interactions. The particle number current of this dual theory is the same as that in

eq. (6.21)

Ĵµ =
1

i
ẑ ∗∂µẑ −

1

i
∂µẑ

∗ ẑ. (6.23)

Now, returning to the perspective of the original theory S in eq (6.18) and the U(1)

current in eq. (6.21), we can write the two-point correlator of Ĵµ in the general form〈
Ĵµ(p)Ĵν(−p)

〉
=

1

4π2

(
δµν −

pµpν
p2

)
p2

p2/e2 − Σ(p2)
(6.24)

where Σ(p2) is the photon self-energy.

The photon Aµ couples linearly to the current Jµ, and so the photon self energy

is clearly the irreducible Jµ correlator, and so

Σ(p2) =
√
p2K(p2) (6.25)

Also as p2 → 0 in IR, we have Σ(p2)� p2/e2 – recall that here we are assuming the

spacetime dimension d = 3. So we have〈
Ĵµ(p)Ĵν(−p)

〉
' −

(
δµν −

pµpν
p2

)√
p2K̂(p2) (6.26)

where from eqs. (6.24) and (6.25)

K(p2)K̂(p2) =
1

4π2
.slow2 (6.27)

This result is clearly the T = 0 analog of eq. (6.17). It is easily generalized to T > 0,

after separation into transverse and longitudinal components, but we refrain from

presenting those details here.

7. Discussion

Our main results for the frequency dependence of the conductivity without self-

duality were given in Fig. 1, and we presented a physical interpretation in Section 1.

For γ > 0, the results had a qualitative similarity to that expected from a Boltzmann

transport theory of interacting particles, while for γ < 0 the results resembled the

Boltzmann transport of vortices.
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We will now discuss other aspects of these results. We also see from Fig. 1 that

the large frequency limit is unaffected by the new coupling, i.e., σ(ω = ∞) = 1/g2
4.

We can understand this result from the fact that the Weyl curvature vanishes in the

asymptotic region of the black hole region and so the new interaction in eq. (2.6) has

no effect there.

Further, we have
σ(ω = 0)

σ(ω =∞)
= 1 + 4γresult0 (7.1)

and so this ratio varies between 4/3 and 2/3 in the allowed physical regime given

in eq. (5.14). Thus the allowed range of variation in the conductivity by non-self-

duality is smaller than 33% and can have either sign, in our model. This should

be contrasted from the large variation obtained from the weak-coupling Boltzmann

analyses. In the ε = 4 − d expansion (where d is the spacetime dimension), it was

found that generically [6]
σ(ω = 0)

σ(ω =∞)
∼ 1

ε2
. (7.2)

Similarly, in the large N expansion (where N is the number of components of a vector

(and not matrix) field), we have [8]

σ(ω = 0)

σ(ω =∞)
∼ N . (7.3)

In both cases, the ratio becomes large in the regime of applicability of the analysis.

Thus the AdS/CFT analysis gives a useful result for this ratio in the complementary

limit of very strong interactions.

Also note that the conductivity in Fig. 1 does not vary monotonically, rather it

seems there is an extremum at ω ' 2πT . For γ > 0, this oscillation is as antici-

pated from Drude-like considerations of particle transport in ref. [6], and for γ < 0

we argued in Section 1 that such an oscillation is obtained from Drude-like vortex

transport. Recall that in the AdS/CFT correspondence, particle-vortex duality in

the boundary theory is realized as EM duality in the bulk theory. Hence we can make

the previous point explicit for our holographic model using the formalism developed

in Section 6. That is, for any given value of γ, we can explicitly construct the EM

dual theory and evaluate the conductivity. In Fig. 5, we have plotted the resulting

conductivities for the original bulk theory and the EM dual theory for γ = ±1/12.

As expected, for γ = −1/12, the conductivity of the dual theory exhibits a Drude-

like peak at small ω. For γ = 1/12, a similar peak appears for the original theory

while the EM dual theory exhibits a dip in the conductivity at small ω. For either

value of γ, the figure also illustrates that the conductivities of the two dual theories

are not precise inverses of one another, except for ω → 0, ∞. This occurs because

the function KT (ω, q = 0) is only precisely real in the latter limits.
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Figure 5: The (dimensionless) conductivity σ̃ = g2
4σ is plotted versus the (dimensionless)

frequency w = ω/(4πT ) for various values of γ. The solid curves correspond to the same
conductivities displayed previously in Fig. 1 — red for γ = 1/12 and blue for γ = −1/12.
The dashed curves show the conductivity calculated from the EM dual theory for the same
values of γ.

Oscillations in the conductivity similar to those in Fig. 1 were observed in [40].

The latter studied the transport properties of currents on a three-dimensional defect

immersed in the thermal path of a four-dimensional superconformal gauge theory.

The holographic bulk theory consisted of probe D-branes embedded in AdS5 × S5

and the oscillations were an effect of stringy corrections to the usual D-brane action.

Implicitly, the four-derivative interaction considered there would have been a linear

combination of the α5,6,7 terms in eq. (2.5). In this previous setting, the calculations

were perturbative and the oscillatory contribution to the conductivity was suppressed

by a factor of λ−1/2 relative to the constant term produced by the Maxwell action on

the brane – as usual, λ denotes the ‘t Hooft coupling of the four-dimensional gauge

theory.

Section 2 provided some motivation for introducing the new four-derivative in-

teraction in eq. (2.6). However, there was a certain liberty in choosing the precise

form of the curvature in this interaction. From a certain perspective, the following

vector action may be preferred:

I ′vec =
1

g̃2
4

∫
d4x
√
−g
[
−1

4
FabF

ab + αL2
[
RabcdF

abF cd − 4RabF
acF b

c +RF abFab
]]

.eqn35

(7.4)

The advantage of the higher-derivative term above is that it produces second-order

equations of motion for both the gauge field and metric in any general background.

We can think of this term arising from Kaluza-Klein reduction of Gauss-Bonnet
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gravity in five dimensional space-time [41]. Now the generalized Maxwell’s equations

are

∇a

[
F ab − 4αL2(Rab

cdF
cd − 2RacFc

b + 2RbcFc
a +RF ab)

]
= 0 .eqn36 (7.5)

Before considering the charge transport for this theory, we note that AdS vacuum

and the neutral black hole (2.2) remain unmodified with this choice of the four-

derivative interaction. In particular then, for the black-hole background, we still

satisfy the vacuum Einstein equations, i.e., Rab = −3/L2 gab. Further, the Reimann

curvature tensor Rabcd is related to the Weyl tensor Cabcd by

Rabcd = Cabcd + ga[cRd]b − gb[cRd]a −
1

3
Rga[cgd]b .eqn38 (7.6)

By substituting these relations into eq. (7.4), we find that the action becomes

I ′vec =
1 + 8α

g̃2
4

∫
d4x
√
−g
(
−1

4
FabF

ab +
α

1 + 8α
L2CabcdF

abF cd

)
.eqn39 (7.7)

Hence, this expression for action is identical to eq. (2.6) if we identify the couplings:

g2
4 =

g̃2
4

1 + 8α
and γ =

α

1 + 8α
rift (7.8)

Hence in the neutral plasma, all of the charge transport properties of the new theory

are identical to those found in the main text, as long as we make this identification of

the couplings in the bulk gauge theory. For example, we have explicitly applied the

analysis of section 5 to the new action (7.4) and found this produces the constraints

−1/20 ≤ α ≤ 1/4. One can easily verify that this range precisely matches that in

eq. (5.14) for γ using the identification of the gauge theory couplings in eq. (7.8).

It would be interesting to examine charged black holes in this new theory (7.4).

Beyond analyzing the effects of adding a chemical potential in the boundary CFT,

it would be interesting to examine the so-called “entropy problem” in this theory.

That is, at zero temperature, charged black holes still have a finite horizon area

for the Einstein-Maxwell theory in the bulk and hence the dual CFT has a large

entropy even at T = 0 but nonvanishing chemical potential. It would be interesting

to determine how this feature found in simple holographic CFT’s is effected by the

introduction of the new higher derivative bulk interaction in eqs. (2.6) or (7.4). Such

investigations would require numerical work that would be greatly facilitated by

having second-order equations, as produced by the above action (7.4).

As discussed in the introduction, we are following a program of expanding the

universality class of the holographic CFT by introducing new higher-derivative in-

teractions to the bulk action. The simplest way to characterize the effect of the new

interactions is to examine the changes which are produced in the vacuum n-point

functions in the CFT. As alluded to above, the Weyl curvature vanishes in AdS
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space and so we may infer that in the vacuum of the dual CFT (with vanishing

temperature and charge density), there are no changes to any of two-point functions,

i.e., 〈Ja(x)Jb(y)〉0 and 〈Tab(x)Tcd(y)〉0, where the subscript 0 indicates the two-point

functions are evaluated in the vacuum or at T = 0. That is, the two-point functions

are independent of γ in the vacuum. In particular then, the charge transport proper-

ties of the holographic CFT must be independent of γ at T = 0. On the other hand,

recall the simple γ dependence which appears in eq. (3.12) for the conductivity at

ω = 0. Clearly, this means that the limits, T → 0 and ω → 0, do not commute, as

was also emphasized in ref. [6].

As described in [24, 34], the key effect of the new bulk interaction (2.6) is to

modify the three-point correlator 〈Tab(x)Jc(y)Jd(z)〉0. One can show that in any

CFT, conformal symmetry will completely fix this three-point function between the

stress tensor and two conserved currents up to two constant parameters [26]. One

of these parameters vanishes in the holographic dual of an Einstein-Maxwell theory.

However, this extra parameter is nonvanishing for the CFT dual for our extended

theory with γ 6= 0. In particular, as discussed in section 5, the parameter a2 in

eq. (5.16) is only nonvanishing in the boundary CFT when γ 6= 0. Of course in a

thermal bath, the expectation value of the stress tensor is nonvanishing. Hence it

should be possible to use the previous three-point function to infer the leading γ

modification to the two-point correlator 〈JaJb〉T at finite temperature, e.g., with an

approach similar to that considered in [39]. In principle then, such a (perturbative)

calculation in the CFT should already indicate that self-duality is lost.

Above, we discussed the behavior of the conductivity, which is related to the cur-

rent correlator at zero momentum. We also studied the full momentum dependence

of these correlators and obtained the duality relation in eq. (6.17), which applied in

the general case without self -duality. Remarkably, this has the same form as that

obtained by applying particle-vortex duality to a (2+1)-dimensional field theory of

a single complex scalar, as we reviewed in section 6.1: note that this theory is not

self-dual (and self-duality is not expected in general, except for a particular theory

with two complex scalar fields [7, 42]). In the single scalar field case, as discussed

in section 6.1, KT,L characterize the transverse/longitudinal components of the two-

point correlations of the current of the scalar particles – see eq. (A.4) – while K̂T,L

characterize the corresponding quantities of the vortex current.

Of course, the constants on the right-hand-side of eqs. (6.17) and (6.27) are seen

to be different. In both cases, this constant depends on the conventions used to

normalize the currents and a new normalization would change the constant in either

model. Hence one may ask if these relations can be expressed in a way which removes

this ambiguity. As we will show, one possibility is to replace eq. (6.17) by

KT (ω, q) K̂L(ω, q) = σ0 σ̂0 , slow1a (7.9)

K̂T (ω, q) KL(ω, q) = σ0 σ̂0 ,
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where σ0 is the conductivity at zero momentum and zero frequency and σ̂0 is the

same quantity for the dual currents. For our holographic model, σ0 was given in

eq. (3.12) and given the discussion in section 6, it is a simple exercise to show

that σ0 σ̂0 = 1. Hence, in this case, we easily recover eq. (6.17) from eq. (7.9)

above. However, the latter equation applies quite generally as we will now show:

First, given the expressions for σ and KT in eqs. (4.11) and (A.6), respectively, it

is straightforward to show that limω→0 K
T (ω, q = 0) = σ0. Further with vanishing

momentum, KL(ω, q = 0) = KT (ω, q = 0) and hence we also have limω→0 K̂
T (ω, q =

0) = σ̂0 . Now if we know that the product KT K̂L is constant, we can evaluate the

constant at vanishing momentum and vanishing frequency and then our discussion

leads us to write eq. (7.9). This expression will apply independent of the conventions

used to normalize the currents and applies equally well for the field theory examples

considered in section 6.1 and in [7] as for our holographic model.

The holographic relation of EM duality in the bulk and particle-vortex duality

in the boundary theory was first noted in [7, 43] and the effect of this bulk transfor-

mation on the boundary transport properties was further studied in [44] – see also

[40, 45]. Particle-vortex duality can be extended to an SL(2, Z) action on three-

dimensional CFT’s [43, 46] and the holographic realization of these group transfor-

mations on the bulk theory was discussed in [43]. In particular, the S transformation

corresponds to applying EM duality in the bulk. To discuss the T transformation,

the bulk action must be extended to include a θ-term and acting with the T gener-

ator corresponds to making a 2π shift of θ. Of course, implicitly or explicitly, the

previous holographic discussions assumed a standard Maxwell action for the bulk

vector. It would be interesting to extend this discussion of the full SL(2, Z) action

to the generalized action (3.1) introduced in section 3. Associating the S generator

with EM duality as in [43], one can easily verify that S2 = −1 using eq. (6.9). To in-

clude the T generator, we would need generalize X to include parity violating terms,

i.e., nonvanishing z2(u) and z3(u) in eq. (A.23). We leave this as an interesting open

question.

To close, we wish to emphasize that our investigation here has considering a sim-

ple toy model and one should be circumspect in interpreting the results of our analy-

sis. While string theory will generate the higher derivative interactions in our action

(2.6), it certainly also produces many other higher order terms which schematically

take the form Rn F 2. For example, some such terms, were explicitly constructed

(amongst many others) and studied in [47]. Any terms with this schematic form

would still fall in the class of our general action (3.1) and so modify the charge trans-

port properties in a similar way. A key feature of our model was that we were able to

identify physical restrictions which constrained the new coupling γ to fall in relatively

narrow range (5.14). As a result, the conductivity remained relatively close to the

self-dual value. Our expectation is that similar restrictions appear for general string

models, however, finding more comprehensive physical constraints in this context re-
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mains an interesting open question [48]. As seen here and elsewhere [24, 29, 30, 34],

the interplay between the boundary and bulk theories in the AdS/CFT correspon-

dence is beginning to provide new insights into this question.
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A. Retarded Green’s functions and EM duality

In this appendix, we find the retarded Green’s functions of currents in the boundary

field theory for finite frequency and finite momentum and further we examine the

relationship between the Green’s functions in the two theories related by EM duality

in the bulk. In this discussion, we work with the general vector action (3.1) and its

EM dual (6.7). Recall that the relation between coefficients X and X̂ appearing in

these two actions is given in eq. (6.8) and the field strengths in the two theories are

given by Fab ≡ ∂aAb−∂bAa and Gab ≡ ∂aBb−∂bBa, respectively. Further the duality

relation between these two field strengths is given in eq. (6.9).

For simplicity, we will begin by assuming that Xab
cd is diagonal in the six-

dimensional space defined by the antisymmteric index pairs

A,B ∈ {tx, ty, tu, xy, xu, yu} .indices (A.1)

This property holds for the specific theory (2.6) studied in the main text, as shown

in eq. (6.13). We comment on more general cases at the end of the appendix. Given

this assumption, we write

XA
B = diag (X1(u), X2(u), X3(u), X4(u), X5(u), X6(u)) .Xdiag1 (A.2)

Further rotational symmetry in the xy-plane would restrict this ansatz with X1(u) =

X2(u) and X5(u) = X6(u). However, we leave this symmetry as implicit, since it is

not required in the following. Now the inverse4 X−1 is simply the diagonal matrix

4We assume that the functions Xi remain finite and positive throughout u ∈ [0, 1] in order that
XA

B is invertible and the bulk propagators for the gauge potential are well-behaved there.
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with entries 1/Xi(u) and, given eq. (6.8), X̂A
B is also diagonal with

X̂A
B = diag

(
X̂1(u), X̂2(u), X̂3(u), X̂4(u), X̂5(u), X̂6(u))

)
= diag

(
1

X6(u)
,

1

X5(u)
,

1

X4(u)
,

1

X3(u)
,

1

X2(u)
,

1

X1(u)

)
.hXdiag (A.3)

Now we review the general structure of the Green’s functions in the boundary

theory, from the discussion in [7]. Together current conservation and spatial rota-

tional invariance – Lorentz invariance is lost with T 6= 0 – dictate the form of the

retarded Green’s functions as

Gµν(q) =
√

q2
(
P T
µν K

T (ω, q) + PL
µν K

L(ω, q)
)
.green1 (A.4)

where we use the notation: qµ = (ω, qx, qy), q2 = [(qx)2 + (qy)2]1/2 and q2 = q2− ω2.

Further, P T
µν and PL

µν are orthogonal projection operators defined by

P T
tt = 0 = P T

ti = P T
it , P T

ij = δij −
qiqj
q2

, PL
µν =

(
ηµν −

qµqν
|q|2

)
− P T

µν , apeq5 (A.5)

with i, j denoting spatial indices while µ , ν run over both space and time. If, for

simplicity, we choose qµ = (ω, q, 0), then we have

Gyy(ω, q) =
√
q2 − ω2KT (ω, q) , Gtt(ω, q) = − q2√

q2 − ω2
KL(ω, q) .apeq6 (A.6)

Of course, this general structure applies for both boundary theories, that is, both for

the theory dual to the vector potential Aa and that dual to Ba. Our notation will

be that the above expressions refer to the theory dual to Aa while Ĝµν , K̂T and K̂L

are the corresponding expressions for the boundary currents dual to Ba.

The first step in the holographic calculation of the Green’s functions is to solve

the bulk equations of motion. Hence we begin as in section 4 by taking a plane-wave

ansatz (4.1) for Aa and Ba. Further, we choose qµ = (ω, q, 0) and work in radial

gauge with Au(u,q) = 0 = Bu(u,q). With these choices and the background metric

(2.4), the Aa equations of motion become:

A′t +
q f

ω

X5

X3

A′x = 0apeq4 (A.7)

A′′t +
X ′3
X3

A′t −
L4

r2
0

q

f

X1

X3

(qAt + ωAx) = 0apeq1 (A.8)

A′′x +

(
X ′5
X5

+
f ′

f

)
A′x +

L4

r2
0

ω

f 2

X1

X5

(qAt + ωAx) = 0apeq2 (A.9)

A′′y +

(
X ′6
X6

+
f ′

f

)
A′y −

L4

r2
0

ω2X2 − q2fX4

f 2X6

Ay = 0apeq3 (A.10)
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where we recall that f = 1 − u3. For the EM dual gauge theory, the equations of

motion are given by simply replacing Aa → Ba and Xi → X̂i in the expressions

above.

In general, there are two independent physical modes for the four-dimensional

bulk gauge field. Above, we see that Ay decouples in eq. (A.10) to provide one of

these modes, while At and Ax are coupled in the remaining equations. Of course,

the analogous results apply to Ba in the EM dual theory. Now explicitly writing out

the duality relations (6.15) in the present case, we find

Ftx =
g2
4

X1

r0f

L2
Gyu , Fty = − g

2
4

X2

r0f

L2
Gxu ,

Ftu =
g2
4

X3

L2

r0
Gxy , Fxy = − g

2
4

X4

r0
L2

Gtu , duality4 (A.11)

Fxu =
g2
4

X5

L2

r0f
Gty , Fyu = − g

2
4

X6

L2

r0f
Gtx .

Hence, at a schematic level, EM duality exchanges the Ay mode for that in Bt,x and

similarly the At,x and By are exchanged. Given the holographic relationship between

the bulk and boundary theories, we expect that there are connections between the

Green’s functions, Gµν and Ĝµν , generalizing those found in [7]. However, given the

previous observation, more specifically, Gyy should be related to Ĝtt (as well as Ĝxx
and Ĝtx) and similarly Gtt, to Ĝyy.

To develop these connections in detail, we must extend the holographic calcula-

tion of the Green’s functions given in section 4 to include the mixing between At and

Ax, noted above. First, we solve the equations of motion (A.7)-(A.10) for Aµ with

infalling boundary conditions at the horizon and asymptotic boundary conditions:

lim
u→0

Aµ = A0
µ. To account for mixing between different components of the gauge po-

tential, we may write [7]: Aµ(u) = Mµ
ν(u)A0

ν . Now, substituting the solutions into

the action (3.1) and integrating by parts leaves an surface term at the asymptotic

boundary, which generalizes that given in eq. (4.12),

I1 =
2πT

3g2
4

∫
d3x

[
X3AtA

′
t −X5AxA

′
x −X6AyA

′
y

]
u→0

.apeq7 (A.12)

After Fourier transforming in the boundary directions, we extract the desired Green’s

functions as

Gtt(ω, q) =
4πT

3g2
4

X3(0)
δA′t(u)

δA0
t

∣∣∣∣
u→0

, ggtt (A.13)

Gxx(ω, q) = −4πT

3g2
4

X5(0)
δA′x(u)

δA0
x

∣∣∣∣
u→0

, ggxx (A.14)

Gtx(ω, q) =
2πT

3g2
4

[
X3(0)

δA′t(u)

δA0
x

−X5(0)
δA′x(u)

δA0
t

]
u→0

, ggtx (A.15)

Gyy(ω, q) = −4πT

3g2
4

X6(0)
δA′y(u)

δA0
y

∣∣∣∣
u→0

.ggyy (A.16)
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Here we have used that the equations of motion (A.7–A.10) only mix At and Ax.

One may also easily verify that eq. (A.16) reduces to the expression in eq. (4.16)

when X6(0) = 1, as in the main text.

Next consider the Green’s functions Gyy. Assume that we have Ay(u) = ψ(u)A0
y

where ψ(u) is a solution of eq. (A.10) satisfying the appropriate boundary conditions.

In particularly, the asymptotic normalization is ψ(u = 0) = 1. Then from (A.16),

we have

Gyy(ω, q) = −4πT

3g2
4

X6(0)ψ′(0) .gyy (A.17)

Given that EM duality exchanges Ay with Bt,x, we now look for a relation between

this result and that for Ĝtt. From the expression for Fxy in eq. (A.11), we find

B′t(u) ∝ X4(u)Ay(u) and so X4(u)ψ(u) provides a solution of the equations of

motion for B′t(u) in the EM dual theory. While it is clear that the required infalling

boundary condition is satisfied at the horizon with ψ(u), we must expect that the

normalization has to be adjusted in order to satisfy the desired asymptotic boundary

condition. Hence we introduce a new constant C1 setting B′t(u) = C1X4(u)ψ(u). In

order to fix this constant, we consider the analog of eq. (A.8) in the EM dual theory

and take the limit u→ 0 to find

C1 =
L4

r2
0

q(q B0
t + ωB0

x)

X6(0)ψ′(0)
apeq10 (A.18)

where deriving this expression uses X̂1 = 1/X6 and X̂3 = 1/X4. Now the EM dual

counterpart of eq. (A.13) yields

Ĝtt(ω, q) =
4πT

3ĝ2
4

X̂3(0)
δB′t(u)

δB0
t

∣∣∣∣
u→0

=
3g2

4

4πT

q2

X6(0)ψ′(0)
.emggtt (A.19)

Here we have used the relations: ĝ4 = 1/g4 and r0/L
2 = 4πT/3. Hence, combining

eqs. (A.17) and (A.19), we find

Gyy(ω, q) Ĝtt(ω, q) = −q2 .apeq13 (A.20)

Further, using eq. (A.6), this relation can be written as

KT (ω, q) K̂L(ω, q) = 1 .apeq14 (A.21)

Now it is clear that the EM dual version of the above discussion would follow

through without change. That is, we would begin by constructing an expression for

Ĝyy analogous to eq. (A.17) and then the counterpart of eq. (A.19) for Gtt. The final

result emerging from these results would then be

K̂T (ω, q)KL(ω, q) = 1 .apeq17 (A.22)
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To close our discussion, we comment more general cases where X contains off-

diagonal terms. To begin, let us write the most general tensor which is consistent

with rotational symmetry in the xy-plane:

XA
B =



X1(u) r0f
L2 z1(u) r0f

L2 z2(u)

X1(u) − r0f
L2 z2(u) r0f

L2 z1(u)

X3(u) L2

r0
z3(u)

− r0
L2 z3(u) X4(u)

− L2

r0f
z1(u) L2

r0f
z2(u) X5(u)

− L2

r0f
z2(u) − L2

r0f
z1(u) X5(u)


, Xround

(A.23)

where we are using the notation introduced in eq. (A.1), as well as the background

metric (2.4). Note the pre-factors in the off-diagonal terms reflect the tensor structure

of Xab
cd, which is slightly obscure in this notation, e.g., X5

1 = gxx guu g
ttgxxX1

5 =

−L4/(r0f)2X1
5. Now, as noted above, rotational invariance imposes two relations

on the diagonal entries, i.e., X2 = X1 and X6 = X5. However, as shown above, this

symmetry is remarkably restrictive on the off-diagonal components as well and our

general tensor (A.23) only contains three independent terms amongst all of the possi-

ble entries. Now, if we further demand that this background tensor preserves parity,

we must in fact set z2(u) = 0 = z3(u) and we are left with only one function z1(u)

determining all of the allowed off-diagonal components. Note that these remaining

off-diagonal terms preserve parity but violate time-reversal invariance.5

If we restrict ourselves to the parity invariant case, it is straightforward to gener-

alize our previous discussion to accommodate the generalX above (with z2 = 0 = z3).

Although the intermediate expressions are somewhat more involved, we find that the

final Green’s functions still satisfy eqs. (A.21) and (A.22).

Note that parity invariance was implicit in the decomposition of the Green’s

functions in eq. (A.4). If parity violating terms were allowed there would be an

additional contribution of the form.

∆Gµν = i εµνσq
σKP (ω, q) .green2 (A.24)

Hence the present analysis must be revised to accommodate these parity violating

terms. Our expectation is that particle-vortex duality still provides relations between

the three functions KT , KL and KP , describing the Green’s functions of the two dual

theories. A preliminary examination of the equations of motion and the EM duality

relations suggests that, in this general case, KT , KL, KP and their dual counterparts

should satisfy three relations. However, the details of this interesting case are left as

an open problem for future work.

5The z2(u) and z3(u) terms violate both parity and time-reversal invariance.
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