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Abstract

Motivated by recent developments in the understanding of the connection between

five branes on resolved geometries and the corresponding generalizations of complex de-

formations in the context of the warped resolved deformed conifold, we consider the

construction of five branes solutions on the resolved cone over Y p,q spaces. We establish

the existence of supersymmetric five branes solutions wrapped on two-cycles of the re-

solved cone over Y p,q in the probe limit. We then use calibration techniques to begin the

construction of fully back-reacted five branes; we present an ansatz and the corresponding

equations of motion. Our results establish a detailed framework to study back-reacted

five branes wrapped on the resolved cone over Y p,q and as a first step we find explicit

solutions and construct an asymptotic expansion with the expected properties.



1 Introduction

The AdS/CFT correspondence provides a powerful tool to attack very important questions

of strong coupling dynamics using gravitational duals. Particularly interesting is the class

of supergravity backgrounds dual to confining theories containing N = 1 supersymmetric

Yang-Mills (SYM). The original prototypes of these solutions are the Klebanov-Strassler so-

lution (KS) [1] based on the deformed conifold and the Maldacena-Núñez solution (MN) [2]

based on an NS5 brane wrapping a two-cycle. Significant progress has taken place in the

past ten years since those seminal works appeared. One very important step in the construc-

tion of supergravity solutions was the first attempt to relate the Maldacena-Núñez and the

Klebanov-Strassler solutions by means of an interpolating Ansatz presented in Papadopoulos-

Tseytlin [3]; it was shown that both solutions can be extracted from a single one-dimensional

action. This idea was taken a step further in [4] where SU(3)-structure techniques were

used to construct the one-parameter family that realizes the interpolation. In a recent paper

Maldacena and Martelli [5] have further interpreted the results in [4] using a chain of duali-

ties and found a more complete picture that includes a supergravity realization of geometric

transition between the deformed conifold with fluxes and the resolved conifold with branes.

Another avenue of progress was started by Casero, Núñez and Paredes in [6] where they

tackled the problem of adding dynamical flavor to the Chamsedine-Volkov-Maldacena-Núñez

(CVMN) background [7,8, 2]. This line of research was further developed in [9–15]. Finally,

in [16], exploiting an interpolation discussed in [17], the authors discuss a solution generating

technique that can be used to generalize the deformed resolved conifold solution of [4].

Despite all these advancements, no new family of supergravity solutions containing a

sector dual to N = 1 SYM has been constructed. One hopeful venue was introduced with

the construction of Y p,q spaces [18,19]. The study of field theory duals to AdS5×Y p,q spaces

has produced interesting generalizations of the conifold theories. The dual field theory is rich

and its understanding helped clarified key aspects of the correspondence. The field theory

dual to AdS5 × Y p,q spaces was worked out in [20] and [21]. Further field theoretic analysis

of the corresponding cascading quivers indicates that supersymmetry is broken [22], [23] [24].

This result fits nicely with the fact that Calabi-Yau deformations of the cone over Y p,q are

obstructed [25,26] and is one of the reasons why the study of these models was not pursued

further. However, in view of recent work [4–6, 16], a logical alternative is to attack the

problem from the point of view of wrapping fivebranes which avoids altogether the need for

a Calabi-Yau structure and relies only on the more general concept of SU(3) structure. This

is what we attempt to initiate in this manuscript.

From the gravity point of view, the fact that there is no complex deformation of the cone

over Y p,q [25,26] means that there is no direct analog of the KS solution, that is, there is no
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solution ofD3 andD5 built around a conformal Calabi-Yau that has a noncollapsing S3 at the

tip despite the perturbative evidence gathered in [27] and more importantly in [28]. Recent

work by Maldacena and Martelli indicates that the noncollapsing S3 could appear also as a

consequence of the backreaction of the fivebranes. The non-Kähler analog of the deformed

cone over Y p,q could thus be a solution withH3 which preservesN = 1 supersymmetry. Could

the addition of branes or fluxes smoothly connect the resolved Y p,q and the “appropriate”

notion of deformation? This would be the generalization of the situation in the conifold that

was argued by Vafa in [29] and realized purely in the supergravity context by Maldacena-

Martelli [5]. The hope is to search starting the class of SU(3) structure solutions rather than

in the class of SU(3) holonomy.

In the present work we aim to construct a supergravity solution corresponding to back-

reacting NS5 branes wrapping a two-cycle in a resolution of the cone over Y p,q. To gather

evidence for the existence of such a solution we first find (section 3) a probe brane solution

corresponding to a D5 brane on the resolved cone over Y p,q. The existence of such D5 brane

probe suggests the existence of a full back-reacted supergravity solution for D5 which we

can, in turn, S-dualize to obtain the NS5 solution we seek. With this evidence in hand we

proceed in section 4 to obtain the equations of motion that define the background. We show

that these partial differential equations are consistent, study the asymptotic behavior and

examine one particular case. We consider the present work a first step in the study of branes

on the resolved cone over Y p,q ; there are a myriad of issues to explore and we comment on

some of them in the conclusions.

2 Review of Y p,q metric and the resolved cone over Y p,q

The starting point of our analysis are the Y p,q spaces whose metric was presented in [18]:

ds2 =
1− cy

6

(
dθ2 + sin2 θdφ2

)
+

1

w(y)q(y)
dy2 +

q(y)

9
(dψ − cos θdφ)2 (2.1)

+ w(y)

(
dα+

ac− 2y + y2c

6(a− y2)
(dψ − cos θdφ)

)2

, (2.2)

with

w(y) =
2(a − y2)

1− cy , q(y) =
a− 3y2 + 2cy3

a− y2
. (2.3)

This is a two-parameter (a, c) family of metrics. Typically if c 6= 0 it can be set to c = 1 by

rescaling y.

This family of metrics contains S5 and T 1,1 as particular limits. For us, it will be partic-

ularly interesting to consider the T 1,1 limit which has been explained in section 5 of [18]. In

this limit one requires c→ 0 in the standard notation of [18], we also need a = 3, y = cosω
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and α = ν/6. The Y p,q metric then becomes

ds2|c→0 =
1

6

(
dθ2 + sin2 θdφ2 + dω2 + sin2 ωdν2

)
+

1

9
(dψ − cos θdφ− cosωdν)2 , (2.4)

which is readily recognized as the metric on T 1,1 as described in [30].

2.1 The resolved cone over Y p,q

The Y p,q metrics are Sasaki-Einstein and therefore a cone over them is Calabi-Yau. A natural

question is whether this Calabi-Yau space admits resolutions. The answer to that question

is in the positive as opposed to the answer about complex deformation which is answered

in the negative [25, 26]. Following the notation of [30] we will denote the resolved cone over

Y p,q as Č(Y p,q). The metric on the resolved cone over Y p,q was obtained explicitly in [31,32]

and further elaborations and extensions considering weighted projective CP
1 were presented

in [33]. The metric in question is

ds2 =
(1− x)(1− y)

4
(dθ2 + sin2 θdφ2) +

(y − x)
4X(x)

dx2 +
(y − x)
4Y (y)

dy2 (2.5)

+
X(x)

(y − x)(dτ + (1− y)(dψ − cos θdφ))2

+
Y (y)

(y − x)(dτ + (1− x)(dψ − cos θdφ))2,

where

X(x) = x− 1 +
2

3
(x− 1)2 +

2µ

x− 1
, Y (y) = 1− y − 2

3
(1− y)2 − 2ν

1− y (2.6)

with two parameters µ and ν.

As explained in [33], to extend equation (2.5) to a globally well defined non-compact

manifold we have to take y1 < y < y2 where y1 and y2 are two consecutive roots of Y (y).

Requiring 0 ≤ ν ≤ 1/6 guarantees that y1 < y2 < 1 and y1 ≤ 0 while y2 ≥ 0. Thus, Y (y) > 0,

∀y ∈ (y1, y2). We take x to be non-compact and denote two consecutive roots of X(x) by x+

and x−. It was shown in [33] that X(x) > 0, ∀x ∈ (−∞, x−) ∪ (x+,∞). As is clear from

(2.5), we focus on the case where the resolution is obtained by blowing up a CP
1, referred

to as “small partial resolutions I” in [33]. For this type of resolution we have x− = y1 which

requires µ = −ν. Thus, throughout this work we will consider

−∞ < x < y1 < 0, y1 < y < y2, µ = −ν. (2.7)

We focus on the CP
1 case although we presume that much of what we say can be adapted

to the projective CP
1 resolution presented in [33].
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The above metric can be written using the following sechsbein ds2 = δabe
aeb:

e1 =

√
(1− x)(1− y)

2
(cos(2(τ + ψ))dθ − sin(2(τ + ψ)) sin θdφ), (2.8)

e2 =

√
(1− x)(1− y)

2
(sin(2(τ + ψ))dθ + cos(2(τ + ψ)) sin θdφ),

e3 =

√
X(x)

(y − x) (dτ + (1− y)(dψ +A)), e4 = −
√
y − x
4Y (y)

dy

e5 =

√
Y (y)

(y − x) (dτ + (1− x)(dψ +A)), e6 = −
√

y − x
4X(x)

dx

where

A = −1

2
cos θdφ. (2.9)

Note that we have judiciously rotated the vielbeine dθ and sin θdφ. The main reason for the

rotation by an angle 2(τ + ψ) is that it eliminates an otherwise cumbersome phase in the

associated holomorphic three-form. As a warm up we verify that the above space has SU(3)

structure. It, of course, has SU(3) holonomy but here we introduce some notation as well to

make contact with the established literature.

Let us define the following 3- and 2-forms Ω and J

Ω = (e1 + ie2) ∧ (e4 + ie5) ∧ (e6 + ie3),

J = e1 ∧ e2 + e4 ∧ e5 + e6 ∧ e3 (2.10)

The main comments is that the above forms satisfy the following SU(3) algebraic constraints

Ω ∧ J = 0, Ω ∧ Ω̄ = −4

3
iJ ∧ J ∧ J. (2.11)

As well as the following differential constraints:

dΩ = 0, dJ = 0, d (J ∧ J) = 0. (2.12)

Although the last differential constraint follows from dJ=0, these constraints parallel the

most general case which we discuss in forthcoming sections. From the resolved cone over

Y p,q one can recover the metric on the cone over Y p,q by taking the x → −∞ limit as

explained in [33,34]. Introducing

x = −2

3
r2, (2.13)

and expanding the metric in the large r limit one finds that the leading terms in the metric

become

ds2 = dr2 +
2

3
r2
[

1

4Y (y)
dy2 + Y (y)(dψ − cos θdφ)2 (2.14)

+
1

4
(1− y)(dθ2 + sin2 θdφ2) +

2

3
(dτ + (1− y)(dψ − cos θdφ))2

]
,
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which is precisely the cone over Y p,q. The difference between the above metric and the one

presented in equation (2.1) has been explained in various papers [18,19] and more generally

section 3 of [33]. The presentation of equation (2.14) makes clear the local structure of Y p,q

as a U(1) bundle over a Kähler-Einstein base. More precisely, the function Y (y) here is

proportional to the product w(y)q(y) of the functions defined in (2.1).

3 Probe analysis

The question we pose in this section is the following: Is there a probe solution corresponding

to a supersymmetric D5 on the resolved cone over Y p,q such that the backreacted solution

corresponds to stacking a large number of such supersymmetric solutions and taking its

backreaction into account?

As far as we are aware, this question has not been answered explicitly even in the simpler

case of the the conifold, in which case it is purportedly related to the MN [2] solution.

The obvious reason being the existence of the full backreacted solution. We will revisit this

question and try to elucidate the situation starting from the simplest cases which we present

explicitly in appendix A.2.

Probe branes on spaces of the form AdS5 ×X5 where X5 is a Sasaki-Einstein manifold

have been systematically studied, for example, the case T 1,1 was addressed in [35], Y p,q

in [36] and Lp,q,r in [37]. These studies have clarified many aspects, including the possibility

of generalizations of these geometries of the form AdS5×X5 to cascading regimes and beyond.

We will, naturally, build on those works. However, those spaces can be thought as the spaces

resulting by taking into consideration the backreaction of D3 branes with the subsequent

Maldacena limit. The task at hand for us is simpler as we are concerned with non-backreacted

geometries of the form R
1,3 × CY where we consider just D5 branes embeddings.

3.1 Kappa symmetry and supersymmetric branes

Let us briefly review the formalism of κ-symmetry used to determine the supersymmetry

of a given Dp brane. We will consider embeddings of D5 branes on R
1,3 × Č(Y p,q) which

is a super-symmetric solution to the string equations of motion by virtue of Č(Y p,q) being

Calabi-Yau. We consider ξµ (µ = 0, · · · , 5) as a set of worldvolume coordinates and XM

denote ten-dimensional coordinates, the embedding of the brane probe in the background

geometry will be characterized by the set of functions XM (ξµ), from which the induced

metric on the world volume is determined as:

gµν = ∂µX
M ∂νX

N GMN , (3.1)
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where GMN is the ten-dimensional metric. Let eM be the frame one-forms of the ten-

dimensional metric. These one-forms can be written in terms of the differentials of the

coordinates by means of the coefficients E
M
N :

eM = E
M
N dXN . (3.2)

From the E
M
N ’s and the embedding functions XM (ξµ) we define the induced Dirac matrices

on the worldvolume as:

γµ = ∂µX
M E

N
M ΓN , (3.3)

where ΓN are constant ten-dimensional Dirac matrices.

The supersymmetric embeddings of the brane probes are obtained by imposing the kappa-

symmetry condition:

Γκ ǫ = ǫ , (3.4)

where ǫ is a Killing spinor of the background and Γκ is a matrix that depends on the em-

bedding. In order to write the expression of Γκ for the type IIB theory it is convenient

to decompose the complex spinor ǫ in its real and imaginary parts, ǫ1 and ǫ2. These are

Majorana–Weyl spinors. They can be subsequently arranged as a two-dimensional vector

ǫ = ǫ1 + iǫ2 ←→ ǫ =

(
ǫ1

ǫ2

)
. (3.5)

The dictionary to go from complex to real spinors is:

ǫ∗ ←→ τ3 ǫ , iǫ∗ ←→ τ1 ǫ , iǫ ←→ − iτ2 ǫ , (3.6)

where the τi (i = 1, 2, 3) are the Pauli matrices. If there are no worldvolume gauge fields on

the D5-brane, the kappa symmetry matrix is given by [38,39]:

Γκ ǫ =
i

6!
√−g ǫ

µ1···µ6 γµ1···µ6
ǫ∗ , (3.7)

where g is the determinant of the induced metric gµν and γµ1···µ6
denotes the antisymmetrized

product of the induced Dirac matrices (3.3). A more general account of kappa symmetry and

calibrations can be found in [40,41]

The kappa symmetry condition imposes a new projection on the Killing spinor ǫ which,

in general, will not be compatible with those already satisfied by ǫ. This is so because the

new projections involve matrices which do not commute with other projections imposed on

the spinor. The only way of making these two conditions consistent with each other is by

requiring the vanishing of the coefficients of those non-commuting matrices, which will give

rise to a set of first-order BPS differential equations.

The appearance of complex conjugation on the kappa symmetry equation is crucial in

what follows as complex conjugation does not commute with the typical projections imposed

on the spinor.
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3.2 Killing spinor for resolved cone Č(Y p,q)

In this subsection we first compute the Killing spinor ǫ in the resolved cone over Y p,q. The

metric of the resolved cone over Y p,q was written in equation (2.5). Here, for convenience,

we will introduce a slightly different notation

η = dψ − 1

2
cos θdφ. (3.8)

More importantly, in this section we consider a simpler sechsbein that is not rotated, namely1

e1 =

√
(1− x)(1 − y)

2
dθ, e2 =

√
(1− x)(1 − y)

2
sin θdφ

e3 =

√
X(x)

(y − x){dτ + (1− y)η}, e4 = −
√
y − x
4Y (y)

dy

e5 =

√
Y (y)

(y − x){dτ + (1− x)η}, e6 = −
√

y − x
4X(x)

dx, (3.9)

To write the spin connection, we use the notation X̂ =
√

X(x)
y−x , Ŷ =

√
Y (y)
y−x and S =√

(1− x)(1− y). The Killing Spinor equation is

DM ǫ = ∂M ǫ+
1

4
ωab MΓabǫ = 0. (3.10)

We will use the following relations

X ′ = 2x+
X

1− x, Y ′ = −2y +
Y

1− y . (3.11)

It is also convenient to introduce the following projections

P 12 =
1

2
(1− Γ3456), P 36 =

1

2
(1 + Γ1245, ) P 45 =

1

2
(1− Γ1236). (3.12)

1We hope that the use of a different Sechsbein does not confuse the reader as it is used only in this section,

next section uses the Sechbein introduced in equation (2.5).
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The Killing spinor equation can be written (see appendix A.1 for the explicit expression for

the spin connection)

∂θǫ+
S

2

[
Ŷ

(1− y)Γ
14P 36 +

X̂

(1− x)Γ16P 45

]
ǫ = 0

∂φǫ−
S sin θ

2

[
X̂

(1− x)Γ13P 45 +
Ŷ

(1− y)Γ
15P 36

]
ǫ−
√
XY cos θ

2
Γ34P 12ǫ

+
cos θ

2(x− y)2 {X(1 − y) + Y (1− x)}Γ36P 12ǫ+ cos θΓ12P 45

+
cos θ

2(y − x)

[(
1− y
1− x

)
XΓ12P 45 +

(
1− x
1− y

)
Y Γ12P 36 + 2y(1− x)Γ36P 12

]
ǫ = 0

∂ψǫ+ Γ36ǫ+

√
XY

(y − x)Γ
34P 12ǫ− 1

(x− y)2 {X(1 − y) + Y (1− x)}Γ36P 12ǫ

1

(x− y)

[(
1− y
1− x

)
XΓ12P 45 +

(
1− x
1− y

)
Y Γ12P 36 − 2y(1− x)Γ36P 12

]
ǫ = 0

∂τ ǫ+ Γ36ǫ+
2y

x− yΓ36P 12ǫ+
Γ12

(x− y)

[
XP 45

(1− x) +
Y P 36

(1− y)

]
ǫ

−(X + Y )

(x− y)2 Γ36P 12ǫ = 0

∂xǫ+
1

2(y − x)

√
Y

X
Γ35P 12ǫ = 0

∂yǫ+
1

2(y − x)

√
X

Y
Γ35P 12ǫ = 0

(3.13)

The three projections P 12, P 36 and P 45 are not independent. Indeed, they are related as

P 12 − P 36 = Γ1245P 45. (3.14)

The equations simplifies considerably if we impose condition

P 36ǫ = P 45ǫ = 0. (3.15)

The solution for the Killing spinor will be

ǫ = e−Γ36(τ+ψ)P 36
− P 45

+ ǫ0, (3.16)

where ǫ0 is an arbitrary constant spinor, and

P 36
− =

1

2
(1− Γ1245), P 45

+ =
1

2
(1 + Γ1236). (3.17)

Note that Γ36 commutes with P 36 and P 45 and, moreover, we one can verify that P 36
− P 36 =

P 45
+ P 45 = 0. As explained before, the phase in the spinor is correlated with the fact that the
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vielbein used here are not rotated by an angle in 2(τ + ψ) as done in section (2). We have

thus constructed the covariantly constant spinor which determines which embeddings can be

supersymmetric.

3.3 D5 probe in resolved cone Č(Y p,q) geometry

The ten-dimensional background has the following metric

ds2 = dx2
1,3 + ds26, (3.18)

where ds26 is the the metric of resolved cone Č(Y p,q) (2.5). We consider a D5 probe on this

background with embedding coordinates

ξµ = {x0, x1, x2, x3, θ, φ} (3.19)

we take τ and ψ to be constants and x and y be both functions of θ and φ. The induced

gamma matrices are

γxi
= Γxi

,

γθ =
S

2
Γ1 −

1

2

(
yθ

Ŷ
Γ4 +

xθ

X̂
Γ6

)
, (3.20)

γφ =
S

2
sin θΓ2 −

cos θ

2
{X̂(1− y)Γ3 + Ŷ (1− x)Γ5} −

1

2

(
yθ

Ŷ
Γ4 +

xθ

X̂
Γ6

)
,

where for example xθ = ∂x
∂θ

, and X̂ =
√

X(x)
y−x , Ŷ =

√
Y (y)
y−x , S =

√
(1− x)(1− y). For the

embedding to be supersymmetric, we need to satisfy the kappa symmetry equation

i√−gγx0x1x2x3θφǫ
∗ = ǫ. (3.21)

From the above expressions in equation (3.20) we obtain

γθφ =
S2

4
sin θΓ12 −

S cos θ

4
[X̂(1− y)Γ13 + Ŷ (1− x)Γ15]

− S

4

(
xφ

X̂
Γ16 +

yφ

Ŷ
Γ14

)
+
S

4
sin θ

(
xθ

X̂
Γ26 +

yθ

Ŷ
Γ24

)

− (1− y) cos θ

4

[
yθ
X̂

Ŷ
Γ34 + xθΓ36

]
+

(1− x) cos θ

4

[
yθΓ45 − xθ

Ŷ

X̂
Γ56

]

+
1

4X̂Ŷ
(yθxφ − xθyφ)Γ46. (3.22)

Recall that the spinor satisfies the following projections

Γ12ǫ = Γ45ǫ (3.23)
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for simplification. We next check compatibility of above projection conditions with kappa

symmetry equation (3.21). We find that only the Γ12 term of γθφ is compatible with both

projection conditions; we obtain the following equations

xφ = 0, yφ = 0, xθ tan θ =
X(1− y)
(y − x) ,

yθ tan θ =
Y (1− x)
(y − x) ,

Ŷ

X̂
(1− x)xθ =

X̂

Ŷ
(1− y)yθ. (3.24)

We check that the last equation is not an independent equation and it is consistent with

the two equations above it. Removing the explicit parameter θ, we reduce the system of

equations to the following implicit equation

yx =
(1− x)Y (y)

(1− y)X(x)
. (3.25)

The kappa symmetry equation (3.21) then reduces to

iΓxΓ12ǫ
∗ = σǫ (3.26)

where Γx = Γx0x1x2x3
and σ = sgn(sin θ). The general spinor (3.16) is constrained by Killing

spinor equations to be

ǫ = e−Γ36(τ+ψ)η. (3.27)

where η is a constant spinor satisfying projection conditions (3.23). The chirality condition

in 10 dimensions reduces to

Γx0x1x2x3123456ǫ = ǫ → Γ12ǫ = −Γxǫ. (3.28)

It simplifies the kappa condition to be

iη∗ = ση. (3.29)

If we take η = ηR + iηI , then

σ = 1 → ηR = ηI

σ = −1 → ηR = −ηI . (3.30)

So, kappa symmetry equation can be satisfied.

3.4 Comments on calibrated 2-cycles on Č(Y p,q)

We are interested in verifying the existence of calibrated cycles for the resolved cone over

Y p,q. Namely, we look for cycles Σ verifying the relation that the induced Kähler form is the

same as the induced volume form on the two cycle, up to a constant phase

J |Σ = eiλVol|Σ. (3.31)
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We use the Kähler form presented in (2.10). Let us first consider the solution obtained using

kappa symmetry in the previous section, that is, an embedding given by

yx =
(1− x)Y (y)

(1− y)X(x)

xθ tan θ =
X(1 − y)
(y − x) . (3.32)

The Kähler form reduces to

J |Σ =
S2

4
sin θdθ ∧ dφ+

(1− y) cos θ

4
xθdθ ∧ dφ+

(1− x) cos θ

4
yθdθ ∧ dφ

=
1

4

[
(1− x)(1− y) +

X(1 − y)2 + Y (1− x)2
(y − x) tan2 θ

]
sin θdθ ∧ dφ. (3.33)

The induced metric can be simplified to give

ds2Σ =
1

4

[
(1− x)(1− y) +

X(1 − y)2 + Y (1− x)2
(y − x) tan2 θ

]
(dθ2 + sin2 θdφ2), (3.34)

which results in

vol|Σ =
1

4

[
(1− x)(1− y) +

X(1− y)2 + Y (1− x)2
(y − x) tan2 θ

]
sin θdθ ∧ dφ. (3.35)

Hence, the condition (3.31) is satisfied for our embedding and the two cycle is calibrated in

our case.

Given the coordinate parametrization of CP
1 , one might naively consider a 2-cycle Σ

defined by the coordinates (θ, φ) and all other coordinates constant. Then

J|Σ =
(1− x)(1 − y)

4
sin θdθ ∧ dφ. (3.36)

The induced metric is

ds2Σ =
(1− x)(1 − y)

4

(
dθ2 + sin2 θdφ2

)
+
X(x)

y − x(1− y)2 cos2 θdφ2 +
Y (y)

y − x(1− x)2 cos2 θdφ2,

(3.37)

which results in

volΣ =
(1− x)(1− y)

4
sin θdθ ∧ dφ

√
1 + cot2 θ

(
X(x)(1 − y)

(y − x)(1− x) +
Y (y)(1 − x)

(y − x)(1− y)

)
. (3.38)

The condition

J|Σ = volΣ, (3.39)

then would require that X(x)(1−y)2 +Y (y)(1−x)2 = 0. However, as one can see from (2.7),

this condition can never be obtained in the requisite range of coordinates but approaches

calibration as x→ x− = y1 and as y → y2.
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4 Toward NS5-branes in the Resolved Cone over Y p,q

4.1 Approach through calibration

As we explained in the introduction, there have been some attempts at the construction

of cascading theories using D3 and D5 branes on the cone over Y p,q ( [27, 28]). In this

manuscript we consider NS5 branes wrapping a two-cycle in a resolution of the cone over

Y p,q . The geometry of the solution we seek is non-Kähler and can be characterized in terms

of a real two-form J and a complex three-form Ω defining the SU(3) structure. Demanding

supersymmetry imposes certain requirements on these forms. These constraints were derived

in [42], and can be written as calibrating conditions [43],

d
(
e−2φΩ

)
= 0, e2φd

(
e−2φJ

)
= − ⋆6 H3, d

(
e−2φJ ∧ J

)
= 0. (4.1)

In order to guarantee SU(3) structure, Ω and J have to satisfy two algebraic constraints,

Ω ∧ Ω̄ = −4i

3
J3, J ∧ Ω = 0. (4.2)

One substantially difficult technical problem is the fact that supergravity solutions built

on the cone over Y p,q naturally lead to partial differential equations (PDE). The simplest

such example can be seen in the background with fractional D3 branes of [27] where the

warp factor is a function of two coordinates r and y. A further attempt to find the chiral

symmetry broken phase of the solution runs against similar problems [28]. However, in [27]

and [28] there is a factorization at play and the solutions admit a relatively simple form. One

of the most daunting tasks in our case is the fact that for the resolved cone over Y p,q there

is an explicit symmetry between the radial direction x and the angular direction y and no

factorization seems possible.

4.2 NS5 branes wrapping 2 cycle on the resolved cone over Y p,q

Consider the following string frame metric:

ds2str = dx2
1,3 + e2g1e21 + e2g2e22 + e2h1e24 + e2h2e25 + e2k1e23 + e2k2e26, (4.3)

where we have used the sechsbein defined in (2.8). The deformation factors depend on two

variables, g1 ≡ g1(x, y), g2 ≡ g2(x, y), h1 ≡ h1(x, y), etc. but we will not write the explicit

(x, y) dependence unless needed.

The calibrating conditions only guarantee supersymmetry, we need to supplement them

with the Bianchi identity to ensure that our background is a solution of the IIB equations of
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motion. A natural starting point for H3 is,

H3 = (F1(x, y)e1 ∧ e2 + F2(x, y)e4 ∧ e5) ∧ e3. (4.4)

This ansatz satisfies the asymptotic form of the flux that we expect, that is, it is proportional

to the volume form of the topological S3 in the uv. The Bianchi identity

dH3 = 0, (4.5)

leads to

H3 =
1

(−1 + y)2
√
X(x)

( √
y − x

(−1 + x)
e1 ∧ e2 +

1√
y − xe4 ∧ e5

)
∧ e3. (4.6)

It can also be verified that this ansatz for H3 is smooth. Imposing the calibrating conditions

(4.1) on the ansatz given by (4.3), (4.6) and demanding integrability we obtain a system of

11 PDE’s plus two algebraic constraints. The x derivatives equations are,

φ′ = Φ[g1, g2, k1, k2, h1, h2, φ](x, y),

g′i(x, y) = Gi[g1, g2, k1, k2, h1, h2, φ](x, y),

h′1(x, y) = h′2(x, y) = H[g1, g2, k1, k2, h1, h2, φ](x, y),

k′i(x, y) = Ki[g1, g2, k1, k2, h1, h2, φ](x, y).

(4.7)

The y derivatives are

φ̇ = 0,

ġi(x, y) = G̃i[g1, g2, k1, k2, h1, h2](x, y),

ḣi(x, y) = H̃i[g1, g2, k1, k2, h1, h2](x, y),

k̇1(x, y) = k̇2(x, y) = K̃[k1, k2, h1, h2](x, y).

(4.8)

The algebraic constraints are given by

D1[g1, g2, k1, k2, h1, h2](x, y) = 0, D2[g1, g2, k1, k2, h1, h2](x, y) = 0. (4.9)

In the above expressions i = 1, 2 and K[f1, f2...](x, y) denotes a functional of f1, f2..... eval-

uated at the point (x, y) . The explicit form of the equations is given in Appendix B. It is

worth emphasizing that some of the equations in (4.7),(4.8),(4.9) come from demanding in-

tegrability, ∂x∂y = ∂y∂x, and thus ensure that the system is consistent. This system of PDEs

together with (4.6) completely specify the background we are looking for and constitutes one

of our main results. Let us comment on some features of these equations. The dilaton is

always independent of y. Thus, if we consider the exponential of the dilaton to be related to

the strong coupling scale as proposed in [2] and [44]

E ∼ e−φ (4.10)
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then, remarkably, despite the complicated system of PDE’s the energy scale is only r depen-

dent. At present, we have not been able to find a closed solution to the system (4.7),(4.8),(4.9),

we do not see any factorization possible and, most probably, the general solution has to be

found numerically.

4.3 The UV limit: NS5 wrapping 2 cycle of the cone over Y p,q.

We are interested in the UV limit (x→ −∞) of the problem studied in the previous section

4.2. In this limit, the leading term of the metric of the resolved cone is precisely the cone over

Y p,q, as shown in equation (2.14). The Ω and J of the resolved cone naturally give -in this

limit- the Ω and J of the cone over Y p,q. Therefore, the problem we are after is equivalent

to studying NS5 branes on a 2-cycle of the cone over Y p,q. This limit might be a sort of

fixed point of many solutions which differ in the interior (IR); the prototypical examples here

would be the KT [45] solution or the singular MN solution [2]. We start with the following

vielbein which is nothing but the x→ −2r2/3 limit of the resolved vielbein (2.8)

e1 =
√

1− y (cos(2(τ + ψ))dθ − sin(2(τ + ψ)) sin θdφ),

e2 =
√

1− y (sin(2(τ + ψ))dθ + cos(2(τ + ψ)) sin θdφ),

e3 = (dτ + (1− y)(dψ +A)), e4 = − 1√
Y (y)

dy,

e5 =
√
Y (y)(dψ +A), e6 = dr, (4.11)

such that the C(Y p,q) metric (2.14) is written as

ds2 = e26 + r2(
1

6
(e21 + e22 + e24) +

2

3
e25 +

4

3
e23) (4.12)

One can verify explicitly that the above sechsbein furnishes a pair of (J,Ω) satisfying all the

conditions for SU(3) structure.

Consider the following ansatz,

ds2str = dx2
4 +N(eg1e21 + eg1e21 + ek1e23 + eh1e24 + eh2e25 + ek2e26). (4.13)

In the conifold case, one would expect to have g1 = g2. The situation is different for C(Y p,q);

it can be shown that due to the angular dependence g1 = g2 is not a consistent ansatz .

We introduce the following basis,

E1 = eg1e1, E2 = eg2e2, E3 = ek1e3,

E4 = eh1e4, E5 = eh2e5, E6 = ek2e6 (4.14)
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In terms of (4.14), the two-form J and three-form Ω are given by,

Ω = (E1 + IE2) ∧ (E4 + IE5) ∧ (E3 + IE6), (4.15)

J = E1 ∧ E2 + E4 ∧ E5 + E3 ∧ E6. (4.16)

By construction these forms satisfy the constraints (4.2). As explained above, our strategy

is to impose the calibrating conditions (4.1) on the ansatz given by (4.13) to obtain the BPS

equations. We also need to guarantee that H3 satisfies the Bianchi identity. Thus, we take

H3 = − 1

(1− cy)2 (e3 ∧ (e1 ∧ e2 + e4 ∧ e5)) (4.17)

which is, by construction, closed: dH3 = 0.

From the calibrating conditions and differentiability requirement we get the following r

derivatives equations ,

φ′ =
ek2−k1

2(cy − 1)2

(
e−g1−g2 − e−h1−h2

)
,

g′1 = g′2 =
1

2(cy − 1)2
e−g1−g2−k1(r,y)+k2 ,

h′1 = h′2 =
1

2
(e2k1 − 1

(cy − 1)2
)e−h1−h2−k1+k2,

k′1 = ek2
(

1

2
(e−g1−g2 − e−h1−h2)(

e−k1

(cy − 1)2
− ek1)

+e−k1 cosh(g1 − g2)
)
.

(4.18)

The equations for the y derivatives,

φ̇ = k̇1 = k̇2 = 0,

ġ1 = 3y(cy − 1)
sinh(g2 − g1)
y2(2cy − 3) +w

eh1−h2 + c
e−g1−g2+h1+h2 + 1

2cy − 2
,

ġ2 = −3y(cy − 1)
sinh(g2 − g1)
y2(2cy − 3) + w

eh1−h2 + c
e−g1−g2+h1+h2 + 1

2cy − 2
,

ḣ2 = 3y(cy − 1)
cosh(g2 − g1)
y2(2cy − 3) +w

eh1−h2 + c
e−g1−g2+h1+h2

2cy − 2

+
c(w + 9y2)− 4c2y3 − 6y

2(cy − 1)(y2(2cy − 3) + w)
,

ḣ1 = −3y(cy − 1)
cosh(g2 − g1)
y2(2cy − 3) + w

eh1−h2 + 3c
e−g1−g2+h1+h2

2cy − 2

+
c

cy − 1)
e−2(g1+g2)+2(h1+h2) +

−4c2y3 − 5cw + 3cy2 + 6y

2(cy − 1) (y2(2cy − 3) + w)

(4.19)

and two algebraic constraints

C1(r, y) = 0, and C2(r, y) = 0. (4.20)
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The explicit expression for C1 and C2 is given in Appendix C. The system of equations given

by (4.18), (4.19) and (4.20) is one of our main results. This system defines the background

of NS5 branes wrapping a two cycle in the cone over Y p,q in the simplest case where the flux

is given by (4.17).

4.3.1 Asymptotics

c → 0

Note that for c = 0, the algebraic constraints 4.20 are identically zero and equations 4.18 and

4.19 admit a simple solution given by,

k1 = h2 = 0, (4.21)

g2 = g1 = log r/2, (4.22)

k2 = log 1/2

φ =
1

4
(−r + log r + C). (4.23)

which together with the expression for the flux (4.17) is, as expected, the singular Maldacena-

Núñez background. We take this consistency check as evidence that our system correctly

describes the analog of the singular MN background for Y p,q spaces.

Far UV, r → ∞

To understand the asymptotic properties of our solutions it is worth reviewing five branes

solutions. Let us follow the construction of NS5 brane in [46] and it application to the

wrapped NS5 of [2]. In the notation of [46] we work in the isotropic coordinates of equation

(21) there and take the decoupling limit where we basically drop the 1 in the warp functions

and in the dilaton. For more about the supersymmetric 5-brane see also [47, 48]. The NS5

brane in IIB has the following solution

ds2str = dx2
6 +N

(
dr2 + dΩ2

3

)
,

eφ = eφ0−r,

H3 = NdΩ3. (4.24)

What we want as in [2], is a NS5 wrapping an S2 and thus we are really looking for

ds26 = dx2
4 +Ne2gdΩ2

2. (4.25)
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Where our Ω2 is defined by e1 and e2 above. Thus, in the far UV, where the NS5 we are

constructing should look like the NS5 above we expect:

f(r, y) → a1r + F1(r, y),

H3 → e3 ∧ e4 ∧ e5, with dH3 = 0,

g1 = g2 → ln r (4.26)

4.4 Comments on more general ansätze

Let us briefly review the structure of solutions in the case of NS5 branes on conifolds. Our

aim is to draw some conclusions which might apply to more general Ansatzë for NS5 on

Y p,q spaces. In the case of NS5 branes on conifold-like spaces, a general Ansatz for many

Maldacena-Núñez type of solutions is:

ds2str = dx2
1,3 + e2g((e1 − a1(r)e4)

2 + (e2 − a2(r)e5)
2) + e2h(e24 + e25) + e2k1e23 + e2k2e26)

and the flux, H3 also involves a rotation of the basis but with a different function:

H3 = (e1 − b1(r)e4) ∧ (e2 − b2(r)e5) ∧ e3 + H̃3 (4.27)

where H̃3 is a piece necessary to satisfy the Bianchi identity, i.e. it is computed using dH3 = 0.

The solutions can be classified as belonging to one of the following cases,

a1 = a2 = 0 b1 = b2 = 0 Singular MN

a1 = a2 = a b1 = b2 = a Regular MN

a1 = a2 = a b1 = b2 = b Regular MMseed

a1, a2 b1, b2 Reduces to previous,BPS

(4.28)

Even for solutions as general as those discussed in [6], the BPS equations force2 a1 = a2 and

b1 = b2.

For NS5 on the resolved cone over Y p,q more general Ansätze than the one presented here

should exist. We believe they will follow a similar classification as the ones on the conifold,

that is, they will involve two deformation functions in the metric and two different functions

in the H3. However, in our case it is not quite clear whether the BPS equations force a similar

relationship among a1 and a2 and between b1 and b2. It is quite possible that the dependence

in two coordinates implies different relationships that become those only in the large radius

or conifold limit which should involve large radius asymptotics or c → 0 in the language of

the Y p,q metric.

2We thank Carlos Núñez for various comments and clarifications on this point.
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If a classification similar to (4.28) holds for NS5 branes on Č(Y pq) the solution presented

in the present work corresponds to a1 = a2 = b1 = b2 = 0. More general ansätze should exist

and are currently under investigation.

Finding more general ansatzë naturally leads to a search for an interpolating solution.

Recall that in [3], Papadopoulos and Tseytlin proposed a general Ansatz for backgrounds

with SU(3) structure arising from five branes wrapped on 2-spheres on the conifold and

its resolutions. Using the PT anstaz an interpolating solution was later built in [4]. We can

foresee that a similar program can be carried out for the cone over Y p,q. However, the general

form for the complex structure and Kälher form presented in [3] was obtained assuming that

they depend only on the radial coordinate. Thus, we first have to revisit the issue of what

is the general Ansatz for Ω and J for a manifold with SU(3) structure when the complex

structure and Kähler form depend not only on r but also on an angular variable, y. It is not

a priori clear to us if the Ω and J of [3], [4] are general enough for this case.

5 Conclusions and future directions

In this paper we have discussed the construction of supersymmetric five branes wrapping a

2-cycle in the resolved cone over Y p,q. We have studied the problem at probe level and after

finding encouraging evidence move on to the full problem. Our main result was presented in

section 4.2 where we presented and ansatz and demonstrated its consistency and the fact that

some limits are correctly reproduced. This is a first step in what should be a long program

toward the full construction and understanding of five branes on the resolved cone Č(Y p,q).

In what follows we outline a few interesting problems some of which we would like to tackle

in the future.

Numerical study of the system: Given that we understand the uv asymptotic of the system

rather well it would be nice to try to use the asymptotics as boundary conditions in the

construction of numerical solutions. We were able to successfully generate some of the series

analysis that usually precedes such numerical efforts. It is worth noticing that in some limits

certain separation of variables seems possible.

Generalizing the Ansatz: The Ansatz that we considered was limited, in the language of table

(4.28) to the a = b = 0. It would be useful to consider the more general cases. Along the

same lines, and as stated at the end of section 4, it is plausible that this generalization of the

Ansatz goes hand in hand with a generalization of the SU(3) structure forms.

Chain of dualities and generating solution techniques: The main motivation for our work is

the possibility of performing a chain of duality along the lines of [5] to obtain a background

describing D3 and D5 branes. More generally, we expect the cone over Y p,q to provide a

version of the brane/flux transition anticipated by Vafa in the context of Calabi-Yau manifolds
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[29]. We established a framework to construct the gravity solution corresponding to fivebranes

wrapping the S2 in the resolved cone over Y p,q; there is a potential running of the resolution

parameter as in the case discussed in [5]. We expect the final solution to have the topology

of the “deformed” C(Y p,q), that is, a solution with an S3 which has finite size at the tip. It is

also worth noting that the chain of dualities has recently been reinterpreted and generalized

in [16,17,49] and the implications to five branes on Č(Y p,q) could be far reaching.

The field theory: We have not discussed the field theory side. Although the baryonic branch

seems to be the natural venue, it is worth mentioning that there is certain universality in

the sense discussed in [17] where a deformation along the baryonic branch looks more like a

symmetry of the supergravity equations. It would be interesting to understand precisely that

relationship in this context. Of course, the whole idea of a “baryonic” branch is suspect in

view of the works [22–24] as we mentioned in the introduction, that is, equivalent to having

a supergravity solution build around a conformal Calabi-Yau space.

Connection to cascading solutions: Another very interesting question is the precise relation of

the five brane solution to the cascading backgrounds constructed in [27,28]. Simply following

the chain of duality presented in [5] in the opposite direction does not seem to land us

in an ansatz similar to our starting point. It could be, as explained nicely in [4], that the

structure of a conformal Calabi-Yau space exist only perturbatively in the supergravity family

of solutions.

Flavor: The addition of backreacted flavors to these solutions is another interesting and

active direction. Indeed, recently, supergravity backgrounds dual to flavored field theories

have been found in a variety of cases [6], [9], [10], [11], [13], [12].

Construction of black holes on this background: More ambitiously, we mention the con-

struction of black hole on this background and on the flavored backgrounds that could be

constructed. This is a significantly more difficult endeavor as it forces us to deal directly

with the equations of motion since supersymmetry has to be given up. There have been,

however, some encouraging results in the context of the conifold [50, 51] and of the MN-like

backgrounds with backreacted flavors [14,15].

Toward NS5 branes on the resolved cone over Lp,q,r: Although much about the field theory

and the interpretation of probes on AdS5 × Lp,q,r is known, the metric of the resolution of

the cone over Lp,q,r is not explicitly known. It is possible that the probe approach discussed

here could be applied to understand the possibility of constructing a resolution of the cone

over Lp,q,r, that is, a construction of Č(Lp,q,r). Note that in the case of the conifold and of

the cone over Y p,q, the 2-cycle that gets a finite volume is already present in the unresolved

geometry.
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A Details of probe calculation

A.1 Spin connection for resolved cone over Y p,q

The relevant components of the one form spin connection are

ω12φ = − cos θ +
cos θ

2(y − x)

[
1− y
1− xX +

1− x
1− y Y

]
, ω12τ =

1

(x− y)

[
X

1− x +
Y

1− y

]

ω12ψ =
1

x− y

[
1− y
1− xX +

1− x
1− y Y

]
, ω13φ = − X̂S

2(1− x) sin θ, ω14θ =
SŶ

2(1− y)

ω15φ = − SŶ

2(1 − y) sin θ

ω16θ = ω23θ =
SX̂

2(1 − x) , ω24φ =
SŶ

2(1− y) sin θ

ω25θ =
SŶ

2(1− y) , ω26φ =
SX̂

2(1 − x) sin θ, ω34ψ =

√
XY

y − x (A.1)

ω34φ = −
√
XY

2(y − x) cos θ, ω35y =
1

2(y − x)

√
X

Y
, ω35x =

1

2(y − x)

√
Y

X

ω36τ =
1

(x− y)2 ((x− y)X ′ −X − Y ),

ω36ψ =
1

(x− y)2 [(1− y){(x− y)X ′ −X} − (1− x)Y )]

ω36φ = −cos θ

2
ω36ψ, ω45τ = − 1

(x− y)2 (X + (x− y)Y ′ + Y )

20



ω45ψ = − 1

(x− y)2 [−X(1 − y) + {(x− y)Y ′ + Y }(1 − x)], ω45φ = −cos θ

2
ω45ψ

ω46y =
1

2(x− y)

√
X

Y
, ω46x =

1

2(x− y)

√
Y

X

ω56ψ = X̂Ŷ , ω56φ = −1

2
X̂Ŷ cos θ (A.2)

These are the ingredients needed to write the equations for the Killing spinor in section

3.2.

A.2 D5 probe in conifold geometry

To build up intuition and for completeness, we also consider this simpler space. Let us

consider a D5 probe on R
1,3 × Conifold. First we determine the covariantly constant spinor

using the metric

ds210 = dx2
3,1 + ds26 (A.3)

ds26 =
r2

6

(
dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2

)
+
r2

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 + dr2.

We choose the veilbeins

e1 =
r√
6
dθ1, e2 =

r√
6

sin θ1dφ1

e3 =
r√
6
dθ2, e4 =

r√
6

sin θ2dφ2

e5 =
r

3
(dψ + cos θ1dφ1 + cos θ2dφ2), e6 = dr (A.4)

The spin connections are

ω12 = −
√

6

r
cot θ1e

2 +
e5

r
, ω15 =

e2

r
, ω16 =

e1

r
, ω25 = −e

1

r
, ω26 =

e2

r

ω34 = −
√

6

r
cot θ1e

4 +
e5

r
, ω35 =

e4

r
, ω36 =

e3

r
, ω45 = −e

3

r
, ω46 =

e4

r
, ω56 =

e5

r
(A.5)

The Killing spinor equation

Dµǫ = ∂µǫ+
1

4
ωabµΓ

abǫ = 0 (A.6)

This equation is simpler than the analogous computations for AdS5×X5 presented explicitly

in [35–37] since it does not contain the terms coming from the 5-form. However, there are

many similarities in the form of the solution. In particular, for the above background the

equations lead to only one non-trivial equation, if we consider projections

Γ12ǫ = Γ34ǫ. (A.7)
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The non-trivial equation is

∂ψǫ+
1

2
Γ12ǫ = 0. (A.8)

So the solution is

ǫ = e−
1

2
Γ12ψη (A.9)

where η is a constant spinor satisfying the projections (A.7).

Next we put a D5 probe in this background and check kappa symmetry. We consider the

embedding

ξµ = {x0, x1, x2, x3, θ1 = θ, φ1 = φ} (A.10)

with r, ψ=constant and θ2, φ2 being functions of θ and φ. The kappa symmetry equation is

i√−gγx0x1x2x3θφǫ
∗ = ǫ. (A.11)

The induced matrices are

γxi
= Γxi

γθ =
r√
6
{Γ1 + ∂θθ2Γ3 + sin θ2∂θφ2Γ4}+

r

3
cos θ2∂θφ2Γ5

γφ =
r√
6
{sin θ1Γ2 + ∂φθ2Γ3 + sin θ2∂φφ2Γ4}+

r

3
{cos θ1 + cos θ2∂φφ2}Γ5. (A.12)

This leads to

γθφ =
r2

6
sin θ1Γ12 +

r2

6
∂φθ2Γ13 +

r2

6
sin θ2∂φφ2Γ14 +

r2

3
√

6
(cos θ1 + cos θ2∂φφ2) Γ15

+
r2

6
sin θ1∂θθ2Γ32 +

r2

6
sin θ2 (∂θθ2∂φφ2 − ∂θφ2∂φθ2) Γ34

+
r2

3
√

6
(cos θ1∂θθ2 + cos θ2(∂φφ2∂θθ2 − ∂θφ2∂φθ2)) Γ35

+
r2

6
sin θ1 sin θ2∂θφ2Γ42 +

r2

3
√

6
cos θ1 sin θ2∂θφ2Γ45 +

r2

3
√

6
cos θ2 sin θ1∂θφ2Γ52.

We need the kappa symmetry equation to be compatible with the projections equations

(A.7). We find that the only surviving terms are proportional to Γ12, Γ13 and Γ14 in γθφ

which satisfy this criteria. Eliminating the coefficients of Γ13 and Γ14 gives these equations.

Requiring that φ2 = a+ bφ, with a and b constants, satisfies the expression

∂θφ2 = 0, (A.13)

as well as guarantees that θ2 is a function only of θ. The only equation that needs to be

solved is

sin θ2(θ)b− sin θ∂θθ2 = 0.
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This leads to the solution

θ2(θ) = 2 arctan ec(cos
θ

2
)−b(sin

θ

2
)b, (A.14)

where c is a constant. Therefore we write γθφ as

γθφ =
1

6

(
4b2e(2c)(cos θ2)2b(sin θ

2 )2b

(cos θ2)2b + e2c(sin θ
2 )2b

+ sin θ

)
Γ12. (A.15)

For b = −1 and c = 0 this gives

γθφ =
1

3
sin θ Γ12, (A.16)

with θ2 = π − θ, φ2 = −φ.

For b = 1 this gives

γθφ =
1

3
sin θ Γ12, , (A.17)

with θ2 = θ, φ2 = φ.

Note that our analysis shows that the cycle discussed in appendix A of [52]: θ2 = θ1 and

φ2 = −φ1 is not supersymmetric.3

A.3 Calibrated 2-cycles on the conifold

In this section we show the existence of calibrated cycles Σ such that

J|Σ = volΣ. (A.18)

The embeddings we consider are of the form: r = r(θ1, φ1), θ2 = θ2(θ1, φ1), φ2 = φ2(θ1, φ1), ψ =

ψ(θ1, φ1). A particular solution is

∂θθ2 = 1, ∂φθ2 =
5− 11 cos θ2

16
√

3 cos θ2
,

∂θψ =
√

3, ∂φψ = − 2

cos θ2
, ∂φr = 0, ∂θr = 0,

∂φφ2 = 1, ∂θφ2 = 0. (A.19)

3We thank A. Ramallo and J. Gaillard for a discussion of this point.
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Another interesting calibrated cycle is

∂θφ = 0, ∂φφ2 = −1,

∂θθ2 = 1, ∂φθ2 = 0,

∂θψ = 1, ∂φψ = 0,

∂θr =
r
√

1 + (1 +
√

1 + 18 csc2 θ + csc4 θ) sin2 θ

3
√

2
,

∂φr =
r
√

1 + (1 +
√

1 + 18 csc2 θ + csc4 θ) sin2 θ

3
√

2
. (A.20)

B Equations of motion for NS5 branes wrapping 2-cycle in the resolved

cone Č(Yp,q)

In this appendix we present the explicit form of the equations (4.7)-(4.8) and the constraints

(4.9).

The first order independent equations obtained from the calibrating conditions are,

∂xk1(x, y) =
xeg1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2X(x)
+
xe−g1(x,y)+g2(x,y)−k1(x,y)+k2(x,y)

2X(x)

+
(x− y)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

4(x− 1)(y − 1)2X(x)
− e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

4(y − 1)2X(x)

+
e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

2− 2x
− e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)

2x− 2y

+
(y − x)X ′(x) +X(x)

2X(x)(x − y) (B.1)

∂xg1(x, y) =
(x− y)φ(x, y)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)

+
(2φ(x, y) + 1)e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

4(y − 1)2X(x)(4φ(x, y) + 1)
− xeg1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2X(x)

+
xe−g1(x,y)+g2(x,y)−k1(x,y)+k2(x,y)

2X(x)
+
e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

2(x− 1)
+

1

2− 2x
(B.2)
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∂xg2(x, y) =
(x− y)φ(x, y)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)

+
(2φ(x, y) + 1)e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

4(y − 1)2X(x)(4φ(x, y) + 1)
+
xeg1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2X(x)
(B.3)

− xe−g1(x,y)+g2(x,y)−k1(x,y)+k2(x,y)

2X(x)
+
e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

2(x− 1)
+

1

2− 2x
(B.4)

∂xφ(x, y) =
(x− y)φ(x, y)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)
− φ(x, y)e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

2(y − 1)2X(x)(4φ(x, y) + 1)

(B.5)

∂xh1(x, y) = −(x− y)(2φ(x, y) + 1)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

4(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)
− 1

2x− 2y

− φ(x, y)e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

2(y − 1)2X(x)(4φ(x, y) + 1)
+
e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)

2x− 2y
(B.6)

∂xh2(x, y) = −(x− y)(2φ(x, y) + 1)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

4(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)
− 1

2x− 2y

− φ(x, y)e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

2(y − 1)2X(x)(4φ(x, y) + 1)
+
e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)

2x− 2y
(B.7)

∂yh2(x, y) = −ye
g1(x,y)−g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)
− ye−g1(x,y)+g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)

+
e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

2− 2y
+
eh1(x,y)+h2(x,y)−k1(x,y)−k2(x,y)

2x− 2y

− (x− y)Y ′(y) + Y (y)

2Y (y)(x− y) (B.8)
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∂yg1(x, y) =
yeg1(x,y)−g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)
− ye−g1(x,y)+g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)

+
e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

2(y − 1)
+

1

2− 2y
(B.9)

∂yg2(x, y) = −ye
g1(x,y)−g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)
+
ye−g1(x,y)+g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)

+
e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

2(y − 1)
+

1

2− 2y
(B.10)

∂yφ(x, y) = 0 (B.11)

∂yk1(x, y) =
eh1(x,y)+h2(x,y)−k1(x,y)−k2(x,y)

2y − 2x
+

1

2x− 2y
(B.12)

∂yk2(x, y) =
eh1(x,y)+h2(x,y)−k1(x,y)−k2(x,y)

2y − 2x
+

1

2x− 2y
. (B.13)

Furthermore, demanding ∂x∂y = ∂y∂x gives two more equations,

∂yh1(x, y) =
(x− y) exp(−2g1(x, y)− 2g2(x, y) + 2h1(x, y) + 2h2(x, y))

(x− 1)(y − 1)

+
yeg1(x,y)−g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)
+
ye−g1(x,y)+g2(x,y)+h1(x,y)−h2(x,y)

2Y (y)

+
3e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

2(y − 1)
− eh1(x,y)+h2(x,y)−k1(x,y)−k2(x,y)

2x− 2y

+
(y − 1)(x− y)Y ′(y) + Y (y)(−4x+ 5y − 1)

2(y − 1)Y (y)(x− y)
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∂xk2(x, y) =
xy(x− y)

(
e2g1(x,y) − e2g2(x,y)

)2
exp(−2(g1(x, y) + g2(x, y))− 2h2(x, y) + 2k2(x, y))

X(x)Y (y)

+
2(x− y) exp(−2g1(x, y)− 2g2(x, y) + 2k1(x, y) + 2k2(x, y))

(x− 1)(y − 1)

− 2(x− 1) exp(−2h1(x, y)− 2h2(x, y) + 2k1(x, y) + 2k2(x, y))

(y − 1)(x− y)

− (x− y)(8φ(x, y) + 3)e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

4(x− 1)(y − 1)2X(x)(4φ(x, y) + 1)

+
e−h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)

4(y − 1)2X(x)(4φ(x, y) + 1)
− xeg1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2X(x)

− xe−g1(x,y)+g2(x,y)−k1(x,y)+k2(x,y)

2X(x)
+

3e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

2(x− 1)

+
9e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)

2(x− y) +
(x− y)X ′(x)− 5X(x)

2X(x)(x − y)
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and two constraints given by;

D1 = −(x− y)2 exp(−3g1(x, y)− 3g2(x, y) + 2h1(x, y) + 2h2(x, y)− k1(x, y) + k2(x, y))

(x− 1)2(y − 1)3X(x)

+
2(y − x) exp(−2g1(x, y)− 2g2(x, y) + h1(x, y) + h2(x, y)− k1(x, y) + k2(x, y))

(x− 1)(y − 1)3X(x)

(B.14)

− 2(x− y) exp(−3g1(x, y)− 3g2(x, y) + 2h1(x, y) + 2h2(x, y) + k1(x, y) + k2(x, y))

(x− 1)2(y − 1)

+
2 exp(−2g1(x, y) − 2g2(x, y) + h1(x, y) + h2(x, y) + k1(x, y) + k2(x, y))

(x− 1)(y − 1)

− exp(−2g1(x, y)− 2g2(x, y) + 2h1(x, y) + 2h2(x, y))

(x− 1)2
− e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

(y − 1)3X(x)

+
e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

−x2 + xy + x− y +
2e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

(y − 1)(x− y)

− 2(x− 1)e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)

(y − 1)(x− y)2 +
2

(x− y)2
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D2 = − 8

(x− y)2 +
e−2(g1(x,y)+g2(x,y))−2h2(x,y)+2k2(x,y)x2

(
e2g1(x,y) − e2g2(x,y)

)2

X(x)Y (y)

− 3e−2(g1(x,y)+g2(x,y))+h1(x,y)−h2(x,y)−k1(x,y)+k2(x,y)xy
(
e2g1(x,y) − e2g2(x,y)

)2

X(x)Y (y)

− 2e−g1(x,y)−g2(x,y)+h1(x,y)+h2(x,y)

(x− 1)(x− y) − 11e−2g1(x,y)−2g2(x,y)+h1(x,y)+h2(x,y)+k1(x,y)+k2(x,y)

(x− 1)(y − 1)

+
14e−h1(x,y)−h2(x,y)+k1(x,y)+k2(x,y)(x− 1)

(x− y)2(y − 1)
+

3e−g1(x,y)−g2(x,y)+k1(x,y)+k2(x,y)

y2 − xy − y + x

+
e−g1(x,y)−g2(x,y)−k1(x,y)+k2(x,y)

2(y − 1)3X(x)
+
e−2g1(x,y)−2g2(x,y)+h1(x,y)+h2(x,y)−k1(x,y)+k2(x,y)(x− y)

2(x− 1)(y − 1)3X(x)

+
eg1(x,y)−3g2(x,y)+h1(x,y)−h2(x,y)+2k2(x,y)x(x− y)y

(y − 1)X(x)Y (y)

− 2e−g1(x,y)−g2(x,y)+h1(x,y)−h2(x,y)+2k2(x,y)x(x− y)y
(y − 1)X(x)Y (y)

+
e−3g1(x,y)+g2(x,y)+h1(x,y)−h2(x,y)+2k2(x,y)x(x− y)y

(y − 1)X(x)Y (y)
+

6e−2g1(x,y)−2g2(x,y)+2k1(x,y)+2k2(x,y)

(y − 1)2

(B.15)
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− 4e−3g1(x,y)−3g2(x,y)+h1(x,y)+h2(x,y)+2k1(x,y)+2k2(x,y)(x− y)
(x− 1)(y − 1)2

+
4e−g1(x,y)−g2(x,y)−h1(x,y)−h2(x,y)+2k1(x,y)+2k2(x,y)(x− 1)

(x− y)(y − 1)2

− 6e−2h1(x,y)−2h2(x,y)+2k1(x,y)+2k2(x,y)(x− 1)2

(x− y)2(y − 1)2
+

3e3g1(x,y)−3g2(x,y)+h1(x,y)−3h2(x,y)+2k2(x,y)x(x− y)y2

X(x)Y (y)2

+
3e−3g1(x,y)+3g2(x,y)+h1(x,y)−3h2(x,y)+2k2(x,y)x(x− y)y2

X(x)Y (y)2

+
3eg1(x,y)−g2(x,y)+h1(x,y)−3h2(x,y)+2k2(x,y)xy2(y − x)

X(x)Y (y)2
+

3e−g1(x,y)+g2(x,y)+h1(x,y)−3h2(x,y)+2k2(x,y)xy2(y − x)
X(x)Y (y)2

C Equations for NS5 on a cone over Y pq

In this appendix we present the complete set of equations for NS5 branes wrapping a two

cycle on the cone over Y p,q. From the calibrating conditions we obtain:

∂rφ(r, y) =
ek2(r,y)−k1(r,y)

(
e−g1(r,y)−g2(r,y) − e−h1(r,y)−h2(r,y)

)

2(cy − 1)2

∂rg1(r, y) =
e−g1(r,y)−g2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

∂rg2(r, y) =
e−g1(r,y)−g2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

∂rh1(r, y) =

(
(cy − 1)2e2k1(r,y) − 1

)
e−h1(r,y)−h2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

∂rh2(r, y) =

(
(cy − 1)2e2k1(r,y) − 1

)
e−h1(r,y)−h2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

∂rk1(r, y) =
e−g1(r,y)−g2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2
− e−h1(r,y)−h2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

+
1

2
eg1(r,y)−g2(r,y)−k1(r,y)+k2(r,y) +

1

2
e−g1(r,y)+g2(r,y)−k1(r,y)+k2(r,y)

−1

2
e−g1(r,y)−g2(r,y)+k1(r,y)+k2(r,y) − 1

2
e−h1(r,y)−h2(r,y)+k1(r,y)+k2(r,y)
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∂yφ(r, y) = 0 ∂yk1(r, y) = 0 ∂yk2(r, y) = 0

∂yg1(r, y) = −3y(cy − 1)eg1(r,y)−g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)
+

3y(cy − 1)e−g1(r,y)+g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)

+
ce−g1(r,y)−g2(r,y)+h1(r,y)+h2(r,y)

2cy − 2
+

c

2− 2cy

∂yg2(r, y) =
3y(cy − 1)eg1(r,y)−g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)
− 3y(cy − 1)e−g1(r,y)+g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) +w)

+
ce−g1(r,y)−g2(r,y)+h1(r,y)+h2(r,y)

2cy − 2
+

c

2− 2cy

∂yh2(r, y) =
3y(cy − 1)eg1(r,y)−g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)
+

3y(cy − 1)e−g1(r,y)+g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) +w)

+
ce−g1(r,y)−g2(r,y)+h1(r,y)+h2(r,y)

2− 2cy
+
−4c2y3 + c

(
w + 9y2

)
− 6y

2(cy − 1) (y2(2cy − 3) + w)

Since we are dealing with PDE’s we have to demand that ∂r∂y = ∂y∂r. From this

integrability requirement we obtain two more equations and two algebraic constraints,

∂rh2(r, y) =

(
(cy − 1)2e2k1(r,y) − 1

)
e−h1(r,y)−h2(r,y)−k1(r,y)+k2(r,y)

2(cy − 1)2

∂yh1(r, y) =
c exp(−2g1(r, y)− 2g2(r, y) + 2h1(r, y) + 2h2(r, y))

cy − 1

−3y(cy − 1)eg1(r,y)−g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)
− 3y(cy − 1)e−g1(r,y)+g2(r,y)+h1(r,y)−h2(r,y)

2 (y2(2cy − 3) + w)

+
3ce−g1(r,y)−g2(r,y)+h1(r,y)+h2(r,y)

2cy − 2
+
−4c2y3 − 5cw + 3cy2 + 6y

2(cy − 1) (y2(2cy − 3) + w)
,

C1 = −2c
(
y2(2cy − 3) + w

) (
(cy − 1)2e2k1(r,y) − 4

)
eg1(r,y)+g2(r,y)+2h1(r,y)+2h2(r,y)+k2(r,y)

−4c
(
y2(2cy − 3) + w

) (
(cy − 1)2e2k1(r,y) − 1

)
e(2g1(r,y)+2g2(r,y)+h1(r,y)+h2(r,y)+k2(r,y))

−3y(cy − 1)4e5g1(r,y)+g2(r,y)+2h1(r,y)+k2(r,y) + 6y(cy − 1)4e3g1(r,y)+3g2(r,y)+2h1(r,y)+k2(r,y)

−3y(cy − 1)4eg1(r,y)+5g2(r,y)+2h1(r,y)+k2(r,y)

+2c(cy − 1)2
(
y2(2cy − 3) + w

)
e3g1(r,y)+3g2(r,y)+2k1(r,y)+k2(r,y)

+4c
(
y2(2cy − 3) + w

) (
(cy − 1)2e2k1(r,y) + 1

)
e3h1(r,y)+3h2(r,y)+k2(r,y)

C2 = −6y(cy − 1)2e2g1(r,y)+2g2(r,y)+2h1(r,y)+k2(r,y)

31



+2c
(
y2(2cy − 3) + w

)
e2g1(r,y)+2g2(r,y)+2k1(r,y)+k2(r,y)

−2c
(
y2(2cy − 3) + w

)
e2h1(r,y)+2h2(r,y)+2k1(r,y)+k2(r,y) + 3y(cy − 1)2e4g1(r,y)+2h1(r,y)+k2(r,y)

+3y(cy − 1)2e4g2(r,y)+2h1(r,y)+k2(r,y)
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