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We present simple new approximate formulas, for both scalar and spinor QED, for the number of
particles produced from vacuum by a time dependent electric field, incorporating the interference
effects that arise from an arbitrary number of distinct semiclassical turning points. Such interference
effects are important when the temporal profile of the laser pulse has subcycle structure. We show
how the resulting semiclassical intuition may be used to guide the design of temporal profiles that
enhance the momentum spectrum due to interference effects. The result is easy to implement and
generally applicable to time-dependent tunneling problems, such as appear in many other contexts
in particle and nuclear physics, condensed matter physics, atomic physics, chemical physics, and
gravitational physics.

PACS numbers: 12.20.Ds, 11.15.Tk, 03.65.Sq, 11.15.Kc

I. INTRODUCTION

The Heisenberg-Schwinger effect is the non-perturbative production of electron-positron pairs when an external
electric field is applied to the quantum electrodynamical (QED) vacuum [1-7]. It was one of the first non-trivial
predictions of QED, but the effect is so weak that it has not yet been directly observed. However, new experimental
developments in ultra-high intensity lasers [8, 9] may soon bring us to the verge of this extreme ultra-relativistic
regime [10]. This experimental progress has renewed theoretical interest [11], and recent results suggests that the
effect may become observable in the 1025 — 1021/ /cm? intensity range, three or four orders of magnitude below the
”Schwinger limit” of 4 x 102*W/cm?, which comes from an estimate based on a constant electric field. New theoretical
ideas involve combining multiple copies of identical pulses [12, 13|, and also shaping pulses in special ways using the
”dynamically assisted Schwinger mechanism” [14], in which a superposition of two time-dependent pulses, one strong
but slow, and the other weak but fast, can lead to a significant enhancement of the tunneling process associated with
the Schwinger effect. An explicit experimental realization has been proposed [15] that suggests an observable rate
of particle production. A closely related theoretical idea is that of a ”catalyzed Schwinger mechanism” [16], which
can also be viewed as photon-stimulated pair-production [17], realizing the more general mechanism of an induced
metastable decay process [18]. The importance of cascading effects has been emphasized in [19]. These, and other
theoretical analyses of more realistic laser fields, such as plane waves of finite extent [20], show that the precise form
of the laser field can have a significant effect on the resulting pair production yield and momentum distribution. The
strong sensitivity is not so surprising since it is a non-perturbative effect, but this makes it correspondingly difficult
to do precise computations.

In the quantum field theoretic approach [2], the theoretical problem is to compute the non-perturbative imaginary
part of the "effective action”, I'[A] = h In det [iJD— m], where the Dirac operator, D= (9, — is5A,), defines the
coupling between electrons and the applied (classical) electromagnetic field A, that represents the field produced by
the laser pulse. However, computationally we are currently limited to one-dimensional fields such as time dependent
electric fields F(t), in which case the problem can be more conveniently expressed as a ”quantum mechanical”
scattering problem, invoking Feynman’s picture of anti-particles as particles traveling backward in time [21]. This
requires the computation of a reflection probability for an over-the-barrier scattering problem, that can be done
numerically or using WKB [22-26], or in the quantum kinetic approach [27-30]. The WKB approach is based on a
relativistic extension of Keldysh’s seminal work for atomic ionization in time-dependent electric fields [31]. Recently
it has become clear that this WKB analysis must be extended to incorporate interference effects when the temporal
profile of the laser pulse has sub-cycle structure.

For example, it has been shown [32] that the momentum distribution of the produced particles is extremely sensitive
to the ”carrier phase” of a laser pulse, the phase offset between the pulse envelope and its oscillatory function.
Moreover, this sensitivity reveals a distinct difference between spinor and scalar QED, which are conventionally treated
on an equal footing at leading non-perturbative order. The oscillatory behavior of the momentum distribution is an
interference effect, and can be quantitatively explained by incorporating the interference between different semiclassical
saddle points. This was done in [33] for the case of two distinct saddle points, using the phase integral method and the
Stokes phenomenon. In this paper, we use another even simpler method, based on the Riccati form of the scattering
problem, and present new results for the case of an arbitrary number of distinct saddle points.

Physically, such interference phenomena are familiar from strong-field atomic and molecular physics, discussed



long ago in the theory of atomic ionization [34-36], and observed experimentally in photoionization spectra [37, 38].
These ideas have even led to the proposal for an all-optical double-slit experiment in the time domain, using vacuum
polarization effects [32, 39]. They also appear naturally in any time-dependent tunneling effect, such as the Landau-
Zener effect or other condensed matter systems [40], chemical physics [41], as well as gravitational [42, 43] and particle
physics [44].

In Section II we briefly review the scattering formalism for the QED pair production effect. In Section III we
recall the numerical approach, and present our approximate expressions for the particle number. Sections IV and V
contain explicit examples of particular temporal profiles for the electric field E(t) that illustrate various features of
the interference phenomena, and the final Section contains our conclusions.

II. SCATTERING FORMALISM

In this Section we recall briefly the scattering formalism of the pair production problem for both scalar and
spinor QED, as we wish to compare the two cases in subsequent sections. For a linearly polarized electric field
E= (0,0, E(t)) that is time dependent and pointing in the 2 direction, we choose a vector potential A= (0,0, A(2)),
with E(t) = —A(t). For such a field, spatial momentum is a good quantum number for the produced particles, so
we can decompose the quantum field operators in terms of spatial momenta. For both scalar and spinor QED, the
number of particles produced in each momentum mode can be expressed in terms of the reflection coefficient for an
effective Schrodinger-like scattering problem. Physically, this is due to Feynman’s interpretation of antiparticles as
particles propagating backwards in time [21], and has been used as a basic tool in the WKB analysis of the particle
production problem [22-24, 26]. The point of this current paper is to extend such semiclassical analyses to incorporate
interference effects due to multiple saddle points, as this phenomenon naturally occurs for time dependent electric
fields with sub-cycle structure, as is the case for more realistic representations of intense laser pulses.

A. Scalar QED
We decompose the scalar field operator as
O(Z,t) = / &kt (¢k(t)ak + qs;(t)bik) (1)

where ayx and bT_k satisfy standard bosonic commutation relations, for each mode k. The Klein-Gordon equation for
®(Z,t) translates into the following equation for the mode functions ¢y (t):

Sic(t) + Qi()du(t) =0 (2)
where we define
Qi(t) =m® + k1 + (k) — qA(t))? (3)
Equation (2) has the form of a Schrédinger-like equation in the variable ¢
—nc(t) — (ky — gA®) duc(t) = (m® + k3w (t) (4)

with ”potential” V(t) = —(kj — ¢A(t))?, and "energy” (m? + k% ). We implement the Bogoliubov transformation by
defining ay(t) and Sk (t) as follows:
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For each mode, the Bogoliubov coefficients, ay and Py, satisfy the first-order coupled equations:
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This Bogoliubov transformation implements a change from the time-independent basis of creation and annihilation
operators, ax and bT_k, to a time-dependent basis of creation and annihilation operators, ay(t) and bik(t), via the

linear transformation:
.,&k(t) _ [ Ok 6* Ak
(ka(t)> B (ﬂk aE) (bk> (8)

The bosonic commutation relations are preserved by the unitarity condition: |auc(t)|? — |Bk(t)|> = 1. The number
of pairs produced in the momentum mode k, from vacuum, is given in terms of the modulus of the coefficient Gy at
t = +oo0:

Nic = |B(t = +00)[? (9)

The relation to quantum mechanical scattering arises because we can express N in terms of the reflection probability,
2

|R|? = gi%g R for the effective ”Schrodinger” problem (2):
=400
| Rxc|?
Ny =——7"—> 10
k 1 _ |Rk|2 ( )

Recall from (4) that this describes the situation of over-the-barrier scattering, so the reflection probability is expo-
nentially small, and so we can often make the approximation: Ny =~ |Ry|*.

B. Spinor QED

An analogous mode decomposition exists for spinor QED. We expand the spinor field operator ¥ (Z,t) as:
w(@ =S / B R (uk’s(t) ares + V_1es(t) T ) (11)

where ay and bT_k satisfy standard fermionic anti-commutation relations, for each mode k, and the sum is over helicity
s = £1. In a suitable Dirac matrix basis, the time dependent spinors, uk s(t) and vk s(t), can be written in terms of
a single complex function 1 (t) that satisfies the Schrodinger-like equation:

di) + (@R +iky (1)) vact) = 0 (12)

We implement the Bogoliubov transformation by defining cu(¢) and Sk (t) as follows:
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For cach mode, the Bogoliubov cocfficients satisfy the first-order coupled equations:
Gue(t) = Z'Q(“(; Bue(t)e? /" e (14)
) = B o i, (19

where €2 = m? + k3. This Bogoliubov transformation implements a change from the time-independent basis of
creation and annihilation operators to a time-dependent basis of creation and annihilation operators, with the unitarity
condition: |ax(t)|> + |Bk(t)]* = 1. Note the opposite sign from the scalar QED case. The number of pairs produced
in the momentum mode k, from vacuum, is given in terms of the modulus of the coefficient [y at ¢t = +o0o:

N = [Bk(t = +00)|?

| Ry |?
_ 16
1+ |Rk/|? (16)
2
where | Ry|? is defined as the reflection probability, |Ry|* = g ii?) . Again, the reflection is typically very small,
t=4+o0

so we often make the approximation: Ny ~ |Ry|?.



III. SCATTERING FORMALISM: NUMERICAL AND SEMICLASSICAL APPROACHES
A. Scalar QED: numerical computation

It is straightforward to convert the Schriodinger-like scattering problem (4) into a Riccati equation [23] that is
suitable for simple numerical evaluation. (We now suppress the momentum mode label, k, since all modes decouple,
and so can be treated separately.) From equations (7) it is clear that the reflection amplitude, R = /«, evolves with
time as:

R — 045—2504
'Oé
_ é%% (20" — m2e2is Q) (17)

This Riccati equation is trivial to integrate numerically, for a given A(t) and longitudinal momentum £, with the
initial condition R(—o00) = 0, to obtain R(co), whose magnitude squared gives the particle number (10). As discussed
in [45], this is completely equivalent to the quantum kinetic equation approach. We will use this numerical formalism
in order to obtain ”exact” particle spectra, with which we can compare our semiclassical approximations.

B. Spinor QED: numerical computation

For spinor QED, the argument is very similar. From the equations (15) it is clear that the reflection amplitude,
R = B/a, evolves with time as:

_ aB-Ba
2
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Note the different signs from the scalar case (17), and the different form of the function out the front. Again, it is
simple to implement numerically, with the initial condition R(—oc0) = 0, to obtain R(4occ), and hence the particle
number from (16).

C. Scalar QED: semiclassical approximation

To motivate a semiclassical approximation to the Riccati equation (17), consider the fact that R(t) is always small,
and so neglect the nonlinear term on the right-hand-side [46]. Then we have simply,

R(OO) ~ % e—Zi fioc Q(t) dt’ dt (19)

This integral is dominated by the contributions of the poles, where Q = 0, which are the semiclassical turning points
tp. In the neighborhood of such a turning point, change variables from ¢ to the ”singulant” function

§W=/Qmﬁ’ (20)

Now assume there is a first order zero of Q?(¢) [a similar argument applies for other orders of poles], so that near the
turning point, @ ~ ¢/t —1,, and & ~ %c (t— tp)3/2 + &p. Then the approximate equation for R(t) can be expressed
as
drR 1 1 g
g 66—-¢

(21)

Therefore, each pole &, will contribute a term R(c0) ~ 7%1‘6722‘5},’ where £, = fjfz)o Q(t) dt, and we have chosen to
refer all the phase integrals to ¢ = —oo. In fact, this approximation does not give the correct prefactor. This prefactor



problem was noted already in the seminal papers [47], where it was resolved by comparison with soluble cases. In
order to obtain the correct prefactor, we must consider also the nonlinear term in (17), and keep all the multiple-
integral iteration terms. This procedure yields a prefactor of magnitude 1 [48-51]. This is a nontrivial result, relying
on a sophisticated combinatorial argument for the resummation of the iterated terms. In [51] this result is explicitly
extended to the case of multiple turning points, under the assumption that these turning points are well-separated.
We also make this assumption, and note that we will, in subsequent sections of this paper, confirm the validity of this
approximation by direct comparison with the exact numerical results. Using these results, we obtain an approximate
expression for the reflection amplitude with a contribution from each turning point in the upper half complex plane:

R(sc) = 3 e 2 e (22)
tp
Integrals of Q(t) along the real axis are real, while those along the imaginary direction are imaginary, so it is natural
to split the exponents into phases and real parts. Let us define s, = Re(t,) as the real part of a complex turning
point ¢,. Then we can separate out a common phase factor e~ 215 QMDA i the sum in (22), and write

R(o0) ~ e~ % Q) dt Z o210y 2! JoP Q1) dt| (23)

tp

where the phase, 6, = f:lp Q(t) dt, is the phase accumulated by integrating Q(t) along the real axis between neighboring
turning points. These phases incorporate the interference effect between distinct turning points and yield a simple
expression for the reflection probability, when we take the modulus squared of the reflection amplitude in (23).
Within this approximation, there is actually no distinction between the particle number N in (10) and the reflection
probability |R|?, so we obtain the approximate expression:

Nicalar s 2:6—21({(?> + Z 2 cos (2 91((1’71’/)) e—Kl({p)—Kl(‘p) (24)
tp tpFt,
where we have defined

tp
K® = | / Qw(t) dt| (25)

th
0P = [ Qu(t)dt (26)

Sp

We have restored the momentum label k to emphasize the fact that the answer depends on k, because Qx(t) depends
on k. It should of course be remembered that this means that the location of the turning points ¢, also depends on

k, and so do the interference terms 01({’) #) The first term in (24) is the sum over the contributions of independent
turning points, while the second sum characterizes the interference between different turning points. The dominant
contributions are from turning points with the smallest values of Kl((p ), and interference effects are significant for pairs
of turning points for which these integrals are comparable in magnitude. Loosely speaking, this often corresponds
to a rule of thumb that turning points closest to the real axis tend to dominate, and interference effcts are strongest
between pairs of turning points that have comparable distance from the real axis.

For later use, we record the approximate expressions for one, two and three complex conjugate pairs of turning
points. If a single turning point pair dominates, then we have the familiar textbook expression [52]:

Nlicalar ~ e—QKI((p) (27)
. . . . . 1
If there are two pairs of turning points, (¢1,t7) and (te,t5), with comparable real exponential factors e~2K” and
(2) . . .
e—2K , then there is a single interference term
(1) (2) (1) (2)
Nicalar ~ e—ZKk + e—QKk + 2cos (2 01((1,2)) e_Kk —K, (28)

where 91((1’2) = fssf Qx(t) dt. This is the case that was studied in [33]. If there are three turning point pairs, (¢1,t7),

2

. . (») .
(t2,3), and (ts3,t3), each with comparable real exponential factors e~ K. then there are three interference terms:

Lok _og®  _op® 1.9\ kM _g®
Npealar o280 4 =2y o2 9 6o (201({, ))e K-k

+2cos (2 91((2’3)> eiKl((z)le(f) + 2 cos (2 01((1’3)) eiKl((U*KS) (29)



where 91((1’2 ng Qx(t) dt, 9(2 - fgs Qx(t)dt, and 9(1 - fgs Qx(t)dt. The extension to more pairs of turning
points is clear.

In the next Section we will illustrate these interference effects with explicit examples of electric fields that produce
exactly one, two and three pairs of turning points. In the semiclassical regime, the expression (24) is an excellent
approximation, and describes the interference effects both qualitatively and quantitatively for a broad range of physical
parameters.

D. Spinor QED: semiclassical approximation

For spinor QED, we can apply a similar argument to the Riccati equation (18). The difference is that the initial
approximation, which is then iterated, yields a different function:

> k -
R() %—/ 2”7%@*221 Q gt (30)

In the vicinity of a turning point, we have

R Q@ e .Q
27 T 2Q b — AW " T2Q

(31)

with the sign depending on the branch. Here we have used the fact that a turning point is defined by Q? = 0, which
means (kj — A(t)) = Fiy/m? + k7 = Fiey. These signs alternate between successive turning points, so we obtain an
extra (alternating sign) phase

R(co) = Y (~1)P el /2 e 2 [ Qo )

tp

which leads to an approximate expression for the particle number for spinor QED:

NgPinor o Z —2K Z 9 cos (26 p.p’ ) (—1)®=?") e—Kff’)—Kff') (33)
P p?ét /

where Kl((p ) and 91(5' *) are defined exactly as in (25) and (26). The only difference from the scalar QED case lies in
the signs of the interference terms. For example, if a single turning point pair dominates, because of a dominant real

Y ft}f’ Qu(t) dt|

factor e , then there is no interference and we have just

N ol 3

which is the same as for scalar QED. If there are two pairs of turning points, (¢1,t}) and (to,t5), with comparable

2K

. (2) . . . . . .
real exponential factors e”**x  and o2 , then there is a single interference term, with the opposite sign from the

scalar case:
b o () o (2) 1,2 _ (D) _ g (2)
Nliplnor ~e 2K, +e 2K, 2 cos (2 91(( )) e K, ' —K; (35)

This is the case that was studied in [33]. If there are three turning point pairs, (t1,t7), (t2,t3), and (¢3,13), each with

(»)
—2K,P

comparable real exponential factors e , then there are three interference terms, with signs as follows:

le(pinor ~ 6721(1((1) 4 efzKl(f’ T efszf’) — 9cos (2 91((1,2)) e—KijKf)
2)_® ; W) (3
—2cos (2 91((2’3)) e KR 19 cos (2 98"”) e e K (36)

where 91((1’2 ng Qx(t) dt, 9(2 - fgs Qx(t) dt, and 9(1’3) fgs Qx(t)dt. The extension to more pairs of turning
points is clear.



IV. ILLUSTRATIVE EXAMPLES

In this section, we compare our semiclassical approximations (24) and (33) that incorporate interference effects,
with the (exact) numerical approach based on the Riccati equations (17) and (18), for both scalar and spinor QED. For
this comparison, we have constructed electric fields such that the corresponding over-the-barrier scattering problem
has precisely one, two and three pairs of complex conjugate turning points. The interesting interference effects occur
in the dependence of the particle number Ny on the longitudinal momentum k). Thus, in all the following illustrative
examples, we neglect the dependence on the transverse momentum k, , setting k; = 0.

A. One Pair of Turning Points

An example of a gauge field with only single pair of turning points is the single-bump field

E(t) = eI (37)

where Ej is the field strength amplitude, and w is the inverse width, as shown in the left panel of Figure 1. The
associated vector potential can be taken as

A=~ (38)

This vector potential is plotted in the right panel of Figure 1. Note that E(t) is an even function, while A(t) is an

E(1) A(t)

t

FIG. 1: The form of the electric field E(t) in (37), and corresponding vector potential A(t) in (38) for a single complex conjugate
pair of turning points. E(t) is an even function, while A(¢) is an odd function.

odd function. This field has exactly one pair of complex conjugate turning points, (t1(k)), ] (k))), with

—(kn — i
(k) = i b (39)
I 2 ; 2
\/EO +w? + 2ikyw? — kfw?

Note that as a function of the longitudinal momentum, k|, the pair of turning points moves around in the complex
plane, as shown in Figure 2, but remain a complex conjugate pair.

Figure 3 shows a comparison between the approximations (27) and (34) and the exact numerical results, for the
particle number as a function of longitudinal momentum. The left plot is for scalar QED and the right plot is for
spinor QED. There is no oscillatory structure in this momentum spectrum, as expected since there is no interference
term for just a single pair of turning points. Thus, the spectra are the same for scalar and spinor QED, and there
is good agreement between the approximate and exact results. While the form of the electric field (37) was chosen
so that there is precisely one complex conjugate pair of turning points, similar behavior is obtained for other ”single-
bump” electric fields such as E(t) = Eysech?(wt), or E(t) = Egexp(—w?t?), for which there is an infinite tower of
turning points pairs, but only one pair [the one closest to the real axis] dominates, and the approximate expressions
(27) and (34) again provide extremely accurate answers.
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FIG. 2: The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(¢) in (38), with Eg = 0.1 and w = 0.1, for longitudinal
momentum vales kj = —1 (left), kj = O (center), and kj = 1 (right), in units with m = 1. Note that the turning points are
closest to the real axis for kj = 0.
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FIG. 3: Scalar (left) and spinor (right) QED momentum spectra for vacuum pair production, as a function of longitudinal
momentum, for the electric field (37) that has one pair of turning points. The thick (blue) lines show the numerical calculation,
and the dashed (red) lines show the approximate expressions (27) and (34). The field parameters were chosen as: Fo = 0.1,
and w = 0.1, in units with m = 1.

B. Two Pairs of Turning Points

To illustrate the effect of interference between pairs of turning points, we now consider an example of a vector
potential leading to precisely two pairs of complex conjugate turning points. This field was considered already in [33],
and here we give more details. Consider the electric field

2Fywt
Bt) = ———% (40)
(14 w?t?)
where Ej is the field strength amplitude, and w is the inverse width, as shown in the left panel of Figure 4. The
associated vector potential can be taken as

EQ/(U

A0 ="Frure

(41)
This vector potential is plotted in the right panel of Figure 4. Note that E(t) is an odd function, while A(t) is an

even function. For this vector potential, there are two complex conjugate pairs of turning points, (t1(k)),t7(k))), and
(tg(k‘”),tS(k'H)), where:

1/7E0 — kHeriw
k) = Y—5 NGET (42)
./—Eo - kHw—iw
ta(ky) = —~—5 Ve (43)
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FIG. 4: The form of the electric field E(t) in (40), and corresponding vector potential A(¢) in (41) for two complex conjugate
pairs of turning points. E(t) is an odd function, while A(¢) is an even function.

These turning points are illustrated in Figure 5. An important difference from the case of a single pair of turning
points shown in Figure 2 is that now the point of closest approach of the turning points to the real axis occurs at a
nonzero value of k). This is reflected in the momentum spectrum for the two-pair case, shown in Figure 6, which is
centered around a non-zero value of k||, while the momentum spectrum for the single-pair case, shown in Figure 3, is
centered around kj = 0. Also, observe that since the two pairs are equidistant from the real axis, we should expect
strong interference effects between the two pairs of turning points, as indeed is seen in Figure 6 for both scalar and
spinor QED.
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FIG. 5: The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(t) in (41), with Eo = 0.1 and w = 0.1, for longitudinal
momentum vales kj = 0 (left), k) =1 (center), and k| = 2 (right), in units with m = 1. Note that the two turning points are
always equidistant from the real axis, and note that they are closest to the real axis at a nonzero value of k), which for these
parameters is kj ~ 1.2.

Figure 6 shows a comparison between the approximations (28) and (35) and the exact numerical results, for the
particle number as a function of longitudinal momentum. Note the oscillatory behavior of the spectrum, due to
the interference terms. Also notice that the interference term has the opposite sign for scalar and spinor QED, as
reflected in the exact momentum spectrum. The agreement between the exact numerical results [solid, blue lines] and
the approximate semiclassical expressions [dashed, red lines] is extremely good, both qualitatively and quantitatively.

The form of the electric field (40) was chosen so that there are precisely two complex conjugate pairs of turning
points. In fact, for other electric fields with temporal profile that is an odd function of ¢, as in Figure 4, we find
that there are two dominant pairs of turning points. For example, this occurs when E(t) = Eowtsechz(wt), or
E(t) = Eywt exp(—w?t?), for which there is an infinite tower of turning points pairs, but only two pairs [those closest
to the real axis] dominate, and the approximate expressions (28) and (35) again provide extremely accurate answers.

C. Three Pairs of Turning Points

To illustrate further the effect of interference between pairs of turning points, we now consider an example of a
vector potential leading to precisely three pairs of complex conjugate turning points. This goes beyond the field
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FIG. 6: Scalar (left) and spinor (right) QED momentum spectra for vacuum pair production, as a function of longitudinal
momentum, for the electric field (40) that has two pairs of turning points. The thick (blue) lines show the numerical calculation,
and the dashed (red) lines show the approximate expressions (28) and (35). The field parameters were chosen as: Ep = 0.1,
and w = 0.1, in units with m = 1.

considered already in [33], and permits us to verify the sign pattern of the interference terms in the spinor QED
expression (36). Consider the electric field

Eo (1— (3wi + 2w3) t2)
(14 w3t2)™?

E(t) = (44)

where Ej is the field strength amplitude, and w; and ws represent two independent inverse width scales. The form of
this electric field is shown in the left panel of Figure 7. The associated vector potential can be taken as

Eot (1 —wit?)
(1+w?t2)3/?

A(t) = (45)

This vector potential is plotted in the right panel of Figure 7. Note that E(t) is an even function, while A(t) is an

E(t) A(t)

FIG. 7: The form of the electric field E(t) in (44), and corresponding vector potential A(¢) in (45) for three complex conjugate
pairs of turning points. E(t) is an even function, while A(¢) is an odd function.

odd function, as in the case of one pair of turning points, shown in Figure 1. The equation for the turning points is
a cubic equation in 2, so we obtain three complex conjugate pairs of turning points, (t1(k)), ¢;(k))), (t2(k)), t5(k))),
and (t3(k|),t5(k))). We do not write the expressions explicitly, as they are long and not particularly instructive.
These turning points are illustrated in Figure 8, for various values of the longitudinal momentum. As in the case of
a single pair of turning points shown in Figure 2, the point of closest approach of the turning points to the real axis
occurs at kj = 0. This is reflected in the momentum spectrum for the three-pair case, shown in Figure 9, which is
centered around k| = 0, but in contrast to the momentum spectrum for the two-pair case, shown in Figure 3, which
is centered around a nonzero value of k). Also, observe that since the three pairs are almost equidistant from the real
axis, we should expect significant interference effects between the various pairs of turning points, as indeed is seen
in Figure 9 for both scalar and spinor QED. The momentum spectrum resulting from vector potentials that are odd
functions of time [and hence electric fields that are even functions of time| exhibit symmetric oscillations centered
around k|| = 0, since for odd gauge fields the phase integrands have the symmetry: Qy, (t) = Q—k (—t). Therefore
equations (7) and (15) remain invariant under the transformations kj — —kj, and ¢ — —t. In the WKB framework,
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this fact is manifest as the symmetry of the turning point distribution under k; — —k, as can be seen from Figure
8.
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FIG. 8: The locations of the complex conjugate pair of turning points, in the complex t plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(t) in (45), with Ey = 0.1, w1 = 0.1, and wy = 1/15, for
longitudinal momentum vales kj = —1 (left), k = 0 (center), and k| = 1 (right), in units with m = 1. Their distribution
suggests we should expect significant interference effects, especially near kj = 0.

Figure 9 shows a comparison between the approximations (29) and (36) and the exact numerical results, for the
particle number as a function of longitudinal momentum. Note the oscillatory behavior of the spectrum, due to the
interference terms. Also notice that the interference terms have different signs for scalar and spinor QED, leading to
different oscillatory behavior in the longitudinal momentum spectrum. The agreement between the exact numerical
results [solid, blue lines] and the approximate semiclassical expressions [dashed, red lines] is extremely good, both
qualitatively and quantitatively.
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FIG. 9: Scalar (left) and spinor (right) QED momentum spectra for vacuum pair production, as a function of longitudinal
momentum, for the electric field (44) that has three pairs of turning points. The thick (blue) lines show the numerical calculation,
and the dashed (red) lines show the approximate expressions (29) and (36). The field parameters were chosen as: Fo = 0.1,
w1 = 0.1, and we = 1/15, in units with m = 1.

V. PULSE CONFIGURATIONS WITH FLAT ENVELOPES

A significant advantage of the semiclassical approach is that it provides us with some physical intuition to guide the
problem of designing the temporal shape of the electric field E(t) in order to produce a desired momentum specturm.
This is an interesting, and difficult, ”inverse problem”, and in this Section we illustrate the idea with some examples.
The treatment of temporally localized electric fields with sub-cycle structure is important within the context of
vacuum pair production in that these type of fields represent more realistic pulse configurations with rich structure of
momentum spectrum for the produced pairs. Further, from the experimental point of view, the investigation of field
parameter dependance of the spectrum might be useful for achieving more prolific pair production.

The first observation is that interference effects are more likely with an electric field with more temporal structure:
the single-bump field exhibits no interference, while the fields with increasing numbers of maxima and minima tend to
increase the level of interference in the momentum spectrum. This is obvious from the scattering picture, but it is not
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the whole story. We also see that there is a marked difference between cases where F(t) is an even or odd function.
Indeed, for a complicated form [with many oscillations and possibly an envelope] of E(t), and hence correspondingly
for A(t), the effective scattering potential —(k; — A(t))* changes dramatically as a function of kj, and it is not easy to
see from the form of this scattering potential when there would be a minimum or maximum of the particle number.
The best indicator comes from looking at the location of the turning points in the complex plane. This also shows us
that interference effects will be most pronounced when different sets of turning points are approximately equidistant
from the real axis. As in the previous section, since the interesting interference effects occur in the dependence of the
particle number Ny on the longitudinal momentum k|, we neglect the dependence on the transverse momentum k_,
setting k; = 0.

We can illustrate these trends with some electric field configurations looking more and more like realistic laser
pulses, with sub-cycle structure. In [32], the effect of the carrier phase was investigated for fields of a given frequency
w, convolved with a Gaussian envelope function, with a phase offset ¢:

E(t) = Ey cos(wt + ¢) et /™) (46)

Strong interference effects are seen for the odd field where ¢ = /2, and we now understand this as due to the
interference between two dominant pairs of turning points [33]. Now we ask what happens if we change the shape
of the field so that more than two pairs of turning points contribute. There should then be stronger interference
effects. This can be achieved by "flattening” the envelope function from a Gaussian to a factor et or et/
We show below that this simple change in the envelope function increases the number of relevant turning point pairs,
and correspondingly has a significant effect on the interference terms. We consider such envelope functions both for
7 cosine-like” and ”sine-like” electric fields, corresponding to carrier phases ¢ = 0 and ¢ = 7/2, respectively.

A. Envelope Functions: exp[—t!/7%]

Consider electric fields with an envelope function et/ 74, which is ”flatter” than a Gaussian envelope. This leads
to more turning points with approximately equal real parts, and therefore to stronger interference effects. Specifically,
we first take an electric field temporal profile that is an even function of time
+4
Epe™ 7 (14w cos(tw) — 4t sin(tw)
Ecvcn(t) - ( )

(47)

Tw
which comes from an odd vector potential
A(t) = —Ep/w et/ sin(wt) (48)

The forms of these fields are plotted in Figure 10, and the turning point distribution is sketched in Figure 11. We see
that there are more turning point pairs approximately equidistant from the real axis, suggesting stronger interference
effects. The results for the produced particle number, as a function of longitudinal momentum, are shown in Figure
12, for both scalar QED [solid, blue curve] and spinor QED [dashed, red curve]. Notice the single-peak structure for
scalar QED, and double-peak structure for spinor QED, a reflection of the opposite sign of interference terms.

E(?) A(1)

N A ,/\ A
il A

FIG. 10: The form of the electric field E(t) in (47), and corresponding vector potential A(t) in (48) for two complex conjugate
pairs of turning points. E(t) is an even function, while A(¢) is an odd function.
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FIG. 11: The locations of the complex conjugate pair of turning points, in the complex ¢ plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(t) in (48), with Eo = 0.1 and w = 0.1, for longitudinal
momentum vales k = —1 (left), k| = 0 (center), and kj = 1 (right), in units with m = 1.
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FIG. 12: The particle numbers for vacuum pair production, as a function of longitudinal momentum, for the electric field (47),
with the solid (blue) line showing scalar QED and the dashed (red) line showing spinor QED. The field parameters Ey, w, and
7 were chosen as: Fy = 0.1, w = 0.5, and 7 = 0.05, in units with m = 1.

As a second example with the same envelope function, we consider an electric field temporal profile that is an odd
function of time
4
Ege =1 (483 cos(tw) + THwsin(tw))

Eoaa(t) = iy

(49)
which comes from a vector potential
A(t) = —Ep/w et/ cos(wt) (50)

The forms of these fields are plotted in Figure 13, and the turning point distribution is sketched in Figure 14. We see
that there are more turning point pairs approximately equidistant from the real axis, suggesting stronger interference
effects. The results for the produced particle number, as a function of longitudinal momentum, are shown in Figure 15,
for both scalar QED [solid, blue curve] and spinor QED [dashed, red curve]. Again, notice the single-peak structure
for scalar QED, and double-peak structure for spinor QED, but now observe the asymmetry of the spinor spectrum.

B. Envelope Functions: exp[—t®/75)
Now consider fields with an even flatter envelope function: e=t*/™ This leads to even more turning points with
approximately equal real parts, and therefore to even stronger interference effects. Specifically, we first take an electric
field temporal profile that is an even function of time

tS
Eeven(t) _ FEge -8 (TSw cos(tw) _ 87 Sin(tw))

8w (51)
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FIG. 13: The form of the electric field E(t) in (49), and corresponding vector potential A(t) in (50) for two complex conjugate

pairs of turning points. E(t) is an odd function, while A(¢) is an even function.
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FIG. 14: The locations of the complex conjugate pair of turning points, in the complex ¢ plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(t) in (50), with Ep = 0.1 and w = 0.1, for longitudinal

momentum vales k = —1 (left), k| = 0 (center), and kj = 1 (right), in units with m = 1.

which comes from an odd vector potential
(52)

A(t) = —Ep/w et/ sin(wt)

The forms of these fields are plotted in Figure 16, and the turning point distribution is sketched in Figure 17. We
see that there are even more turning point pairs approximately equidistant from the real axis, suggesting stronger
interference effects. The results for the produced particle number, as a function of longitudinal momentum, are shown
in Figure 18, for both scalar QED [solid, blue curve] and spinor QED [dashed, red curve]. Notice the very different
forms of the momentum spectra, and in particular notice that the peak values for spinor QED are almost an order of

magnitude greater than for scalar QED.
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FIG. 15: The particle numbers for vacuum pair production, as a function of longitudinal momentum, for the electric field (49),
with the solid (blue) line showing scalar QED and the dashed (red) line showing spinor QED. The field parameters Fo, w, and

7 were chosen as: Fp = 0.1, w = 0.5, and 7 = 0.05, in units with m = 1.
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FIG. 16: The form of the electric field E(t) in (51), and corresponding vector potential A(t) in (52) for two complex conjugate
pairs of turning points. E(t) is an even function, while A(¢) is an odd function.
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FIG. 17: The locations of the complex conjugate pair of turning points, in the complex ¢ plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(t) in (52), with Ep = 0.1 and w = 0.1, for longitudinal
momentum vales k = —1 (left), k| = 0 (center), and kj = 1 (right), in units with m = 1.

As a second example with the same envelope function, we consider an electric field temporal profile that is an odd

function of time

tS
Epe 7% (8t7 cos(tw) + m8wsin(tw
Eoaa(t) = — ( isw) (t) (53)

which comes from a vector potential

_ —t°/T
A(t) = —Ep/we cos(wt) (54)
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FIG. 18: The particle numbers for vacuum pair production, as a function of longitudinal momentum, for the electric field (51),
with the solid (blue) line showing scalar QED and the dashed (red) line showing spinor QED. The field parameters Fo, w, and

7 were chosen as: Fp = 0.1, w = 0.5, and 7 = 0.05, in units with m = 1.
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The forms of these fields are plotted in Figure 19, and the turning point distribution is sketched in Figure 20. Again,
we see that there are even more turning point pairs approximately equidistant from the real axis, suggesting stronger
interference effects. The results for the produced particle number, as a function of longitudinal momentum, are shown
in Figure 21, for both scalar QED [solid, blue curve] and spinor QED [dashed, red curve]. Notice the very different
form of the spectra, and note that again the spinor QED peaks are noticeably higher than those for scalar QED.

E(?) A(r)
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FIG. 19: The form of the electric field E(t) in (53), and corresponding vector potential A(t) in (54) for two complex conjugate
pairs of turning points. E(t) is an odd function, while A(t) is an even function.
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FIG. 20: The locations of the complex conjugate pair of turning points, in the complex ¢ plane, for three different values of
longitudinal momentum. These plots are for the vector potential A(¢) in (54), with Eo = 0.1 and w = 0.1, for longitudinal
momentum vales k = —1 (left), k| = 0 (center), and kj = 1 (right), in units with m = 1.
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FIG. 21: The particle numbers for vacuum pair production, as a function of longitudinal momentum, for the electric field (53),
with the solid (blue) line showing scalar QED and the dashed (red) line showing spinor QED. The field parameters Ep, w, and
7 were chosen as: Fp = 0.1, w = 0.5, and 7 = 0.05, in units with m = 1.

These examples clearly show that the flatter the envelope function, the stronger the interference effects, and with
such a large number of turning points participating, there can be large differences between the pair production for
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spinor and scalar QED. For example, in Figure 18 we see almost an order of magnitude difference between the spinor
and scalar QED peak particle numbers. Contrast this with the earlier examples, where even though the interference
effects have different signs, they do not conspire to increase the overall magnitude of the peak values.

VI. CONCLUSIONS

In this paper we have investigated interference effects in the longitudinal momentum spectrum for particles produced
from vacuum by a linearly polarized electric field that is spatially uniform but time dependent. The interference is
due to the interaction between multiple semiclassical turning points, and becomes important when the temporal
profiles have subcycle structure, as is true for more realistic laser pulse fields than just the well-studied single-bump
fields like E(t) = Epsech®(wt). We have given a simple new approximate formulas, (24) and (33), for the number
of produced particles, as a function of longitudinal momentum, for both scalar and spinor QED, for an arbitrary
number of turning points, extending the result of [33] for the interference between two distinct turning points. As
expected, the interference terms have different signs depending on the particle statistics. We have confirmed that
these approximate expressions agree very well with the exact results, obtained by numerical integration of the Riccati
form of the corresponding scattering problem, for electric fields having precisely one, two, and three complex conjugate
pairs of semiclassical turning points. The approximate expressions provide important physical intuition that may be
used to guide the shaping of the temporal profile of electric field pulses in order to obtain a particular momentum
spectrum. In particular, we have shown that flattening the temporal envelope function leads to stronger interference
effects, since more turning points interfere, and tends to increase the particle number for spinor QED relative to scalar
QED. We hope that this semiclassical approach may be useful in guiding the design of planned laser experiments
in order to observe this elusive non-perturbative Heisenberg-Schwinger effect for the first time. For example, the
recent numerical results of Orthaber et al [53] concerning the momentum spectrum of vacuum particle production
for the dynamically assisted Schwinger mechanism [14], in which a strong enhancement is seen when a weak but
rapidly varying field is superimposed on a stronger but slower field, can be understood semiclassically in terms of
the appearance of new saddle points that arise due to the additional weak field. In addition, such time-dependent
tunneling problems appear in many other contexts [54], in particle and nuclear physics, condensed matter physics,
atomic physics, chemical physics, and gravitational physics, and we anticipate that the simplicity of these results may
prove useful in these other areas also. Finally, the semiclassical perspective in terms of interfering saddle points may
prove useful in the search for a computationally effective formalism that also incorporates spatial inhomogeneities of
the laser pulses, for example using worldline instantons [55] or Wigner function methods [56, 57].
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