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A thermal field theory derivation of the source term induced by a fast parton from

the quark energy-momentum tensor
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I derive the distribution of energy and momentum transmitted from a fast parton to a medium of
thermalized quarks, or the source term, in perturbative thermal field theory directly from the quark
energy-momentum tensor. The fast parton is coupled to the medium by adding an interaction
term to the Lagrangian. The thermal expectation value of the energy-momentum tensor source
term is then evaluated using standard Feynman rules at finite temperature. It is found that local
excitations, which are important for exciting an observable Mach cone structure, fall sharply as a
function of the energy of the fast parton. This may have implications for the trigger pT dependence
of measurements of azimuthal dihadron particle correlations in heavy-ion collisions. In particular,
a conical emission pattern would be less likely to be observed for increasing trigger pT . I show
that the results presented in this paper can be generalized to more realistic modeling of fast parton
propagation, such as through a time dependent interaction term, in future studies.

PACS numbers: 12.38.Mh,25.75Ld,25.75.Bh

At sufficiently high temperature, quantum-
chromodynamic (QCD) matter is expected to undergo a
transition from colorless hadrons to a state of deconfined
quarks and gluons known as the quark-gluon plasma
(QGP) [1]. Experimental results from the Relativistic
Heavy-Ion Collider (RHIC) indicate that the QGP
has been formed in relativistic heavy-ion collisions [2].
The results suggest that the QGP formed at RHIC
center-of-mass energies may behave as a nearly ideal
fluid [3]. Another striking result [4] is that highly
energetic, or fast, partons appear to lose a significant
amount of energy to the medium in a process known
as jet quenching [5]. In the light of these observations,
an interesting problem is to calculate how the QGP
responds to a propagating fast parton.

This problem has gained attention due to experimental
measurements of azimuthal particle correlations associ-
ated with high pT triggers in heavy-ion collisions that dis-
play a double-peaked or conical structure [6]. These mea-
surements may reflect the interaction of the jet with the
medium and proposed explanations for the structure have
included large angle gluon radiation [7], Cerenkov radia-
tion, [8], colored wakes [9], and perhaps most commonly,
Mach cone shockwaves excited in the bulk medium by
fast partons [10, 11]. Other explanations, which do not
reflect the interaction of the jet with the medium, such
as fluctuating initial conditions and triangular flow have
also been proposed [12]. Whatever the nature of the con-
ical structure associated with high pT triggers at RHIC
is, the QGP response to a fast parton remains an im-
portant topic, particularly in the light of the surplus of
high transverse momentum probes available to the newly
online heavy-ion program at the Large Hadron Collider
as compared to RHIC. For this reason, the experimental
handle on medium response to fast partons should only
improve.

Theoretical investigation of the QGP response to fast
partons has mostly been phenomenological, with many

studies using hydrodynamics to model the medium re-
sponse [13]. Even within the framework of hydrody-
namics one still must specify how the fast parton excites
the medium, that is, the source term. The source term,
here denoted Jν , couples to the energy-momentum ten-
sor (EMT, denoted T µν in what follows) as ∂µT

µν = Jν

and describes the flow of energy and momentum density
between an external source and the medium. Previous
studies have found that the azimuthal dihadron corre-
lation spectrum associated with a fast parton depends
sensitively on the form of the source term [10, 14]. It has
been shown that diffusive momentum, which flows in the
direction of the source parton’s velocity, tends to fill up
any double-peaked conical structure in the final spectrum
[15, 16]. These observations suggest that the shape of az-
imuthal dihadron correlations may be a powerful probe
of the microscopic interaction of energetic partons with
the QGP. There has been little rigorous theoretical in-
vestigation of the source term generated by a fast parton
in QCD. However, a calculation of the source term gen-
erated by a fast parton for a perturbative QGP within
kinetic theory was performed in [17].

Ideally one would like to calculate the QGP response
to a fast parton from first principles, such as in the inves-
tigation of heavy quark propagation through a strongly
coupled thermal plasma done by Friess et. al using the
AdS/CFT correspondence [18]. The authors evaluated
the stress-tensor within the context of linearized gravity.
It was later shown that the solution matched well with
a nearly ideal linearized hydrodynamic calculation up to
distances of about 2/T away from the heavy quark [19].

Performing a similar study within QCD currently
seems out reach. The problem is inherently dynamic and
must be approached with real-time (and not imaginary-
time) methods. It is thus is not well suited for lattice
techniques, which are more effective in imaginary time.
Even for a truly perturbative QGP, it is not clear how
to sum all of the diagrams necessary to calculate the



2

x

p4 p5

p3

p1 p2

(a)

x

p2

p4 p5

p3

(b)

FIG. 1: Feynman diagrams contributing to 〈∂µT
µν(x)〉 in the presence of a source interaction term, Aa

µ j
µ
a . The diagram in

Figure 1(a) can be traced back to terms in the energy-momentum tensor (see equation (1)) which go as ψ̄γ∂ψ, whereas the
diagram in Figure 1(b) originates from terms that go as g ψ̄γAψ. The contribution from the energy-momentum tensor and
external current insertions are discussed in the text (see also Figure 2).

medium response in regions far from the fast parton. In
view of these limitations, one can consider two (of per-
haps several) possibilities: a) calculate components of the
EMT within perturbation theory to obtain information
about the medium response in regions near the fast par-
ton; b) calculate the source term for the EMT within
perturbation theory and use an effective theory to prop-
agate the resulting disturbance to regions far from the
fast parton. For this second option, one would calculate
∂µT

µν ≡ Jν using the fundamental EMT of QCD, and
then allow ∂µT

µν
H = Jν , where T µν

H is the hydrodynamic
EMT, for instance, and then solve the resulting equations
of motion.

Of the two options presented above, a) is under more
theoretical control and will be considered in a future
work. In this work, however, I consider option b) be-
cause it is a more straightforward calculation and makes
more direct contact with previous studies. Furthermore,
I will consider a medium of massless quarks/antiquarks,
leaving the inclusion of medium gluons for a forthcom-
ing study (thus, apart from the coupling strengths, the
results will be the same as for a QED plasma, for which
they are also new). The EMT is given by [20]

T µν =
i

4
ψ̄

(

γµ
↔

Dν + γν
↔

Dµ
)

ψ − gµν
L , (1)

where

L =
i

2
ψ̄
↔

/Dψ, Dµ = ∂µ − ig Aµ
a t

a (2)

and

ψ̄ γµ
↔

Dν ψ = ψ̄ γµ
→

Dν ψ − ψ̄ γµ
←

D∗ν ψ. (3)

In the above equations, g is the strong coupling, ta are the
SU(3) generators in the fundamental representation, and
conventional slashed notation is used, /A = γµA

µ, etc. A
summation over color, spin, and the active number of
quark flavors is implied in the EMT.

In order to investigate the medium response it is nec-
essary to specify how the fast parton couples to the

medium. One possibility, which will be adopted here,
is to model the fast parton as an external current which
couples to the Lagrangian:

L → L −Aa
µ j

µ
a , (4)

where for the moment I do not specify the explicit form
of j (jν should not be confused with the source term,
Jν). The replacement made in (4) preserves non-Abelian
gauge symmetry as long as Dab

µ j
µ
b = 0.

The lowest order Feynman diagrams for calculating
the thermal expectation 〈∂µT

µν(x)〉 in the presence of
the interaction term Aa

µ j
µ
a , are shown in Figure 1. The

two gluon exchange is necessary to couple to the EMT,
which is a color singlet quantity (a two photon exchange
is also necessary in QED, from Furry’s theorem). The
diagram in Figure 1(a) arises from terms in (1) which go
as ψ̄γ∂ψ, whereas Figure 1(b) arises from terms that go
as g ψ̄γAψ. My convention is that the standard Feynman
quark-gluon vertex contributes igγµta, and I will use the
Feynman gauge for gluon propagators.

In order to assign a value to these diagrams, one must
determine what the correct Feynman rules for the EMT
and external current are. These non-standard contribu-
tions are isolated in Figure 2. The contribution from the
EMT shown in Figure 2(a) can be determined by simply
assigning the appropriate momentum to each derivative.
Recalling that one is here interested in 〈∂µT

µν〉 and that
the final result is Fourier transformed into position space,
I find that the value of Figure 2(a) is

ie−ix·(p1−p2)

4

×
(

(p2
2 − p2

1)γ
ν + pν

1(3/p2
+ /p1

) − pν
2(3/p1

+ /p2)
)

.

(5)

One can apply the same procedure to Figure 2(b) where
I will choose the convention that the gluon momentum
flows away from the external current (or into x and any
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FIG. 2: Contributions to the Feynman diagrams of Figure
1 which come from inserting the energy-momentum tensor
and external current interaction term. Their values and how
they are obtained are discussed in the text, see specifically
equations (5) - (7).

vertex) in all cases. The result is

−ig e−ix·(p4+p3−p2) (p4 + p3 − p2)µ

×

(

γνjµ
a + γµjν

a − 2gµν/ja

)

ta

2

(6)

which is only valid when the gluon field in Figure 2(b)
connects with the source.

Finally, for the source contribution in Figure 2(c), one
has very generally

−i

∫

d4z jα
a (z) eiz·p4 (7)

for the case of an external current which contains one
power of g. For the sake of simplicity and to be able
to more easily compare with previous results, I will here
consider an asymptotically propagating fast parton rep-
resented by jµ

a = gQa(t)Uµ δ3(z−u t) where u is the fast
parton’s velocity and Uµ = (1,u). gQa(t) is the charge of
a classical particle in QCD (defined by Qa

i Q
a
j = δijC2i,

with C2i the quadratic Casimir in representation i (3 for
a gluon, 4/3 for a quark)) and Qa(t) evolves in time ac-
cording to Wong’s equations [21]. I will not consider the

time dependence of Qa(t) here, as it is of higher order
in g (however, for higher order calculations one must ac-
count for the time dependence of Qa(t) in order to pre-
serve gauge invariance). For this choice of jµ

a Figure 2(b)
simplifies to

−2πi gQaUα δ(p4 · U). (8)

Before moving on, I point out once again that the Feyn-
man gauge has been used in obtaining equations (6-7).

It is worthwhile to mention here that the above results
can be modified in a straightforward manner to consider
more general situations. For example, one could consider
a fast parton created at an initial time, t = 0, by enforc-
ing a step function in the external current or even include
medium induced gluon radiation from the fast parton in
a phenomenological way by treating the time dependent
spectrum of energetic gluons as additional external cur-
rents in the medium. In any of these situations, the rule
expressed in (7) can be applied.

As mentioned previously, it is necessary to here work
in the real-time formalism of finite temperature field the-
ory. The Green’s function structure of Figure 1 is ob-
tained using the conventions of real-time thermal field
theory as outlined by Das [22]. In the real-time formal-
ism at finite temperature one must sum over two types
of vertices which differ in value by an overall sign. Ad-
ditionally, propagators separate into vacuum and finite
temperature contributions. I will not present the details
of the calculation in this brief report, reserving them in-
stead for a follow-up publication in which medium gluons
will also be considered. Using standard Feynman rules
for real-time thermal field theory in addition to the spe-
cial rules presented in equations (5) - (7) the result for
the thermal contribution is obtained as

〈∂µT
µν(x)〉 = −4i NF C2 g

4

∫

d4p3 d
4p4 d

4p5

(2π)9
e−ix·(p4+p5)δ(p2

3)nF (p3)GR(p4)GR(p3 + p4)GR(p5)δ(p4 · U)δ(p5 · U)

×
[

2 (p3 · U)2 pν
5 − U2 p3 · p4 p

ν
5 − Uν (p3 · U)(2p3 · p5 + p4 · p5)

]

(9)

where GR(p) = (p2 + iǫp0)−1 is the retarded Green’s

function, nF (p) = (e|p
0|/T +1)−1 is the Fermi distribution

function, T is the temperature, and NF is the number of
active flavors.

Equation (9) is the central result of this paper and it is
worthwhile to consider the Green’s function structure it
contains, because this will provide an intuitive picture of
the underlying physics. If one reads from left to right in
the first line it is clear that a particle from the heat bath
(represented by the thermal distribution δ(p2

3)nF (p3))
absorbs a gluon from the external current (represented

by GR(p4)) and then continues to propagate (shown by
GR(p3 + p4)) until it absorbs another gluon from the ex-
ternal current (represented by GR(p5)). A final propaga-
tor representing the reabsorption of the particle by the
heat bath (which would be given by GR(p3+p4+p5)) has
been eliminated by the momentum structure of 〈∂µT

µν〉.
In order to further extract meaningful information

from equation (9) it is useful to consider certain approx-
imations and limits. As was mentioned above, a kinetic
theory calculation of the source term generated by an
asymptotically propagating fast parton was performed
in [17]. Equation (9) should reduce to the kinetic theory
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result within the hard thermal loop (HTL) approxima-
tion (the HTL approximation is formally equivalent to
the Vlasov equation [23]). It is worthwhile to check that
this is indeed the case, as it gives confidence to the ap-
proach introduced in this paper and that (9) has been
evaluated correctly.

The HTL result can be obtained in the limit that the
fields generated by the external current are soft compared

to the temperature, or formally |p4| ∼ gT ≪ T in equa-
tion (9) (g is formally considered to be much less than 1).
Explicitly, one should expand GR(p3 + p4) in the limit of
|p4| ≪ |p3| (since |p3|, which appears in the Fermi dis-
tribution function, is cut off in the integration at a value
on the order of T ) to lowest contributing order. With
this guidance, I find that in the HTL approximation (9)
reduces to

〈∂µT
µν(x)〉HTL =

im2
D C2 g

2

2

∫

d4p4 d
4p5

(2π)6

∫

dΩ

4π
e−ix·(p4+p5)GR(p4)GR(p5)δ(p4 · U)δ(p5 · U)

×

[

p2
4

(

(v · U)2 pν
5 − Uν (v · U)(v · p5)

)

(p0
4 − v · p4 + iǫ)2

+
U2 v · p4 p

ν
5 + Uν (v · U)(p4 · p5)

p0
4 − v · p4 + iǫ

] (10)

where m2
D = g2 T 2NF/6 (quarks only). In equation (10)

dΩ is the integration measure over the solid angle de-
fined by the unit vector v, and vµ = (1,v). Addition-
ally, bare propagators are used for the Green’s functions
GR(p4)GR(p5) in (10) in order to facilitate comparison
to previous results.

The interested reader can verify (as this author has
done) that (10) indeed reproduces the result of [17].
Rather than prove this for the full spatial distribution, I
will here consider the total rate of energy transferred to
the medium and show that this quantity matches with
the previous result (leading log HTL). The total rate of
energy transfer, here denoted dE/dt, is found by inte-
grating the zero component of the source term over all
space

dE

dt
=

∫

d3x 〈∂µT
µ0(x)〉. (11)

The spatial integration yields a factor (2π)3δ(p4 + p5)
from which one can trivially perform the p5 integration.
It is then straightforward to check that the two terms
with coefficient Uν cancel each other, and furthermore
the term with coefficient U2 will vanish by symmetry
upon integration. One finds the expression depends loga-
rithmically on |p4|. The final result including the angular
integrations is

dE

dt HTL
=
m2

D C2 αs

2

(

1 −
tanh−1[u]

γ2 u

)

ln
pmax

pmin

(12)

where γ = (1 − u2)−1/2 and based on the approximation
used in obtaining (10) and physical reasoning pmax ∼
T and pmin ∼ mD. The expression (12) matches the
leading log result of [17]. In what follows I will only
consider the relativistic limit (γ ≫ 1) of (12).

Having verified that (10) reproduces known results
from the HTL approximation, one can consider the full
result, (9), which includes contributions from the full mo-
mentum spectrum (that is, |p4| ∼ |p3| and |p4| ≫ |p3|).

In order to simplify the discussion I will consider the
source term ansatz discussed in [14]

〈∂µT
µν(x)〉 ≈

dE

dt
(Uν − λ∂ν) δ(x − ut). (13)

The utility of (13) is that one can encode basic features of
the source term in a compact way. It is straightforward
to check that (11) is satisfied by (13). The dimension-
full coefficient λ parameterizes local contributions from
the source, that is, terms which globally integrate to zero
(and for instance do not contribute to dE/dt) but may
still be important for exciting the medium. It was found
in [14] that within linearized hydrodynamics a double
peaked structure in the azimuthal emission spectrum as-
sociated with the source given by (13) only appeared for
rather large values of λ (on the order of 0.5 fm or higher
for 20 GeV total energy deposited into the medium). The
basic assumption of equation (13) is that the source term
(9) can be expanded in terms of a δ function and deriva-
tives of a delta function, which should be a reasonable
approximation within the context of hydrodynamics.

It is straightforward to verify that the full source term
given by equation (9) can be put into the form of (13) by
using (11) to obtain dE/dt and

λ ≈
−1
dE
dt

∫

d3xx 〈∂µT
µx(x)〉 (14)

where I have chosen to use the x component of the source
to obtain λ (according to the ansatz of (13) any compo-
nent would work). If one inserts equation (14) into (13) it
is clear that dE/dt drops out of the term proportional to
the gradient, thus dE/dt is simply a multiplicative factor
in the evaluation of λ (it is written in this way to make
easier comparison to [14]). For this reason, and to sim-
plify the analysis, I will take dE/dt ≈ dE/dtHTL (I here
remind the reader I use the relativistic limit of dE/dt so
that it contains no dependence upon the velocity of the
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FIG. 3: In the source term of equation (13) λ couples directly
to sound modes and is important for generating observable
Mach cone signals. The contribution to λ from the source
term (9) is plotted above for g = 1 and T = 400 MeV. It
is clear that λ drops as a function of γ = E/M (M being
the mass of the fast parton) which could have implications
for the trigger pT dependence of azimuthal dihadron correla-
tion measurements (see discussion in text). The inset shows
that the result for λ is largely independent of the separation
parameter, q∗ (see text for details).

fast parton) and instead focus on evaluating the integral
term in (14), for which I will use the full expression given
by (9).

The evaluation of the integral in (14) can be done di-
rectly from (9) through an integration by parts of the
general form:

∫

d3xd3p x eip·x f(p) = i

∫

d3xd3p eip·x ∂px
f(p). (15)

One has to be careful in using (15) because λ has an
infrared divergence. The simplest way around this, and
what I will adopt here, is to introduce a mass term in
the Green’s functions GR(p4)GR(p5) in (9) given by the
thermal gluon mass m2 = m2

D/2.
One can only apply the full result of equation (9) down

to some momentum scale |p4| ∼ q∗ where gT ≪ q∗ ≪ T .
When |p4| ∼ gT the full result contains contributions
from higher order terms and only the HTL approximated
result of equation (10) is consistent to the order I am
working. From a practical point of view in the calculation
of λ this means dividing terms in the integration such
that

λ = λF when |p4| ≥ q∗,

λ = λHTL when |p4| ≤ q∗,
(16)

where λF is obtained from (9) and λHTL is obtained from
(10). The final result should be independent of q∗ (this
type of analysis for the separation of scales in calculations
of finite temperature field theory was introduced in [25]).

As mentioned above it is not possible to present the
details of the calculation in this brief report and I will
instead skip to the result for λ and show that it is inde-
pendent of q∗. The result is shown in Figure 3 as a func-
tion of γ = (1 − u2)−1/2, and, at the risk of pushing the
formal limit of g ≪ 1, I have chosen the experimentally
relevant values of g = 1 and T = 400 MeV. It is inter-
esting to note that λ falls rather sharply as a function of
γ. Recall that λ parameterizes local contributions from
the source and is important for exciting the medium. In
particular, λ couples directly to sound modes (and not
to diffusive modes) when (13) is used as a source term
for hydrodynamics and was found to be crucial to the
appearance of a conical Mach-like emission spectrum in
[14]. The experimental implication of the dependence of
λ on γ as shown in Figure 3 could be found in the trigger
pT dependence of measurements of azimuthal dihadron
particle correlations. In particular, a conical emission
pattern would be less likely to be observed for increasing
trigger pT , which indeed seems to be the case [26]. The
inset of Figure 3 shows that the result is largely indepen-
dent of the separation parameter, q∗, introduced above.

In summary I have calculated the source term for a
medium of thermalized quarks in the presence of an
asymptotically propagating fast parton directly from the
EMT to leading order in perturbation theory and have
presented the result in equation (9). Feynman rules spe-
cific to this calculation were presented in equations (5) -
(7) which can be applied in a straightforward way to more
complicated external currents in future studies. Within
the HTL approximation, it was shown that (9) reduces to
a previous result [17] derived from kinetic theory. In ad-
dition to the HTL approximation, I considered the full re-
sult, which includes contributions when the source fields
are hard (that is, |p| ∼ T and |p| ≫ T ). In order to
simplify the analysis, the source was put into the form
of equation (13), in which case the source is described
by the total rate of energy transferred to the medium,
dE/dt, and local excitations described by the coefficient
λ. I here focused on the evaluation of λ and found that
it falls sharply as a function of γ, as shown in Figure
3. This may have implications for the trigger pT depen-
dence of measurements of azimuthal dihadron particle
correlations in heavy-ion collisions. In particular, a con-
ical emission pattern would be less likely to be observed
for increasing trigger pT , which may indeed be the case
[26]. A future publication will include medium gluons
and present the details of the calculation [27].
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