
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Attractors and first order formalism in five dimensions
revisited

S. Bellucci, S. Ferrara, A. Shcherbakov, and A. Yeranyan
Phys. Rev. D 83, 065003 — Published  1 March 2011

DOI: 10.1103/PhysRevD.83.065003

http://dx.doi.org/10.1103/PhysRevD.83.065003


DZ10565

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

CERN-PH-TH/2010-138

Attractors and first order formalism

in five dimensions revisited

S. Bellucci1, S. Ferrara1,2,3, A. Shcherbakov4,1, A. Yeranyan1,5

1 INFN - Laboratori Nazionali di Frascati,
Via Enrico Fermi 40,00044 Frascati, Italy

bellucci, ashcherb, ayeran@lnf.infn.it

2 Physics Department, Theory Unit, CERN,
CH 1211, Geneva 23, Switzerland

sergio.ferrara@cern.ch

3 Department of Physics and Astronomy,
University of California, Los Angeles, CA USA

4 Museo Storico della Fisica e
Centro Studi e Ricerche “Enrico Fermi”
Via Panisperna 89A, 00184 Roma, Italy

5 Department of Physics, Yerevan State University,
Alex Manoogian St., 1, Yerevan, 0025, Armenia

Abstract

The attractor mechanism in five dimensional Einstein-Maxwell Chern-Simons

theory is studied. The expression of the five dimensional rotating black object

potential depending on Taub-NUT, electric and magnetic charges as well as on

all the scalar and gauge fields, is investigated. The first order formalism in d =

5 is constructed and analyzed. We derive a general expression defining the fake

superpotential which is valid for all charge configurations. An explicit expression

for the fake superpotential is constructed, for all very special geometries, in the case

of vanishing Taub-NUT charge. We carry out an analogous construction in the very

special geometries corresponding to t3 and stu models, for the most general charge

configurations. The attractor flows and horizon values of all fields are given.



Introduction

The study of the low energy approximation is usually worthwhile, in order to clarify some
peculiar properties of the full intricate theory, since in many cases it is able to grasp the
main features of the theory. This happens, for example, in the case of superstring theory
compactified on CY3 manifold, which yields a four dimensional supergravity theory. It is
also the case for the same type of compactification of M-theory, where one ends up with
a five dimensional supergravity theory.

Supergravity solutions in five space-time dimensions often reveal interesting connec-
tions with their four dimensional counterparts. A vast literature is devoted to this is-
sue [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Investigating black hole solutions in five dimensional gravity theory is interesting from
different points of view. First of all, five dimensional supergravity can be thought of as
the eleven dimensional one compactified on a six torus T 6 or a six dimensional Calabi-
Yau space. Secondly, the five dimensional theory is the theory of highest dimensionality
in which supersymmetric black holes might reside. Apart from black holes, also other
black objects, such as black strings and black rings, may live in five dimensions with
near horizon geometries AdS3 × S2 and AdS2 × S2 × S1 respectively. Static spherically
symmetric black holes in five dimensions have AdS2×S3 near horizon topology and carry
electric charges only [16]. Black strings carry only magnetic charges, while black rings
and stationary rotating black holes carry both electric and magnetic ones.

In order to consider all these black objects in a unified framework, we will use the black
hole potential approach and the first order formalism. As far as we know the systematic
analysis of the first order formalism and the construction of the non-BPS attractor flows
in five dimensions are still missing. A few attempts to study the problem were made
for spherically symmetric static black holes [10]. As it will be demonstrated, the result
obtained by [10] is a very particular case of a more general picture considered in this
paper. This general analysis includes all possible charges and gauge fields (axions).

The first order formalism is important since one passes from the second order equations
of motion to the first order ones, without doubling the number of them. This is related to
the fact that scalar charges are not independent and the formalism automatically discards
the blowing up solutions. Integrating first order equations of motion is certainly easier, so
it enhances the possibilities to find the corresponding attractor flow. Another advantage
of the first order formalism is the possibility to construct multicenter attractor flows and
find walls of marginal stability [22]. In four dimensions the relevant issue was considered
in detail from many points of view [23, 24, 25, 26, 27, 28], but in five dimensions little
attention was given to this problem. One of the purposes of the present article is to try
to fill this gap.

We revisit also the 5d/4d connection. The underlying scalar manifold geometry for
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the N = 2 five dimensional supergravity is of a very special type [29], which seems to
be simpler than the special Kähler geometry of N = 2 supergravity [30]. Therefore, one
might näıvely think that this fact significantly simplifies the analysis of the first order
equations, eventual flat direction problems, etc. One thing to raise suspicions is the fact
that the N = 2 D = 5 supergravity being dimensionally reduced to D = 4 is equivalent
to the well-known N = 2 D = 4 one (see i.e [14] and refs. therein), with the relevant
special Kähler geometry of the scalar manifold. Therefore, the difficulties pertinent to
the N = 2 D = 4 supergravity are lifted up to the five dimensional theory. We will
show that, in the most general setup, the five dimensional theory possesses the same
level of difficulty as its four dimensional counterpart. This becomes apparent when trying
to resolve attractor flow equations for BPS or non-BPS cases, as well as in finding out
attractor values of the moduli or in calculating the entropy.

Nevertheless, certain simplifications do take place in special instances. Assuming
the five dimensional space to be spherically symmetric, one ends up with a very simple
expression for the black hole potential [16]

V5 ∼ f ijqiqj

with consequential simplifications of the expressions for the central charge and the fake
superpotential. From the four dimensional perspective this picture corresponds to con-
sidering purely electrically charged black holes, with axions being truncated and the
graviphoton charge p0 being put equal to unity.

The paper is organized as follows. In section 1 we start with a qualitative warming
up example of pure supergravities in four and five dimensions. In section 2 we introduce
the basic setup and derive the formulae we will make subsequent use of. Section 3 is
devoted to the first order formalism in five dimensions. In section 4 the 5d/4d connection
is revisited from various points of view. Section 5 is devoted to the application of the
main results to particular models and charge configurations. We end up with conclusions,
where we summarize the results and give directions for future investigations.

1 Attractors without scalars

Let us start with a warming up example. The treatment of the example will be a bit
cavalier, as the purpose of this section is to make a qualitative discussion and to prepare
the scene. More explicit notations will be then introduced in the following sections.

We compare four and five dimensional pure supergravity extremal static black hole
solutions in a spherically symmetric, asymptotically flat background. Pure supergravity
models, apart from the gravitational multiplet, contain one vector field as well

S =

∫

dDx
√−g

[

1

2
R− 1

4
FµνF

µν

]

. (1)
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In four dimensions the black hole under consideration is an extremal Reissner-Nordström
black hole

ds2 = −
(

1 +
M

r

)−2

dt2 +

(

1 +
M

r

)2
(

dr2 + r2dΩ2
2

)

(2)

with AdS2 × S2 near horizon geometry. Its mass and entropy are equal to

M = q, S ∼ q2

where q is the electric charge of the black hole. The black hole can be dyonic, i.e. it
can carry also a magnetic charge. In contrast, the five dimensional static and spherically
symmetric black hole (the so-called Tangherlini black hole [31])

ds2 = −
(

1 +
M

r2

)−2

dt2 +

(

1 +
M

r2

)

(

dr2 + r2dΩ2
3

)

(3)

carries an electric charge only and has AdS2 × S3 near horizon geometry. Its mass and
entropy are given by

M = q, S ∼ q3/2.

At first glance these black holes represent the same object in various dimensions with the
following relation between the mass and the entropy:

S ∼M
D−2

D−3 .

However, looking at them from the point of view of the underlying invariants one can
notice that the Tangherlini black hole possesses an attractor nature unlike the Reissner-
Nordström one.

The Reissner-Nordström black hole is a particular case of an axion-dilaton family,
where only the graviphoton charges are switched on and the holomorphic prepotential is
a constant. So, the underlying invariant is the quadratic one I2 and the entropy is

S ∼ I2.

As it is widely known (see for example [32]) the axion-dilaton family, and hence the
Reissner-Nordström solution, has no five dimensional uplift.

On the other hand, the Tangherlini black hole is a particular case of the so-called very
special geometries with the underlying invariant I3. As we show below, this solution has
no regular analog in four dimensions. To this end we perform the usual Kaluza-Klein
reduction, singling out explicitly a non trivial S1 fibration and representing the metric (3)
in the following form:

ds2 = −
(

1 +
M5

r

)−2

dt2 +

(

1 +
M5

r

)

1

r

(

dr2 + r2dΩ2
2 + r2 (dψ + cos θdφ)2

)

. (4)
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Then the corresponding four dimensional metric reads

ds2 = −r1/2

(

1 +
M5

r

)−3/2

dt2 + r−1/2

(

1 +
M5

r

)3/2
(

dr2 + r2dΩ2
2

)

. (5)

Upon dimensional reduction there appears a scalar field (dilaton)

e−2φ ∼ r1/2

(

1 +
M5

r

)1/2

. (6)

As one can see from the expressions (5) and (6) the corresponding four dimensional ADM
mass and the dilaton diverge at infinity.

In order to be able to find regular solutions as well, one should slightly modify the
Tangherlini metric (4)

ds2 = −
(

1 +
M5

r

)−2

dt2

+

(

1 +
M5

r

)

[

(

h0 +
p0

r

)

(

dr2 + r2dΩ2
2

)

+
1

h0 + p0

r

(dψ + cos θdφ)2

]

,

(7)

where p0 is a Taub-NUT charge and h0 is the distance between the center of the black hole
and the core of the Taub-NUT space. The Tangherlini black hole corresponds to h0 = 0
and p0 = 1. If h0 is different from zero (hence it can be put to one without loss of
generality), the spatial part of the above metric has asymptotically R

3 × S1 geometry
which allows us to perform a non singular dimensional reduction. The near horizon
geometry of the metric (7) is of AdS2 × S3/Zp0 type and, when p0 = 1, it coincides with
that of the Tangherlini space.

For the Tangherlini-like metric (7), the corresponding four dimensional picture is

ds2 = −
(

1 +
p0

r

)−1/2 (

1 +
M5

r

)−3/2

dt2 +

(

1 +
p0

r

)1/2 (

1 +
M5

r

)3/2
(

dr2 + r2dΩ2
2

)

,

e−2φ ∼ 1 + M5

r

1 + p0

r

, M4 =
1

4

(

p0 + 3M5

)

(8)
The entropy reads

S ∼
√

p0M3
5 .

This model is the so-called t3 model, the entropy for which is a square root of the quartic
invariant I4 = p0I3. For all Tangherlini-like black holes with p0 = 1 the entropy is
proportional to the square root of the cubic invariant I3.
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Despite all this, the Reissner-Nordström (2) and Tangherlini-like metric (4) have one
common point. The electrically charged Reissner-Nordström metric can be obtained by
dimensional reduction from the regular Tangherlini-like one with p0 = M5. In this case,
the metric (8) becomes of Reissner-Nordström type and the dilaton becomes constant.

In what follows we are going to generalize the five dimensional Tangherlini-like solution
including into considerations scalar fields and all possible charges. In this setup we revisit
as well relations between four and five dimensional objects.

2 Five dimensional action and black object potential

Let us consider a gravity theory in five dimensions minimally coupled to ns real scalar ϕa

and nv vector Ai
M fields. The corresponding action has form [16]

S =

∫

d
5x
√−g

[

1

2
R− 1

2
hab(ϕ) ∂Mϕ

a∂Mϕb − 1

4
fij(ϕ)F i

MNF
j MN

− 1

24
dijkǫ

MNKLPF i
MNF

j
KLA

k
P

] (9)

where the field strength is defined as F i
MN = ∂MA

i
N − ∂NA

i
M , the Chern-Simons contri-

bution comes with a constant tensor dijk to provide the gauge covariance of the action
and M,N,K, . . . = 0, 1, . . . , 4, a, b = 1, . . . , ns, i, j, k = 1, . . . , nv.

The solutions we are interested in are stationary single center extremal black objects.
Therefore, the corresponding Ansatz for the five dimensional space-time metric is chosen
as

ds2 = gMNdx
MdxN = e2φ(τ)ds2

(4) + e2ω(τ)
(

dψ −A0
µdx

µ
)2
,

ds2
(4) = g(4)

µν dx
µdxν = −e2U(τ)dt2 + e−2U(τ)τ−4

(

dτ 2 + τ 2
(

dθ2 + sin2 θdϕ2
))

.
(10)

In these coordinates the spatial infinity corresponds to τ = 0. Note that near the horizon
the five dimensional metric is of the form AdS2 × S2 × S1 that, generally speaking,
admits considering not only black holes but also black rings and black strings [3,14]. The
black hole/string/ring choice corresponds to different fiberings with respect to the S1:
if the S1 stems from fibering AdS3 ∼ AdS2 × S1 then the corresponding near horizon
five dimensional geometry is of AdS3 × S2 type and, hence, describes black strings. If
it instead stems from fibering S3 ∼ S2 × S1 then the corresponding five dimensional
geometry is of AdS2 × S3 type and, hence, describes static black holes. Otherwise, one
has either rotating black holes or black rings. Although only the near horizon geometry
of black rings is of the form (10), nevertheless, some properties of black rings as well can
be studied using the metric (10).
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The Kaluza-Klein vector potential in the metric (10) is chosen as

A0
µdx

µ = e05dt− p0 cos θ dϕ

with p0 playing the role of the Taub-NUT charge. Due to the Einstein equations, the
warp factors satisfy the following equation:

d2

dτ 2
(ω + 2φ) +

(

d

dτ
(ω + 2φ)

)2

− 1

τ

d

dτ
(ω + 2φ) = 0

that can be easily integrated
eω+2φ = C1 + C2 τ

2.

If the integration constant C2 does not vanish, then, in order for the entropy to be finite,
the warp factor e−2U should be finite at the horizon. Consequently, the metric (10), in
the near horizon limit, ceases to have an AdS factor, so that it can hardly correspond to
any extremal black object. Therefore, we put the integration constant C2 equal to zero
and normalize the other one as C1 = 1. In what follows we assume exactly these values
for the integration constants, so that ω = −2φ.

The five dimensional vector potentials are expressed in terms of the electric field ei

and dipole charges pi as follows:

Ai
Mdx

M = ei
5dt− p̂i cos θdϕ+ aidψ = eidt− pi cos θdϕ+ ai

(

dψ −A0
µdx

µ
)

(11)

so that
ei
5 = ei − aie05, p̂i = pi − aip0. (12)

Let us note the “lengthening” of the dipole charges pi. As it was stressed in [14, 15]
precisely such charges p̂i are genuine fluxes through the S2 and, as one can see, the
axions ai and the Taub-NUT charge contribute to them as well. Substituting the warp
factor ω in terms of φ allows us to integrate some of the Maxwell and Einstein equations

ėi
5 = −ȧi e05 + e2φ+2Uf ij q̂j, ė05 = 2e6φ+2U Ĵ , (13)

where the dots stand for a differentiation with respect to τ and the functions Ĵ and q̂i are
defined as

q̂i = qi − dijka
jpk +

1

2
dijka

jakp0, qi = const,

Ĵ = J + aiqi −
1

2
dijka

iajpk +
1

6
dijka

iajakp0, J = const.
(14)

The constant parameter J is just an angular momentum and the qi define electric fluxes.
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Analogous expressions showed up in [11, 14, 15]. Here these expressions appear au-
tomatically as solutions to five dimensional Einstein and Maxwell equations and with a
correct dependence on the axions and the Taub-NUT charges.

From the four dimensional perspective it is worth passing to the redefined dilaton φ,
coupling matrices fij and hab and scalars ϕa as follows:

e−2φ → 21/3e−2φ, fij → 2−1/3fij, ϕa → 2−1/3ϕa, hab → 2−1/3hab. (15)

In terms of the redefined fields the equations of motion acquire the following form:

Ü = e2UV5, φ̈ =
1

6
e2U ∂V5

∂φ
+

1

6
e4φ fij ȧ

iȧj ,
d

dτ

[

e4φfij ȧ
j
]

= 2e2U ∂V5

∂ai
,

d

dτ

[

habϕ̇
b
]

= 2 e2U ∂V5

∂ϕa
+

1

2
e4φ∂fij

∂ϕa
ȧiȧj +

1

2

∂hbc

∂ϕa
ϕ̇bϕ̇d,

(16)

while the “energy” constraint becomes

e2UV5 = U̇2 + 3φ̇2 +
1

4
habϕ̇

aϕ̇b +
1

4
e4φfij ȧ

iȧj . (17)

The equations of motion (16) can be derived from a one dimensional action

S =

∫

dτ

[

U̇2 + 3φ̇2 +
1

4
habϕ̇

aϕ̇b +
1

4
e4φfij ȧ

iȧj + e2UV5

]

. (18)

The five dimensional black object potential used above in eqs. (16)-(18) is defined as

V5 =
1

2
e−6φ(p0)2 +

1

2
e−2φfij p̂

ip̂j +
1

2
e2φf ij q̂iq̂j +

1

2
e6φĴ2. (19)

This is the genuine expression for the black object potential in five dimensions, it
contains both electric and magnetic contributions, as well as those corresponding to the
Taub-NUT charge and rotation. Let us note that Eq.(19) is an expression of the black
object potential previously obtained in [14, 20] in different ways. However, quite often,
rather than the full form of the potential, just some its terms (corresponding to the electric
or magnetic contributions, for example) are considered [10]. In section 5.3 we demonstrate
that such an approach is true in some specific cases, namely, when it is possible to neglect
the axions. There it is shown as well, how the well known [16] five dimensional electric
potential Ve ∼ f ijqiqj appears.

The black object potential (19) can be written in the form [33]

V5 =
1

2
Z0 2

m +
1

2
Z i

mfijZ
j
m +

1

2
Zeif

ijZej +
1

2
Z2

e0 (20)
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in terms of real electric Ze 0, Ze i and magnetic Z0
m, Z

i
m “central” charges

Z0
m = e−3φp0, Z i

m = e−φp̂i, Ze i = eφq̂i, Ze0 = e3φĴ . (21)

The standard four dimensional complex central charge and its covariant derivatives
are then expressed in terms of the real ones (21) as follows:

Z =
1

2
√

2

[

Z0 − iX iZi

]

, DiZ =
1

2
√

2
e2φ

[

−3i

2
XiZ̄0 +

(

δj
i −

3

2
XiX

j

)

Z̄j

]

, (22)

where X i, Xi are constrained scalar fields, to be defined below, and Z0 = Ze0 + iZ0
m, Zi =

Ze i + ifijZ
j
m. In terms of these charges the black object potential can be written as

V5 =
1

2

[

Z0Z̄0 + f ijZiZ̄j

]

.

At the end of this section, let us present also the basic properties of the very special
geometry which will be intensively used in what follows. While N = 2 D = 4 supergravity
is based on the special Kähler geometry, the five dimensional N = 2 supergravity is
based on the very special geometry [29]. The very special geometry occurs in M-theory
compactification on Calabi-Yau sixfolds. The supersymmetry, firstly, requires that the
number ns of the scalars ϕa and the number nv of the vectors Ai

M be related as nv = ns+1
and, secondly it relates the coupling matrices of hab and fij in a way presented below.

All the geometry is then encoded in a cubic polynomial defined by the d-tensor

V =
1

6
dijkX

iXjXk = 1. (23)

From the Calabi-Yau compactification point of view, dijk are the intersection numbers
and nv is a Hodge number h1,1 (see [34] and ref.[4] therein). The physical scalar fields ϕa

are just a solution X i = X i(ϕ) to the cubic constraint (23). The five dimensional gauge
coupling matrix fij(X) is given by

fij(X) = − ∂ 2 log V

∂X i ∂Xj
V =1

, (24)

and hence,

fij(X) = −dijkX
k + 9XiXj, Xi =

1

6
dijkX

jXk . (25)

The following very special geometry identities will be useful:

X i∂Xi

∂ϕa
= 0, hab∂X

i

∂ϕa

∂Xj

∂ϕb
= f ij − 1

3
X iXj,

fijX
i = 3Xj , fij

∂Xj

∂ϕa
= −3

∂Xi

∂ϕa
.

(26)
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For symmetric spaces one can introduce the inverse d-tensor [35] defined as

di(jkdmn)pd
ipq =

4

3
δq
(jdkmn). (27)

This allows us to invert the last equation in (25) and rewrite the cubic polynomial (23)
in terms of Xi

X i =
9

2
dijkXjXk , dijkXiXjXk =

2

9
. (28)

In terms of the constrained scalar fields X i, the five dimensional N = 2 supersymmetric
action (9) acquires the following form:

S =

∫

d
5x
√−g

[

1

2
R − 1

2
fij(X) ∂MX

i∂MXj − 1

4
fij(X)F i

MNF
j MN

− 1

24
dijkǫ

MNKLPF i
MNF

j
KLA

k
P

] (29)

so that the five dimensional N = 2 supersymmetric action is completely characterized by
the coupling matrix fij(X) and the Chern-Simons constant tensor dijk.

3 The first order formalism

It is widely known that in four dimensions the second order equations of motion can be
rewritten as first order equations. Unlike the well known analogous procedure of switching
from the Lagrange to the Hamiltonian formulation of mechanics, here the number of
equations does not double but remains the same [24, 25]. This is related to the fact that
the charges of the scalar fields might acquire specific values, in order to give a solution
that is regular everywhere, from the infinity to the horizon.

Here, we would like to develop the first order formalism for black objects in five
dimensions. We will concentrate mostly on the non-BPS black hole solution, since the
discussion of the BPS ones is covered in the literature in much more detail.

The first order equations in the case under consideration have the following form:

U̇ = −eUW, φ̇ = −1

3
eU ∂W

∂φ
,

ϕ̇a = −4 eUhab∂W

∂ϕb
, ȧi = −4 eU−4φf ij ∂W

∂aj
.

(30)

where a real function W (φ,X, a) is related to the black object potential (19) in the
following way:

V5 = W 2 +
1

3

(

∂W

∂φ

)2

+ 4hab∂W

∂ϕa

∂W

∂ϕb
+ 4e−4φf ij ∂W

∂ai

∂W

∂aj
. (31)
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Let us stress that this is a genuine expression for the black object potential in terms
of the superpotential W (be it fake for non-BPS or normal for BPS black holes) and
it contains the full dependence on the charges, dilaton and axions. In other words, the
superpotential W must satisfy this formula, in order to reproduce the correct attractor
flow (30).

In the case when the Taub-NUT charge p0 vanishes one can construct an expression
for the (fake) superpotential W , which turns out to be equal to

W =
1

2
√

2

[

±e3φĴ + 3e−φ piXi(ϕ)
]

. (32)

It is not difficult to check that substituting (32) into (31) one gets the correct expression
for the black object potential (19) when p0 = 0. The plus (minus) sign in Eq. (32)
corresponds to the (non) BPS attractor flow. Let us note that when the Taub-NUT
charge vanishes, all magnetic charges pi should not vanish simultaneously in order to
have a regular solution with non-vanishing horizon.

The expression (32) is valid for any d-geometry, be it symmetric or not. For example,
it is valid for non symmetric ones t3 + s3, stu+ t3 etc.

Let us discuss further the BPS case. One can easily see, from the expressions (22)
and (32), that

|Z| =

√

W 2 +
1

8
(q̂iX i)2

so formally W and |Z| are different. The regular flows corresponding to the BPS “fake
superpotential” (32) have the form

e3(φ−U) =

√
2

3
dijkH

iHjHk, Hi = dijka
jHk,

X i =
H i

[

1
6
dijkH iHjHk

]1/3
, H iq̂i = 0,

(33)

where H i = hi + piτ and Hi = hi + qiτ . From the last expression in the formulae above,
one can easily obtain the so-called integrability condition

hiqi = hip
i. (34)

When X iq̂i vanishes, the superpotential W and |Z| coincide and the solution (33)
satisfies as well the flow equations governed by |Z|. The difference between the flows
governed by W and |Z| is that the latter allows for a much wider class of attractor flows.
It is known [36] that, for the flows governed by |Z|, the integrability condition has the
form

hΛqΛ = hΛp
Λ, Λ = 0, 1, . . . , nv.
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This condition coincides with (34) when h0 = 0. This means that not only does p0 vanish,
but the whole harmonic function H0 = h0 + p0τ vanishes as well.

So, in the BPS case the “fake superpotential” (32) describes only a particular family
of the flows (h0 = 0). Then from (34) one ends up with a codimension one subspace
of the 2nv-dimensional scalar manifold, whose points determine the asymptotic value
of |Z|. This situation is analogous to having the axion truncated ai = 0, which yields
a nv dimensional moduli subspace. The main difference is that here one of the axions is
expressed in terms of the other fields. The axion-truncated case is more restrictive and
may be obtained from our case putting the nv − 1 additional conditions hi = 0 (which is
possible only when qi = 0).

As for the non-BPS case, the expression (32) also describes a specific attractor flow.
This form of W is not unique and in fact in section 5.2 we show that there exist other
forms of the fake superpotential W that depend on the values of the scalar fields at the
infinity. The fact that W is not unique for the non-BPS case, noted in [24], implies that
there might be different expressions leading to the same form of the black object potential.

In the case of vanishing p0 for the both – BPS and non-BPS – cases the entropy
acquires the form

S = 2

√

|Ĵhdijkpipjpk|,

where Ĵh is a value of Ĵ in which the axions are taken on the horizon. These on-horizon
values of the axions are deduced from the equation

qi = dijka
jpk.

As we stressed, the expression (31) is a fundamental one, nevertheless quite often other
relations between the black object potential V5 and superpotential W are used [10]. This
is related to a fact mentioned in section 2, when one considers not the complete form,
but just particular contributions in the black object potential. Let us illustrate it on a
specific example.

Let us consider the so-called electric charge configuration (that is q0 = pi = 0) with
vanishing axions. Then the black object potential (19) acquires the following form:

V5(φ, ϕ) =
1

2
e−6φ(p0)2 +

1

2
e2φf ij(ϕ) qiqj . (35)

On-horizon values of the dilaton φh and the scalar fields ϕa
h are obtained [30] by extrem-

izing the black object potential

∂V5

∂φ
=
∂V5

∂ϕa
= 0 ⇒ e−8φh =

f ij(ϕh) qiqj
3(p0)2

,
∂f ij

∂ϕa
qiqj = 0.

11



The value of the entropy is then just the critical value of the black object potential [30]

S = V5(φh, ϕh) = 2
√

|p0|
(

1

3
f ij(ϕh)qiqj

)3/4

which coincides perfectly with [37]. It is clear that, in order to reproduce the correct
on-horizon values of the scalars ϕa

h one could have started with a potential of the form

V (ϕ) ∼ f ij(ϕ)qiqj (36)

that would give the required values of the scalar fields and, naturally, would not give any
information about the value of the dilaton φ. The correct value of the entropy would not
be Vhor anymore, but its exponential S ∼ V

3/4
hor . Unlike the full black object potential (35),

its reduced version (36) does not encode the complete behaviour of the scalar fields; it is
good only for reproducing their horizon values.

Analogous considerations are valid in the first order formalism as well. Using the basic
relation (31) with the axions ai discarded, one can check that in the electric configuration
the superpotential has the following form1:

W (φ, ϕa) =
1

2
√

2

[

±e−3φp0 + eφqiX
i(ϕ)

]

(37)

and the on-horizon values of the scalar fields ϕa
h and of the dilaton φh are determined by

its critical points

∂W

∂φ
=
∂W

∂ϕa
= 0 ⇒ e−4φh =

qiX
i(ϕh)

3p0
, qi

∂X i

∂ϕa
= 0.

The value of the entropy in the first order formalism is given by

S = W 2(φh, ϕh) = 2
√

|p0|
(

1

3
qiX

i(ϕh)

)3/2

.

It is obvious that the correct values of the scalar fields could have been reproduced from
a “reduced” superpotential of the form

W (ϕ) ∼ qiX
i(ϕ). (38)

This is exactly the expression found in [10]. Between the reduced potentials (36) and (38)
there is a relation

V = W
2 + 3hab ∂W

∂ϕa

∂W

∂ϕb
(39)

1here the plus sign corresponds to the non-BPS attractor flow, the minus sign – to the BPS one.
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which is valid for all values of the scalars ϕa. As one sees from the equations of motion (16),
the significance of the reduced potentials is quite limited: eliminating the dilaton φ makes
the theory valid on the horizon only. Curiously enough, the relation (39) between the
reduced potentials is of the form (31), although numerical coefficients are different.

When making the above considerations we left aside many questions concerning the
validity of discarding the axions ai, the dynamics of the scalar fields ϕa, the dilaton φ and
the warp factor U etc. We answer these questions in section 5.3.

4 5D/4D connection

The gravitational part of the five dimensional action (9) contains the warp factors φ and U ,
as well as the Kaluza-Klein vector potential A0

µ. The matter part contains ns physical
scalar fields ϕa and nv vector fields Ai

µ. The Kaluza-Klein vector is a four dimensional
one, while the five dimensional vector fields (11) are related to their four dimensional
counterpart as follows:

A(4)i
µ dxµ = eidt− pi cos θdϕ.

The parametrization of the five dimensional metric (10) is such that the field U is
just a four dimensional warp factor, while its counterpart φ defines the four dimensional
dilatons in a way described below.

As it was mentioned at the end of section 2, in order to endow the action (9) with N =
2 supersymmetry, it is easier to write it down in terms of ns + 1 = nv scalar fields X i

satisfying a cubic constraint (23), rather than in terms of the unconstrained scalars ϕa. In
terms of these constrained scalars the four dimensional complex moduli zi of N = 2 D = 4
supergravity are expressed as follows:

zi = ai − iY i, where Y i = e−2φX i (40)

so that ai and Y i are genuine four dimensional axions and dilatons, correspondingly. The
dilaton field φ is proportional to a Kähler potential K

e6φ = 8 eK =
3!

dijkY iY jY k
.

The metric of the scalar manifold of the special Kähler geometry in D = 4 is then related
to its D = 5 counterparts as

gij =
∂ 2K

∂zi∂z̄j
=

1

4
e4φ fij. (41)

From the four dimensional perspective the five dimensional angular momentum acquires
the meaning of the graviphoton electric charge

J = q0 ⇒ Ĵ = q̂0.

13



With this identification the black object potential can be written as

V5 = 4eK

[

q̂2
0 +

1

4
gij q̂iq̂j +

1

16
e−2Kgij p̂

ip̂j +
1

64
e−2K(p0)2

]

that coincides with the well known expression for the four dimensional black hole poten-
tial [14, 20, 30]

V5 = VBH .

The equation (31) defining the superpotential W may be rewritten in terms of the
four dimensional moduli (40)

V5 = W 2 + 4gij ∂W

∂zi

∂W

∂z̄j
.

Masses and entropies In four dimensions for the maximally symmetric case corre-
sponding to the problem (that is with the spherical symmetry of the three dimensional
space), the mass of a supersymmetric black hole is given by the value of the central
charge Z4 at the infinity and its entropy is defined by the central charge at the horizon

M4 = |Z4|∞, S4 = |Z4|2hor.

This means that the mass and entropy are homogeneous functions, respectively of the
first and the second degree in the charges

M4 ∼ Q, S4 ∼ Q2,

where Q is a collective notation for both electric and magnetic charges.
In five dimensions, with the assumption of the maximal symmetry (which in this

case is a spherical symmetry in four dimensional space), the entropy and mass for a
supersymmetric black hole are given by

M5 = |Z5|∞, S5 = |Z5|3/2
hor.

The central charge Z5 is of the form qiX
i or piXi, so it is linear in the charges Q, so that

the mass scales linearly, as it is in four dimensions. One might think that unlike in four
dimensions the entropy in five dimensions scales as S5 ∼ Q3/2. The delicate point here is
the maximal symmetry of the space dictated by the symmetry of the problem.

In four dimensions all electromagnetic charges QΛ = {Q0, Qi} are black hole charges,
while in five dimensions only Qi are black hole charges and Q0 is a topological one. In the
Ansatz (10) one of the topological charges is the Taub-NUT one p0. Namely this charge
is responsible for having the above mentioned maximal symmetry of the four dimensional

14



space. When p0 = 1, then the four dimensional space becomes spherically symmetric;
when p0 6= 1, then the corresponding four dimensional space is just “locally” spherically
symmetric and possesses a global defect. This is reflected in the fact that one of the
spherical angles does not change from 0 to 4π, as it should be for a spherically symmetric
space, but from 0 to 4π/p0.

Restoring the dependence of the entropy on the charge p0

S5 = |Z5|3/2
hor

√

p0

one gets that the black hole entropy is again a homogeneous function of the second degree
in the charges.

Duality group

Let us dwell on the 4D/5D correspondence from the point of view of the duality groups G4

and G5 in four and five dimensions [38, 39, 40, 41]. We concentrate mostly on the case
of N = 8 supersymmetry, although some results remain valid for N = 2, as well. For
the N = 8 case the duality symmetry groups G5 and G4 are E6(6) and E7(7) correspond-
ingly.

The Lie algebra g4 of the duality group G4 can be decomposed as follows [39]

g4 = g5 + SO(1, 1) + T27(−2) + T ′

27(+2),

so that
G4 ⊃ {G5 × SO(1, 1)} sT ′

27. (42)

Note that the subgroup SO(1, 1)sT ′

n is a symmetry for any cubic d-geometry (as given in
(44), (45) below). Due to this splitting, the underlying invariants of the duality symmetry
groups are related. In the case of G4 the invariant is a quartic one I4, while for G5 it is a
cubic one I3. The cubic invariant can be constructed in a two-fold way

I3(p) =
1

6
dijkp

ipjpk, I3(q) =
1

6
dijkqiqjqk,

where dijk is exactly the tensor defining the Chern-Simons contribution in the action (9)
and is an invariant tensor of the duality group G5. For the N = 8 case and for specific N =
2 cases the tensor dijk is such that dijk is well defined, so that I3(q) exists. Then, the
quartic invariant is related to its cubic analog as follows:

I4 = −
(

p0q0 + piqi
)2

+ 4

[

q0I3(p) − p0I3(q) +
∂I3(p)

∂pi

∂I3(q)

∂qi

]

. (43)
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Under the splitting (42) the fundamental representation of E7(7) decomposes as follows:

56 = 27+1 + 27′

−1
+ 1+3 + 1′

−3
,

where 27 stands for real representations of E6(6) with SO(1, 1) weights ±1 and 1 stands
for the Kaluza-Klein singlet arising due to the dimensional reduction and having the
weights ±3. The prime denotes the contravariant representation.

On the representation 56 the infinitesimal transformations of T ′

27 are realised as [38,39]

δ









pi

p0

qi
q0









=









0 t′i 0 0
0 0 0 0

−dijkt
′k 0 0 0

0 0 −t′i 0

















pi

p0

qi
q0









. (44)

Another infinitesimal transformation realised on the representation 56 is generated by SO(1, 1)

δ









pi

p0

qi
q0









=









−λ 0 0 0
0 −3λ 0 0
0 0 λ 0
0 0 0 3λ

















pi

p0

qi
q0









. (45)

Previously in formulas (14) and (12) we defined the “long” charges q̂i, p̂
i, q̂0









p̂i

p̂0

q̂i
q̂0









=









1 −ai 0 0
0 1 0 0

−dijka
k 1

2
dijka

jak 1 0
−1

2
dijka

iaj 1
6
dijka

iajak ai 1

















pi

p0

qi
q0









(46)

and for further simplicity we introduced here p̂0 as well. This is just a finite form of the
translational symmetry corresponding to the real representation 27 of the E6(6), which
can be easily obtained by exponentiating the nilpotent matrix of degree 3 in eq. (44) and
putting t′i = ai. The analogous finite transformation corresponding to (45) with λ = φ
has the form









pi

p0

qi
q0









′

=









e−φ 0 0 0
0 e−3φ 0 0
0 0 eφ 0
0 0 0 e3φ

















pi

p0

qi
q0









. (47)

The simultaneous action of both the transformations (46) and (47) gives the real “central”
charges (21), in terms of which the black object potential is expressed (20). One may
easily observe that all the dependence of these “central” charges on the axions is absorbed
in the definition of “long” charges

Z0
m(p, q, ϕ, a) = Z0

m(p̂, q̂, ϕ, 0), Z i
m(p, q, ϕ, a) = Z i

m(p̂, q̂, ϕ, 0) etc.
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Therefore, the same property holds for the black object potential

V5(p, q, ϕ, a) = V5(p̂, q̂, ϕ, 0).

Even more, all the invariants [26] possess the analogous property

ia(p, q, ϕ, a) = ia(p̂, q̂, ϕ, 0). (48)

As for the quartic invariant, it remains unchanged under the transformations (46)

I4(p̂, q̂) = I4(p, q). (49)

Even more, since I4 is a G-invariant with respect to E7(7) transformations, it does not
change under the simultaneous action of the transformations (46) and (47)

I4(p, q) = I4(Zm, Ze) = −(Z0
mZe0 + Z i

mZei)
2 +

2

3
dijkZe0Z

i
mZ

j
mZ

k
m

− 2

3
dijkZ0

mZeiZejZek + dijkdipqZeiZejZ
p
mZ

q
m.

(50)

At the end of the paragraph, let us notice the following relations:

q̂i =
∂q̂0
∂ai

, dijkp̂
k = − ∂q̂i

∂aj
= − ∂2q̂0

∂ai∂aj
,

∂p̂i

∂aj
= −δj

i p
0

so that, in fact, there is only one essential function q̂0, from which all the other field
dependent charges can be derived.

N = 2 stu model and N = 8 supersymmetry

The black object potential (19) might possess N = 8 supersymmetry, depending on the
form of the coupling matrix fij . For the N = 2 case the latter is given in terms of the real
special geometry, while for the N = 8 case this matrix is given in terms of the E6(6) coset
representation. However, when one considers a case with two moduli ϕa, the matrix fij

becomes an N = 2 one (see for example [33]).
From this perspective, let us consider the stu model as a truncation of N = 8 super-

symmetry to N = 2 [42]. The eigenvalues of the central charge matrix are

λ1 = Z, λ2 = DŝZ, λ3 = Dt̂Z, λ4 = DûZ,

where the overline denotes the complex conjugation and the hat stands for the flat indices

DîZ = ei
î
DiZ
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with respect to the einbeins ei
î

g īi = ei
î
η î̂̄ieī

¯̂i
= diag

[

−(s− s̄)2,−(t− t̄)2,−(u− ū)2
]

of the Kähler metric of the stu model. Using the relations (41) and (55) we choose the
einbeins to be2

ei
î
= 2ie−2φ diag

[

X1, X2, X3
]

, eī
¯̂i
= ei

î
.

Then one can easily show [42] that the attractor equations

∂iV4 = 2Z̄DiZ + iCijkg
īigjj̄DjZ DkZ, Cijk = eKdijk

acquire the form

λ̄1λ̄2 + λ3λ4 = 0, λ̄1λ̄3 + λ2λ4 = 0, λ̄1λ̄4 + λ2λ3 = 0.

There are two types of solutions to these equations:

1. just one of λi is different from zero. If this is to be λ1, then this solution corresponds
to a BPS one, otherwise this solution is non-BPS with vanishing central charge.

2. all λi are different from zero, so that this solution is a non-BPS one. In this case
the absolute values of all λi are equal, and the sum of their phases is equal to π.

The above considerations refer to the attractor point, but something can be said
about λi in the whole space. For this, let us consider an electric configuration without
axions. Then

Z =
i

2
√

2

[

Z0
m −X iZe i

]

, DiZ =
e2φ

2
√

2

[

−3

2
XiZ

0
m +

(

δj
i −

3

2
XjXi

)

Ze j

]

.

Having a very special geometry origin, the flat indices of Ze i are defined by using the
metric fij , which in our case has the form (55). Therefore,

Ze î = X iZe i (no summation over i).

This means that the above introduced eigenvalues can be written in the following form
(in the whole space, not just at the horizon!) [43]:

λ1 =
i

2
√

2

[

Z0
m − Ze 1̂ − Ze 3̂ − Ze 3̂

]

, λ2 =
i

2
√

2

[

Z0
m − Ze 1̂ + Ze 2̂ + Ze 3̂

]

,

λ3 =
i

2
√

2

[

Z0
m + Ze 1̂ − Ze 2̂ + Ze 3̂

]

, λ4 =
i

2
√

2

[

Z0
m + Ze 1̂ + Ze 2̂ − Ze 3̂

]

.

2another choice of phases is possible, as well.
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5 Examples

Here we specify the results obtained in the previous sections for particular cases. We
concentrate on symmetric d-geometries. Particularly, we investigate models which, after
dimensional reduction, yield the so-called t3 and stu models. Some well known charge
configurations are revisited in more detail as well.

5.1 t3 model

In this section we consider a five dimensional pure supergravity. As it was mentioned in
section 1 it generalizes the Tangherlini black hole and, after dimensional reduction, yields
the well-known t3 model in four dimensions. In this case the action (9) contains no scalar
fields and a single vector field. The coupling matrices are given by

d111 = 6, d111 =
2

9
, f11 = 3 (51)

and the single modulus of the t3 model is expressed through the warp factor φ and the
fourth component a1 of the vector potential A1 in eq. (11) as follows:

t = a1 − i e−2φ. (52)

One can check that the five dimensional black object potential (19), after plugging
eqs. (51) and (52), yields exactly the black hole potential of the t3 model.

We are mostly interested in the non-BPS branch, so the fake superpotential in this
case is given by [26]

W =
(−I4)1/4

4
√
M

[

M2 + 3N 2 + 3
]

where M and N , in terms of the five dimensional dilaton and gauge field, are defined as
follows:

M =
1

2

e2φ (νσ̂+ + σ̂−)
2
+ e−2φ (ν − 1)2

ν (σ̂+ + σ̂−)
,

N =
1

2

e2φ
(

(νσ̂+)
2 − (σ̂−)

2
)

+ e−2φ (ν2 − 1)

ν (σ̂+ + σ̂−)
,

with σ̂± and ν defined by thes formula

σ̂± =
1

2

√

− I4 ± (p0q̂0 +
1

3
p̂1q̂1)

(p̂1)2 − 1

3
p0q̂1

, ν3 =

2 (p̂1)
3
+ p0

(

√

− I4 − p0q̂0 −
1

3
p̂1q̂1

)

2 (p̂1)3 − p0

(

√

− I4 + p0q̂0 +
1

3
p̂1q̂1

) (53)
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and, finally, the so-called quartic invariant I4 (43) is equal to

I4 = −(p0q0 + p1q1)
2 + 4 (p1)3q0 −

4

27
p0q3

1 +
4

3
(p1q1)

2.

The flow of the scalar fields is given by

e−4U = h0h
3
1 − c2, e−2φ = 2 ν

e−2U

R

√

− I4

(p1)2 − 1
3
p0q1

, a =
S

R
, (54)

where we introduced the harmonic functions hΛ(τ) = dΛ + (−I4)1/4τ and defined S,R as
follows:

S = h2
1(σ

+ν − σ−)(ν + 1) + h0h1(σ
+ν + σ−)(ν − 1) + 2c(σ+ν2 + σ−),

R = h2
1(ν + 1)2 + h0h1(ν − 1)2 + 2c(ν2 − 1).

Let us mention here that this solution can be obtained from that found in [1].
At the horizon the scalar fields acquire the following values:

e−2Uh =
√

− I4τ
2 +O(τ), e−2φh =

ν

ν2 + 1

√

− I4

(p1)2 − 1
3
p0q1

, ah =
σ+ν2 − σ−

ν2 + 1
.

It is easy to see that the Tangherlini solution (4) is a particular case of the general
solution (54) with p1 = q0 = 0, p0 = 1 and c = d0 = 0. This choice of the constants cor-
responds to the electrical configuration with the unit Taub-NUT charge p0 and vanishing
integration constants c and d0.

The horizon values of the functions M and N are

M = 1, N = 0,

so the entropy is

S5 = WH =
√

− I4.

When the magnetic charge p1 vanishes, one can easily obtain that the formula for the
entropy acquires the form

S5 =
√

(p0)2J2 − 4p0I3(q).

This formula is analogous to the one given by [17, 18, 21, 44]. Let us mention that p0 can
be either positive or negative.
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In the case of vanishing Taub-NUT charge p0 the scalars behave as follows:

e−2φ =
1

2

√

h0

h1
−

(

c

h2
1

)2

√

− I4

(p1)2
, a =

q1
6p1

+
c

2h2
1

√

− I4

(p1)2

and the expression for the fake superpotential simplifies significantly

W =
1

2
√

2

(

3 e−φp1 − e3φq̂0
)

.

This is exactly the expression obtained when setting s = t = u and making the corre-
sponding charge identifications in the expression (56). In addition, the expressions (53)
are obtained in analogous way from the more general expressions (57).

5.2 stu model

The four dimensional stu model corresponds to the case when the five dimensional ac-
tion (9) contains two scalar fields ϕa and three vector fields Ai

M = {A1
M , A

2
M , A

3
M}. The

couplings are defined as follows:

d123 = 1, d123 = 1, fij =





(X1)−2 0 0
0 (X2)−2 0
0 0 (X3)−2



 , (55)

where the newly introduced scalar fields X i satisfy the cubic constraint (23)

X1X2X3 = 1 ⇒ X i = X i(ϕ1, ϕ2).

The moduli zi of the stu model are then given by

zi = ai − i e−2φX i.

The fake superpotential for the stu model is obtained in [27, 28] and, in terms of the
five dimensional fields, it can be represented in the following way3:

W =
(−I4)1/4

4
√M1M2M3

[

M1M2M3 + M1N2N3 + N1M2N3 + N1N2M3

+ M1 + M2 + M3

]

,

Mi =
1

2

3 e2φXi

(

ν̂iσ̂
+
i + σ̂−

i

)2
+ e−2φX i (ν̂i − 1)2

ν̂i(σ̂
+
i + σ̂−

i )
,

Ni =
1

2

3 e2φXi

(

(ν̂iσ̂
+
i )2 − (σ̂−

i )2
)

+ e−2φ X i (ν̂2
i − 1)

ν̂i(σ̂
+
i + σ̂−

i )
.

(56)

3no summation over i is supposed
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Here Mi and Ni are defined in terms of σ̂±

i and ν̂i, which are functions of the gauge
fields ai only and have the following form3:

σ̂±

i = σ±

i p → p̂
q → q̂

, ν̂i = νi p → p̂
q → q̂

, νi = eαiν,
∑

i

αi = 0, αi = const,

σ±

i =

√

− I4 ±
(

pΛqΛ − 2piqi
)

dijkpjpk − 2p0qi
, ν3 =

2p1p2p3 + p0
(√

− I4 − pΛqΛ

)

2p1p2p3 − p0
(√

− I4 + pΛqΛ

) .
(57)

As it is shown in (49) the quartic invariant remains unchanged when substituting the
“long” charges. Quite simple properties hold for σ±

i and ν as well

σ̂±

i = σ±

i ± ai, ν̂ = ν.

The attractor flows for the scalar fields X i and the warp factor U have the form [27,28]

e−4U = h0h1h2h3 − c2, hΛ = dΛ + (−I4)1/4τ, e−2φ = 2νe−2U
3

∏

i=1

[

σ+
i + σ−

i

Ri

]1/3

ai =
Si

Ri
, X i =

νi

ν

[

(σ+
i + σ−

i )2RjRk

(σ+
j + σ−

j )(σ+
k + σ−

k )R2
i

]1/3

(no summation over i),

where for the sake of brevity we abbreviated4

Si = hjhk(σ
+
i νi − σ−

i )(νi + 1) + h0hi(σ
+
i νi + σ−

i )(νi − 1) + 2c(σ+
i ν

2
i + σ−

i ),

Ri = hjhk(νi + 1)2 + h0hi(νi − 1)2 + 2c(ν2
i − 1) (no summation over i).

Along the flow the functions Mi and Ni, in terms of which the fake superpotential W is
defined, acquire the following form:

Mi =
1

2
dijkhjhke

2U , Ni = c e2U .

At the horizon one gets the following values of the scalar fields:

ai =
σ+

i ν
2
i − σ−

i

ν2
i + 1

, e−2φ = ν

3
∏

i=1

[

σ+
i + σ−

i

ν2
i + 1

]1/3

,

X i =
νi

ν

[

(ν2
j + 1)(ν2

k + 1)

(σ+
j + σ−

j )(σ+
k + σ−

k )

]1/3
[

σ+
i + σ−

i

ν2
i + 1

]2/3

.

(no summation over i)

4we suppose that all the indices i, j, k are different and j < k.
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At the same time the functions Mi and Ni, in terms of which the fake superpotential W
is defined, and the entropy read

Ni = 0, Mi = 1, S5 = WH =
√

− I4.

Once again, when the magnetic charges p1, p2, p3 vanish, one can easily obtain the following
formula for the entropy:

S =
√

(p0)2J2 − 4p0I3(q).

This formula is the non-BPS analog of the well-known formula for rotating electrically
charged black holes (see, e.g. [17,18,44] and reference therein). Here p0 can also be either
positive or negative.

Let us mention that from this consideration one can easily obtain analogous expressions
for the st2 model and, as it was already said, for the t3 model as well.

5.3 Some charge configurations

In this section we consider charge configurations which allow us to truncate axions. From
eq. (16), one sees that, in order to have a consistent axion truncation, the potential V5

should not contain linear terms in the axions

∂V5

∂ai a=0
= 0. (58)

This is possible when all three conditions hold simultaneously

pip0 = 0, qiq0 = 0, piqj = 0 for all i, j, (59)

with the possible solutions corresponding to large black holes

pi = q0 = 0 (a) or qi = p0 = 0 (b) or qi = pj = 0 (c) (60)

Let us consider each of these cases in detail.

Electric configuration This case is the best known in five dimensions, due to the
fact that five dimensional spherically symmetric and static black holes can carry electric
charges only. Spherical symmetry requires that, along with the axions being equal to zero,
the Taub-NUT charge is unity. Nevertheless, we will keep p0 arbitrary for the moment.
Here, we demonstrate how a potential W ∼ qiX

i obtained in [10] appears.
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As it was mentioned in section 3, the black object potential for this case acquires the
form (35) and the corresponding fake superpotential is defined by eq. (37). The equations
of motion (16) can be rewritten in the following way:

v̈ = 2e2v(p0)2, ü = e2uVe,
d

dτ

[

habϕ̇
b
]

=
3

2
e2u ∂Ve

∂ϕa
+

1

2

∂hbc

∂ϕa
ϕ̇bϕ̇d (61)

where we introduced new variables v = U − 3φ, u = U + φ and the electric potential is
defined as [16]

Ve =
2

3
f ijqiqj.

One sees that the degree of freedom corresponding to v decouples and the appropriate
equation of motion can be easily integrated out

e−v =
√

2H0(τ), H0(τ) ≡ h0 + p0τ, h0 = const, (62)

while the rest of the equations can be derived from the action

S =

∫

dτ

[

u̇2 +
1

3
habϕ̇

aϕ̇b + e2u Ve

]

. (63)

The first order equations of motion of this action can be represented in the form

u̇ = −euWe, ϕ̇a = −3habeu∂We

∂ϕb
(64)

with the superpotential We defined through the relation

Ve = W 2
e + 3hab∂We

∂ϕa

∂We

∂ϕb
. (65)

Using the relation (26) one can show that the following form of the superpotential

We =

√
2

3
qiX

i(ϕ)

satisfies the definition (65). This is a formula found in [10] for the electric configuration
with axions equal to zero.

The first order equations (64) can be integrated in terms of the constrained scalarsXi(ϕ)

Xi =

√
2

3
euHi(τ), Hi(τ) = hi + qiτ.

24



For symmetric spaces, by means of the constraint (28), the previous expression may be
written in terms of X i

X i =

(

9

2

)1/3
dijkHjHk

(dmnlHmHnHl)
2/3
, e−3u =

√
2

3
dijkHiHjHk

so that the metric acquires the form

ds2 = −
[

2

3
dijkHiHjHk

]−2/3

dt2

+

[

2

3
dijkHiHjHk

]1/3 (

H0τ−4(dτ 2 + τ 2dΩ2
2) +

1

H0
(dψ + p0 cos θdϕ)2

) (66)

The five dimensional black hole entropy can be expressed in different ways

S = V5 = W 2 = 21/4
√

|p0|V 3/4
e = 21/4

√

|p0|W 3/2
e

where all functions are evaluated at the horizon. Using the Bekenstein-Hawking formula,
from the metric (66) one can calculate the black hole entropy in terms of the charges

S = lim
τ→∞

√

2
3
dijkH0HiHjHk

τ 2
=

√

2

3
p0dijkqiqjqk.

The expression above coincides with the entropy of a four dimensional electrically charged
black hole. As in four dimensions, it is also a homogeneous function of degree two in the
charges, but there is a difference in the physical interpretation of the charges. In four
dimensions all charges are the charges of the black hole. Instead, in five dimensions p0

is a topological charge characterizing the space-time. Most often this charge was chosen
to be unity [16] to have a full spherical symmetry and S3 geometry on the horizon.
Setting p0 = 1 we get the well known expression for the entropy in terms of the cubic
invariant I3

S = 2
√

I3.

As for the ADM mass, according to the definition, it is proportional to the Christoffel
symbol Γ0

10. For this case it turns out to be equal to We∞ and, in terms of the charges,
it looks like

M5 = dijkqihjhk.

Note that it does not depend on p0.
The corresponding four-dimensional metric (10) has the form

ds2
(4) = − dt2

(

2
3
H0dijkHiHjHk

)1/2
+

(

2

3
H0dijkHiHjHk

)1/2

τ−4(dτ 2 + τ 2dΩ2
2)
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so that the four dimensional ADM mass is equal to

M4 =
p0

h0
+ dijkqihjhk

and in contrast to its five dimensional counterpart, it depends on p0.
The near horizon metric can be represented in the form

ds2 = −
(

2

3
dijkqiqjqk

)−2/3
dt2

τ 2
+ p0

(

2

3
dijkqiqjqk

)1/3 [

dτ 2

τ 2
+ 4 dΩ2

3/p0

]

,

which is nothing but AdS2 × S3/Zp0, where the division by p0 means that the space
possesses a global defect characterized by the fact that one of the angular coordinates
changes from 0 to 4π/p0 rather than to 4π.

To summarize, one can say that the five and four dimensional entropies coincide, even
though the nature of the charges is different, while the masses are different.

Magnetic configuration Let us now consider the solution (60b). This configuration
is dual to the electric one with the duality transformations p ↔ q, φ → −φ, fij ↔ f ij.
The black object potential has the form

V5 =
1

2
e−2φfijp

ipj +
1

2
e6φq2

0

and the equations of motion (16) become

v̈ = 2 e2vq2
0, ü = e2uVm,

d

dτ

[

habϕ̇
b
]

=
3

2
e2u ∂Vm

∂ϕa
+

1

2

∂hbc

∂ϕa
ϕ̇bϕ̇c

where we introduce new variables u = U − φ, v = U + 3φ and the magnetic potential Vm

is defined as

Vm =
2

3
fijp

ipj . (67)

As in the electric case, here too, the degree of freedom corresponding to v decouples and
the appropriate equation of motion can be easily integrated out

e−v =
√

2H0(τ), H0(τ) = h0 + q0τ (68)

and the only independent fields that remain are ϕa and u, whose dynamics is governed
by the action

S =

∫

dτ

[

u̇2 +
1

3
habϕ̇

aϕ̇b + e2uVm

]

.
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The first order equations of the attractor flow and the definition of the fake superpotential
in this case are in fact identical to those (64), (65) for the electric configuration

u̇ = −euWm, ϕ̇a = −3habeu∂Wm

∂ϕb
(69)

upon obvious changing of the notations Ve → Vm and We →Wm, with the following form
of the fake superpotential:

Wm =
√

2 piXi(ϕ).

The first order equations (69) can be integrated

X i =
H i

(

1
6
djklHjHkH l

)1/3
, e−3u =

√
2

3
djklH

jHkH l

and the metric acquires the following form:

ds2 =

[

1

3
djklH

jHkH l

]2/3

τ−4
(

dτ 2 + τ 2dΩ2
2

)

+
2H0

(

1
3
djklHjHkH l

)1/3

[

dψ2 − 1

H0

dψdt

]

The black hole entropy and the five dimensional ADM mass are equal to

S = lim
τ→∞

√

2
3
dijkH0H iHjHk

τ 2
= 2

√

1

6
dijkq0pipjpk , M5 = 2dijkh

ihjpk.

The four dimensional part of the metric is given by

ds2
(4) = − dt2

√

2
3
dijkH0H iHjHk

+

√

2

3
dijkH0H iHjHk τ−4(dτ 2 + τ 2dΩ2

2)

so that the four dimensional ADM mass is equal to

M4 =
q0
h0

+ 2dijkh
ihjpk.

Near the horizon the metric acquires the form

ds2 =

[

1

3
dijkp

ipjpk

]2/3 [

dΩ2
2 +

dτ 2

τ 2
+

2q0
1
3
dijkpipjpk

(

dψ2 − 1

q0τ
dψdt

)]

and corresponds to AdS3/Zq0
× S2 geometry.

As we see, in this configuration again the five and four dimensional entropies are equal,
while the masses are different.
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D0 − D6 configuration From the four dimensional perspective, the case (60c) corre-
sponds to a single center non-BPS non-rotating black hole (see, e.g. [36]). The black
object potential

V5 =
1

2
e−6φ(p0)2 +

1

2
e6φq2

0 (70)

ceases to depend on the scalar fields ϕa, so that they completely become decoupled from
the background

d

dτ

[

habϕ̇
b
]

=
1

2

∂hbc

∂ϕa
ϕ̇bϕ̇c, (71)

while the warp factor U and the dilaton φ satisfy the following equations of motion:

Ü =
1

2
e2(U−3φ)(p0)2 +

1

2
e2(U+3φ)q2

0 , φ̈ = −1

2
e2(U−3φ)(p0)2 +

1

2
e2(U+3φ)q2

0 . (72)

The latter can be obtained from the action

S =

∫

dτ
[

U̇2 + 3φ̇2 + e2UV5

]

with the potential V5 given by eq.(70). Since the scalar fields ϕa are now decoupled from
the background, they do not enter any more into the first order equations

U̇ = −eUW, φ̇ = −1

3
eU ∂W

∂φ
(73)

where the fake superpotential W is defined through the formula

V5 = W 2 +
1

3

(

∂W

∂φ

)2

and, naturally, it does not depend on the scalar fields ϕa:

W =
1

2
√

2

[

q
2/3
0 e2φ + (p0)2/3e−2φ

]3/2

. (74)

The first order equations (73) can be integrated, and the unique regular solution has the
following form:

e6φ =

∣

∣

∣

∣

p0

q0

∣

∣

∣

∣

(

H2 − c2

H2 + c2

)3/2

, e−4U = H4 − c2, H = h+ (−I4)1/4 τ, I4 = −(p0q0)
2.

In the case when the constant c vanishes, one can get rid of one of the degrees of freedom as
it occurred in the electric and magnetic cases. With the degree of freedom corresponding
to φ being eliminated, the potential and the fake superpotential become constant

VD0D6 = |p0q0|, WD0D6 =
√

|p0q0|
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coinciding with their minimal values.
Concerning the scalar fields, the only regular solution occurs when they get constant

values ϕa = const all along the flow. This situation is similar to that of pure supergravity,
since the scalar fields are completely decoupled and acquire constant values.

To end this paragraph, let us write down the black hole entropy

S = lim
τ→∞

e−2Uτ−2 = |p0q0|

which is nothing but a minimum of the potential (70) or of the square of the fake super-
potential (74).

6 Conclusions

In this paper we revisited five dimensional Einstein-Maxwell Chern-Simons supergravity.
We investigated black objects with all charges and gauge fields (axions) switched on.
For these objects we derived the equations of motion and the corresponding potential
governing the dynamics of the system. The potential, which is a sum of squares of
“central charges” (20), was previously obtained by brute force in [33].

We constructed and investigated the first order formalism for black objects in five
space-time dimensions. The main result of the investigation is presented in the eq. (31)
above, where the expression of the black object potential is given in terms of the (fake)
superpotential. It was shown that our consideration encompasses all previously known
cases [10, 20].

The relation between solutions for five and four dimensional black objects is revisited.
Group and symmetry properties are investigated. As one sees from formulae (48)-(50),
all duality invariants ia and symplectic invariant I4 and can be rewritten in terms of the
so-called “long” charges either in terms of the real central charges.

Some examples are investigated. Firstly, as a warming up example 4d/5d pure su-
pergravities were analyzed. Despite the fact that Reissner-Nordström and Tangherlini
solutions belong to different classes, they have one point in common. Under specific
values of the parameters, the Tangherlini-like solution can be reduced to a pure electric
Reissner-Nordström one.

The other examples represent models with a very special geometry. The case of van-
ishing Taub-NUT charge p0 is investigated in detail. Eq. (32) above displays our second
new result, i.e. the explicit expression of the (fake) superpotential, corresponding to the
(non) BPS attractor flow. An important fact is that in this case the fake superpotential
is constructed for arbitrary d-tensor, so that it is valid also for non symmetric scalar
manifolds.
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Special cases of symmetric d-geometry (the so-called t3 and stu models) are investi-
gated in full generality. The non-BPS branch of these examples was studied: the fake
superpotentials, attractor flows and horizon values were written down. This yields the
third important result of this work, as shown in eq. (56) for the stu model, where all
limiting cases, such as the t3 model or particular charge configurations, are encompassed.
In the end it is shown that, in the absence of axions, the previously known results emerge.

It is interesting to generalize the obtained results for the case of multicenter black
objects and, hence, investigate the issue of the marginal stability. From this point of view
it is also interesting to study the possibility of obtaining a 4d single center solution from
a 5d multicenter one upon dimensional reduction.
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