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Abstract

We study inhomogeneous solutions of a 3+1-dimensional Einstein-Maxwell-scalar theory.

Our results provide a holographic model of superconductivity in the presence of a charge

density wave sourced by a modulated chemical potential. We find that below a critical

temperature Tc superconducting stripes develop. We show that they are thermodynamically

favored over the normal state by computing the grand canonical potential. We investigate the

dependence of Tc on the modulation’s wave vector, which characterizes the inhomogeneity.

We find that it is qualitatively similar to that expected for a weakly coupled BCS theory,

but we point out a quantitative difference. Finally, we use our solutions to compute the

conductivity along the direction of the stripes.



1. Introduction

Strongly coupled systems are often found at the heart of spectacular phenomena in con-

densed matter. Most prominently, they are expected to play a key role in the understanding

of one of the most exciting scientific discoveries of the last thirty years, high temperature

superconductivity. While some techniques have been devised over the years to model such

systems, there is a scarcity of simple, tractable models on which to build our intuition. Re-

cently, there has been a flurry of activity trying to fill in this gap using various developments

of the gauge/gravity correspondence.

The main complexity that arises in strongly correlated electron systems, such as the high

Tc cuprates and the most recent iron pnictides, is the presence of “competing orders” [1]:

while the system may be a superconductor, it is not a homogeneous one and orders appear

that are related to the breaking of the lattice symmetries, but are seemingly unrelated to

superconductivity. Does the ubiquitous presence of such orders in strongly correlated super-

conductors have a deep connection to the very emergence of superconductivity and/or the

magnitude of its critical temperature Tc? The answer to this question seems to be crucial for

identifying the mechanism of superconductivity, at least in the cuprates. It is an important

empirical observation, derived mainly from numerical calculations of Hubbard models [2],

that inhomogeneity plays a much bigger role in these systems than in standard, weakly cou-

pled superconductors. In fact, models have been proposed based on the coexistence of homo-

geneous superconductivity with charge density (CDW) or spin density waves (SDW), as well

as models where the superconducting order parameter itself is modulated (pair density waves

or PDW). Signatures of CDW have been reported in a variety of strongly correlated supercon-

ductors, most notably the hole-doped cuprates La1.6−xNd0.4SrxCuO4, La1.8−xEu0.2SrxCuO4,

and La2−xBaxCuO4 [1]. For these materials, the order can be consistently interpreted in

terms of uni-directional SDW and CDW over a wide range of doping. Altogether, there is

ubiquitous experimental evidence of ordered inhomogeneous structures in various places of

the doping-temperature phase diagram of the cuprates, especially in the proximity of the

superconducting phase.

Regardless of whether strong coupling and inhomogeneity show us the path to the mystery

of high Tc superconductors or other interesting related systems, it is of great value to have

simple computable models that incorporate these properties. In this paper we provide one

model of this kind, in the hope that it might help improve our intuition about these key

ingredients.

The AdS/CFT correspondence suggests the equivalence of certain gauge theories at con-

formal fixed points (CFT) with certain string theories on Anti-de-Sitter (AdS) backgrounds.

There is a dictionary relating observables in the gauge theory to observables in the string

theory. One of the key relations is between the curvature of the AdS background and the

inverse of the gauge, (or rather ’t Hooft) coupling of the gauge theory. At large ’t Hooft

coupling and large rank of the gauge group, the D-dimensional CFT becomes dual to gravity

on D+1-dimensional AdS space, and the correspondence provides a tool to compute ob-
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servables in a strongly coupled theory by solving classical equations of motion on a weakly

curved background. Further developments of this idea allow one to include perturbations

away from conformality and develop a richer structure on both sides of the duality. The use of

this correspondence has allowed, in an unprecedented manner, the study and understanding

of conformally invariant quantum systems in D dimensions.

Over the past few years, a growing amount of effort has been devoted to applications

of the AdS/CFT correspondence to strongly correlated condensed matter systems close to

quantum critical points. A popular model that includes some important ingredients of a

realistic system is the holographic superconductor [3,4]. It consists of a 3+1-dimensional

Einstein-Maxwell-scalar theory in an AdS black hole background. At low temperatures, a

phase transition to a superfluid state takes place [5], in which the scalar field develops a

non-vanishing expectation value, spontaneously breaking the gauge U(1) symmetry. Physi-

cal properties such as transport coefficients can be studied and contrasted with other known

systems like Bardeen-Cooper-Schrieffer (BCS) superconductors. The main conceptual ingre-

dients of the holographic superconductor are strong coupling and proximity to an underlying

conformal symmetry, which are believed to be crucial features of cuprates as well. On the

other hand, inhomogeneity is not accounted for, although it certainly plays a role in the real

systems.

In this paper, we would like to raise and attempt to answer a few questions: can one

take holographic superconductors one step closer to real systems by considering inhomoge-

neous configurations? Can one account for charge or spin density wave (CDW or SDW)

backgrounds? Are there any differences in the role of inhomogeneity played in the strongly

coupled regime as opposed to the weakly coupled BCS case? How do physical properties

such as Tc and anisotropic conductivities compare with experimental data?

We address these questions by studying inhomogeneous solutions of the holographic su-

perconductor with a modulated chemical potential of wave vector Q. Throughout this paper,

we work in the probe approximation, neglecting the backreaction of the Maxwell and scalar

field on the gravity background. The normal phase then consists of a CDW with the same

modulation as the chemical potential and a vanishing order parameter. As the temperature

is decreased the system undergoes a phase transition to a superconducting state with a non-

vanishing modulated order parameter. We find that various classes of solutions are possible.

For the two simplest ones, the order parameter is real and the 3-dimensional gauge potential

vanishes. The periodicity of the order parameter can then be taken to be the same as the one

of the charge density, or it can be half of it. Here we concentrate on the former possibility,

but we notice that the latter corresponds to a pair density wave (PDW) [1]. We find that the

CDW solutions are thermodynamically favored over the PDW solutions, but suspect that

it may be possible to stabilize the PDW solutions in the presence of a magnetic field. We

leave a careful study of these solutions for the future. Other solutions that correspond to

less commonly studied configurations such as spiral pair density waves can also be found.

The dependence of Tc on the wave vector of the modulation (figure 4) is qualitatively similar

to the one expected for a weakly coupled BCS system [6]. The two analyses have the same
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large and small Q asymptotics for Tc and both show the presence of a inflection point. The

main difference is quantitative and concerns the functional dependence of Tc on Q in the

Q→∞ limit.

We numerically investigate the superconducting state below Tc. We find that supercon-

ducting stripes develop and higher harmonics of the CDW are excited. We verify that this

state has a lower grand canonical potential (the equivalent of the free energy, but in the

grand canonical ensemble) than the normal CDW, as expected. Finally, we show results for

the conductivity along the stripes, verifying the superconducting nature of the inhomoge-

neous phase. The conductivity in the orthogonal direction is substantially more complicated

to compute and will be discussed in a future publication.

The outline of this paper is as follows: in the next section, we introduce the gravitational

system that we investigate, briefly describe its strongly coupled dual theory, and review

the construction of a homogeneous holographic superconductor. In section 3, we construct

an inhomogeneous generalization corresponding to a CDW and show that it undergoes a

phase transition at low temperatures. The resulting inhomogeneous superconducting phase

is discussed in section 4. We present results for the grand canonical potential and the

conductivity in sections 5 and 6, respectively. A discussion of our results is given in section 7.

Finally, in Appendix A, we collect various useful forms of the equations of motion.

2. The System: Einstein-Maxwell-Scalar Theory in 4D

The gravitational theory we consider is Einstein gravity in four dimensions with a negative

cosmological constant Λ = −3/L2, coupled to a U(1) gauge field and a complex scalar field

Ψ which is charged under this U(1) symmetry. Here L is a length scale representing the AdS

curvature radius. The action for this system is

S =

∫
d4x
√
−g
[

1

16πGN

(
R +

6

L2

)
− 1

4
F abFab − gab(DaΨ)∗DbΨ− V (|Ψ|)

]
, (2.1)

where Da = ∂a − iqAa and a, b ∈ t, x, y, z. The resulting equations of motion are given

in (A.1), (A.2) and (A.3) of appendix A. By the gauge/gravity duality [7], this system on

an asymptotically anti-de Sitter spacetime is believed to be dual to some large N, strongly

coupled, conformal gauge theory with a global U(1) symmetry in 2+1 dimensions (for reviews

see [8]).1

For concreteness, we will work with a potential

V (|Ψ|) = − 2

L2
|Ψ|2 , (2.2)

corresponding to a scalar mass m2 = −2/L2. This is the same mass as that of a confor-

mally coupled scalar in AdS4. Since this mass is above the Breitenlohner-Friedmann bound

1Since the U(1) symmetry on the boundary is global, one is strictly speaking describing a superfluid as
opposed to a superconductor, but one can imagine weakly gauging the symmetry, making a comparison with
e.g. BCS theory meaningful.
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2 = −9/4, it does not imply an instability. In the context of the homogeneous holo-

graphic superconductor, other potentials have been studied (see e.g. [9]), and it has been

found that the results do not qualitatively depend on the choice of the potential (on the other

hand see also [10]). We expect this to be true for the striped holographic superconductors

as well.

With this potential, the equations of motion (A.1)-(A.3) possess three linearly indepen-

dent scaling symmetries under which the various quantities transform as

X → λαiX (2.3)

with the charges αi given by

xa L q Aadx
a Ψ ds2 GN

α1 1 0 0 0 0 0 0
α2 0 1 -1 1 0 2 0
α3 0 0 -1 1 1 0 -2

We can ignore the backreaction of the matter on the geometry if the invariant quantities

such as GN |Ψ|2 are small. As usual, this can be achieved by sending GN to zero while keeping

everything else fixed. Equivalently, using the third scaling symmetry, we can send the gauge

potential and scalar field to zero while keeping qA and qΨ fixed, corresponding to a limit

in which the strength of the gauge interactions is infinitely larger than the gravitational

interactions. We will exclusively work in this limit in this paper and study the Maxwell and

scalar fields in a fixed background. The superconductors we would like to describe are at

finite temperature. So we take the background to be a planar Schwarzschild anti-de Sitter

black hole which corresponds to studying the dual field theory at finite temperature. We

choose coordinates so that the line element is

ds2 =
L2

z2

[
−h(z)dt2 +

dz2

h(z)
+ dx2 + dy2

]
with h(z) = 1− z3

z3
0

, (2.4)

where z = z0 is the position of the horizon of the black hole. The Hawking temperature of

this black hole is

T =
3

4πz0

. (2.5)

The equations of motion for the gauge and scalar field (A.1) and (A.2) with the metric

corresponding to the line element (2.4) are of course still invariant under our scaling sym-

metries (provided we assign the same charges to z0 as to the xa). We choose to use them to

set z0 = 1, L = 1, and q = 1 to simplify the equations but always plot quantities that are

invariant under these rescalings.

For later use, we give the equations of motion in these conventions written in components

of the gauge field and the real and imaginary part of the scalar field in Appendix A.
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2.1. Review of the Homogeneous Solutions

A simple set of solutions to (A.1) and (A.2) can be obtained [4] by assuming that the fields

do not depend on x, y and t. In this case it is consistent to set Az = Ax = Ay = 0 and to

take Ψ ≡ zψ/
√

2 to be real, where the particular definition of ψ has been chosen for later

convenience. With this Ansatz, only two real fields are left: ψ and At, which we denote by

A for simplicity.

The equations of motion (A.4) and (A.4) on the background (2.4) with the assumption

of homogeneity and stationarity take the form2

hAzz − ψ2A = 0 , (2.6)

−h2ψzz + 3z2hψz +
(
hz − A2

)
ψ = 0 . (2.7)

A solution is determined once we specify four boundary conditions. For each equation, we

fix the boundary condition at z = 1, i.e. the horizon of the black hole so that the solution

is regular. This implies A(1) = 0 and ψz(1) = −ψ(1)/3. We choose the third boundary

condition by requiring that ψ has a normalizable profile, which implies ψ(0) = 0. The last

boundary condition determines which ensemble we want to use. To see this, consider a

solution of the equation of motion (2.9) for A and expand it near the AdS boundary as

A(z) = A(0) + zA(1) . (2.8)

According to the AdS/CFT dictionary, a gauge symmetry in the bulk theory corresponds to

a global symmetry in the boundary gauge theory. A(1) is mapped into the expectation value

of the time-component of the current of the global symmetry, while A(0) corresponds to a

source in the boundary Lagrangian. Since A(1) can be interpreted as a charge density, its

canonical conjugate A(0) plays the role of a chemical potential. Fixing the charge density or

the chemical potential corresponds to working in the canonical or grand canonical ensemble,

respectively. We decide to fix the chemical potential A(0) and therefore work in the grand

canonical ensemble. Notice that in any case, specifying a non-vanishing boundary condition

for A breaks explicitly the conformal invariance of the boundary theory (which is also broken

by temperature).

We first look for solutions in which ψ = 0, corresponding to a vanishing order parameter.

These are dual to the normal, non-superconducting state of the boundary theory. The equa-

tion of motion for ψ is trivially satisfied. We are left with only the simple linear differential

equation

Azz = 0 . (2.9)

If we choose a chemical potential µ by imposing the boundary conditions A(0) = µ we find

the solution

A(z) = µ (1− z) . (2.10)

2Once again, we used the symmetries summarized in table 2 to set q = L = z0 = 1.
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For low chemical potential, or equivalently high temperature, only this normal solution with

ψ = 0 exists. Beyond a critical value µc, a new solution appears [5] that has non-vanishing

condensate, i.e. ψ 6= 0. It has a lower grand canonical potential than the normal solution.

This solution is typically studied numerically, although some analytical approaches have

been considered in [11,12,13,14]. The study of the physical properties of the ψ 6= 0 solution

[3,4] reveals that its dual state is some kind of superfluid. The results for the conductivity

are given in figure 9 and will be thoroughly discussed in section 6.

3. Inhomogeneous Solutions: the Normal State and Tc

In this section, we begin our study of static inhomogeneous solutions of the system (2.1).

For previous discussions of inhomogeneous holographic constructions see [15] and [16], which

appeared as this work was being finalized. Since we are interested in (static) uni-directional

charge density waves, we study solutions with non-trivial dependence in the x-direction that

are independent of y or t. It is then consistent to look for solutions of (A.4)-(A.7) with

Az = Ay = Ax = ImΨ = 0, and the equations of motion with this Ansatz take the form3

hAzz − ψ2A+ Axx = 0 , (3.1)

−h2ψzz + 3z2hψz − hψxx +
(
hz − A2

)
ψ = 0 , (3.2)

where once again ψ ≡
√

2ReΨ/z.

Similar to what was found in the homogeneous case, we find that for a monochromatic

chemical potential a phase transition occurs at some critical temperature. In the gauge the-

ory, we interpret this as a phase transition between a normal and a superfluid/superconducting

state in the presence of a charge density wave (CDW). In this section, we study the system

in the normal phase in which ψ = 0, as well as just below Tc where the condensate is small.

This allows us to work at linear order in ψ. Since ψ enters the equation for A quadratically,

the equation for the gauge field A in this approximation becomes independent of the scalar,

simplifying the problem. This allows us to present analytical results for Q = 0 in subsection

3.2.1. Beyond recovering the homogeneous system, these analytic results provide us with

some intuition for the effect of inhomogeneities. Since were unable to find analytic results

for the most interesting range of Q, we provide numerical results for Tc in subsection 3.2.2.

Working at linear order in the scalar field allows us to find the critical temperature Tc at

which the normal state develops an instability towards the superconducting state ψ 6= 0, but

is of course insufficient to study the system away from this critical temperature. We return

to the study of the superconducting solution away from Tc in the next section.

3.1. The CDW Background

A simple solution of (3.1) and (3.2) is found if ψ = 0 and corresponds to the normal non-

superconducting state. Equation (3.2) is trivially satisfied. For (3.1) we have to specify two

3We again set q = L = z0 = 1 using the symmetries of the system.
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boundary conditions. As before, one boundary condition is forced upon us, A(1, x) = 0, if

we require regularity at the horizon of the black hole. The second boundary condition is the

physically relevant one since it amounts to specifying the chemical potential (or the charge

density if we decided to work in the canonical ensemble) of the boundary theory. We decide

to consider a constant plus a sinusoidal (monochromatic) term imposing

A(z = 0, x) = µ [(1− δ) + δ cos(Qx)] , (3.3)

where Q is the x-frequency of the sinusoidal term and δ controls the ratio between inhomo-

geneous and homogeneous amplitude of the pinning field A(0, x). δ = 0 corresponds to the

homogeneous holographic superconductor reviewed in section 2.1. Since (3.1) is linear, we

can superimpose solutions and look for a solution of the form

A(z, x) = A0(z) + A1(z) cos(Qx), . (3.4)

The homogeneous contribution to A is then simply given by

A0(z) = µ(1− δ)(1− z) , (3.5)

while the z-dependence of A1(z) is governed by(
1− z3

)
A′′1 = Q2A1 , (3.6)

and the boundary conditions are

A1(1, x) = 0 and A1(0, x) = µδ cos(Qx) . (3.7)

Although we were not able to find an exact solution of (3.6), we notice that the numerical

solution is very well approximated by the solution of the simpler equation A′′1 = Q2A1, i.e.

A1(z) ' A1,approx(z) ≡ µδ [cosh(Qz)− coth(Q) sinh(Qz)] . (3.8)

The behavior of the exact numerical solution of (3.6) and the approximate solution (3.8)

for various values of Q is given in figure 1. The agreement is excellent both for Q � 1 and

Q� 1, and still reasonably good for Q ' O(1). To summarize, the inhomogeneous electric

background in the normal state (ψ = 0) is given by

Anormal(z, x) ≡ A0(z) + cos(Qx)A1(z)

= µ(1− δ)(1− z) + cos(Qx)A1(z) , (3.9)

where A1(z) is the exact solution of (3.6).
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Figure 1: The plot shows the numerical exact (continuous red line) and analytically approx-
imate (dashed black line) solutions of (3.6) for various values of Q.

3.2. The Instability and the Critical Temperature

As in the homogeneous case [5], the normal state with ψ = 0 becomes unstable for large

values of µ . To find the value of the chemical potential µc at which the instability develops,

we look for marginally stable solutions of (3.2) in the background of (3.9). Once again,

this is consistent because we are working at linear order in the scalar field ψ in the present

section so that the effect of the condensate on the gauge field is negligible. For the scalar field

equation of motion, we find it convenient to work in Fourier space and look for a solution of

the form

ψ(x, z) =
∞∑
n=0

ψn(z) cos(nQx) . (3.10)

The partial differential equation for the scalar field then turns into a system of coupled,

linear, second order ordinary differential equations for the Fourier coefficients ψn(z). The ψn
satisfy the system (A.10), which can be conveniently written as

−Ψ′′ +
(
zh(z)− A2

0

)
Ψ− A2

1A11Ψ− 2A0A1A01 + h(z)Q2QΨ = 0 , (3.11)
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with Ψ ≡ (ψ0, ψ1, ψ2, . . . ), and the matrices A11, A01 and Q given by

A11 =



1
2

0 1
4

0 0 0 0 · · ·
0 3

4
0 1

4
0 0 0 · · ·

1
2

0 1
2

0 1
4

0 0 · · ·
0 1

4
0 1

2
0 1

4
0 · · ·

0 0 1
4

0 1
2

0 1
4
· · ·

...
...

...
...

...
...

...
. . .


, A01 =


0 1

2
0 0 0 · · ·

1 0 1
2

0 0 · · ·
0 1

2
0 1

2
0 · · ·

0 0 1
2

0 1
2
· · ·

...
...

...
...

...
. . .

 , (3.12)

and

Q =



0 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 4 0 0 · · ·
0 0 0 9 0 · · ·
0 0 0 0 16 · · ·
...

...
...

...
...

. . .


. (3.13)

We will now solve the system (3.11) analytically in the limit Q → 0. Then, in subsection

3.2.2, we will present the general numerical results and discuss the critical temperature Tc.

3.2.1. Analytical Solution for Q = 0

In the limit Q→ 0, the profile of the A field becomes

lim
Q→0

A(z, x) = A0(z) + A1(z) cos(Qx) = µ(1− z) [(1− δ) + δ cos(Qx)] , (3.14)

where we have used the approximate analytical solution (3.9), which becomes exact in the

Q → 0 limit, but have kept the cos(Qx) because it couples different Fourier modes of the

scalar field. Using (3.14), the system of equations for the Fourier coefficients is

−Ψ′′ +

(
z

z3
0

h(z)

)
IΨ− µ2(1− z)2

[
(1− δ)2I + δ2A11 + 2(δ − δ2)A01

]
Ψ = 0 . (3.15)

Notice that in this limit all the Fourier components have the same z-dependence, so that it

becomes natural to look for a solution of the form

Ψ(z) = vψλ(z) (3.16)

where v is an eigenvector of the matrix (1− δ)2I + δ2A11 + 2(δ − δ2)A01 satisfying[
((1− δ)2I + δ2A11 + 2(δ − δ2)A01

]
v = λv . (3.17)

The function ψλ then satisfies

−ψ′′λ +

(
z

z3
0

h(z)

)
ψλ − µ2(1− z)2λψλ = 0 . (3.18)
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We see that the solution with the largest eigenvalue is the first to become tachyonic. To find

this eigenvalue, notice that the matrix (1− δ)2I + δ2A11 + 2(δ− δ2)A01 is column-stochastic,

i.e. the entries in each of its columns add up to one. This implies that its largest eigenvalue

is λ = 1. The corresponding eigenvector is

v =



1
2

1
1
1
1
...


. (3.19)

These are the Fourier coefficients of πδ(x), i.e. for any periodic function

f(x) =
a0

2
+
∞∑
n=1

an cos(nx) + bn sin(nx) , (3.20)

an ≡
1

π

∫ 2π

0

f(x) cos(nx)dx , n ≥ 0 , (3.21)

bn ≡
1

π

∫ 2π

0

f(x) sin(nx)dx , n ≥ 1 , (3.22)

(3.23)

one finds ∫ 2π

0

dx f(x)δ(x) = f(0) , (3.24)

for

πδ(x) =
1

2
+
∞∑
n=1

cos(nx) . (3.25)

The function ψλ=1 corresponding to (3.19) satisfies

−ψ′′λ=1 +

[
z

z3
0

h(z)− (1− z)2µ2

]
ψλ=1 = 0 . (3.26)

This is the same equation one finds in the homogeneous case. So we see that in the limit

Q → 0, independent of δ, we find the same critical temperature as in the homogeneous

system. We will call this temperature Tc,h. This property can be understood intuitively as

follows. For small Q the x derivatives in (3.2) are irrelevant, so the system is effectively

equivalent to a collection of homogeneous systems each one at a fixed x, with chemical

potentials ranging from µ(1− 2δ) for x = π/Q, up to µ for x = 0. Therefore, for any δ there

is an (isolated) homogeneous system with chemical potential µ , sitting at x = 0, which will

go through a phase transition precisely at (T/qµ)c,h. In addition to this result for Tc, which
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Figure 2: We show the z profiles of ψn for the first few n and two different values of Q at the
phase transition (T/(qµ) = 0.0269 for Q = 4 and T/(qµ) = 0.0575 for Q = 1/10). Dashed
lines with longer dashes correspond to larger n. It is evident that ψn are suppressed for
larger n and more so for larger Q. This results are obtained solving the (truncated) linear
system (3.11), therefore the normalization of ψn is arbitrary.

was expected, we can learn a few more things from this analytical computation. For non-zero

Q, the higher Fourier modes are very costly and will be suppressed. One thus sees that the

effect of the coupling to the modulated gauge potential tends to excite all the Fourier modes

democratically while the gradients tend to suppress the high-n modes. This suggests that it

will be a good approximation to set to zero the Fourier modes above some nmax which will

depend on Q and the desired degree of accuracy.

3.2.2. Numerical Results for Tc

In the following we present the numerical solutions of the system (3.11) and discuss the

critical temperature. Let us start by describing the numerical method we use. As we

noticed, the effect of Q in (3.11) is to suppress ψn for large n. For a given momentum Q and

precision ε, there is an nmax(Q, ε) such that all ψn for n > nmax(Q, ε) contribute to ψ less

than ε and can be neglected. This is evident in figure 2 where the first ψn are plotted for

two different values of Q. This means we are allowed to truncate the hierarchy (3.11), and

we are left with a finite number of nmax(Q, ε) coupled linear ordinary differential equations,

which we solve numerically in Mathematica. In all the numerical results we present we have

fixed the precision to be 10−3. Then, for example taking Q = 1/10, we need to keep as many

as 14 modes, while for Q = 4 only the first 3 are necessary to achieve the required precision.

Once we have solutions of (3.11), the most interesting physical property we can compute

is the critical temperature Tc at which the normal state becomes unstable. Let us pause to

explain how we extract this quantity from the solutions of (3.11). Let us choose some fixed

0 ≤ δ ≤ 1 and Q ≥ 0. Then our theory has four parameters (L, q, z0, µ). Using the three

symmetries in table 2, we can set three of them to an arbitrary value and we once again set

L = z0 = q = 1. Then we numerically solve (3.11) by integrating from the horizon at z = 1
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Figure 3: The plots show the z profiles of ψn and An obtained from the (truncated) full
system (A.14), for the first few n and δ = 3/5, Q = 1/4 and T/(qµ) = 0.0556 which is
very close to the critical temperature. Again, dashed lines with longer dashes correspond to
larger n. The An profiles show that close to Tc only the zeroth and first harmonics of A are
excited, which confirms that the backreaction of ψ is negligible.
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Figure 4: The plot shows the critical temperature as function of Q for δ = 0.2, 0.4, 0.6, 0.8.
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out to the boundary at z = 0. To set the initial conditions for this integration, we solve

the equations as a power series near the horizon. If we impose regularity at the horizon,

we will have one free coefficient for A0, one for A1, and one undetermined coefficient for

each of the nmax + 1 Fourier modes of ψ giving a total of nmax + 3 coefficients. Since the

equation for ψ is linear, the overall normalization is unphysical and we can set the coefficient

for, say, ψ0 to unity. The remaining nmax + 2 coefficients are chosen so that ψn(0) = 0 for

all nmax + 1 modes and δA0(0) = (1 − δ)A1(0). We then have nmax + 2 equations for the

nmax + 2 coefficients, which fixes all of them. In practice, we do not integrate to z = 0 but

to z = 10−8 and match the solution there to a power series of the solution of our (3.11) near

the boundary to extract A0(0), A1(0) and ψn(0). The resulting µ = A0(0)/(1− δ) is then µc.

The solution is unique if we require our Fourier coefficients ψn(z) to have no zeros between

the horizon and the boundary. The solutions with one or more zeros have higher µ and thus

lower T and are not relevant for us. This µ is of course not invariant under the symmetries

in table 2, but the combination T/(qµ) is, so we can compute it for an arbitrary choice of

those rescalings. This quantity is useful since variations of it can be interpreted, upon an

appropriate rescaling, as variations of T at constant µ and q. This is the quantity we will

use in all of our plots involving temperature.

In figure 4 we have plotted the critical temperature, obtained as explained above, as a

function of Q for a few different values of δ. We notice the following features:

• The limit of (T/qµ)c for Q → 0 is independent of δ and it corresponds to the critical

value of a homogeneous superconductor with chemical potential µ, which we denote

by (T/qµ)c,h. This nicely agrees with our computation and discussion in the last

subsection.

• The limit of (T/qµ)c for Q→∞ depends on δ simply as

lim
Q→∞

(
T

qµ

)
= (1− δ)

(
T

qµ

)
c

∣∣∣
Q=0

= (1− δ)
(
T

qµ

)
c,h

. (3.27)

This can be explained as follows. For very large Q, A1(z) goes to zero for any z 6= 0,

as can be seen in figure 1. Then the background experienced by ψ is that of the x-

homogeneous field A0 = µ(1− δ)(1− z) almost everywhere. Furthermore, as explained

before, for Q → ∞ only ψ0 is non-zero. Hence the system is equivalent to a homoge-

neous one with chemical potential µ(1−δ) and therefore experiences a phase transition

at (1− δ)(T/qµ)c,h.

• One might ask how (T/qµ)c(Q, δ) reaches its asymptotic value for Q → ∞. Since A1

vanishes exponentially in Qz0 in the Q→∞ limit for any z 6= 0, we expect it to behave

as

lim
Q→∞

(
T

qµ

)
' (1− δ)

(
T

qµ

)
c,h

+ e−Qz0δ

(
T

qµ

)
c,h

, (3.28)
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plus terms of higher order in e−Qz0 which become negligible for large Q. We confirm

that this behavior is consistent with that of our numerical results by performing various

fits.

It is interesting to compare the functional dependence of Tc on Q for our striped holo-

graphic superconductor with that of a weakly coupled BCS superconductor studied in [6]

using a mean-field approximation. Since we choose a simple consistent ansatz in which the

order parameter is real, our analysis does not account for phase fluctuations and phase co-

herence, so we should compare with the continuous line in figure 1 of [6]. The two results

look extremely similar. Both the Q = 0 and Q = ∞ asymptotics are the same and in

both cases there is an inflection point at finite Q. The main difference consists in how the

Q = ∞ limit is reached. Expanding (4) of [6] for large Q and translating into our notation

for convenience, we find

BCS : lim
Q→∞

Tc ' (1− δ)Tc,h +
δ

logQ
Tc,h +O

(
1

(logQ)2

)
, (3.29)

to be contrasted with the exponential behavior of (3.28). It would be interesting to generalize

our analysis to include phase fluctuations and compare the results with the expectations of

[6].

4. Inhomogeneous Solutions: the Superconducting State

In this section we study the full system of coupled non-linear partial differential equations

in (3.2) and (3.1). We start by expanding both A and ψ in Fourier modes as

ψ(x, z) =
∞∑
n=0

ψn(z) cos(nQx) , (4.1)

A(x, z) =
∞∑
n=0

An(z) cos(nQx) , (4.2)

and plugging this back into (3.2) and (3.1). Then, by projecting onto each Fourier mode, we

obtain a hierarchy of coupled non-linear ordinary differential equations for An(z) and ψn(z).

As before, we can truncate the expansion at some nmax(Q, ε), which we again choose so that

the modes ψnmax and Anmax are a factor of 10−3 smaller than the ψn or An with the largest

amplitude. The hierarchy is too long to be written out here, but for the convenience of the

reader we include a few lines of Mathematica code (A.14) in the appendix that can compute

it. To solve the hierarchy, we again integrate it from the horizon out to the boundary. The

boundary conditions at the horizon are again obtained from a power series of the solution near

the horizon. After setting An(1) = 0 to ensure regularity, one has 2nmax + 2 undetermined

coefficients. We require ψn(0) = 0 for the (nmax+1) Fourier modes of the scalar field in order

to have a normalizable profile. We also impose A0(0) = µ(1− δ), A1(0) = µδ and An(0) = 0

for 1 < n ≤ nmax. This provides 2nmax + 2 equations for the 2nmax + 2 Fourier coefficients.
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Figure 5: The plots show the z, x profile of A and ψ for Q = .25 and Q = 2. The striped pat-
tern of condensation of the bulk scalar field ψ is evident in both cases, but more pronounced
for lower Q’s.
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Figure 6: The left and right plots show the first few ψn and An(z), respectively, obtained
from the (truncated) full system (A.14) for Q = 1/4, T/(qµ) = and δ = 3/5. Longer dashes
correspond to larger n. The Fourier modes An for n > 1 are excited by the backreaction of
the scalar condensate.

Figure 7: The dependence of the superconducting order parameter O2 ≡ ∂zψ(0, x) on tem-
perature and x is plotted for Q = 1/4 and Q = 2 with δ = 2/5. We plot two periods in x to
better visualize the superconducting stripes, which have the same periodicity as the CDW.
Notice that for small Q the system is superconducting only in the stripes since the order
parameter is very small in between. For larger values of Q, the system is stiffer in the x
direction and therefore the stripes are less pronounced.
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Again, we only integrate to z = 10−8 and match to a power series expansion of the solution

near the boundary to extract these quantities. As before, we choose the solution that has

no zeros in the z-profile, which gives rise to a unique solution. The fact that the truncation

is a good approximation can be seen in figure 6 where we show a solution of the full system

(A.14) for An(z) and ψn for the first few n. It is clear that both An and ψn become smaller

and smaller as n increases.

In figure 5 we show ψ(z, x) and A(z, x) as obtained from our numerical computation with

the specified values of T, δ and Q. At some fixed subcritical T < Tc, as Q is gradually in-

creased (keeping everything else fixed), there is a smooth crossover between two qualitatively

distinct types of profiles of ψ. For Q < 1, ψ has a sharp striped condensation pattern in the

bulk: the scalar field has a large expectation value in correspondence of the maxima of the

CDW, while it is vanishingly small in between as can be seen in the top half of figure 5. This

behavior carries over to the order parameter of the boundary theory, i.e. O2(x) = ∂zψ(0, x),

as we show on the left of figure 7. The boundary system has sharp superconducting stripes,

well separated by stripes of normal phase. The situation changes continuously as we increase

Q. For Q > 1, the system is stiff enough in the x direction that bulk condensation takes

place everywhere at approximately the same temperature, although modulations are still

clearly visible (bottom of figure 5). This translates into the fact that the boundary system

is well inside the superconducting phase everywhere, but the order parameter is modulated

as we show on the right of figure 7.

5. The Grand Canonical Potential

In this section we study the grand canonical potential Ω for the system. This is the Legendre

transform of the free energy F , which is the thermodynamic potential in the canonical

ensemble. Before proceeding, let us be pedantic and spell out this difference in detail. The

natural variables for F are (T, ρ), while those for Ω are (T, µ), where µ is the chemical

potential for ρ. Using the AdS/CFT dictionary, in our computation A(0) plays the role of

the chemical potential µ, since it perturbs the Lagrangian of the boundary theory, while

A(1) plays the role of the (charge) density ρ, since it is the expectation value of the time

component of a current, i.e. a density. We have decided to give our results in terms of T/(qµ)

which is invariant under all the symmetries in table 2. All our plots are directly comparable

with any other convention for fixing three out of the four parameters {q, z0, µ, L} (in the

explicit computations we chose q = L = z0 = 1). Variations of T/(qµ) can be naturally

interpreted as variations of T at constant µ and q. This means that we are specifying T

and µ, while the entropy and ρ are dependent variables. In particular notice that if we fix

µ and vary T , in general ρ will vary as can be seen by any explicit solution of the equation

of motion for A. To summarize, we are working in the grand canonical ensemble4 and we

4Of course one could insist on using T/(qµ) and to work with the canonical ensemble, i.e. to keep ρ fixed.
In that case variation of T/(qµ) would be interpreted as some simultaneous variation of T and µ, which has
not a very transparent physical interpretation. In the canonical ensemble the results should be naturally
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should use the grand canonical potential Ω.

There are two competing states, the normal state ψ = 0 and the superconducting state

ψ 6= 0. We show that below Tc the grand canonical potential of the latter is lower, confirming

that a phase transition takes place. We find that the order parameter varies continuously as

the temperature crosses Tc, while its first derivative does not. Hence the phase transition to

the superconducting state is of the second order.

By the AdS/CFT dictionary, Ω/kT is the negative of the on-shell action of the Wick-

rotated solution with Euclidean time compactified on a circle of circumference 1/kT . Very

often this quantity is infinite and one needs to renormalize it. We present this derivation

for our inhomogeneous holographic superconductor following [17], but see also [18,19,20] for

related computations. We are interested in the action for A and5 Ψ assuming a static and

y-independent solutions. We will assume that Ψ is real as it is the case for all our solutions.

This can be straightforwardly derived from (2.1)

S =

∫
d4x

1

2

[
(∂zA)2 +

(∂xA)2

h

]
− 1

z2

[
h(∂zΨ)2 + (∂xΨ)2 −Ψ2

(
A2z2

h
+ 2

)]
. (5.1)

To evaluate S on shell it is convenient to integrate by parts and use the equations of motion.

This leads to

S =

∫
d4x [e.o.m.′s] + Son−shell , (5.2)

Son−shell ≡
∫
z=0

d3x

[
h

z2
ΨΨ′ − 1

2
AA′

]
−
∫
d4x

A2

hz2
Ψ2 , (5.3)

where we have used the fact that A(1, x) = h(1) = 0 while Ψ(1, x) is finite. Son−shell has

divergences coming from the boundary term at z = 0. We therefore introduce a cutoff at

z = ε to regularize it. The on-shell action can then be expanded as

Son−shell =

∫
d3x

[Ψ(1)(x)]2

ε
+ finite terms , (5.4)

where we have used the fact that close to the boundary Ψ is given by

Ψ(z, x) = Ψ(1)(x)z + Ψ(2)(x)z2 + . . . . (5.5)

This divergence can be subtracted by adding the following boundary counter term

Sct ≡ −
∫
d3x

h

z3
Ψ2 . (5.6)

Hence the renormalized grand canonical potential is

Ω =

∫
z=0

dxdy

[
1

2
AA′ +

h

z3
Ψ2 − h

z2
ΨΨ′

]
+

∫
dxdydz

A2

hz2
Ψ2 . (5.7)

plotted as function of T/q
√
ρ.

5For this derivation formulae are simpler if we use Ψ instead of ψ. Once we obtain the final result, we
will convert it to ψ =

√
2ReΨ/z.
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Figure 8: The plot shows the grand canonical potential Ω (multiplied by the appropriate
factors to make it invariant under the symmetries in table 2) as function of T/(qµ). Below
the critical temperature both the normal and the superconducting states exist. The latter
always has a lower Ω.

We can simplify this formula when considering only normalizable profiles of Ψ, i.e. Ψ(1) = 0,

which is the case for all the solutions considered in this paper. The average grand canonical

potential per unit volume then becomes

Ω

V
=

Q

2π

∫
z=0

dx
1

2
AA′ +

Q

2π

∫
dxdz

A2

hz2
ψ2 , (5.8)

where we have reverted to the notation ψ =
√

2ReΨ/z. The expression for Ω further sim-

plifies in the normal state where ψ = 0. There we can compute (5.8) analytically using our

approximate solution for the normal state profile of A

A(z, x) = A0 + A1 cos(Qx) , (5.9)

A0(z) = µ(1− δ)(1− z) , (5.10)

A1(z) ' µδ [cosh(Qz)− coth(Q) sinh(Qz)] . (5.11)

We find

Ω

V
= −1

2
µ2

[
(1− δ)2 +

1

2
δ2Q coth(Q)

]
. (5.12)

For the superconducting state we have to resort to numerics. It is straightforward, given

solutions for A and ψ, to numerically evaluate (5.8). In figure 8, we show the temperature
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dependence of Ω/V for several values of δ for Q = 2 as an example. In all cases there is a

critical value of T/(qµ) below which two possible solutions exist, the normal one with ψ = 0

and the superconducting one ψ 6= 0. For all values of Q and δ we have studied, the latter

has a lower Ω and is therefore favored. Notice that the numerical computation of Ω for the

normal state is well approximated by the analytical formula (5.12).

6. Conductivity

In this section, we study the electrical conductivity of the boundary theory in the presence

of a CDW and both normal and superconducting states. Our starting point are the Maxwell

equations (A.4)-(A.7). We want to add a small homogeneous electric field on top of the

solutions we have found in sections 3 and 4 and study the linear response of the system.

Because our solutions are inhomogeneous in the x-direction, an electric field in the x-direction

sources five other independent perturbations even at linear order. The computation of σx is

therefore much more complicated than the computations of conductivity currently performed

in the literature. We hope to present results for it in a future publication.

The calculation simplifies for σy. In this case, we want to probe the system with a small

homogeneous electric field in the y-direction, which we will realize by switching on a time

dependent Ay, and read out the linear response. All the solutions we have presented are

homogeneous in the y-direction and there are no ∂y derivatives to contract the perturbation

Ay with. Therefore, at linear order in Ay, we only have to solve the Maxwell equation for

Ay(ω, z, x) (which is now complex because of the Fourier transform of time into frequency)

on the backgrounds computed in the previous sections. Using (A.7) we find

h∂z (h∂zAy) + h∂2
xAy +

(
ω2 − ψ2h

)
Ay = 0 . (6.1)

Notice that, since the background is static, the Fourier modes Ay(ω, x, z) with different

frequencies ω decouple from each other. The optical conductivity in the y-direction is given

by

σy(ω, x) ≡ Jy(ω, x)

Ey(ω, x)
= −i A

(1)
y (x)

ωA
(0)
y (x)

, (6.2)

where we have expanded Ay(x, z) around the AdS boundary z = 0 as

Ay(x, z) = A(0)
y (x) + zA(1)

y (x) + . . . . (6.3)

Let us discuss the two boundary conditions for (6.1). In the x-direction, we impose peri-

odic boundary conditions. In the z-direction one boundary condition is simply the overall

normalization. As long as Ay is small enough we can work at linear order in Ay. The nor-

malization is then irrelevant because it cancels in the definition of σy. The second boundary

condition has to be imposed at the horizon z = z0 = 1 and is dictated by the requirement
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Figure 9: The panel shows the y-conductivity σy as function of x and of the frequency ω for
different values of the temperature and Q = .5 and δ = .4. Since Q is small, the system is
easily understood in terms of the homogeneous results for the conductivity. A gap opens in
correspondence of the superconducting stripes x = 0 + 2πn, where the order parameter is
large (as seen e.g. in figure 7), while σy(ω, x) is constant in between the stripes where ψ ' 0.
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Figure 10: The panel shows the y-conductivity σy as function of x and of the frequency ω
for different values of the temperature and Q = 4 and δ = .4. The profile is qualitatively
very different from the one for Q < 1 in figure 9. A gap opens up everywhere in x, but the
large ω asymptotic value is reached very differently at different points.
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Figure 11: The plots show a comparison of the conductivity for the homogeneous holographic
superconductor (dashed line) with an x = 0 slice of the inhomogeneous conductivity σy(ω, 0)
for two different temperatures T/Tc = 0.85, 0.65 (the lower temperature corresponds to the
orange line, which has the lowest value of σy in the ω → 0 limit). On the left we show
Q = 0.5 while on the right Q = 4. Once the frequency ω is rescaled by the value of the
corresponding order parameter

√
O2, the Q = 0.5 inhomogeneous conductivity becomes

almost indistinguishable from the homogenous one. The Q = 4 case shows a qualitatively
different behavior.

of causal behavior, which implies ingoing boundary conditions [21]. In our case this is6

Ay(ω, z, x) ∝ (1− z)+iω/3 + . . . near the black hole horizon z = 1.

We have numerically solved (6.1) and computed σy using (6.2). The results for different

values of Q and T/(qµ) are shown in figures 9 and 10. Let us comment on these results

starting from the normal CDW background studied in section 3. Since A is a vector boson

of an Abelian gauge theory, it does not couple to itself and knows about the background only

through its coupling to the scalar field. In the normal phase in which the scalar field vanishes,

the conductivity in the presence of a CDW is then the same as the one in a homogeneous state,

which is σ(ω) = 1, in the limit in which the backreaction on the geometry is neglected [3,4]

(for earlier discussion see [22]).

Things become more interesting below Tc where a condensate has developed. In figures

9 and 10, we show how σy(ω, x) changes as the temperature is lowered for two different

values of Q. Again, two qualitatively different behavior appear depending on the value of

Q. For Q < 1, the system effectively behaves as a collection of independent homogeneous

6In order to see this, plug the ansatz Ay(ω, z, x) = (1− z)a(ω)Ãy(x) + . . . into (6.1) and expand around
z = 1. At leading order one finds a = ±iω/3. The right sign for ingoing boundary condition, is found
by Fourier transforming back to the time domain (this defines our conventions of the sign of the Fourier
transform)

Ay(t, z, x) =
∫
dω

2π
eiω[t±log(1−z)/3]Ãy(x) + . . . . (6.4)

Since log(1− z) decreases going towards the horizon, the ingoing boundary condition is given by the upper
sign, i.e. Ay(ω, z, x) ∝ (1− z)+iω/3 + . . . .
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holographic superconductors, each one at a fixed value of x. This can be formally seen in

the analysis of subsection 3.2.1 of the Q→ 0 limit. Therefore the conductivity for Q = .5 in

figure 9 can be qualitatively understood in terms of the conductivity for the homogeneous

case. A gap forms for low frequencies in correspondence of the superconducting stripes

x = 0 + 2πn, while in between the stripes, where ψ ' 0, the conductivity is the same as

that of the normal state, i.e. constant. As Q becomes larger than one (keeping all other

parameters fixed), there is a smooth crossover to a qualitatively different behavior. We plot

the optical conductivity for Q = 4 in figure 10. The profile is dramatically different from the

one in figure 9. A gap opens almost simultaneously everywhere in x due to the increased

stiffness in that direction. Interesting resonant patters are visible as the large ω asymptotic

value is reached. To make the new features of the Q > 1 conductivity even more evident,

in figure 11 we show slices of σy(ω, x) at the center of the stripe (i.e. x = 0) and compare

them with the homogenous conductivity for two subcritical temperatures. Upon rescaling

ω by the corresponding value of the order parameter
√
O2, it is clear (left plot of figure 11)

that the Q = 0.5 conductivity agrees well with the homogeneous one. On the right plot of

figure 11, where Q = 4, σy(ω, 0) presents extra oscillations which are completely absent in

the homogeneous case. It would be desirable to better understand the physics behind the

Q > 1 conductivities.

7. Conclusions

In this paper we have studied a holographic model of superconductivity in the presence of a

CDW. Starting from a monochromatic CDW in the normal state with wave vector Q, after

the phase transition we find superconducting stripes coexisting with the original CDW plus

its higher harmonics. The dependence of the temperature of the phase transition Tc on Q

has some similarities with what is expected from a weakly coupled BCS computation [6].Tc
decreases monotonically as Q increases, and asymptotes some constant value. The main

difference is a steeper functional dependence for Q → ∞ for the holographic model. These

conclusions are derived in the absence of phase fluctuations of the condensate, which is a

consistent assumption at the level of our equations. In [6] it was argued that once phase

fluctuations are included, there is an optimal Q for which Tc has a maximum. It would

be very interesting to verify this expectation by generalizing our computation to include

these fluctuations. A first step would be a stability analysis of our solutions under small

fluctuations.

To characterize the superconducting phase, we have presented results for the conduc-

tivity σy in the direction parallel to the superconducting stripes. The conductivity in the

perpendicular direction, σx is more complicated to compute because, even at the level of

linear response theory, several modes are excited. On the other hand, this is a very inter-

esting observable for a couple of reasons. First, it tells us about the degree of anisotropy of

the system, which can be directly compared with experiment. Second, the knowledge of σx
carries information about the correlation between stripes and the nature of proximity effects
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in a holographic model.

Our analysis has been performed in the probe limit in which the backreaction of the

Maxwell and scalar field on the gravitational background are neglected. Although this is

expected to capture the relevant physics of the system, it might be interesting to study what

happens when gravity is dynamical. One might worry that inhomogeneities might trigger a

gravitational collapse making the system unstable. We have two comments in this regard.

First, it is well known that stability conditions in AdS are different from and often less

intuitive than those in flat space. Second, since q2L2/GN is still a free parameter, one can

always make the time-scale of the instability arbitrarily large implying that the system is

effectively stable.

There is significant information we could acquire by including the equations for gravity.

It would for example be interesting to see whether the DC conductivity perpendicular to the

stripes in the normal state has a delta function since translational invariance is broken (as

e.g. in [23]). One could also see how the findings of [24] about the absence of a hard gap

change due to the CDW.

Our focus in this work was to study how superconductivity interacts with a CDW and

what the physical consequences of this coexistence are. We did not try to spontaneously

generate the inhomogeneity of the CDW solution, but chose to source it with a modulated

chemical potential. One could extend our analysis to a model in which the CDW solutions

are generated dynamically, e.g. via a spontaneous symmetry breaking along the lines of [16].

We would like to conclude mentioning that we have found several instabilities of the

normal state of the holographic superconductor in the presence of a CDW beyond the one

studied in this work. Another simple one is towards a superconducting state in which

the order parameter is modulated with half the frequency of the CDW. This construction

has been proposed in the condensed matter literature to account for various properties of

the cuprates and is known as pair density wave (PDW) [1]. A thorough discussion of the

holographic realization of PDW states will be presented elsewhere.
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A. The Equations of Motion in Components

In this appendix, we collect the equations of motion derived from the action (2.1).

The scalar equation is [3]

− 1√
−g

Da

(√
−ggabDbΨ

)
+

1

2

Ψ

|Ψ|
V ′(|Ψ|) = 0 , (A.1)

the equation for the U(1) gauge field is

1√
−g

∂a
(√
−gF ab

)
= iqgba [Ψ∗DaΨ−Ψ(DaΨ)∗] , (A.2)

and Einstein’s equations are

Rab −
1

2
gabR−

3

L2
gab = 8πGN

[
FacFb

c − 1

4
gabF

cdFcd

−gabDaΨ(DbΨ)∗ + [DaΨ(DbΨ)∗ + a↔ b]− gabV (|Ψ|)
]
. (A.3)

Breaking the complex scalar field up into its real and imaginary part as Ψ ≡ (φ + iχ)/
√

2

and using the metric (2.4), the equations of motion for the two real scalar fields φ and χ

become

− 1√
−g

∂a
(√
−ggab∂bφ

)
+

(
AaA

a − 2

L2

)
φ−

[
1√
−g

∂a
(√
−gAa

)
+ 2Aa∂a

]
χ = 0 ,

− 1√
−g

∂a
(√
−ggab∂bχ

)
+

(
AaA

a − 2

L2

)
χ+

[
1√
−g

∂a
(√
−gAa

)
+ 2Aa∂a

]
φ = 0 .

Analogously, assuming no dependence on the y-coordinate, as it is the case for all solutions

considered in this paper, the Maxwell equations become

z2

L2

[
h∂2

zAt + ∂2
xAt
]
− At(φ2 + χ2) =

χ∂tφ− φ∂tχ+
z2

L2
(∂t∂xAx + h∂t∂zAz) , (A.4)

z2

L2

[
∂2
xAz −

1

h
∂2
tAz

]
− Az(φ2 + χ2) =

χ∂zφ− φ∂zχ+
z2

L2

(
∂z∂xAx −

1

h
∂t∂zAt

)
, (A.5)

z2

L2

[(
h∂2

zAx + h′∂zAx
)
− 1

h
∂2
tAx

]
− Ax(φ2 + χ2) =

χ∂xφ− φ∂xχ+
z2

L2

(
h∂z∂xAz + h′∂xAz −

1

h
∂t∂xAt

)
, (A.6)

z2

L2

[
∂z (h∂zAy)−

1

h
∂2
tAy + ∂2

xAy

]
− Ay(φ2 + χ2) = 0 . (A.7)
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In section 3 we studied the equation of motion of ψ (3.2) in the normal state background

given by

Anormal(z, x) = A0 + cos(Qx)A1(z) ≡ µ(1− δ)(1− z) + cos(Qx)A1(z) , (A.8)

where A1 is the solution of (3.6) with the boundary condition A1(0) = δµ and A1(1) = 0.

Upon expanding ψ in Fourier modes as

ψ(x, z) =
∞∑
n=0

ψn(z) cos(nQx) , (A.9)

we find an infinite system of linear coupled ordinary differential equations

−ψ′′0 +

[
zh(z)−

(
A2

0 +
1

2
A2

1

)]
ψ0 − A0A1ψ1 −

1

4
A2

1ψ2 = 0 ,

−ψ′′1 +

[
zh(z)−

(
A2

0 +
1

2
A2

1

)]
ψ1 − A0A1(2ψ0 + ψ2)

−1

4
A2

1(ψ1 + ψ3) + hQ2ψ1 = 0 ,

−ψ′′2 +

[
zh(z)−

(
A2

0 +
1

2
A2

1

)]
ψ2 − A0A1(ψ1 + ψ3)

−1

4
A2

1(2ψ0 + ψ4) + h(2Q)2ψ2 = 0 ,

...

−ψ′′n +

[
zh(z)−

(
A2

0 +
1

2
A2

1

)]
ψn − A0A1(ψn−1 + ψn+1)

−1

4
A2

1(ψn−2 + ψn+2) + h(nQ)2ψ2 = 0 , (A.10)

where A0(z) and A1(z) are the only two Fourier modes of A being non-zero. As an aside,

we notice that in the case A0 = 0 the odd modes ψ2n−1 decouple from the even modes ψ2n.

The full hierarchy for both A and ψ is obtained by plugging the expansions

ψ(x, z) =
∞∑
n=0

ψn(z) cos(nQx) , (A.11)

A(x, z) =
∞∑
n=0

An(z) cos(nQx) , (A.12)

into (3.2) and (3.1). The final form is too long to be written down here, but we give below
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the Mathematica commands that produce any given order, in this case five

nmax = 5; (A.13)

h[z ] = 1− z3;

φ[z , x ] = Sum[A[n][z]Cos[nQx], {n, 0, nmax}];
ψ[z , x ] = Sum[ψ[n][z]Cos[nQx], {n, 0, nmax}];

eqa[Q ] = h[z]D[φ[z, x], z, z] + D[φ[z, x], x, x]− ψ[z, x]2/z2φ[z, x]//TrigReduce;

eqp[Q ] = −h[z]z2D[h[z]/z2D[ψ[z, x], z], z]− 2h[z]/z2ψ[z, x]

−h[z]D[ψ[z, x], x, x]− φ[z, x]2ψ[z, x]//TrigReduce;

Do[{eqpQ[n][Q ] = Collect[If[n == 0, Q/2/PiIntegrate[eqp[Q], {x, 0, 2Pi/Q}],
Coefficient[eqp[Q], Cos[nQx]]], {ψ′′[n], ψ′[n], ψ[n]}, Simplify]}, {n, 0, nmax}]

Do[{eqpQ[n][Q ] = Collect[If[n == 0, Q/2/PiIntegrate[eqa[Q], {x, 0, 2Pi/Q}],
Coefficient[eqa[Q], Cos[nQx]]], {A′′[n], A′[n], A[n]}, Simplify]}, {n, 0, nmax}]
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