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We derive a general expression for the large-scale halo bias, in theories with a scale-dependent
linear growth, using the excursion set formalism. Such theories include modified gravity models,
and models in which the dark energy clustering is non-negligible. A scale dependence is imprinted
in both the formation and evolved biases by the scale-dependent growth. Mergers are accounted for
in our derivation, which thus extends earlier work which focused on passive evolution. There is a
simple analytic form for the bias for those theories in which the nonlinear collapse of perturbations
is approximately the same as in general relativity. As an illustration, we apply our results to a
simple Yukawa modification of gravity, and use SDSS measurements of the clustering of luminous
red galaxies to constrain the theory’s parameters.
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I. INTRODUCTION

The cosmological constant (Λ) + cold dark matter
(CDM) + general relativity (GR) model has been very
successful in accounting for current cosmological data.
It is incumbent upon us to put this standard model to
further tests. One of its characteristic predictions is a
scale-independent sub-Hubble linear growth, which can
be violated if dark energy clusters1, or if gravity is mod-
ified [2–9]. Both types of models introduce new scales
into the growth of structure: the Jeans scale in the case
of clustered dark energy, and the GR-to-non-GR tran-
sition scale in the case of modified gravity. The most
direct way to test for this effect is to measure the matter
power spectrum at different redshifts, and reconstruct the
growth factor as a function of scale. Here, we focus on a
corollary of a scale-dependent growth, a scale-dependent
halo bias, which in principle allows us to discern scale
dependence even with measurements of the large-scale
structure at a single redshift.

The fact that a scale dependence in growth implies
scale dependence in halo bias (on linear scales) was
pointed out by [10] (henceforth HP), generalizing earlier
work by [11, 12]:

b1(k0, zobs; zform) = 1 + [b1(zform)− 1]
D(k0, zform)
D(k0, zobs)

(1)

∗Electronic address: kyle@astro.columbia.edu
†Electronic address: lhui@astro.columbia.edu
‡Electronic address: shethrk@physics.upenn.edu
1 Dark energy other than the cosmological constant generally clus-

ters, though the degree of sub-Hubble clustering is often negli-
gible. Exceptions include models where the dark energy sound
speed is substantially less than unity, e.g. [1].

where b1(k0, zobs; zform) signifies the linear bias on scale
k0 observed at redshift zobs, for haloes that form at red-
shift zform. The symbol D denotes the linear growth fac-
tor at the relevant scale and redshift. This expression,
which assumes passive evolution, i.e. halo number con-
servation after formation, tells us that the observed bias
would inherit a scale dependence from the growth, even if
the formation bias is scale-independent. In this paper, we
wish to relax these two assumptions: scale-independent
formation bias, and no mergers.

The paper is organized as follows. The extended
Press-Schechter, or excursion set, formalism [13–17] is
described and generalized to allow for a scale-dependent
growth in Sec. II. This is used to compute the halo
mass function and the halo bias. In Sec. III, we describe
an illustrative example, a modified gravity model of the
Yukawa type, and present a calculation of the linear
growth factor and the excursion barrier (collapse thresh-
old). We present the halo bias for this example, and
compare it with observations. We conclude in Sec. IV.
In this paper, for the purpose of illustration, we have cho-
sen to focus on one particular model of modified gravity.
Our results in §II for the scale-dependent halo bias are,
on the other hand, fairly general. A recipe for using
these results in more general settings is summarized in
Sec. IV. Readers who are interested primarily in applica-
tions, and not on the derivation, can skip directly to Sec.
IV. In Appendix A we discuss some details concerning
the use of the excursion set method for theories with a
scale-dependent growth factor. In Appendix B we give
the derivation of the Yukawa model from a scalar-tensor
theory, and we describe our spherical collapse model in
Appendix C.

Before we proceed, let us briefly discuss the connection
with some of the literature on the subject. The halo mass
function for a Yukawa theory like the one we study was
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computed by [18]. Our paper follows their formalism, and
it is in a sense a straightforward extension to compute
the conditional mass function and halo bias. Halo bias
in f(R) gravity and the DGP models has been measured
from numerical simulations in [19–23] . They find fair
agreement between simulations and the bias derived from
a modified Sheth and Tormen [24] mass function whose
parameters reflect the altered spherical collapse.

There is a large literature on testing GR using the
growth of large-scale structure, e.g. [25]. Most studies
allow for a scale-dependent growth factor, but ignore its
effect on the galaxy bias. Our expression for the bias
should be useful for incorporating the latter effect into
such studies.

There is also a substantial literature on a large-scale
scale-dependent bias from primordial non-Gaussianity,
e.g. [26]. This other source of scale dependence should
be distinguishable from that from growth; we will discuss
this in Sec. IV.

II. EXCURSION SET THEORY OF HALOES
WITH A SCALE-DEPENDENT GROWTH

FACTOR

We describe in detail here the excursion set formalism.
Much of the discussion replicates the standard treatment,
but with special care taken to allow for a scale-dependent
growth factor.

A. Random walks

The premise of the excursion set theory is that a halo
will form from a region of a certain size when the over-
density of matter δ, smoothed over that region, is greater
than a critical value δcrit [13]. In FIG. 1, the mass over-
density, at a point, smoothed on a comoving scale R, is
plotted against the variance S on that scale around that
point, where

S(R) =
∫ ∞

0

d3k

(2π)3
P (k)|W̃ (kR)|2 , (2)

P (k) is the matter power spectrum, and W̃ (kR) the
Fourier-space window function. As the smoothing scale
is decreased, the smoothed density field undergoes a
random walk. The halo mass M is given by M =
(4π/3)ρ̄(z = 0)R3, where ρ̄ is the mean matter density
today. Hence, M , S and R can all be thought of as
equivalent variables.

Following common practice, we smooth the density
field with a real-space top-hat filter (even though, strictly
speaking, a true random walk requires a top-hat filter
in Fourier space [15]). In an important sense all of our
analysis is ‘native’ to real space; for all quantities not
explicitly marked as being in Fourier space by a ,̃ we de-
fine the wavenumber associated with a scale R as simply

FIG. 1: Random walks: notation for the excursion set model.
A point is contained in a halo corresponding to the first up-
crossing of the barrier, here δcrit, by the random walk.

k ≡ 1/R. The Fourier transform of a real-space top hat
is

W̃ (kR) =
3
x3
{sin(x)− x cos(x)} , x ≡ kR .

Following [18], this random walk exercise is carried out
at some initial redshift zi, chosen to be early enough
that the linear growth is scale-independent (i.e. neither
dark energy nor modified gravity is important by this
redshift2). Throughout this paper we set zi = 100, al-
though its precise value is not important as long as it is
sufficiently early. We add the subscript i to the critical
threshold for halo formation δcrit,i to remind ourselves
that it is the comparison between the smoothed δm at zi
against this threshold that defines haloes. The value for
δcrit,i in general depends on both the halo mass of inter-
est (i.e. the barrier is not necessarily flat, unlike in the
standard model), and the actual physical redshift of halo
formation zform.

B. Unconditional first-crossing distribution & the
mass function

The central quantity in the excursion set theory is the
first-crossing distribution, f . Define f(S1, δ1|0, 0) dS1 as
the probability that a random walk starting at the ori-
gin will first cross the barrier, of height δ1 ≡ δcrit,i,
at S = S1 ± dS1/2. This is equivalent to saying that

2 In the standard model of GR + Λ or (nearly) homogeneous dark
energy, the linear growth is scale-independent, the redshift at
which the density field is defined and the random walk is carried
out is immaterial. This is discussed in Appendix A.
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f(S1, δ1|0, 0)|dS1/dM1|dM1 is the probability that our
point (around which this smoothing or random walk exer-
cise is performed) belongs to a halo of mass M1±dM1/2.
We can think of (S1, δ1) as the target point we are aiming
for on our random walk.

To find f , it is sometimes convenient to consider first
the cumulative crossing distribution, F , which is the
probability that the walk first crosses the barrier at
S < S1:

F (S1, δ1|0, 0) =
∫ S1

0

f(S, δ|0, 0) dS ,

where δ is the critical threshold δcrit,i, generally a func-
tion of S; in the case where it is S-independent, i.e. flat
barrier, F (and therefore f = ∂F/∂S1) can be found us-
ing a clever trick due to Chandrasekhar [27], or by mod-
elling the random walk as a diffusive process (see [15, 16]).
For a more general barrier, an alternative method for
finding f will be discussed in §II F. We assume that the
probability distribution of the density field as a function
of the smoothing scale R is Gaussian:

PG(δ, S(R))dδ =
1√

2πS(R)
exp [−δ2/2S(R)] dδ .

Using the above, we see that the mass function of
haloes (the physical number density of haloes as a func-
tion of mass, smoothed over the whole universe) which
are identified at zform and observed at zobs is given by

n(M1)dM1 =
ρ̄(zobs)
M1

f(S1, δ1|0, 0)
∣∣∣∣ dS1

dM1

∣∣∣∣dM1 , (3)

where ρ̄(zobs) is the mean matter density at zobs. The
mass function has an implicit dependence on zform

through the dependence of the threshold/barrier δ1 on
the formation redshift.

C. Conditional first-crossing distribution & halo
bias

1. Lagrangian space

We can now move the starting point of our random
walk away from the origin, to some other point on the
S–δ plane. Call this point (S0, δ0). This is equivalent
to calculating all our quantities within a region of the
size on which the mass variance is S0, and which has a
mass overdensity δ0. The differential probability that a
random walk starting from this point will first cross the
barrier δ1 is f(S1, δ1|S0, δ0). In the flat-barrier case this
only depends on S1 − S0 and δ1 − δ0.

Using this conditional first-crossing distribution we can
construct an expression for the overdensity of haloes
within a region of (S0, δ0) [28, 29]. Just as we derived
the unconditional mass function above, we can derive a

conditional mass function. We can see from our defini-
tions that the mean number N of M1 haloes in a region
of total mass M0 is

N (M1, δ1|M0, δ0) =
M0

M1
f(S1, δ1|S0, δ0)

∣∣∣∣ dS1

dM1

∣∣∣∣ , (4)

and so their number density is N/V0 if the region has
volume V0(M0).

We define the overdensity of haloes ‘1’ in a region ‘0’
as the fractional overabundance of these haloes in this
region compared to their number density smoothed over
the whole universe, giving

δLh (1|0) =
N (M1, δ1|M0, δ0)
n(M1, δ1)V0

− 1 . (5)

This is the halo overdensity in Lagrangian co-ordinates,
in whichM0 ≈ ρ̄(zi)V0, defining V0. Indeed, all quantities
in this Lagrangian space discussion, including δ0, V0, δ1
and so on, are defined at the initial redshift zi.

2. Eulerian space

In Eulerian co-ordinates we need to replace V0 with the
evolved Eulerian volume. In the above, the Lagrangian
space quantities V0 and δ0 are calculated at zi. We now
have three redshifts: the initial redshift zi (which we al-
ways set to 100), the identification redshift of the haloes
zform (in a sense, their formation redshift), and the red-
shift at which the haloes are observed zobs.

Label as δ the physical matter overdensity of the region
of interest, at the observation redshift zobs. It will be
related to the Lagrangian space δ0 by

δ =
D(S0, zobs)
D(S0, zi)

δ0 , (6)

because δ0 is defined at zi. The use of the linear growth
factor D is justified for a small S0, or correspondingly
a large region. By the time of observation, the vol-
ume of the observed patch will have contracted from its
Lagrangian-space value, because conservation of mass re-
quires that the volume decreases as δ increases. Label as
V the volume of our region at zi, taking into account the
contraction it will experience by the time it reaches zobs.
Since δ(zi) ≈ 0, we find

M0 ≈ ρ̄(zi)V0 ≡ ρ̄(zi)(1 + δ)V −→ V =
V0

1 + δ
.

Substituting V0 → V into Eq. (5), and using Eqs. (3)
and (4), gives the Eulerian halo overdensity δEh :

δEh = (1 + δ)
f(S1, δ1|S0, δ0(δ))
f(S1, δ1|0, 0)

− 1 . (7)

It is clear that δh (dropping the ‘E’ from now on) will
in general not be the same as the matter overdensity in
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the same region, δ. A positive δ will usually help haloes
reach the collapse threshold and increase their overden-
sity, with the opposite effect for negative δ. There are
also halo exclusion effects; for example, the halo density
will be suppressed unless their mass is much smaller than
the mass available in the region. From the random walk
perspective, the ‘time’ available for barrier crossing is
S1 − S0, in which time the walk must travel a ‘distance’
δ1−δ0. You can suppress halo formation either by reduc-
ing the time available (Mhalo ≡ M1 approaching M0) or
by increasing the required distance (increasing the height
of the barrier).

Since we know δh is a function of δ, we can expand it
as a Taylor series3 [34],

δh =
∞∑
k=0

1
k!
bkδ

k . (8)

The bk co-efficients are the bias parameters. The first, b0,
vanishes in the limit of S0 � S1. Here, we are primarily
concerned with b1, the linear bias, in the δ → 0 limit (be-
cause we are interested in large regions, on which scales
the mass overdensity is expected to be small). The linear
bias in the limit δ → 0 is just ∂δh/∂δ evaluated at δ = 0,
and so, using ∂δ0/∂δ = D(S0, zi)/D(S0, zobs), we find

b1(δ → 0) =
1

f(S1, δ1|0, 0)

{
f(S1, δ1|S0, 0)

+
D(S0, zi)
D(S0, zobs)

∂f(S1, δ1|S0, δ0)
∂δ0

∣∣∣∣
δ0=0

}
.

(9)

Recall that S0, R0, and k0 are all equivalent variables;
S0 and R0 are related by Eq. (2), and k0 ≡ 1/R0. The
D(S0, zi)/D(S0, zobs) factor in this equation will make
the large-scale bias scale-dependent in many modified
gravity theories, or theories in which dark energy clus-
ters in a non-negligible manner.

D. Flat barrier approximation

As we will see in §III, a flat barrier may be a good ap-
proximation for some theories. This is not surprising even
for non-standard theories: haloes of a sufficiently small
mass cross the barrier in a regime where essentially the
standard story applies, i.e. the crossing occurs on small
scales where gravity is Newtonian and dark energy typi-
cally is quite smooth. A useful analytic form for the halo

3 This local bias model is known to be a good, but not perfect,
approximation for haloes that form from Gaussian initial condi-
tions [30, 31]. If haloes formed from peaks in an initial Gaussian
field, then δh would depend on other quantities in addition to δ
[32]. For non-Gaussian initial conditions of the local type, δh is
a function of both δ and the gravitational potential [33].

bias can be written down in this case. The conditional
first crossing distribution is [15]

f(S1, δ1|S0, δ0) =
1√
2π

δ1 − δ0
(S1 − S0)3/2

exp
[
− (δ1 − δ0)2

2(S1 − S0)

]
,

and so, using Eq. (9), we find the Eulerian-space bias to
be

b1 =
(

S1

S1 − S0

)3/2{
1 +

D(S0, zi)
D(S0, zobs)

(
δ1

S1 − S0
− 1
δ1

)}
× exp

[
− δ2

1S0

2S1(S1 − S0)

]
. (10)

We are interested in scales on which S0 � S1, i.e.
the halo mass of interest is much smaller than the mass
encompassed in the region over which we are calculating
the clustering. Therefore,

b1(S0, zobs; zform) = 1+
D(S0, zi)
D(S0, zobs)

(
δ1

2

S1
− 1
)

1
δ1
. (11)

The bias b1 depends on zform because δ1 is the initial
overdensity threshold for collapse at zform.

As a check, it can be seen this reduces to the
Mo & White [28] result in the standard model, by
recognizing that both δ1 and S1 in our descrip-
tion are defined at the initial redshift zi — one
can use part of the factor D(S0, zi)/D(S0, zobs) =
[D(zi)/D(zform)][D(zform)/D(zobs)] to rescale δ12/S1 and
δ1 down to zform (recalling that D is scale-independent
in the standard model), and obtain b1 = 1 +
[D(zform)/D(zobs)](ν2 − 1)/δc, where δc is the linearly
extrapolated overdensity of collapse at zform

4, and ν ≡
δc/
√
S1,form with S1,form being the the variance at zform

for our halo mass of interest M1. The bias in its most
familiar form is recovered when one sets zform = zobs.

In non-standard models, Eq. (11) implies the linear
bias b1 is scale (S0) dependent in general. The scale
dependence comes entirely from the ratio of growth factor
D(S0, zi)/D(S0, zobs). The result resembles Eq. (1) [10].
To facilitate comparison, it is helpful to rewrite Eq. (11)
as

b1(S0, zobs; zform) = 1 + (b1(S0, zform)− 1)
D(S0, zform)
D(S0, zobs)

,

(12)
where b1(S0, zform) is the formation bias, given by

b1(S0, zform) = 1 +
D(S0, zi)

D(S0, zform)

(
δ1

2

S1
− 1
)

1
δ1

(13)

4 For instance, δc ∼ 1.686 for a universe with a critical matter
density and no cosmological constant or dark energy. More gen-
erally, for a flat universe with matter and Λ, δc ∼ 1.686 × (1 +
0.123 log10Ωf ), with Ωf = Ωm(1+zform)3/[Ωm(1+zform)3+ΩΛ]
[35].
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This is a trivial rewriting, but it makes clear that
the formation bias b1(S0, zform) is in general scale-
dependent, contrary to what was assumed in HP.
It also helps differentiate between two different ef-
fects: one is the scale dependence at formation (from
D(S0, zi)/D(S0, zform) in Eq. [13]) , and the other is the
scale dependence from passive evolution thereafter (from
D(S0, zform)/D(S0, zobs) in Eq. [12]).

Note that when zform 6= zobs, the haloes are identified
at zform > zobs, and maintain their identities until zobs

5.
Mergers in the form of accretion onto these haloes are
allowed between the two epochs, so long as the identifi-
cation is unaltered, i.e. the haloes, once identified, are
conserved. If this is not true — if the haloes continue
to merge with each other all the way to zobs — then one
should use zform = zobs. In this case, there is no distinc-
tion between the bias observed at zobs and the formation
bias.

It is also instructive to further rewrite the formation
bias using the following relations:

δ1 = δ1,form
D(S1, zi)

D(S1, zform)
, (14a)

S1 = S1,form
D2(S1, zi)

D2(S1, zform)
, (14b)

where we have introduced δ1,form and S1,form for the lin-
ear overdensity threshold and the variance at zform (recall
that our random walks are performed at the initial red-
shift zi, hence δ1 and S1 are defined then). The formation
bias can thus be written as

b1(S0, zform) = 1 +
D(S1, zform)
D(S0, zform)

(
δ2
1,form

S1,form
− 1

)
1

δ1,form
,

(15)
where we have assumed that at a sufficiently early zi,
the growth factor is scale-independent, i.e. D(S0, zi) =
D(S1, zi). This is a useful expression because δ1,form

is typically a constant, with fairly weak dependence on
zform and cosmology (see footnote 4). This appears to
be a good approximation even for the modified gravity
model we will study below, where for sufficiently small
haloes δ1,form approaches its ΛCDM value, which is 1.671
for zform = 0.

E. The modified linear growth factor

So far, we have not been very explicit about where the
scale-dependent growth factor actually comes from. On
the sub-Hubble scales of interest, mass and momentum

5 These expressions work even for zform < zobs. This is relevant if
one identifies haloes at some low redshift zform, but is interested
in the clustering of the center of mass of their constituents at
some earlier redshift zobs.

conservation imply the following equation for the linear
matter overdensity δ:

d2δ

da2
+
(

3
a

+
1
H

dH
da

)
dδ
da

=
1

a4H2
∇2φ , (16)

where the Laplacian is in comoving coordinates. What
modified gravity, or clustering in dark energy, does is
to modify the relation between δ and the gravitational
potential φ, from the standard Poisson equation. The re-
sult can often be modelled as replacing ∇2φ by O · δ,
where O is some linear operator which can be scale-
dependent, giving rise to a scale-dependent growth for
δ. Solving the resulting equation in Fourier space would
give δ(k, z) = [D̃(k, z)/D̃(k, zi)]δ(k, zi), where k is the
wavenumber of interest. We use the symbol D̃ to dis-
tinguish this growth factor from the growth factor D
we use in the excursion set calculation. The difference
arises from the fact that the excursion set calculation
cares about the growth of the variance S, smoothed on
scale R, or equivalently, M . We define D in such a way
to give the correct evolution of the variance S:

D2(R, z) ≡ S(R, z)
S(R, zi)

, (17a)

=
∫ ∞

0

d3k

(2π)3
P (k, zi)

{
W̃ (kR)

D̃(k, z)

D̃(k, zi)

}2/
∫ ∞

0

d3k

(2π)3
P (k, zi)W̃ 2(kR) . (17b)

In the excursion set computation, the overdensity δ is
evolved using the same growth factor D. In practice, the
integral over k is expected to be dominated by k ∼ 1/R,
and therefore D(R, z) is roughly D̃(k = 1/R, z), though
we do not use this approximation.

F. Calculating the first-crossing distributions

As mentioned above, the flat barrier approximation
turns out to be a fairly good one for the example we
study. However, in general, the barrier or threshold
for collapse is mass/scale-dependent. The corresponding
first-crossing distribution can be found as follows.

First of all, it is possible to calculate the f distribution
analytically for barriers which are linear functions of S:
if δ1(S) = ω − βS,

f(S1, δ1|S0, δ0) =
∆δ

∆S
√

2π∆S
exp

{
− (∆δ − β∆S)2

2∆S

}
,

where ∆δ ≡ δ1(S0) − δ0 and ∆S ≡ S1 − S0 [17]. For a
more general barrier, there is no exact analytic solution,
but reasonable approximations have been worked out by
Sheth & Tormen, and Lam & Sheth [36, 37]. In this pa-
per, we adopt the algorithm of Zhang & Hui [38] which



6

gives an exact, albeit numerical, solution for the uncon-
ditional f -function. It is straightforward to extend their
method to the conditional case. It can be shown that the
function is the solution of the integral equation

f(S1, δ1(S1)|S0, δ0) = g1[S1, δ1(S1);S0, δ0]

+
∫ S1

S0

dS′1 g2[S1, δ1(S1);S′1, δ1(S′1)]

× f(S′1, δ1(S′1)|S0, δ0) ,

where

g1[S1, δ1(S1);S0, δ0] =
{
δ1(S1)− δ0
S1 − S0

− 2
dδ1
dS1

}
× PG(δ1(S1)− δ0, S1 − S0) ,

g2[S1, δ1(S1);S′1, δ1(S′1)] =
{

2
dδ1
dS1
− δ1(S1)− δ1(S′1)

S1 − S′1

}
× PG(δ1(S1)− δ1(S′1), S1 − S′1) .

This is a Volterra equation of the second kind. By
treating f as a vector f , we can see that this equation is
of the form f = g+Mf where g is another vector and M
is a matrix, implying that f can be found with a matrix
inversion: f = (I −M)−1g. M is a triangular matrix,
allowing I−M to be inverted efficiently by iteration [39].

III. AN ILLUSTRATION WITH A YUKAWA
MODEL

By the Yukawa model, we mean using the following
effective Poisson equation to compute the growth of per-
turbations and the formation of haloes (for instance, it
goes into the right hand side of Eq. [16]):

−k2φ = 4π
GN

1 + α
ρ̄a2δ

[
1 + α

k2

k2 + a2/λ2

]
, (18)

which is written in Fourier space. Here, GN is the effec-
tive Newton’s constant at high k. The k2/(k2 + a2/λ2)
term corresponds to a Yukawa modification, where 1/λ
can be thought of as a mass: it determines on what scale
modifications to GR become important. The parameter
α quantifies the size of the modification, i.e. the ratio
of effective Newton’s constant on small scales to on large
scales is 1/(1 + α). A positive α corresponds to weaken-
ing gravity on large scales (large compared to λ), while
a negative α (but > −1) corresponds to the opposite.

This effective Poisson equation can be solved by

φ(r) = − GN
1 + α

∫
d3r′

ρ̄δ(r′)
|r − r′| {1 + α exp (−|r − r′|/λ)} ,

(19)
where r is the physical proper coordinate, related to the
comoving coordinate x by r = ax.

The model encapsulated by Eq. (18) is phenomenolog-
ical in nature. For a positive α, it can be derived from a

scalar-tensor theory with a potential for the scalar field,
described in Appendix B.

One implication of Eq. (19) is that Birkoff’s theorem,
or Gauss’s law, no longer holds: a test particle in a
spherically-symmetric matter distribution feels a force
from the matter both inside and outside the surface of
constant radius defined by its position.

We investigate three methods, one exact and two ap-
proximate, for solving for the nonlinear evolution of
spherically-symmetric perturbations, the details of which
are deferred to Appendix C. This nonlinear problem
has to be solved to determine the appropriate collapse
threshold δcrit,i used in the excursion set calculation.
The violation of Birkoff’s theorem implies an initially
top-hat perturbation does not remain so. However, we
find that modelling the spherical perturbation as homo-
geneous (i.e. a top hat) at every time step is a good
approximation for the parameters and halo masses of
interest. Other infra-red modifications of gravity, such
as DGP, appear to share the same feature —Schaefer &
Koyama have argued [40] that the effect of the violation
of Birkoff’s theorem in DGP gravity should be small.

We find that a Yukawa-type modification of gravity,
which is consistent with observations of galaxy clusters
and hence has λ > 5h−1 Mpc, will only affect the collapse
dynamics for haloes with mass M & 1014 h−1 M�; for
smaller haloes the evolution is basically GR-like. This is
consistent with previous studies of spherical collapse of
large haloes in Yukawa-modified gravity [18].

In the rest of this section, we present results for the bar-
rier δcrit,i from the spherical collapse computation, and
for the halo bias b1 from the excursion set method. The
background cosmology is taken to be that of ΛCDM (see
Appendix B for discussions on consistency with modify-
ing gravity for the perturbations). For the power spec-
trum, we use the analytic fit from [41], with parameters
fixed by the WMAP 5-year analysis: ΩCDM = 0.206,
Ωbaryon = 0.043, ΩΛ = 1−(ΩCDM +Ωbaryon), ns = 0.961,
h = 0.724 [42]. We normalize the power spectrum at a
high redshift (zi = 100), i.e. the primordial normaliza-
tion is the same for both the standard and non-standard
models. The amplitude is chosen such that, if GR were
to hold, σ8 would equal 0.787 today.

A. Barriers

The barrier used in the random walk calculation is the
initial overdensity required for a perturbation to collapse
to zero radius by an identification redshift zform. In gen-
eral relativity the required initial overdensity is indepen-
dent of scale, i.e. the barrier is flat. Curved barriers have
been used to model the effect of ellipsoidal, rather than
spherical, collapse; e.g. see [43].

For the Yukawa model, the barrier can be generated
using the spherical collapse calculation outlined in Ap-
pendix C; in what follows we use the homogeneous sphere
approximation throughout. For each scale k1 (≡ 1/R1,
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FIG. 2: Barriers in Yukawa models parametrized by α and λ:
the overdensity at zi = 100 required on each comoving scale
k1 or mass scale M1, in order for that region to collapse by
zform = 0.

or a mass of M1), the initial overdensity is found which
collapses at zform. This defines δcrit,i, which is equated
with δ1 in the excursion set theory, as a function of k1 or
M1. FIG. 2 shows barriers for the Yukawa model with
a range of parameter values for α and λ. At smaller
k1 in the weaker-gravity case (α > 0), the barrier is
higher because these larger-scale perturbations enter the
weakened-gravity regime earlier and experience more of a
reduction in the gravitational force, and so need a larger
initial overdensity to push them over the edge into col-
lapse; the converse holds for the stronger-gravity (α < 0)
model. At high k1 the barrier approaches the GR re-
sult, which can be thought of as the value 1.671, scaled
back to zi = 100 using the ΛCDM growth factor ratio
D(zi)/D(zform). While not a focus of this paper, FIG. 2
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FIG. 3: Ratio of simple (flat barrier, Eq. 10) to full (curved
barrier, Eq. 9) bias expressions, for α = −0.5, λ = 8h−1 Mpc,
zobs = zform = 0.

suggests the mass function at the high mass end would be
significantly affected by the curving of the barrier, espe-
cially its lowering at high mass for α < 0. The observed
cluster count already constrains α to be not too negative
[18].

Anticipating the linear halo bias that we will calculate
next, in FIG. 3 we plot the ratio of the flat barrier solu-
tion, Eq. (10), to the full curved barrier solution, Eq. (9)
using the numerical procedure of Sec. II F, for four halo
masses. The amplitude of the flat barrier is taken to be
the collapse threshold δ1 at high k1, which in the case
of our models is very close to the Newtonian value. The
flat barrier approximation is very good for galaxy-mass
haloes—for a halo of 1013 h−1 M�, the fractional discrep-
ancy in the bias is of order 10−3 for the parameters con-
sidered. Decreasing |α|, increasing λ, or increasing zform

will flatten the barrier, further reducing this difference.
Effects due to barrier curvature are more readily appar-
ent for cluster-mass haloes, because the barriers in FIG. 2
are only curved at large masses.

B. Formation bias

There are two ways in which the halo formation bias
(i.e. halo bias with zform = zobs) differs from the stan-
dard expression, due to for instance a modification to the
gravitational law. One is from the scale-dependent lin-
ear growth, the other is from the curved barrier. The
former is the dominant effect. As we have seen already
from FIG. 3, the curvature of the barrier does not have
a significant impact on the halo bias, on scales k0 ∼< 0.05
h/Mpc. The impact on smaller scales is higher, but still
minor for sufficiently light haloes.

Our most general expression for the halo bias is given
by Eq. (9). The factor of D(S0, zi)/D(S0, zobs) encapsu-
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lates the first effect. For instance, in the Yukawa model
with α > 0 (weaker gravity on larger scales), this factor
is larger on large scales, and the halo bias is correspond-
ingly higher. Physically, what drives the higher halo bias
on larger scales is this: recall that we are interested in
how the halo overdensity δh relates to the matter over-
density δ at redshift zobs; for a fixed δ, the overdensity δ0
at the initial redshift zi (where the random walk is per-
formed) is higher on larger scales if α > 0. This larger δ0
boosts halo formation, and results in a higher halo bias.

The curved barrier is in principle another way in which
a scale dependence is imprinted on the halo bias. For
this to occur, the barrier must absorb some trajectories
before they reach (S1, δ1(S1)) in a way which depends
on the starting point S0. We do not observe this in the
models we consider, because on large scales the random
walk has a negligible probability of crossing the barrier
because the variance of each step, S, is so low. Therefore
large-scale changes to the barrier have very little effect
on the bias. (If α is strongly negative, say α ∼ −0.7, the
barrier is so low on large scales that it absorbs the random
walk paths before they reach ‘sensible’ halo scales, see
FIG. 2(b). This produces a strongly scale-dependent bias
and drastic under-production of low-mass haloes, which
is clearly incompatible with observations.)

FIG. 4 shows the halo bias computed using the full
excursion set theory, with a barrier determined by the
exact spherical collapse calculation. The scale depen-
dence of the bias comes almost entirely from the large-
scale growth factor, and is well described by our flat-
barrier expressions, Eqs. (11), (13), or (15). As the
halo mass increases (and so the variance S1 decreases)
the factor multiplying the scale-dependent growth factor
ratio, (δ12/S1 − 1)/δ1, becomes larger, leading to more
pronounced scale dependence in the formation bias. The
different curves in FIG. 4 are produced by the same scale-
dependent factor multiplying a mass-dependent ampli-
tude.

C. Passive bias evolution

In the previous section we observed the haloes at the
time of their formation. Some galaxy populations form
at an early redshift and then evolve passively, without
further major merger events. In this scenario the total
number of haloes is conserved after the formation epoch;
the haloes increase their mass only by accreting much
smaller haloes. The mass assigned to the haloes is their
mass at formation, disregarding subsequent accretion.

Here zform 6= zobs; the formation redshift determines
the barrier shape and height via δ1 = δcrit,i (this is
the initial overdensity threshold which has to be evolved
back from the formation redshift), while the observation
redshift determines the relationship between δ0 and δ,
Eq. (6). This combination reproduces, in the excur-
sion set formalism, the modified-gravity bias-evolution
results previously derived from the perturbation equa-
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(a) α = 1.0, λ = 10h−1 Mpc.
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(b) α = −0.5, λ = 10h−1 Mpc.

FIG. 4: Bias versus scale for zform = zobs = 0. The halo
masses in each case are, in units of h−1 M�, 5 × 1014 (most
biased), 1014, 5×1013, 1013, 5×1012, and 1012 (least biased).
For the three largest masses, the curves are discontinued be-
yond the scale at which halo exclusion becomes important, i.e.
where M1/M0 = 0.01. The panels illustrate the predictions
for two Yukawa models.

tions by HP [10], in the sense that b1 − 1 scales with
D(S0, zform)/D(S0, zobs), as in Eq. (12). However, it
should be kept in mind that according to the excursion
set theory, the formation bias is not scale-independent in
general, but is instead given by Eq. (13).

The combined effects of formation bias and passive bias
evolution can be non-intuitive. For example, in FIG. 5
the stronger large-scale gravity (α < 0) causes the bias to
be smaller on large scales, but passive evolution decreases
the smaller scale bias faster. This is because on smaller
scales the bias is greater, and thus is more quickly diluted
by passive evolution.
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FIG. 5: Passive bias evolution of a 5×1012 h−1 M� halo which
forms at zform = 1 and is observed at zobs = 1 (top), 0.5, and
0 (bottom); in this case α = −0.5, λ = 10h−1 Mpc.

D. Comparison with observations — an example

For comparison with observations, it is sometimes con-
venient to consider an apparent bias bapp, defined as

bapp(k0) ≡ D(k0, zobs)
D(k0, zi)

DΛCDM(zi)
DΛCDM(zobs)

b1(k0) , (20)

where DΛCDM is the growth factor according to the stan-
dard ΛCDM model, and D is that according to our non-
standard model. This is constructed such that the power
spectrum of haloes in the non-standard model Phaloes is
related to the matter power spectrum in ΛCDM PΛCDM

by

Phaloes = b2app(k)PΛCDM . (21)

This is a necessary step when we don’t know the mat-
ter power spectrum directly, and so must compare the
observed galaxy distribution to what would be expected
from an underlying standard-gravity matter distribution.
If the matter power spectrum were known, from weak
lensing for example, we could compare the measured bias
to the true bias b1 directly.

The apparent bias is plotted against scale in FIG. 6.
On large scales the apparent bias has a constant slope,
which is the same for all halo masses. This is be-
cause the form of the true bias, b1 ≈ 1 + f1(k0)f2(M1)
(Eq. 11), when multiplied by the scale-dependent factor
D(k0, zobs)/D(k0, zi), becomes bapp ≈ g1(k0) + g2(M1).

In FIG. 6(c), the large-scale apparent bias actually in-
creases with passive evolution—this is due to the over-
all multiplicative factor in front of b1 in the previous
equation, which is greater than one on large scales when
α < 0. The opposite occurs for positive α: the large-scale
apparent bias drops faster than the physical bias.

The high intrinsic luminosity of luminous red galax-
ies (LRGs) makes them useful tracers of the large-scale
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(a)α = 1.0, λ = 10h−1 Mpc. Compare with FIG. 4(a).
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(b)α = −0.5, λ = 10h−1 Mpc. Compare with FIG. 4(b).
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(c)Passive apparent bias evolution of a 5× 1012 h−1 M� halo;
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Compare with FIG. 5.

FIG. 6: Birth and evolved apparent (rather than physical)
biases for the same parameters and halo masses as FIG. 4
and FIG. 5.
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FIG. 7: Galaxy biases derived from the SDSS LRGs, with
Yukawa and Newtonian best fit curves. The best fit parame-
ters are α = 0.065, λ = 6.5h−1 Mpc

cosmic density field. We calculate the galaxy bias of the
LRGs as a function of scale, using the LRG power spec-
trum derived from the SDSS galaxy redshift survey [44],
and the standard matter power spectrum, whose param-
eters are set to the WMAP 5-year maximum-likelihood
values [42]. The LRGs are mostly believed to occur as
the largest galaxy in individual haloes, and so the galaxy
bias is approximately the host halo bias.

A description of the halo clustering with only the first
bias parameter and the matter power spectrum is con-
sistent only on linear scales, which we estimate here as
those scales where the scale dependence introduced into
the bias by a non-zero S0(k0) in Eq. 10 is small. This
restricts our analysis of the LRG power spectrum to the
eleven data points available for k0 . 0.06hMpc−1.

The LRGs may be a passively evolving population [45]
(however, see [46] for an opposing view). Despite this,
we use the formation bias at the median redshift of the
sample, zform = zobs = 0.35, in order to include any mass
the haloes may have accreted since they formed. Ide-
ally, one would bin the galaxies by redshift and account
for the changing predicted bias shape for each modified
gravity model, thus providing two tests: the shape of the
bias curve at each redshift, and the evolution of the bias
(in both shape and magnitude) with time. This may be
feasible with future data sets.

A complete analysis would include marginalization
over the matter spectral index and σ8. To derive some
preliminary constraints, we fix all the properties of the
matter power spectrum and (ΛCDM) expansion history,
and marginalize over halo mass in a χ2 minimization pro-
cedure6 for each combination of α and λ. Fitting the

6 Here, we do not distinguish between the k’s in our equations
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FIG. 8: Contours of constant ∆χ2 in the α–λ plane. The
regions containing α = 0 are ‘included’ by the contours.

apparent formation bias at the median redshift of the
LRG sample gives best-fit parameters α = 0.065, λ =
6.5h−1 Mpc, M1 = 1.2 × 1013 h−1 M�, with χ2 = 10.08.
This is statistically indistinguishable from the Newtonian
fit, with χ2 = 10.21. In fact, one could argue that the
data does not favor the Yukawa model since it requires
more parameters without improving χ2 much. However,
the error bars are at the moment rather large. The ob-
served biases and model fits are shown in FIG. 7.

(which are really defined in real space, in the sense of k = 1/R)
and the true Fourier-space k’s as in the observed galaxy power
spectrum. This is not an issue if one has a scale-independent
growth factor, and therefore a scale-independent large-scale bias.
But for our present purpose, some extra care should in principle
be taken in determining the correct mapping between our k’s
and the observed Fourier-based k’s. Simulations can be used to
address this issue, which we leave for future work.
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FIG. 8 shows contours of constant ∆χ2 in the α–λ
plane. Marginalization over α or λ is poorly constrain-
ing, since in both cases the Newtonian limit (α → 0
or λ → ∞) is allowed, and so the marginalized ∆χ2

cannot be larger than 0.13. This method places bet-
ter limits on stronger-than-Newtonian-gravity models.
These constraints should be considerably improved by
future galaxy clustering measurements, especially those
on scales k0 < 0.1hMpc−1.

IV. CONCLUSIONS

We have worked out the large-scale halo bias b1 in a
theory that has a scale-dependent linear growth factor,
such as modified gravity or clustered dark energy. We
give several expressions in §II C & II D. The most general
expression is Eq. (9). It relates b1 to the first crossing
distribution f , which can be computed using the method
described in §II F, for a general curved barrier. Note that
all quantities describing the random walk: δ1, S1, δ0, S0

are defined at the initial redshift zi, as opposed to the
formation redshift zform.

A much simpler expression, Eq. (15), is obtained in
cases where the barrier can be approximated as flat. As
can be seen in the example depicted in FIG. 2, the barrier
is generally not flat once a scale-dependent growth factor
is allowed. However, it is often true that the barrier
deviates from flatness only for the largest masses, and a
flat barrier approximation (set at the small mass level)
actually works quite well in predicting the halo bias for
more modest halo masses (FIG. 3). The expression in Eq.
(15) is particularly easy to use because the threshold for
collapse δ1,form and the variance S1,form are defined at
the formation redshift as usual.

Our main result is the imprinting of a scale dependence
on the formation bias, by the modified linear growth fac-
tor. This can be understood to occur because regions
of the same overdensity but different sizes today would
not all have had the same overdensity at an earlier red-
shift, and hence would have varying halo densities (see
Sec. III B). The scale dependence of the growth factor
manifests itself at a single redshift, making it possible
to look for it with a local-universe snapshot. Using this
effect and an appropriate galaxy sample, one can place
constraints on gravity theories, as we demonstrate with
a simple Yukawa theory.

We have focused on the case in which the formation
bias is deterministic. However, this bias may be stochas-
tic, in which case this stochasticity will also be scale-
dependent [10]. Although we will not perform a detailed
analysis of stochastic bias here, we note that, even if the
formation bias is deterministic in, say, k-space, the scale
dependence means that it will be stochastic in real space
(and vice-versa) [47]. Thus, the stochasticity of the bias
is another potential signature of modified gravity theo-
ries.

This scale dependence from growth should be distin-

guishable from that due to primordial non-Gaussianity.
Local (fnl) models predict a strong scale-dependent cor-
rection to the bias, of the form ∆b(k) ∼ 1/k2 [26],
which is likely to be more pronounced than the cor-
rections from modified growth models that are allowed
by existing constraints. Additionally, primordial non-
Gaussianity generally produces a non-zero three-point
function in the cosmic microwave background, unlike the
modified growth models we consider, which effectively
return to GR+ΛCDM at high redshift.

Looking forward, it would be interesting to work out
how a scale-dependent large-scale bias can be incorpo-
rated into optimal weighting schemes for recovering the
mass distribution from a galaxy or halo catalog [48, 49].
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Appendix A: Density field extrapolation

In an excursion set calculation, there are in principle
four different redshifts that might be relevant: the initial
redshift zi (taken to be 100 in this paper), the forma-
tion redshift zform, the observation redshift zobs, and the
redshift at which all the random walk variables (the vari-
ances S0, S1, etc) are defined: let us call it zfields, or the
random walk redshift.

In the standard theory, i.e. GR, the choice of zfields

is immaterial. The simplest way to see this is to exam-
ine the flat barrier (but otherwise general) expression for
bias in Eqs. (12) and (13). In this expression, the ran-
dom walk variables δ1 and S1 are defined at the initial
redshift zi. In other words, the choice zfields = zi has
been made. It is simple to see that if the growth factor
D were scale-independent, choosing a different random
walk redshift, i.e. zi → zfields 6= zi would have made no
difference to the predicted bias. This is because in the
expression for the formation bias (Eq. [13]), δ2

1/S1 is in-
dependent of the random walk redshift by definition, and
δ1D(S0, zform)/D(S0, zfields) (with δ1 defined at zfields) is
also independent of zfields. The key is that the growth
factor relevant for δ1, which is on scale S1, is the same
as the growth factor on scale S0. This is true in GR, but
not true for non-standard theories where the growth fac-
tor is generally scale-dependent. Indeed, in the standard
theory, it is common practice to choose zfields = zform,
such that for instance in an Einstein-de Sitter universe,
δ1 takes the value 1.686.
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In non-standard theories, the formation bias given
by Eq. (13) is still insensitive to the precise choice of
zfields = zi, as long as zi is sufficiently early. This is
because we expect the (sub-Hubble) growth to be scale-
independent at sufficiently early times. Choosing zfields

to be some late redshift, however, would change the pre-
dicted bias. Our choice of zfields being equal to some
early initial redshift is in keeping with the excursion
set philosophy, namely that characteristics of the initial
random Gaussian fluctuations, such as how they change
with smoothing scale (i.e. the random walk), determine
whether a region ultimately collapses into a halo by a
certain redshift.

Appendix B: Scalar-tensor Theory

In this section, we would like to make explicit how the
Yukawa model we use as an illustrative example can be
obtained from a scalar-tensor theory [50]. In the Einstein
frame, a scalar-tensor theory with potential scalar self-
interactions can be written as

S =
1

8πG

∫
d4x
√−g

[
1
2
R− 1

2
∇µϕ∇µϕ− V (ϕ)

]
+
∫
d4xLm(ψm,Ω−2(ϕ)gµν) , (B1)

where R is the Ricci scalar, the dimensionless ϕ medi-
ates a scalar fifth force, V (ϕ) is the scalar potential, and
ψm represents matter which is minimally coupled not to
the Einstein frame metric gµν but its conformal cousin
Ω−2(ϕ)gµν . Here, ϕ is typically small such that the con-
formal factor can be expanded as

Ω2(ϕ) ∼ 1− 2βϕ (B2)

where β is a coupling constant, typically of order unity
for a gravitational-strength scalar force.

The total gravitational + scalar acceleration an in-
finitesimal particle experiences is

Ẍi = −∂iφ = −∂iφ̃− β∂iϕ , (B3)

where φ is the effective (total) gravitational potential,
and φ̃ is the (Einstein frame) gravitational potential. The
scalar field ϕ and the gravitational potential φ̃ satisfy the
equations:

∇2φ̃ = 4πGρ̄a2δ

∇2ϕ = a2

[
∂V

∂ϕ
− ∂V

∂ϕ̄

]
+ 8πβGρ̄a2δ (B4)

where δ is the overdensity, ρ̄ is the mean density, and ϕ̄ is
the scalar field value at mean density. If the potential V
were negligible, one can see that φ and ϕ would be pro-
portional to each other, and the test particle would accel-
erate according to an effective gravitational potential of
φ = φ̃(1+2β2). More generally, assuming the fluctuation

of ϕ from ϕ̄ is small, one can Taylor expand and rewrite
the potential terms on the right as ∼ (a2/λ2)(ϕ − ϕ̄),
where 1/λ2 is the second derivative of the potential eval-
uated at ϕ̄. One therefore finds ϕ[1+a2/(k2λ2)]/(2β) = φ̃
in Fourier space. This means the total effective gravita-
tional potential φ = φ̃

[
1 + 2β2k2/(k2 + a2/λ2)

]
. Com-

bining this with the Poisson equation for φ̃ gives us the
Yukawa model in Eq. (18), if one makes the identifica-
tion α = 2β2, and GN = G(1+2β2). The Yukawa model
we study assumes λ is a constant, but it should evolve in
general, depending on the precise form of the potential
V .

Note that α is always positive in this sort of formu-
lation. The case of a negative α is best regarded as
purely phenomenological. Note also that depending on
the potential V , the scalar-tensor theory could exhibit a
chameleon mechanism on sufficiently small scales, under
which (ϕ− ϕ̄)/ϕ̄ cannot be considered a small perturba-
tion. In this case, one finds 3 regimes: the largest scales
(compared to λ) on which the scalar force is Yukawa sup-
pressed, the intermediate scales on which the scalar force
is operative, and the small scales on which the chameleon
mechanism takes over to suppress the scalar force. With
the chameleon mechanism, there is the additional pos-
sibility of equivalence principle violations, namely that
macroscopic objects (as opposed to test particles) do not
necessarily all fall at the same rate. See [51, 52] for fur-
ther discussions (note that their α is the same as β here).

Appendix C: Spherical collapse

The Euler equation in an expanding universe is

Dv

Dη
= −a

′

a
v −∇φ , (C1)

where η is conformal time, v is the peculiar velocity
dx/dη (x being comoving position), a′ ≡ da/dη, ∇ is
the gradient operator with respect to the comoving co-
ordinates, and φ is the perturbation in the gravitational
potential. D/Dη is strictly speaking a material deriva-
tive, but, since we are going to follow the motion of a
surface (a spherical shell), we are using Lagrangian co-
ordinates, and so can think of this as just a normal time
derivative d/dη. Rewriting this in terms of the physical
(proper) co-ordinate R of a spherical shell, with the scale
factor as our time co-ordinate, we find

d2R

da2
=

1
a2H

{(
H + a

dH
da

)(
R− adR

da

)
− 1
H
∇Rφ

}
.

(C2)
We investigate three approaches to calculate the evo-

lution of a spherically-symmetric perturbation, with an
initial top-hat profile. In the first case, we divide the per-
turbation into spherical shells and follow the motion of
each shell under the gravitational force from every other
shell. This method includes the effect of inhomogene-
ity (i.e. departure from a pure top-hat profile), which
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we might expect to be important because of the viola-
tion of Gauss’s law. The second method approximates
the perturbation as a homogeneous sphere at every time
step, and only solves for the motion of the outermost
surface. Thirdly, we use Raychaudhuri’s equation to re-
place Eq. (C2), approximating the problem as local. In
all cases we use a fourth-order Runge-Kutta integrator
with Cash-Karp co-efficients and adaptive step-size ad-
justment, similar to that found in Press et al. [39].

The initial conditions for the velocity are

dR
da

=
R

a

[
1− δ

3(1 + δ)

]
;

dδ
da

=
δ

a
,

the same as would be used in Newtonian gravity, because
these are set early in the matter era, when the effects of
any modifications to gravity will be negligible.

a. Inhomogeneous simulations

For the inhomogeneous simulations, the force experi-
enced by any shell can be split into three contributions:
that due to the Newtonian 1/r part of Eq. (19), and
those due to the additional Yukawa-type contributions
from shells internal and external to the point of inter-
est. Integrating the potential measured at r sourced by a
shell of thickness dr′ centered on r′, and taking the gra-
dient with respect to r, we find that the Newtonian-type
contribution is

∇rφN =
GN

1 + α

Mint − (4π/3)ρ̄(a)r3

r2
, (C3)

where Mint is the total mass internal to the proper radius
r; the Yukawa-type contribution from internal shells is

∇rφY,int = 2πα
GN

1 + α
dr′ρ̄(a)δi

r′λ

r

(
1
r

+
1
λ

)
× {exp [−(r − r′)/λ]− exp [−(r + r′)/λ]} ,

(C4)

where δi is the overdensity of the source shell, and the
Yukawa-type contribution from external shells is

∇rφY,ext = −2πα
GN

1 + α
dr′ρ̄(a)δi

r′λ

r

×
{(

1
λ
− 1
r

)
exp [−(r′ − r)/λ]

+
(

1
λ

+
1
r

)
exp [−(r′ + r)/λ]

}
. (C5)

b. Homogeneous simulations

For the homogeneous-sphere simulations, the gradient
of the gravitational potential at the surface of a pertur-

bation of total mass M and radius R is

∇Rφ =
GN

1 + α

(
M − 4π

3
ρ̄(a)R3

)
1
R2

×
{

1 + α

(
1 +

R

λ

)
F(R/λ)

}
, (C6)

and the form factor [53] is given by

F(x) =
3
x3

e−x {x cosh(x)− sinh(x)} .

c. Local density-field transformation

Gaztañaga & Lobo [54] use a combination of the conti-
nuity and Raychaudhuri equations to derive a differential
equation for the nonlinear evolution of the density field
in Brans-Dicke gravity. We adopt their method to our
problem.

Taking the divergence of the Euler equation (C1), and
ignoring shear and vorticity, it can be shown that

Dθ

Dη
+

1
3
θ2 +

a′

a
θ = −∇2φ , (C7)

where it should be kept in mind that D/Dη is a La-
grangian derivative, and θ ≡∇ ·v. Putting this together
with the continuity equation Dδ/Dη = −(1 + δ)θ, we
obtain:

D2δ

Dη2
+
a′

a

Dδ

Dη
− 4

3
1

1 + δ

Dδ

Dη
= (1 + δ)∇2φ (C8)

Note that spatial derivatives in this equation are comov-
ing. To close this equation, we need to relate ∇2φ to
δ. Taking the divergence of Eq. (19), and applying the
divergence theorem, we find ∇2φ located at the center
of the spherical top hat (where shear and vorticity can
justifiably be ignored) to be:

∇2φ = 4π
GN

1 + α
ρ̄a2δ

{
1 + α

(
1 +

R

λ

)
e−R/λ

}
. (C9)

The proper radius R and δ are related by mass conser-
vation, i.e. (1 + δ)R3/a3 is a constant.

d. Comparison of methods

The three modified-dynamics methods give very sim-
ilar results when the deviation from the Newtonian tra-
jectory is small, usually when R < λ at all times. How-
ever, in more extreme scenarios the Raychaudhuri equa-
tion method overstates the degree to which the gravity
modification changes the trajectory, in comparison to the
inhomogeneous sphere method, which we assume is the
most accurate. R(a) trajectories for the three modified
gravity solutions are shown in FIG. 9, along with the
associated Newtonian path; α = 5, λ = 5h−1 Mpc.
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FIG. 9: Comparison of nonlinear solution methods. Lower
solid line: Newtonian solution; upper solid line: homogeneous
simulation; dashed line: inhomogeneous simulation; dotted
line: local transformation (evaluated at center).

It appears that the local approximation inherent in
the Raychaudhuri method breaks down when R & λ.
However, the homogeneous-sphere approximation con-
tinues to hold until well beyond the limits of interest:
M . 1016 M�/h, λ & 10 h−1 Mpc.
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