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Abstract

A method is developed for dealing with ultraviolet divergences in calculations of cosmological
correlations, which does not depend on dimensional regularization. An extended version of
the WKB approximation is used to analyze the divergences in these calculations, and these
divergences are controlled by the introduction of Pauli–Villars regulator fields. This approach
is illustrated in the theory of a scalar field with arbitrary self-interactions in a fixed flat-space
Robertson–Walker metric with arbitrary scale factor a(t). Explicit formulas are given for the
counterterms needed to cancel all dependence on the regulator properties, and an explicit
prescription is given for calculating finite regulator-independent correlation functions. The
possibility of infrared divergences in this theory is briefly considered.
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I. INTRODUCTION

Much effort has been expended in recent years in the calculation of quantum effects on
cosmological correlations produced during inflation. These calculations are complicated by
the occurrence of ultraviolet divergences, which have typically been treated by the method of
dimensional regularization. Unfortunately, this method has several drawbacks. It is difficult
or impossible to employ dimensional regularization unless the analytic form of the integrand
as a function of wave number is explicitly known, so calculations have generally relied on an
assumption of slow roll inflation, or even strictly exponential inflation. Also, even where an
analytic form of the integrand is known, dimensional regularization can be tricky. Senatore
and Zaldarriaga[1] have shown that there are terms in correlation functions that were omitted
in work by other authors[2],[3].

This article will describe a method of dealing with ultraviolet divergences in cosmolog-
ical correlations, without dimensional regularization. For the purposes of regularization of
infinities, we employ a generally covariant version of Pauli–Villars regularization[4]. In order
to calculate the counterterms that are needed to cancel infinities when the regulator masses
go to infinity, we introduce an extended version of the WKB approximation (keeping not
only terms of leading order in wavelength), which works well even when the wave number
dependence of the integrand is not explicitly known, and can therefore be applied for an
arbitrary history of expansion during inflation.

This method is described here in a classic model, the fluctuations of a real scalar field in
a fixed general Robertson–Walker metric. This is simple enough to illustrate the use of the
method without the general idea being lost in the complications of quantum gravity, and yet
sufficiently general so that we can see how to deal with an arbitrary expansion history. As
we shall see, these methods yield a prescription for calculating correlation functions that are
not only free of ultraviolet divergences, but independent of the properties of the regulator
fields.

II. THE MODEL

We consider the theory of a single real scalar field ϕ(x) in a fixed metric gµν(x), with
Lagrangian density

L =
√

−Detg
[

−1

2
gµν∂µϕ∂νϕ − V (ϕ)

]

, (1)

where V (ϕ) is a general potential. The modifications in this Lagrangian needed to introduce
counterterms and regulator fields will be discussed in Sections III and IV, respectively.

This theory will be studied in the case of a general flat-space Robertson–Walker metric:

g00 = −1 , g0i = 0 , gij = a2(t) δij , (2)

with a(t) a fixed function (unrelated to V (ϕ)), which is arbitrary except that we assume that
a(t) increases monotonically from a value that vanishes for t → −∞. The field equation is
then

ϕ̈ + 3Hϕ̇ − a−2∇2ϕ + V ′(ϕ) = 0 , (3)
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where as usual H ≡ ȧ/a is the expansion rate. We define a fluctuation δϕ by writing

ϕ(x, t) = ϕ̄(t) + δϕ(x, t) , (4)

where ϕ̄(t) is a position-independent c-number solution of the field equation:

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0 . (5)

Our calculations will be done using an interaction picture, in which the time-dependence
of δϕ is governed by the part of the Hamiltonian quadratic in δϕ, so that δϕ satisfies a linear
differential equation

δϕ̈ + 3Hδϕ̇ − a−2∇2δϕ + V ′′(ϕ)δϕ = 0 . (6)

The commutation relations of δϕ are

[δϕ(x, t), δϕ̇(y, t)] = ia−3(t)δ3(x − y) , (7)

[δϕ(x, t), δϕ(y, t)] = [δϕ̇(x, t), δϕ̇(y, t)] = 0 . (8)

The fluctuation can therefore be expressed as

δϕ(x, t) =
∫

d3q
[

eiq·xα(q)uq(t) + e−iq·xα†(q)u∗
q(t)

]

, (9)

where α(q) is an operator satisfying the familiar commutation relations

[α(q), α†(q′)] = δ3(q − q′) , [α(q), α(q′)] = 0 , (10)

and uq(t) satisfies the differential equation

üq + 3Hu̇q + a−2q2uq + V ′′(ϕ)uq = 0 (11)

and the initial condition, that for t → −∞,

uq(t) →
1

(2π)3/2a(t)
√

2q
exp

[

iq
∫ T

t

dt′

a(t′)

]

, (12)

where T is an arbitrary fixed time. (The commutation relations (10) and the initial condition
(12) ensure that the commutation relations (7) and (8) are satisfied for t → −∞. The three
commutators in these commutation relations satisfy coupled first-order differential equations
in time, which with this initial condition imply that the commutation relations are satisfied
for all times.)

According to the “in–in” formalism[5], the vacuum expectation value of a product OH(t)
of Heisenberg picture fields and their derivatives, all at time t, is given by1

〈OH(t)〉VAC =
〈

T̄ exp
(

i
∫ t

−∞
H ′

I(t
′)dt′

)

OI(t) T exp
(

−i
∫ t

−∞
H ′

I(t
′)dt′

)〉

0
(13)

1It will be implicitly understood that the contours of integration over time are distorted at very early
times to provide exponential convergence factors, as described in ref. [3].
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where 〈· · ·〉0 denotes the expectation value in a bare vacuum state annihilated by α(q); T and
T̄ denote time-ordered and anti-time-ordered products; OI(t) is the operator O(t) expressed
in terms of interaction picture fluctuations; and H ′

I is the interaction Hamiltonian, the sum
of terms in the Hamiltonian of third and higher order in the fluctuations, expressed in terms
of the interaction-picture fluctuation δϕ:

H ′
I ≡ a3

∫

d3x
[

1

6
V ′′′(ϕ)δϕ3 +

1

24
V ′′′′(ϕ)δϕ4 + . . .

]

(14)

We will evaluate Eq. (13) as an expansion in the number of loops. If we like, we can intro-
duce a loop-counting parameter g by writing V (ϕ) = g−2F (gϕ), with F (z) a g-independent
function of z, so that the number of factors of g in a diagram with L loops and E external
scalar lines is

# = 2L − 2 + E . (15)

Thus an expansion in the number of loops is the same as a series in powers of g2.
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III. ONE-LOOP COUNTERTERMS

Infinities are encountered when calculating loop contributions to (13) in this model. As
in flat space, they can be canceled by introducing suitable counterterms into the Lagrangian.
(When regulator fields are introduced, the counterterms instead cancel dependence on the
regulator properties.) But the Lagrangian cannot know what metric will be adopted, or the
classical field ϕ around which the field ϕ is to be expanded, so neither can the counterterms.
Thus we must return to the generally covariant form (1) of the Lagrangian in analyzing the
possible counterterms that may be needed and employed.

The general one-loop one-particle-irreducible diagram consists of a loop into which are
inserted a number of vertices, to each of which is attached any number of external lines. An
insertion with N external lines is given by the (N +2)th derivative of V (ϕ) with respect to ϕ
at ϕ = ϕ, so the counterterm in the Lagrangian can only be a function of V ′′(ϕ), and of gµν

and its derivatives. Furthermore, the operators appearing in a counterterm needed to cancel
infinities can only be of dimensionality (in powers of energy) four or less. But V ′′(ϕ) has
dimensionality two, so the only generally covariant counterterm satisfying these conditions
is of the form2

L1 loop
∞ =

√

−Detg
[

A V ′′(ϕ) + B[V ′′(ϕ)]2 + C R V ′′(ϕ)
]

, (16)

where R is the usual scalar curvature, and A, B, and C are constants that depend on the
cutoff (that is, on the regulator masses), but not on the potential. Dimensional analysis tells
us that in the absence of regulator fields A is quadratically divergent, while B and C are
logarithmically divergent.

If we now specialize to the Robertson–Walker metric (2), and write the scalar field as in
(4), this counterterm becomes (aside from a c-number term)

L1 loop
∞ = a3

[

A
(

V ′′′(ϕ)δϕ +
1

2
V ′′′′(ϕ)δϕ2 + . . .

)

+B
(

2V ′′(ϕ)V ′′′(ϕ)δϕ + [V ′′′2(ϕ) + V ′′(ϕ)V ′′′′(ϕ)]δϕ2 + . . .
)

−(6Ḣ + 12H2)C
(

V ′′′(ϕ)δϕ +
1

2
V ′′′′(ϕ)δϕ2 + . . .

)

]

. (17)

These terms are of one-loop order, and hence to that order are to be used only in the tree
approximation, with a new term in the interaction Hamiltonian given by

∆HI = −
∫

d3x L1 loop
∞ . (18)

The terms shown explicitly in Eq. (17) are the only counterterms in Eq. (18) that contribute
in one-loop order to the one-point and two-point functions.

2This argument does not rule out an additional term proportional to
√−Detg V ′′(ϕ)gµν∂µϕ∂νϕ, but

one-loop diagrams do not generate ultraviolet divergent terms with spacetime derivatives acting on external
line wave functions.
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IV. REGULATORS

The counterterm (17) is certainly not the most general counterterm that would be con-
sistent with the symmetries of the Robertson–Walker metric. For instance, if we didn’t know
anything about general covariance, we would have no reason to expect that Ḣ and H2 should
occur in the linear combination R = −6Ḣ − 12H2. In order to be sure that the divergences
we encounter will be of a form that can be canceled by the counterterm (17), although we
do our calculations for the Robertson–Walker metric (2), we shall adopt a regulator scheme
derived from a generally covariant theory.

The usual approach to this problem is to use dimensional regularization, which we wish
to avoid for reasons given in Section I. There are other methods of regularization that have
been extensively applied to the evaluation of expectation values of operators like the energy-
momentum tensor in curved spacetimes[6] but not as far as I know to the calculation of
cosmological correlations.

One such method is covariant point-splitting[7]. This method is well suited to the cal-
culation of expectation values of bilinear operators, where the ultraviolet divergence arises
from the confluence of the arguments of the two operators. Because it is a covariant method,
it can be implemented by a renormalization of the bilinear operator that respects its trans-
formation and convergence properties. It seems difficult to apply covariant point-splitting
to the calculation of cosmological correlations, where one integrates over the separation of
the spacetime arguments of the interaction Hamiltonian.’

There is another widely used method known as adiabatic regularization[8]. In this
method, one subtracts from the integrand its asymptotic form for large wave numbers, as
determined by an extended version of the WKB method. Experience has shown that though
not covariant, this method yields the same results for expectation values of bilinear operators
as covariant point-splitting[9]. But adiabatic regularization affects the contribution of small
as well as large internal wave numbers, so it seems unlikely that it can be applied to the
calculation of cosmological correlations, where for some diagrams the contribution of small
virtual wave numbers to correlation functions depends in a complicated way on external
wave numbers, so that adiabatic regularization cannot be implemented by the introduction
of generally covariant counterterms in the Lagrangian.

We will instead here employ a generally covariant version of Pauli–Villars regulariza-
tion[4], which like covariant point splitting and adiabatic regularization has previously been
applied to the calculation of expectation values. For the theory studied here, the Lagrangian
(1) is modified to read

L =
√

−Detg

[

− 1

2
gµν∂µϕ∂νϕ − 1

2

∑

n

Zn

(

gµν∂µχn∂νχn + M2
nχ2

n

)

−V

(

ϕ +
∑

n

χn

)]

, (19)

where χn are regulator fields, and Zn and Mn are real non-zero parameters. In order to
eliminate ultraviolet divergences up to some even order D, we must take the Zn and regulator
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masses Mn to satisfy

∑

n

Z−1
n = −1 ,

∑

n

Z−1
n M2

n = 0 ,
∑

n

Z−1
n M4

n = 0 , . . . ,
∑

n

Z−1
n MD

n = 0 . (20)

For instance, if there were only logarithmic divergences then D = 0, and we would only
need one regulator field, with Z1 = −1. In one-loop calculations the maximum degree of
divergence is quadratic, i.e. D = 2, and to satisfy the conditions (20) we need at least two
regulator fields. In our calculations we will not need to make a specific choice of the number
of regulator fields, but only assume that there are enough to satisfy Eq. (20).

The coefficients A, B, and C in the one-loop counterterm (17) will be given values
depending on the Zn and Mn, such that all expectation values (13) approach finite limits
independent of the Zn and Mn, as the Mn become infinite. As we will see, this condition not
only fixes the terms in A, B, and C that are proportional to logarithms of regulator masses
and the term in A that is proportional to squares of regulator masses, but also the terms
in A, B, and C that depend on regulator masses only through their ratios, and hence that
remain fixed as the regulator mass scale goes to infinity. The only terms in A, B, and C
that will not be fixed by this condition are finite terms independent of regulator properties,
which of course represent the freedom we have to change the parameters in the potential or
to add a non-minimal coupling of the scalar field to the curvature.

The regulator fields χn like the physical field ϕ are written as classical fields plus fluctu-
ations

χn(x, t) = χn(t) + δχn(x, t) . (21)

The classical fields satisfy the coupled field equations

ϕ̈ + 3Hϕ̇ + V ′
(

ϕ +
∑

n

χn

)

= 0 (22)

χ̈n + 3Hχ̇n + Z−1
n V ′

(

ϕ +
∑

n

χn

)

+ M2
nχn = 0 . (23)

We assume throughout that the regulator masses Mn are all much larger than H(t′) and
∣

∣

∣V ′′
(

ϕ(t′)
)
∣

∣

∣

1/2
over the whole range from t′ → −∞ to the time t′ = t at which the correlations

are measured. In consequence, the classical field equations (22) and (23) have a solution in
which all the χn are less than ϕ by factors of order H2/M2

n and |V ′′(ϕ)|/M2
n, and so may

be neglected. We adopt this solution for the classical fields. In particular, the field ϕ then
satisfies the original classical field equation (5).

In dealing with internal lines, it is convenient to lump together the physical field fluctu-
ation δϕ and the fluctuations δχn in the regulator fields, by introducing an index N (and
likewise M , etc.) such that δχN is the physical field fluctuation δϕ for N = 0 and is a
regulator field fluctuation for N = n ≥ 1, both in the interaction picture. The general field
fluctuations satisfy the coupled field equations

δχ̈N + 3Hδχ̇N − a−2∇2δχN + M2
NδχN + Z−1

N V ′′(ϕ)
∑

M

δχM = 0 , (24)
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where Z0 = 1 and M0 = 0. The commutation relations of the δχ are

[δχN (x, t), δχ̇M(y, t)] = ia−3(t)δ3(x − y)Z−1
N δNM , (25)

[δχN (x, t), δχM(y, t)] = [δχ̇N (x, t), δχ̇M(y, t)] = 0 . (26)

The general fluctuation can therefore be expressed as

δχN (x, t) =
∑

M

∫

d3q
[

eiq·xαM(q)uM
Nq(t) + e−iq·xα†

M(q)u∗M
Nq (t)

]

, (27)

where αN(q) satisfy the commutation relations

[αN(q), α†
M(q′)] = δ3(q − q′)Z−1

N δNM , [αN(q), αM(q′)] = 0 , (28)

and the uM
Nq(t) are solutions of Eq. (24):

üM
Nq + 3Hu̇M

Nq + a−2q2uM
Nq + M2

NuM
Nq + Z−1

N V ′′(ϕ)
∑

L

uM
Lq = 0 (29)

distinguished by the initial condition, that for t → −∞,

uM
Nq(t) →

1

(2π)3/2a3/2(t)
√

2κNq(t)
δM
N exp

[

−i
∫ t

T
κNq(t

′) dt′
]

, (30)

where

κNq(t
′) ≡

(

q2

a2(t′)
+ M2

N

)1/2

. (31)

The αN (q) are all taken to annihilate the vacuum. The two-point functions appearing in
propagators are then given by

〈δχN(x1, t1)δχM(x2, t2)〉0 =
∑

K

∫

d3q eiq·(x1−x2)Z−1
K uK

Nq(t1) uK∗
Mq(t2) . (32)

In calculating one-loop graphs, we must integrate over one or more times ti associated
with vertices, and over a single co-moving wave number q. There are two ranges of q ≡ |q|
where the integrand is greatly simplified.

In the first range, q/a(t) (and hence all q/a(ti)) is much greater than H(t′) and
∣

∣

∣V ′′
(

ϕ(t′)
)∣

∣

∣

1/2

for all t′ ≤ t, as well as much greater than the physical wave numbers associated with exter-
nal lines, though q/a(t) is not necessarily greater than the regulator masses. In this range,
we can reliably evaluate the integrand in an extended version of the WKB approximation,
described in an Appendix. Any term that would be convergent in the absence of cancelations
among the physical and regulator fields makes a negligible contribution to the integral over
this range.
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In the second range, q/a(t) is much less than the regulator masses, though it is not

necessarily less than H(t′) or
∣

∣

∣V ′′
(

ϕ(t′)
)∣

∣

∣

1/2
or the physical wave numbers associated with

external lines. In this range, it is safe to ignore the regulator fields. (We do not have to
worry about the contribution of times t′ so much earlier than t that q/a(t′) is of the order
of the regulator masses, because this contribution is exponentially suppressed by the rapid
oscillation of the integrand at these early times.)

It is crucially important to our method of calculation that, because we assume that the

regulator masses are much larger than H(t′) and
∣

∣

∣V ′′
(

ϕ(t′)
)∣

∣

∣

1/2
and the physical wave num-

bers associated with external lines, these ranges of wave number overlap. We can therefore
separate the range of integration of co-moving wave number by introducing a quantity Q in
the overlap region, so that Q/a(t) is much less than all regulator masses, and much greater

than H(t′) and
∣

∣

∣V ′′
(

ϕ(t′)
)
∣

∣

∣

1/2
and the physical wave numbers associated with external lines.

We can evaluate the integral over q ≤ Q ignoring the regulators, and over q ≥ Q by using
the WKB approximation. No errors are introduced by this procedure in the final result,
because we are taking the regulator masses to be arbitrarily large compared with Q/a(t),

which is taken to be arbitrarily large compared with H(t′) or
∣

∣

∣V ′′
(

ϕ(t′)
)∣

∣

∣

1/2
for t′ ≤ t or the

physical wave numbers associated with external lines, so terms proportional to quantities
like Q/Mna(t) or Ha(t)/Q are entirely negligible.

It should be emphasized that Q is neither an infrared nor an ultraviolet cutoff, but simply
a more-or-less arbitrary point at which we choose to split the range of integration. As long
as Q is chosen in the overlap of the two regions defined in the previous paragraphs, the sum
of the integrals over q ≤ Q and q ≥ Q will automatically be independent of Q.

V. THE TWO-POINT FUNCTION

To demonstrate the use of the methods described in the previous section, and to evaluate
the coefficients A, B, and C in the counterterm (16), we will now calculate the one-loop
corrections to the vacuum expectation value of the product δϕH(y, t) δϕH(z, t) of Heisenberg
picture fields. This can be written in terms of a Green’s function Gp(t), as

〈δϕH(y, t) δϕH(z, t)〉VAC =
∫

d3p exp
(

ip · (y − z)
)

Gp(t) . (33)

Leaving aside vacuum fluctuations and counterterms, there are three one-loop diagrams,
shown in Figure 1. In this section we will consider only the one-particle-irreducible diagrams,
I and II; these will suffice to allow us in Section VI to fix the coefficients A, B, and C in the
counterterm (16). Diagram III will be dealt with in Section VII.

Diagram I

By the usual rules of the “in–in” formalism, after integrating over spatial coordinates,
the contribution of diagram I to the two-point function is

GI
p(t) = −2(2π)6Re

∫ t

−∞
dt1 a3(t1) V ′′′

(

ϕ(t1)
)

∫ t

−∞
dt2 a3(t2) V ′′′

(

ϕ(t2)
)
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Figure 1: Diagrams for the two-point function.
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×
∑

KLMNM ′N ′

Z−1
K Z−1

L

∫

d3q

×
[

θ(t1 − t2)u
2
p(t)u

∗
p(t1)u

∗
p(t2)u

K
Mq(t1)u

K∗
M ′q(t2)u

L
Nq′(t1)u

L∗
N ′q′(t2)

−1

2
|up(t)|2u∗

p(t1)up(t2)u
K∗
Mq(t1)u

K
M ′q(t2)u

L∗
Nq′(t1)u

L
N ′q′(t2)

]

, (34)

where q ≡ |q| and q′ ≡ |q − p|. The first term in the square brackets arises from diagrams
in which the vertices come either both from the time-ordered product or both from the
anti-time-ordered product in Eq. (13), while the second term arises from diagrams in which
one vertex comes from the time-ordered product and the other from the anti-time-ordered
product.

As described at the end of the previous section, to calculate GI
p(t) we divide the region

of integration over q ≡ |q| into the ranges q < Q and q > Q, where Q is chosen so that
Q/a(t) is much less than all regulator masses but much greater than p/a(t) and H(t′) and
|V ′′(ϕ(t′))|1/2 for all t′ ≤ t.

For q < Q, we can ignore the regulators, and set K, L, M , N , M ′, N ′ all equal to zero,
with u0

0q just equal to the wave function uq in the absence of regulators. This contribution
takes the form

GI,<Q
p (t) = −2(2π)6Re

∫ t

−∞
dt1 a3(t1) V ′′′

(

ϕ(t1)
)

∫ t

−∞
dt2 a3(t2) V ′′′

(

ϕ(t2)
)

×
[

θ(t1 − t2)u
2
p(t)u

∗
p(t1)u

∗
p(t2)

∫

q<Q
d3q uq(t1)u

∗
q(t2)uq′(t1)u

∗
q′(t2)

−1

2
|up(t)|2u∗

p(t1)up(t2)
∫

d3q u∗
q(t1)uq(t2)u

∗
q′(t1)uq′(t2)

]

, (35)

No limit has been put on the second integral over q, because the oscillating exponentials
in uq and uq′ make this integral converge[3], so that the contribution of wave numbers with
q > Q is exponentially small.

For q ≥ Q, we can use the WKB approximation (30). This contribution then takes the
form

GI,>Q
p (t) = −2Re

∫ t

−∞
dt1 V ′′′

(

ϕ(t1)
)

∫ t1

−∞
dt2 V ′′′

(

ϕ(t2)
)

u2
p(t)u

∗
p(t1)u

∗
p(t2)

×
∑

KL

Z−1
K Z−1

L

∫

q>Q

d3q

4
√

κKq(t1)κKq(t2)κLq(t1)κLq(t2)

× exp
(

−i
∫ t1

t2
[κKq(t

′) + κLq(t
′)] dt′

)

. (36)

Note that we have dropped the distinction between q′ and q, because p is negligible compared
with q for q > Q. We have also dropped the contribution of the second term in Eq. (34),
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because this term converges for each K and L, and so makes a negligible contribution to the
integral over values q > Q.

The contribution of values of t2 at any fixed time less than t1 is also negligible, because of
the rapid oscillation of the final factor. But there is an important contribution from values of
t2 that are so close to t1 that (t1−t2)Q/a(t1) is not large. This contribution can be evaluated
by setting t2 = t1 everywhere except in the range of integration in the exponential, so that

GI,>Q
p (t) = −2Re

∫ t

−∞
dt1 V ′′′

(

ϕ(t1)
)

∫ t1

−∞
dt2 V ′′′

(

ϕ(t1)
)

u2
p(t)u

∗2
p (t1)

×
∑

KL

Z−1
K Z−1

L

∫

q>Q

d3q

4κKq(t1)κLq(t1)

× exp (−i(t1 − t2)[κKq(t1) + κLq(t1)])

= −
∫ t

−∞
dt1 V ′′′

(

ϕ(t1)
)2

Im
[

u2
p(t)u

∗2
p (t1)

]

×
∑

KL

Z−1
K Z−1

L

∫

q>Q

d3q

2κKq(t1)κLq(t1)[κKq(t1) + κLq(t1)]
. (37)

The integral over q converges because
∑

K Z−1
K = 0. This integral receives contributions

from terms where χK and χL are both regulator fields χm and χn, or are a regulator field
χn and a physical field χ0 = ϕ, or are two physical fields. Adding these contributions gives

GI,>Q
p (t) = π

∫ t

−∞
dt1 a3(t1) V ′′′

(

ϕ(t1)
)2

Im
[

u2
p(t)u

∗2
p (t1)

]

×
[

∑

mn

Z−1
m Z−1

n

M2
n ln Mn − M2

m lnMm

M2
n − M2

m

+ 2
∑

n

Z−1
n ln Mn + ln

(

Q

a(t1)

)]

. (38)

Note that, because
∑

n Z−1
n = −1, this is independent of the units used to measure Q and

the regulator masses, as long as the same units are used in all logarithms.

Diagram II

By the usual rules of the “in–in” formalism, after integrating over spatial coordinates,
the contribution of diagram II to the two-point function (33) is given by

GII
p (t) = (2π)3

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

Im
(

u2
p(t)u

∗2
p (t1)

)

×
∑

KNN ′

Z−1
K

∫

d3q uK
Nq(t1)u

K∗
N ′q(t1) . (39)

We again divide the range of integration over q ≡ |q| into the ranges q < Q and q ≥ Q,
where Q is chosen so that Q/a(t) is much less than all regulator masses but much greater
than p/a(t) and H(t′) and |V ′′(ϕ(t′))|1/2 for all t′ ≤ t1.

For q < Q we can ignore the regulators, and set K, N , and N ′ all equal to zero, with u0
0q

just equal to the wave function uq in the absence of regulators. This contribution takes the

12



form

GII,<Q
p (t) = (2π)3

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

Im
(

u2
p(t)u

∗2
p (t1)

)

×
∫

q<Q
d3q |uq(t1)|2 . (40)

For q > Q the individual terms in Eq. (39) are quadratically divergent, so here we
need an extended version of the WKB approximation (30), in which we keep terms in u of
order κ−3/2 and κ−5/2 as well as κ−1/2. This is complicated by the presence of the potential
term in Eq. (29), which couples wave functions with different κs. We will deal with this
by considering the potential term in Eq. (29) as a perturbation. Of course, V ′′(ϕ) is not a
perturbation; it is of zeroth order in the loop-counting parameter g introduced at the end of
Section II. However, each insertion of V ′′(ϕ) in the loop in Diagram II lowers its degree of
divergence by two units, so the only terms we need to consider are those of zeroth and first
order in V ′′(ϕ), which in the absence of cancelations are quadratically and logarithmically
divergent, respectively. Terms of higher order in V ′′(ϕ) are convergent even in the absence
of cancelations, and are therefore negligible.

To evaluate the terms in GII,>Q
p (t) of zeroth order in V ′′(ϕ), we note that in the absence

of the potential, uK
N (t1) is proportional to δKN :

uK
Nq(t1) = δNKuNq(t1) , (41)

where
üNq + 3Hu̇Nq + (q2/a2)uNq + M2

NuNq = 0 . (42)

This contribution is

GII,>Q,0
p (t) = (2π)3

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

Im
(

u2
p(t)u

∗2
p (t1)

)

×
∑

N

Z−1
N

∫

d3q |uNq(t1)|2 . (43)

The integrand is given by an asymptotic expansion derived in the Appendix. For both
q2/a2(t1) and M2

N much greater than both H2(t1) and Ḣ(t1), we have

|uNq|2 →
1

2κNqa3(2π)3

[

1 +
Ḣ + 2H2

2κ2
Nq

+
(Ḣ + 3H2)M2

N

4κ4
Nq

− 5H2M4
N

8κ6
Nq

]

, (44)

where, as before, κ2
Nq(t1) =

(

q/a(t1)
)2

+ M2
N . The integral over q converges because

∑

N Z−1
N =

∑

N Z−1
N M2

N = 0. The sum over N receives contributions from terms where
χN is a regulator field χn or the physical field χ0 = ϕ. Adding these contributions gives

GII,>Q,0
p (t) = π

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

Im
(

u2
p(t)u

∗2
p (t1)

)

13



×
[

∑

n

Z−1
n M2

n ln Mn +
(

Ḣ(t1) + 2H2(t1)
)(5

6
−
∑

n

Z−1
n ln Mn

)

− Q2

a2(t1)
−
(

Ḣ(t1) + 2H2(t1)
)

ln

(

Q

a(t1)

) ]

. (45)

The regulator-dependent term arising from diagram II that are of first order in V ′′(ϕ) can
be calculated by applying the rules of the “in-in” formalism a diagram like that of diagram
II, but with a V ′′ insertion in the loop. This gives

GII,>Q,1
p (t) = −(2π)6

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

∫ t

−∞
dt2 a3(t2) V ′′

(

ϕ(t2)
)

×
∑

KLMNM ′N ′

Z−1
K Z−1

L

∫

q>Q
d3q Re

{

u2
p(t)u

∗
p(t1)u

∗
p(t1)

×
[

θ(t1 − t2)u
K
Mq(t1)u

K∗
M ′q(t2)u

L
Nq(t1)u

L∗
N ′q(t2) + 1 ↔ 2

]

}

. (46)

(This contribution is produced only by terms in which both interactions come from the
time-ordered product in Eq. (13), or both from the anti-time-ordered product. As in the
case of diagram I, the other terms make a negligible contribution to the part of the integral
with q > Q.) The individual terms in Eq. (46) are only logarithmically divergent, so we can
evaluate this using the leading term (30) in the WKB approximation. Following the same
limiting procedure as for diagram I, we find

GII,>Q,1
p (t) = π

∫ t

−∞
dt1 a3(t1) V ′′′′

(

ϕ(t1)
)

V ′′
(

ϕ(t1)
)

Im
[

u2
p(t)u

∗2
p (t1)

]

×
[

∑

mn

Z−1
m Z−1

n

M2
n ln Mn − M2

m lnMm

M2
n − M2

m

+ 2
∑

n

Z−1
n ln Mn + ln

(

Q

a(t1)

)]

. (47)

Total 1PI Amplitude

The complete contribution of the two one-particle irreducible diagrams is given by the
sum of the terms (35), (38), (40), (45), and (47):

G1PI
p (t) = −2(2π)6

∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)

∫ t1

−∞
dt2 a3(t2)V

′′′
(

ϕ(t2)
)

× Re
{

u2
p(t)u

∗
p(t1)u

∗
p(t2)

∫

q<Q
d3q uq(t1)u

∗
q(t2)uq′(t1)u

∗
q′(t2)

}

+(2π)6
∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)

∫ t

−∞
dt2 a3(t2)V

′′′
(

ϕ(t2)
)

× |up(t)|2Re
{

u∗
p(t1)up(t2)

∫

d3q u∗
q(t1)u

∗
q′(t1)uq(t2)uq′(t2)

}

+(2π)3
∫ t

−∞
a3(t1)V

′′′′
(

ϕ(t1)
)

Im
{

u2
p(t)u

∗
p(t1)

}

∫

q<Q
d3q |uq(t1)|2

14



+π
∫ t

−∞
dt1 a3(t1)

[

V ′′′
(

ϕ(t1)
)2

+ V ′′′′
(

ϕ(t1)
)

V ′′
(

ϕ(t1)
)

]

Im
{

u2
p(t)u

∗2
p (t1)

}

×
[

∑

mn

Z−1
n Z−1

m

(

M2
n ln Mn − M2

m ln Mm

M2
n − M2

m

)

+ 2
∑

n

Z−1
n ln Mn + ln

(

Q

a(t1)

)]

+π
∫ t

−∞
dt1 a3(t1)V

′′′′
(

ϕ(t1)
)

Im
{

u2
p(t)u

∗2
p (t1)

}

×
[

∑

n

Z−1
n M2

n ln Mn − Q2

a2(t1)

+
(

Ḣ(t1) + 2H2(t1)
)

(

5

6
−
∑

n

Z−1
n ln Mn − ln

(

Q

a(t1)

)) ]

. (48)

To repeat, q′ ≡ |q − p|, and Q is any wave number for which Q2/a2(t) is much larger than
H2 and V ′′(ϕ) and p2/a2(t) and much less than all regulator masses. In this range, the
Q-dependence of the first and third terms is canceled by the explicit Q-dependence of the
fourth and fifth terms.

VI. CANCELING THE REGULATORS

The terms in the counterterm (17) that are quadratic in the fluctuation make a contri-
bution to the interaction-picture Hamiltonian of the form

∆Hquad
I (t) =

1

2
G(t)

∫

d3x δϕ2(x, t) , (49)

where

G = −a3
[

AV ′′′′(ϕ) + 2B[V ′′′2(ϕ) + V ′′(ϕ)V ′′′′(ϕ)] − 6C(Ḣ + 2H2)V ′′′(ϕ)
]

(50)

According to the rules of the “in-in” formalism, this makes a contribution to the two-point
function (33) given by

∆G1PI
p (t) = 2(2π)3

∫ t

−∞
dt1 G(t1)Im{u2

p(t)u
∗2
p (t1)} . (51)

Comparing Eqs. (50) and (51) with (48), we see that in order to cancel the dependence of
the one-particle irreducible two-point function on the regulator properties, we need

A =
1

16π2

[

∑

n

Z−1
n M2

n ln Mn + µ2
A

]

(52)

B =
1

32π2

[

∑

nm

Z−1
n Z−1

m

(

M2
n ln(Mn/µB) − M2

m ln(Mm/µB)

M2
n − M2

m

)

+2
∑

n

Z−1
n ln(Mn/µB)

]

(53)

C = − 1

96π2

(

5

6
−
∑

n

Z−1
n ln

(

Mn

µC

))

. (54)
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(The first term in Eq. (52) does not depend on the units used for regulator masses in the
logarithm, because

∑

n Z−1
n M2

n = 0.) Here µA, µB, and µC are unknown mass parameters.
The presence of these parameters should not be seen as a drawback of this method; they
reflect the real freedom we have to add finite regulator-independent terms to the original
Lagrangian proportional to V ′′(ϕ) or V ′′2(ϕ) or R V ′′(ϕ).

Adding Eqs. (48) and (51) gives our final answer for the one-particle-irreducible part of
the two-point function

G1PI
p (t) + ∆G1PI

p (t) =

[

− 2(2π)6
∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)

∫ t1

−∞
dt2 a3(t2)V

′′′
(

ϕ(t2)
)

× Re
{

u2
p(t)u

∗
p(t1)u

∗
p(t2)

∫

q<Q
d3q uq(t1)u

∗
q(t2)uq′(t1)u

∗
q′(t2)

}

+π
∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)2

Im{u2
p(t)u

∗2
p (t1)} ln

(

Q

a(t1)µB

)]

+(2π)6
∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)

∫ t

−∞
dt2 a3(t2)V

′′′
(

ϕ(t2)
)

× |up(t)|2Re
{

u∗
p(t1)up(t2)

∫

d3q u∗
q(t1)u

∗
q′(t1)uq(t2)uq′(t2)

}

+

[

(2π)3
∫ t

−∞
dt1 a3(t1)V

′′′′
(

ϕ(t1)
)

Im
{

u2
p(t)u

∗
p(t1)

}

∫

q<Q
d3q |uq(t1)|2

+π
∫ t

−∞
dt1 a3(t1)V

′′′′
(

ϕ(t1)
)

Im{u2
p(t)u

∗2
p (t1)}

{

− Q2

a2(t1)

+ V ′′
(

ϕ(t1)
)

ln

(

Q

a(t1)µB

)

−
(

Ḣ(t1) + 2H2(t1)
)

ln

(

Q

a(t1)µC

)

+ µ2
A

}]

. (55)

For Q2/a2(t) much larger than H2, Ḣ , |V ′′(ϕ)|, and p2/a2(t), all Q dependence cancels
separately in the terms in square brackets on the first three lines and on the last three lines.
In this form, the two-point function (including also the one-particle-reducible contribution
discussed in the following section) can be calculated even if all we have for the wave functions
uq(t

′) is a numerical approximation.

VII. ONE-PARTICLE-REDUCIBLE DIAGRAMS

We now turn to the one-particle-reducible diagram III. In this diagram the two external
lines come together in a three-field vertex, with the third line terminating either in a three-
field vertex to which is attached a scalar loop or a one-field vertex arising from the part of
the one-loop counterterm (17) that is linear in δϕ. This part of the counterterm is

∆H lin
I (t) = F(t)

∫

d3x δϕ(x, t) , (56)

with F(t) given by

F = −a3
[

AV ′′′(ϕ) + 2BV ′′(ϕ)V ′′′(ϕ) − C(6H2 + 12Ḣ)V ′′′(ϕ)
]

. (57)
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This diagram requires special treatment, because the line connecting the two vertices carries
zero three-momentum. For this reason, here we will delay integrating over the difference x

of the spatial coordinate of the two vertices. The full one-particle-reducible contribution to
the two-point function (33) is then

G1PR
p (t) = 2(2π)3Re

∫ t

−∞
dt1 a3(t1)V

′′′
(

ϕ(t1)
)

u2
p(t1)u

∗2
p (t1)

×
∫ t

−∞
dt2 I(t2)

∫

d3x
[

− 〈T{δϕ(0, t1)δϕ(x, t2)}〉0 + 〈δϕ(x, t1)δϕ(0, t2)〉0
]

, (58)

where

I(t2) ≡
1

2
a3(t2)V

′′′
(

ϕ(t2)
)

∫

d3q
∑

KNN ′

uK
Nq(t2)u

K∗
N ′q(t2) + F(t2) . (59)

In the first term in the square brackets in Eq. (58), both vertices come from the time-ordered
product in Eq. (13), while in the second term, vertex 1 comes from the time-ordered product
and vertex 2 from the anti-time-ordered product; in the complex conjugate time-ordered and
anti-time-ordered products are interchanged.

There is no problem here with ultraviolet divergences coming from the integral over
q. Following the same procedure as in our treatment of diagram II in the preceeding two
sections, we have

I(t2) =
1

2
a3(t2)V

′′′
(

ϕ(t2)
)

[

∫

q<Q
d3q|uq(t2)|2 +

1

8π2

(

− Q2

a2(t2)
+ V ′′

(

ϕ(t2)
)

ln

(

Q

a(t2)µB

)

−
(

Ḣ(t2) + 2H2(t2)
)

ln

(

Q

a(t2)µC

)

+ µ2
A

)]

, (60)

where Q is any wave number with Q2/a2(t) much larger than Ḣ(t′) and H2(t′) and
∣

∣

∣V ′′
(

ϕ(t′)
)
∣

∣

∣

for all t′ ≤ t. All dependence of Q cancels in this limit.
But there is an apparent problem with infrared effects. Eq. (58) involves the integrals

∫

d3x 〈T {δϕ(0, t1) δϕ(x, t2)}〉0 and
∫

d3x 〈δϕ(x, t2) δϕ(0, t1)〉0 .

When we use Eq. (9) for the interaction-picture fields, the integrals over x pick out the
value zero for the wave number q. But the wave function uq(t) is not defined in the case
q = 0, because in this case there is of course no time early enough so that q2/a2(t) is much

larger than H2(t) and |V ′′
(

ϕ(t)
)

|. For the same reason, the argument for the Bunch–Davies

condition α(q)Φ0 = 0 breaks down for q = 0.
Fortunately, we need the integrals over x only in the combination

∫

d3x [−〈T {δϕ(0, t1) δϕ(x, t2)}〉0 + 〈δϕ(x, t2) δϕ(0, t1)〉0]
= iθ(t1 − t2) G(t1, t2) (61)
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where
G(t1, t2) ≡ i

∫

d3x
〈[

δϕ(0, t1) , δϕ(x, t2)
]〉

0
. (62)

Despite the ambiguity in u0(t) and the inapplicability of the Bunch–Davies condition for
q = 0, the function G(t1, t2) is perfectly well-defined. It is the solution of the second-order
differential equation

[

d2

dt21
+ 3H(t1)

d

dt1
+ V ′′

(

ϕ(t1)
)

]

G(t1, t2) = 0 , (63)

subject to initial conditions dictated by the commutation relations (7) and (8):

G(t2, t2) = 0 , (64)

[

d

dt1
G(t1, t2)

]

t1=t2

= a−3(t2) . (65)

The only property of the vacuum state used here is that it has zero momentum and unit
norm. The general solution is

G(t1, t2) = u(t1) u(t2)
∫ t1

t2

dt

a3(t) u2(t)
, (66)

where u(t) is any solution of the q = 0 wave equation

ü + 3Hu̇ + V ′′(ϕ)u = 0 , (67)

that does not vanish between t1 and t2. (For instance, for a general potential and a de Sitter
metric, we can take u = ϕ̇, which does not vanish in typical inflationary models.) Putting
this together, we have the one-particle-reducible contribution to the two-point function (33):

G1PR
p = −2(2π)3

∫ t

−∞
dt1 a3(t1) V ′′′

(

ϕ(t1)
)

Im{u2
p(t)u

∗2
k (t1)}

×
∫ t1

−∞
dt2 G(t1, t2) I(t2) . (68)

VIII. THE ONE-POINT FUNCTION

In Section II we defined δϕ as the departure of the field ϕ from its classical value ϕ, not
from its mean value, so we must expect δϕ to have a non-vanishing expectation value. As
we will see, this is closely related to quantities calculated in the previous section.

According to the general diagrammatic rules, the vacuum expectation value of the Heisen-
berg picture scalar field fluctuation in one-loop order is

〈δϕH(y, t)〉one loop
VAC = −i

∫

d3x1

∫ t

−∞
dt1 〈δϕ(y, t) δϕ(x1, t1)〉0I(t1) + c.c. , (69)
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with I given by Eq. (60) representing the insertion of a loop or a counterterm at the end
of the single incoming line. In the term shown in Eq. (69) the single vertex comes from
the time-ordered product in Eq. (13); in its complex conjugate, the vertex comes from the
anti-time-ordered product. The two terms together involve the commutator of the field
perturbations, so the one-point function may be written in terms of the function G defined
by Eq. (62):

〈δϕH(y, t)〉one loop
VAC = −

∫ t

−∞
dt1 G(t, t1) I(t1) . (70)

We see now that the contribution (68) of the one-particle-reducible diagrams to the two-point
function may be simply expressed in terms of the mean fluctuation:

G1PR
p (t) =

∫ t

−∞
dt1 a3(t1) V ′′′

(

ϕ(t1)
)

× 〈δϕH(0, t1)〉one loop
VAC Im{u2

k(t)u
∗2
k (t1)} . (71)

This is the same as would be given by adding an interaction obtained by shifting δϕ by its
expectation value:

∆HI(t) =
1

2
a3(t) V ′′′

(

ϕ(t)
)

〈δϕH(0, t)〉one loop
VAC

∫

d3x δϕ2(x, t) . (72)

IX. INFRARED DIVERGENCES?

Although the model treated in this paper is intended to provide an illustration of a method
of dealing with ultraviolet divergences, it may be of some interest to look into the possible
presence of infrared divergences in this model. For any fixed co-moving wave number q, the
evolution of the wave function uq(t) defined by Eqs. (11) and (12) becomes q-independent
once q/a(t) drops below H(t), so the behavior of the wave function for fixed t and q → 0 is

determined by the behavior of V ′′
(

ϕ(t′)
)

and H(t′) for t′ → 0. We can distinguish two cases
in which this problem is greatly simplified.

Expansion-dominated:
If
∣

∣

∣V ′′
(

ϕ(t′)
)
∣

∣

∣ ≪ H2(t′) for t′ → 0, then as long as this inequality is satisfied, we can drop

the potential term in Eq. (11), which then becomes the same as the differential equation for
tensor fluctuations. It is well known[10] in this case that if Ḣ(t′) → −ǫH2(t′) as t′ → 0,
then the wave function uq(t1) at a fixed time t1 goes as q−3/2−ǫ for q/a(t1) ≪ H(t1). This

q-dependence is unaffected even if H2(t) drops below
∣

∣

∣V ′′
(

ϕ(t)
)∣

∣

∣ at some time after q/a drops

below H , since the evolution of the wave function at such times is q-independent. So (taking
ǫ < 1) the integral over q of the product uq(t1)u

∗
q(t2) in the propagator will be infrared

divergent if and only if ǫ ≥ 0. (We have been assuming that as time passes fluctuations
leave the horizon rather than entering it, so this discussion is limited to the case ǫ < 1. For
the case ǫ ≥ 1, see ref. [11].) There is no infrared divergence in the unlikely event that the
expansion rate increases at very early times.
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Potential-dominated:
If
∣

∣

∣V ′′
(

ϕ(t′)
)∣

∣

∣≫ H2 for t′ → 0, then as long as this inequality is satisfied, Eqs. (11) and (12)
have a WKB solution

uq(t
′) ≃ 1

(2π)3/2a3/2(t′)
√

2ω(t′)
exp

(

i
∫ T

t′
ω(t′′) dt′′

)

, (73)

where T is arbitrary, and

ω(t′) ≡

√

√

√

√

(

q

a(t′)

)2

+ V ′′
(

ϕ(t′)
)

. (74)

Once q/a(t′) falls below |V ′′
(

ϕ(t′)
)

|, the wave function uq(t
′) becomes independent of q, aside

from a q-dependent phase that is independent of t′. Later, H2(t′) may or may not become

comparable to or greater than
∣

∣

∣V ′′
(

ϕ(t′)
)
∣

∣

∣, but this cannot affect the q-dependence of the
wave function. Therefore when the potential dominates at very early times, the product
uq(t1)u

∗
q(t2) in the propagator at fixed times t1 and t2 becomes q-independent for q → 0, and

there is no infrared divergence when we integrate the propagator over q.

X. FURTHER ISSUES

The method described here can of course be applied in this model to all one-loop correla-
tion functions. The same counterterms, given by Eqs. (16) or (17) and (52)–(54) will remove
dependence on the regulator properties, because the only ultraviolet divergences in one-loop
one-particle-irreducible diagrams occur in the one-point and two-point functions, which we
have already discussed in Sections V through VIII. The only ultraviolet divergences in higher
correlation functions arise in diagrams in which trees are attached to loops at either one or
two vertices, and the divergences in these loops are just those with which we have dealt.
Multi-loop graphs are more challenging.

Beyond the simple model discussed here, of a scalar field in a fixed metric, there is
the more realistic problem of scalar and tensor fluctuations in a theory of coupled scalar
and gravitational fields. This is more complicated, because even in one-loop order there
are quartic as well as quadratic and logarithmic ultraviolet divergences. That alone should
not prevent the method described here from being applicable to realistic theories, at least
for one-loop graphs, since divergences of any order can be eliminated by including enough
regulator fields.

A more serious problem is the difficulty of introducing regulator fields for the graviton
propagator. (This problem is of course avoided in theories with large numbers of matter
fields, where matter loops dominate over graviton loops.) If the only vertices that involve
gravitons have a single graviton line attached to matter lines, then we can introduce regu-
lators for the graviton propagator by coupling heavy tensor fields with suitable Z-factors to
the energy-momentum tensor. But it is not clear how to deal with graphs containing vertices
to which are attached two or more graviton lines.
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This raises the question whether Pauli–Villars regularization is really necessary. The
final results (55) and (68) for the one-particle irreducible and reducible parts of the two-
point function could almost have been guessed without introducing regulator fields. It would
only be necessary to introduce an ultraviolet cut-off at a sufficiently large co-moving wave
number Q, calculate the Q-dependence of the resulting two-point function by using the WKB
methods described in this paper, and then introduce a counterterm of form (16), with A,
B, and C chosen as functions of Q to cancel the Q-dependence found in this way. (This
is not the adiabatic regularization procedure mentioned in Section IV, even though both
procedures use WKB methods, because with a cut-off at Q only the part of the integrand
for internal wave numbers larger than Q is affected.) Of course, this procedure leaves finite
terms in A, B, and C undetermined, but they are undetermined anyway, since they represent
the real possibility of changing the original Lagrangian by adding corrections to the potential
and adding a coupling of the scalar field to the spacetime curvature. The cut-off introduced
in this way would not respect general covariance, but apparently one would get the correct
results (55) and (68) anyway.

There is something mysterious about this. The actual calculations in this paper were done
for a fixed Robertson–Walker metric, Eq. (2). They would have been done in the same way by
someone who had never heard of general covariance. Yet the infinities turned out to depend
on H and Ḣ only in the combination Ḣ+2H2, proportional to the scalar spacetime curvature.
We can understand this for a generally covariant regularization procedure, like Pauli–Villars
regularization, because in that case general covariance is broken only by the background,
which presumably does not affect ultraviolet divergences. But how do these calculations
know that they are supposed to give infinities that can be canceled by counterterms that are
generally covariant, when we use a non-covariant cutoff on the internal wave number instead
of introducing regulator fields?
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APPENDIX: THE EXTENDED WKB APPROXIMATION

We wish to find an asymptotic expression for the solution uq(t) of the differential equation

üq(t) + 3H(t)u̇q(t) +
(

q2/a2(t)
)

uq(t) + M2uq(t) = 0 (A.1)

subject to the initial condition, that for t → 0,

uq(t) →
1

(2π)3/2a(t)
√

2q
exp

(

iq
∫ T

t
dt′/a(t′)

)

. (A.2)

21



(The effects of the potential are treated separately in Section V.) We are interested in the
behavior of uq(t) at a fixed time t, when q/a(t) is much larger than H(t), but not necessarily
greater than M .

As an ansatz, we take

uq(t) →
1

(2π)3/2a3/2(t)
√

2κ(t)
exp

(

i
∫ T

t
κ(t′)dt′

) [

1 +
f(t)

κ(t)
+

g(t)

κ2(t)
+ O(κ−3)

]

(A.3)

with f , g, etc. of zeroth order in q and M , and

κ(t) ≡
√

q2/a2(t) + M2 . (A.4)

This clearly satisfies the initial condition (A.2). The differential equation (A.1) is satisfied
by (A.3) to order κ3/2 and κ1/2, while the terms in (A.1) of order κ−1/2 (counting M as being
the same order as κ) give

d

dt

(

f

κ

)

=
i

2κ

(

Ḣ + 2H2 +
3H2M2

2κ2
− 5M4H2

4κ4
+

ḢM2

2κ2

)

. (A.5)

The terms in (A.1) of order κ−3/2 are more complicated, but fortunately we only need
these terms in |uq|2, and for this purpose we can avoid having to work out these terms by
using the time-dependence of the Wronskian:

u∗
qu̇q − uqu̇

∗
q ∝

1

a3
. (A.6)

Using (A.3) gives

2(2π)3a3
(

u∗
qu̇q − uqu̇

∗
q

)

= −2i − 4iRe f

κ

+
2i

κ

d

dt

(

Imf

κ

)

− 2i
|f |2
κ2

− 4iRe g

κ2
+ O(κ−3) . (A.7)

Now, Eq. (A.5) shows that d/dt(f/κ) is imaginary, so since f(t)/κ(t) vanishes for t → 0,
f(t)/κ(t) and hence f(t) is imaginary for all t. The first term on the right-hand side of
Eq. (A.7) is constant, and the second term vanishes, so the constancy of this quantity
requires the vanishing of the terms of order κ−2:

|f |2 + 2Re g = κ
d

dt

(

Imf

κ

)

(A.8)

But this is just what we need, for Eq. (A.3) (with f imaginary) gives

|uq(t)|2 →
1

2κ(t)(2π)3a3(t)

[

1 +
|f(t)|2 + 2Re g(t)

κ2(t)

]

. (A.9)
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Together with Eqs. (A.5) and (A.8), this gives the result used in evaluating diagram II in
Section V.

|uq|2 →
1

2κa3(2π)3

[

1 +
Ḣ + 2H2

2κ2
+

(Ḣ + 3H2)M2

4κ4
− 5H2M4

8κ6

]

. (A.10)

———-
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