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As one of the most powerful probes of cosmological structure formation, the abundance of massive
galaxy clusters is a sensitive probe of modifications to gravity on cosmological scales. In this paper,
we present results from N-body simulations of a general class of f(R) models, which self-consistently
solve the non-linear field equation for the enhanced forces. Within this class we vary the amplitude
of the field, which controls the range of the enhanced gravitational forces, both at the present epoch
and as a function of redshift. Most models in the literature can be mapped onto the parameter
space of this class. Focusing on the abundance of massive dark matter halos, we compare the
simulation results to a simple spherical collapse model. Current constraints lie in the large-field
regime, where the chameleon mechanism is not important. In this regime, the spherical collapse
model works equally well for a wide range of models and can serve as a model-independent tool
for placing constraints on f(R) gravity from cluster abundance. Using these results, we show how
constraints from the observed local abundance of X-ray clusters on a specific f(R) model can be
mapped onto other members of this general class of models.

I. INTRODUCTION

The abundance of massive galaxy clusters provides a
unique test of gravity on cosmological scales ﬂ—ﬂ] Once
constrained to expansion history data, modified gravity
explanations of the cosmic acceleration generically pre-
dict very different effects on the growth of cosmological
structure than spatially smooth dark energy like the cos-
mological constant. Moreover as highly non-linear ob-
jects, clusters provide a testing ground for the non-linear
interactions of viable theories where gravity becomes in-
distinguishable from General Relativity locally.

In the so-called f(R) class of models (see 4, H] and
references therein) the modification to gravity arises from
replacing the Einstein-Hilbert action by a function of the
Ricci or curvature scalar R E—E] These models possess
an extra scalar degree of freedom fr = df/dR which
mediates a 4/3 enhancement of gravitational forces on
scales below the Compton wavelength or range associated
with its mass.

This enhancement changes the abundance of rare dark
matter halos associated with clusters of galaxies. Mea-
surements of the cluster abundance provide the cur-
rent best cosmological constraints on f(R) models [il, H]
(cf. [d, [Id]). On the other hand, in order to hide these
enhancements from local tests of gravity, viable f(R)
models employ the chameleon mechanism which allows
the Compton wavelength to shrink in regions with deep
gravitational potential wells ﬂﬁl, |ﬂ] Cosmological sim-
ulations including the chameleon effect are required to
explore the impact of these modified forces on the clus-
ter abundance. These have so far been performed for

only a specific form of f(R) [13-15).

In fact, the relationship between the Compton wave-
length, chameleon threshold and their respective evolu-
tion with redshift depends on the functional form of f(R).
In this paper, we explore the dependence of the cluster

abundance on the functional form of f(R) in order to
place more robust constraints on the whole class of mod-
els.

In g we review the phenomenology of f(R) models,
simulation technique and spherical collapse modeling as
well as show that a general class of broken power law
models introduced in Ref. ﬂE] covers most cases of cos-
mological interest. In Il we study the enhancement of
the cluster abundance in these models and obtain con-
straints from the local X-ray sample. We discuss these

results in §IV1

II. METHODOLOGY

We begin in JITAl with a review of f(R) models. In
gITBl we discuss the numerical N-body simulations from
which we extract the cluster abundance enhancements.
In JITHl we discuss the semi-analytic modeling of these
results with spherical collapse calculations.

A. DModels

In the f(R) model, the Einstein-Hilbert action is aug-
mented with a general function of the scalar curvature
R,

4 R+ f(R)

SG—/dx\/_g[ T ] (1)
Here and throughout ¢ = A = 1. Gravitational force
enhancements are associated with an additional scalar
degree of freedom, the chameleon field fr = df /dR, and
have a range given by the comoving or Compton wave-
length \c = o *(3dfr/dR)"/?, related to the inverse
mass of the scalar. This additional attractive force leads
to the enhancement in the abundance of rare massive
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FIG. 1: Redshift evolution of the chameleon field fr (top
panel) and Compton wavelength Ac (bottom panel) in the
background for the broken power law class of models. As the
scaling index n increases the field amplitude becomes increas-
ingly suppressed leading to stronger chameleon effects for the
same gravitational potentials of clusters. The Compton wave-
length for a fixed field amplitude today remains relatively con-
stant at z < 1 and then also becomes increasingly suppressed
with n. An alternative class of models specified by the expan-
sion history and Compton wavelength By parameter is also
shown for comparison (dashed lines).

dark matter halos described below. The second impor-
tant property of such models is the non-linear chameleon
effect which shuts down the enhanced forces in regions
with deep gravitational potential wells compared with
the field at the background curvature R, |¥| > |fr(R)|.

Given that different models for f(R) produce differ-
ent scalings of the Compton wavelength and chameleon
threshold with curvature and hence implicitly with red-
shift and the degree of non-linearity, we wish to explore

the dependence of the halo abundance with variations in
the form of f(R).

We therefore choose a class of models where the scalin,
index with curvature can vary as a broken power law [16]
such that

R’ﬂ

R)=-2A———
f( ) Rn+u2n’

(2)

with two free parameters, A, pu? for each value of the
scaling index n. Note that as R — 0, f(R) — 0, and
hence these models do not contain a cosmological con-
stant. Nonetheless as R > p?, the function f(R) can be

approximated as

fro Ry

(3)

with fro = —2nApu?"/ Ry replacing p as the second pa-
rameter of the model. Here we define Ry = R(z = 0), so
that fro = fr(Ro), where overbars denote the quantities
of the background spacetime. Note that if |fro| < 1 the
curvature scales set by A = O(Ryg) and p? differ widely
and hence the R > p? approximation is valid today and
for all times in the past.

The background expansion history mimics ACDM with
A as a true cosmological constant to order frg. There-
fore in the limit |fro| < 1072, the f(R) model and
ACDM are essentially indistinguishable with geometric
tests [1d]. On the other hand, the field amplitude pa-
rameter (fro) controls the range of the force modification
and the chameleon mechanism. With the functional form
of Eq. @), the comoving Compton wavelength becomes

Ao =a""/3 1 By 4
c=a (n+ )lfRO|Rn+27 (4)

with a value at the background curvature today Ry =
3HZ(4 — 3,) of

- [|frol m+1 4
Aco ~ 16.6 10744_3th Mpc, (5)

assuming a flat universe. As the scaling index n increases,
the Compton wavelength today increases given the same
background field amplitude today fro. Conversely as n
increases, force modifications at high redshift versus to-
day decrease and the chameleon mechanism extends to
shallower potential wells. Thus the net effect is a fairly
weak dependence of A\c on n at z < 1. In Fig. [ we
show the evolution of the background field and Comp-
ton wavelength for the Q, =1 —Qx = 0.24, h = 0.73
cosmology that we simulate below.

This set of broken power law models covers the cos-
mological phenomenology of most viable f(R) models.
For example the models of Ref. ﬂﬂ] compose a subset of
this class. It also has sufficient flexibility to bracket the
behavior of models where the combination of a specific
expansion history ﬂﬁ, E] and the Compton wavelength
today fixes the form of f(R) [20]. For the ACDM expan-
sion history and a dimensionless Compton wavelength
parameter

_dfr/dR _, H
Bo = 1+fRRH/

o~ 2190 ol (6)

z=

where " = d/dIn a, the redshift evolution goes from n ~ 4
at low curvature and redshift to n ~ 0.13 at high cur-
vature and redshift (see Fig. ). For a fixed |fgro| the
amount of linear growth at z = 0 in the By model is
smaller than in the n = 1 model and this must be borne



in mind when comparing constraints between the two
models (cf. [, @, 1]).

Likewise these models have stronger chameleon effects
at z < 1 than the n = 1 broken power law model. A
similar caveat applies to models with exponential rather
than power law suppression of the field with curvature

(e.g. ).

B. Simulations

We conduct N-body simulations of these broken power
law models with a particle-mesh relaxation code m, m]
Briefly, at each time step we first solve the non-linear
field equation for the field fluctuation,

2
V25fr = 5 [6R(fr) — 87Gopu] . (7)

using a multigrid relaxation scheme. Here coordinates
are comoving, 6fr = fr(R) — fr(R), SR = R — R,
0pm = Pm — Pm. The dfgr field fluctuation then acts
as an additional source to the gravitational potential,

V2V = 471G a6 pum — %v% fr- (8)

This linear equation for W is solved via a fast Fourier
transform. Once ¥ is known on the mesh, particles are
moved in the usual way.

Since the field equation implies that spatial variations
in 6 fr will be of order the gravitational potential, there
are two regimes of interest. In the large-field regime,
the background value fr(R) is large compared with the
gravitational potentials of structure, and the field equa-
tion (@) can be linearized via

_dR

IR~ —
dfr

§fr =3)5%(a)dfr, (9)

R(a)

where Ac(a) is evaluated at the background curvature
R(a). In this case the joint solution of the Poisson and
field equations in Fourier space is

4 1 1

[Tk P V) (i —
" (3 3K2\Z (a) + 1

> a*Spm.  (10)

Hence the background Compton wavelength sets the
global range of the enhanced gravitational force. We call
this the no chameleon case and for comparison conduct
separate simulations employing Eq. ().

In the small-field regime, fr(R) is comparable to or
smaller than typical gravitational potentials of structure,
so that the curvature changes non-linearly with the field.
In other words the Compton wavelength depends on the
local curvature or field A\c = A¢(a,x). Field fluctuations
saturate in deep gravitational potential wells (fr — 0),
leading to an equilibrium solution R = 87Gdpy, and a
suppression of non-Newtonian forces.

TABLE I: Summary of simulations used for this work

Lyox (R~ Mpc)
|fro 400 256 128
# full 107 (n=1, 2) 6 6 6
runs 3-107° (n=2) 6 6 6
107° (n=1) 6 6 6
# no 107* (n=1/2,1,2,4,8)| 6 6 6
cham. runs 3-107% (n=2) 6 6 6
107% (n=1) 6 6 6
ACDM 0 6 6 6
My min (10"2A71 M) 204 53.7 6.61

We wuse simulations of three different box scales
(Lvox = 400,256,128Mpc/h on the side), and 6 simu-
lations for each box size and model. Each box contains
2563 particles and a 5123 mesh grid. The runs and mod-
els as well as mass resolution for each box are summarized
in Tablel To reduce the effect of sample variance, we
compare each f(R) simulation run to a ACDM simula-
tion with the same initial conditions, i.e. the same initial
density field drawn from an initial power spectrum with
Ay = (4.73 x 107°)? at k = 0.05Mpc~! and ng = 0.958.

We measure the mass function from the simulations
using the methodology described in ﬂﬂ] and refer the
reader to details therein. Briefly, we identify halos using
a spherical overdensity criterion of A = 200 with respect
to the mean density and quantify the mass function en-
hancements of the f(R) models over ACDM with the
same initial conditions. To reduce the effect of shot noise
we bin results into coarse mass intervals corresponding
to approximately an e-fold (Aln Mago = 1.04). Further-
more, due to resolution effects, we only utilize halos that
contain at least 800 particles corresponding to the mini-
mum mass given in Tab. [ll

We estimate sampling errors via bootstrap resampling.
Note that due to our limited number of realizations, these
errors might be underestimated at high masses where
halos are rare and fluctuations are significant.

C. Spherical Collapse Predictions

Since the large field regime is where the current local
cluster abundance measurements constrain f(R) models
ﬂ, E], characterizing this regime in a way that does not re-
quire simulations of each model is important. We briefly
review a method utilizing spherical collapse introduced
in Ref. [17]

The Sheth-Tormen description for the comoving num-
ber density of halos per logarithmic interval in the virial
mass M, is given by

dn  pm ) dv
din, MV dmar,

(11)

Nn M, =



where the peak threshold v = §./0(M;) and

vf(v) = Ay/ %cw?[l + (av?)Plexp[—ar?/2]. (12)

Here o (M) is the variance of the linear density field con-
volved with a top hat of radius r that encloses M =
4713 oy /3 at the background density
2 LI 2
72(r) = [ s W ) PLR). (13)
(2m)?
where P (k) is the linear power spectrum and W is the
Fourier transform of the top hat window. The normal-
ization constant A is chosen such that [dvf(v) = 1. The
parameter values of p = 0.3, a = 0.75, and 0. = 1.673
for the spherical collapse threshold have previously been
shown to match simulations of ACDM at the 10 — 20%
level. The virial mass is defined as the mass enclosed
at the virial radius r,, at which the average density is
Ay times the mean density. The virial mass can then be
transformed to alternate overdensity criteria assuming a
Navarro-Frenk-White density profile 23].

Spherical collapse can also provide a model for the
mass function enhancement measured in the f(R) N-
body simulations ﬂﬁ] The mass function calculation
again uses the Sheth-Tormen form of Eq. () but with
the linear power spectrum for the f(R) model in Eq. (&),
and two limiting cases for the spherical collapse param-
eters. In one case, we simply assume that the spher-
ical perturbation considered is always larger than the
Compton wavelength of the fr field, so that gravity is
GR throughout, and the spherical collapse parameters
are unchanged. In the second case, we assume that the
perturbation is always smaller than the local Compton
wavelength in spite of the redshift evolution of the back-
ground Compton wavelength and chameleon mechanism
(see Fig.[l). Hence forces are simply universally enhanced
by 4/3 (see 4] for a radially dependent prescription
but note that a tophat density profile does not remain
a tophat). In both cases, we use the modified linear force
calculation for the linear power spectrum and o(M) via
Eq. ). Hence, unmodified spherical collapse param-
eters does not equate to unmodified spherical collapse
predictions.

The values of the resulting linear collapse threshold 6.
and virial overdensity A, are summarized in Table[[ll We
use the GR values to calculate the mass function Eq. ()
in terms of virial mass M, (M, = Ma,) for ACDM,
and correspondingly for f(R) with either set of collapse
parameters. We then rescale both mass functions to our
adopted mass definition Mooy and convolve them with
the mass binning used in the simulations before taking
the ratio.

III. CLUSTER ABUNDANCE

With the f(R) simulations described in Tab. [l we
can now test the model dependence of the cluster abun-
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FIG. 2: Mass function enhancement at z = 0 in large field
|fro| = 107" models for scaling index of n = 1,2 relative to
ACDM. Here and in the following figures, the no-chameleon
results have been displaced horizontally for clarity. Enhance-
ment depends mainly on mass due to the increasing rarity of
high mass halos. As n increases, the enhancement drops only
moderately given the small change in the background Comp-
ton wavelength at z < 1, consistent with only a small con-
tribution from the non-linear chameleon effect. The spherical
collapse predictions (shaded range) capture these qualitative
trends and provide conservative lower limits to the enhance-
ment.

dance enhancement as well as the accuracy of the model-
independent spherical collapse technique described in the
previous section. In §TAl we discuss the large field
regime relevant for current constraints from clusters. In
J[ITBl we evaluate the impact of the non-linear chameleon
mechanism in the small field regime. Finally we show
how constraints on one f(R) model can be transformed
to another using simulation calibrated spherical collapse

methods in JTCA

TABLE II: Spherical collapse parameters

z=0 z =0.316

GR mod. forces| GR mod. forces
dc [1.673 1.692 1.679 1.697
Ayl 391 309 279 222
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FIG. 3: Mass function enhancement at z = 0 as a func-

tion of scaling index n for the mass bin centered at Msoo =
5.3 x 10" Mg /h for large field models |fro| = 10™*. Spher-
ical collapse predictions (shaded) capture the trend in the
no-chameleon simulations. Full results for n = 1,2 and con-
sideration of the field evolution suggests that spherical col-
lapse predictions should hold for n < 4. Note that errors are
fully correlated in that the all simulations use the same initial
conditions and are compared against the same set of ACDM
simulations.

A. Large Field Regime

In Fig. Pl we show the mass function enhancements for
a large field case |fro| = 107* for n = 1,2. Note that
we plot the data points at the center of each mass bin,
while the average mass of halos within the bin is generally
smaller than that due to the steepness of the mass func-
tion. The spherical collapse predictions are convolved
with the mass bin and hence take into account this ef-
fect. The uppermost mass bin extends to infinite mass
so as to include all remaining halos but is still plotted at
Aln Msyg = 1.04 above the previous bin.

As the mass increases and halos become rarer in the
ACDM simulations, the fractional impact of the force en-
hancement on cluster abundance increases. Relative to
this overall enhancement the impact of changing the scal-
ing parameter n is less significant. This weak dependence
is in spite of the rapid change in the background fg field
shown in Fig. 0l

We can understand this relative insensitivity by com-
paring the full simulation results to the no-chameleon
simulations where the Compton wavelength is fixed to
its background value through Eq. (). Mass function
enhancements in the chameleon and no-chameleon sim-
ulations are nearly the same up until the very highest
masses. For the large field value today |fro| = 1074,
cluster potential wells are not sufficiently deep to mani-
fest the chameleon mechanism today. The small effect at
the very highest masses in fact comes from the chameleon
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FIG. 4: Mass function enhancement at z = 0.316 in the large
field |fro| = 10* for n = 1, 2. Fractional enhancements at a
fixed mass remain significant at higher redshift due to the in-
creased rarity of such halos in ACDM and the trend remains
well captured by spherical collapse predictions (shaded re-
gion). Field evolution in the n = 2 case makes the chameleon
suppression in the full simulations moderately more impor-
tant.

mechanism becoming effective at high redshift as we shall
see. One can in turn understand the relative insensitiv-
ity to n in the no-chameleon simulations by examining
the background Compton wavelength evolution in Fig. [l
Note that for n < 4, the Compton wavelength varies little
for redshifts z < 1.

The spherical collapse predictions outlined in the pre-
vious section are also shown in Fig. Bl The upper bound-
ary of the shaded region represents enhancements pre-
dicted by the unmodified spherical collapse parameters
A, = 391 and 6. = 1.673 whereas the lower boundary
takes the modified parameters A, = 309 and d. = 1.692
(Table [)).

The spherical collapse predictions model the results
equally well for the n = 1 and n = 2 models. In the high
mass cluster regime, the unmodified parameters match
the simulations better. In the low mass end the modi-
fied parameters agree better. The modified parameters
also provide conservative estimates of the enhancements
across the full mass range m]

We further test the large-field no-chameleon simu-
lations against spherical collapse predictions for even
steeper n models in Fig. These predictions, based
mainly on the instantaneous linear growth function, re-
main accurate despite the extremely strong scaling of the
force modification with redshift in these models. Further-



more, Fig. Mimplies that the no-chameleon results should
be a reasonable approximation to the full simulations for
n < 4. Thus, in the large field regime, one way to map
cluster constraints obtained at a given mass M, on one
f(R) model to another is to match the linear variance
o(My). A better approximation can be obtained by set-
ting the mass function mny s, equal as we shall see in
qra

In Fig. @l we show the mass function enhancements
at an intermediate redshift z = 0.316 for the large field
model. Note that the abundance of halos of mass M at
z = 0 is equal to that of halos of mass M /1.5 at this red-
shift in a ACDM model, due to the evolution of the mass
function, and we have adjusted our binning to take this
into account. Thus for a fixed mass, the enhancement in
the cluster abundance remains significant. Interestingly,
the range in spherical collapse predictions continues to
model these trends once the collapse parameters are ad-
justed to the matching redshift (see Tab. [[I).

The n = 2 results at z = 0.316 show a slight increase
in the importance of the chameleon suppression when
compared to z = 0 or n = 1 at the same redshift. This
is consistent with the suppression of the field amplitude
shown in Fig. [l For n = 2, the effect is only a small
fractional contribution and spherical collapse predictions
still work well but suggest that the no-chameleon approx-
imation may have a smaller range of validity in n at high
redshift. More generally modified gravity models which
possess this type of non-linearity that suppresses devi-
ations in high density regions typically do not predict
larger enhancements of the cluster abundance at high
versus low redshift at a fixed degree of rarity or peak

height v [2d] (cf. d]).

B. Small Field Regime

As cluster abundance and other cosmological tests im-
prove, the large-field models will be excluded (if no order
unity excesses over ACDM expectations are detected).
In the small field regime of |fro| < 1072, the chameleon
mechanism is effective even today. Note that this division
between large and small fields is also relevant for local
tests of the model. The dominant criteria for satisfying
local tests of gravity is that the chameleon mechanism is
operative in the Galaxy [1d].

In Fig. B we show small field results for n = 1 and
|frol = 10721076 and, for n = 2, |fro| = 3 x 107°. The
first thing to note is that in the no chameleon simulations
the impact of changing the field value from |fro| = 1074
to |fro| = 107° is less than a factor of 2 in the abun-
dance at the highest mass bin. We shall see in the next
section, that this logarithmic sensitivity translates into a
strong model dependence of observational constraints on
the field amplitude and Compton wavelength.

Small field results show a large impact from the
chameleon suppression as can be seen by comparing the
full simulations to the no-chameleon simulations. A halo
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FIG. 5: Mass function enhancement in the small field regime.
The chameleon effect suppresses the enhancement when the
background field amplitude |fro| drops below the depth of
the gravitational potential for an object of mass Magg. Com-
parison of the full and no-chameleon simulations shows that
the limiting mass at which the chameleon appears scales
roughly as expected: Mecpam o |fRo|3/2 nearly indepen-
dently of the scaling index n. Spherical collapse predic-
tions roughly capture this suppression in the cluster regime
Moo 2 3 X 1014M@/h but fail to model the enhancement
below Mcham-

is chameleon-screened whenever its gravitational poten-
tial is larger than the field amplitude in the background
|fro|. This can be used to derive a threshold mass for
chameleon screening at z = 0 for a given value of fro
(see [21]). We then expect the mass scale Myam of the
chameleon suppression in the mass function to scale sim-
ilarly as the threshold for chameleon screening. In par-
ticular, Mcham should depend mainly on |fro| and only
weakly on the scaling index n. Specifically, neglecting
the small mass-dependence of the halo concentration, we
would expect the onset of the chameleon suppression to
scale as Mepam X | frol®/2.

We see from Fig. Bl that the results are consistent with
this scaling: roughly, the chameleon for |fro| = 1077 is
important for Magg 2> 6 x 10'* Mg /h while for |fro| =
107, the suppression appears at Magg > 2 x 1013M, /h.
The |fro| = 3 x 1076, n = 2 case falls consistently right

in between the two despite being a different n model.
Spherical collapse predictions roughly model the re-
duced enhancement in the cluster regime of Magg = 3 X
104 Mg /h. They correctly predict an absence of a signifi-
cant enhancement for |fro| < 3x107¢. However, unmod-
ified collapse parameter predictions can fractionally over-
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FIG. 6: Constraints on |fro| (upper panel) and the Compton
wavelength A¢ (lower panel) as function of the index n. We
have converted the 95% confidence level upper limits on | fro|
reported in ﬂl] for n =1 to other values of n using the spher-
ical collapse model as described in the text. The medium
shaded band corresponds to the default limit reported in ﬂ],
while dark and light shaded areas use more or less conserva-
tive assumptions (see text).

estimate the enhancement unlike in the large field regime,
while modified collapse parameter predictions predict a
reduction in the cluster abundance (Any, s < 0) not seen
in the simulations. Moreover both cases do not predict
the correct behavior at lower masses where the full sim-
ulations possess a higher abundance of halos than both
the no-chameleon simulations and the collapse predic-
tions. Hence in the small field regime they should not be
used for constraints from galaxy groups or smaller mass
objects or if precision predictions are required at cluster
masses. We defer such modeling to a future work.

C. Current Constraints

Given that spherical collapse predictions work equally
well for all of our broken power law models with n < 4
in the cluster regime and capture the scalings seen in the
full simulations, we can extend the constraints on the
f(R) model with n = 1 [1] that were obtained using the
observed abundance of local X-ray clusters selected in the
ROSAT All-Sky Survey and followed up with Chandra
observations ﬁ}

The constraints were obtained by using the spherical
collapse model (see section [TQ) to predict the f(R) mass
function enhancement at a pivot mass of Mx .g ~ 3.7 X

10* Mg /h, for an overdensity of 500 with respect to
critical density. Fig. Bl shows that the spherical collapse
model is equally valid for other values of n as long as the
chameleon effect is negligible, and it is straightforward to
translate the constraints to other values of n by matching
the abundance at Mx cg.

The results are shown as function of n in Fig. @ for
a range of conservative to aggressive interpretations of
the data and modeling (see ﬂ] for further discussion).
In the top panel we show the 95% statistical limits on
the field amplitude today fro and in the bottom panel
the Compton wavelength in the background today Acg.
The medium shaded region shows the result for the de-
fault constraint, |fro| < 1.3 x 107* at n = 1, using
the modified spherical collapse parameters (lower edge
of shaded band in Fig. B)). The dark region shows the
most conservative constraints (|fro| < 3 x 107%), us-
ing the modified collapse parameters and in addition
assuming X-ray masses are underestimated by 9%. Fi-
nally, the light region shows more aggressive constraints
(|fro| < 4x1077), using the unmodified collapse param-
eters (upper edge of shaded band in Fig. B). Note that
even this case is still somewhat conservative, since for
clusters at fixed mass, dynamical mass estimates such as
X-ray masses will be enhanced by ~ 20% in the large-field
limit of f(R) gravity [27], due to the increased depth of
the potential well. This increases the abundance at fixed
Mx in f(R) considerably.

While the change in the fractional enhancement of the
mass function from ACDM with n is relatively small, the
impact on the model parameters can be large. Specif-
ically between the n = 1 and n = 4 models the field
amplitude limits change by over an order of magnitude
and Compton wavelength constraints by a factor of sev-
eral.

Nonetheless the cluster abundance measurements can
already rule out a substantial portion of the cosmolog-
ically interesting regime for all cases, limiting the al-
lowed range of enhanced forces to 10 — 100 Mpc. Fu-
ture large cluster samples have the potential to push the
limits down by an order of magnitude before chameleon
effects cause a suppression of the enhancement.

IV. DISCUSSION

We have conducted N-body simulations to test the en-
hancement of the cluster abundance in a variety of f(R)
models. These models differ in the redshift evolution
of both the linear force enhancement and the non-linear
chameleon mechanism which suppresses such enhance-
ments in the deep gravitational potential wells of clusters
of galaxies. These results test the robustness of model in-
dependent techniques such as spherical collapse for pre-
dicting the enhancement and constraining modified grav-
ity with cosmological data.

We find that for cluster mass halos, the spherical col-
lapse predictions work equally well for different models



at least as long as the redshift evolution of the field is not
so steep as to invalidate the division between large field
and small field regime imposed at |fro| ~ 107> for the
background field amplitude at z = 0. In the large field
regime the background field amplitude is larger than the
depth of the gravitational potential wells of clusters and
hence the chameleon effect is inoperative. For a scaling
index n < 4, a large field model retains this property
for z < 1 when clusters form. In this regime, the frac-
tional enhancement of the cluster abundance relative to
ACDM is a relatively weak function of n that is deter-
mined by the evolution of the Compton wavelength or
range of the force in the background. In the opposite
small field regime, the enhancements become suppressed
above a limiting mass that depends mainly on the field
amplitude Mepam o |fro|*/2.

We use these results to extend the implications of the
local cluster abundance to the whole class of broken
power law models. Most models in the literature can
be mapped onto the parameter space of this class. Con-
straints on the field amplitude and Compton wavelength
today are strongly model dependent due to the logarith-
mic dependence of the cluster abundance on their values
in any given model.

Results based on different model assumptions can be
mapped onto each other by matching instead the lin-
ear theory rms fluctuation at the radius implied by the
observed mass scale or even more directly by matching
spherical collapse mass function predictions as we have
shown for the local X-ray cluster abundance.
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