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Abstract

We explore a nuclear physics resolution to the discrepancy between the predicted standard
BBN abundance of 7Li and its observational determination in metal-poor stars. The the-
oretical 7Li abundance is 3 - 4 times greater than the observational values, assuming the
baryon-to-photon ratio, ηwmap, determined by WMAP. The 7Li problem could be resolved
within the standard BBN picture if additional destruction of A = 7 isotopes occurs due to
new nuclear reaction channels or upward corrections to existing channels. This could be
achieved via missed resonant nuclear reactions, which is the possibility we consider here. We
find some potential candidate resonances which can solve the lithium problem and specify
their required resonant energies and widths. For example, a 1− or 2− excited state of 10C
sitting at approximately 15.0 MeV above its ground state with an effective width of order
10 keV could resolve the 7Li problem; the existence of this excited state needs experimental
verification. Other examples using known states include 7Be + t → 10B(18.80 MeV), and
7Be+d → 9B(16.71 MeV). For all of these states, a large channel radius (a > 10 fm) is needed
to give sufficiently large widths. Experimental determination of these reaction strengths is
needed to rule out or confirm these nuclear physics solutions to the lithium problem.



1 Introduction

Primordial nucleosynthesis continues to stand as our earliest probe of the universe based
on Standard Model physics. Accurate estimates of the primordial abundances of the light
elements D, 4He and 7Li within standard Big Bang Nucleosynthesis (BBN) [1–5] are crucial
for making comparisons with observational determinations and ultimately testing the the-
ory. Primordial abundances are also a probe of the early universe physics [6]. Currently,
the theoretical estimates of D and 4He match the observational values within theoretical
and observational uncertainties [3, 5] at the baryon-to-photon ratio determined by the 7-
year WMAP data, ηwmap = 6.19 ± 0.15 × 10−10 [7]. In contrast, the theoretical primordial
abundance of 7Li does not match the observations.

At ηwmap, the predicted BBN abundance of 7Li is1 [5]

(

7Li

H

)

BBN

=
(

5.12+0.71
−0.62

)

× 10−10. (1)

The observed 7Li abundance is derived from observations of low-metallicity halo dwarf stars
which show a plateau [8] in (elemental) lithium versus metallicity, with a small scatter
consistent with observational uncertainties. An analysis [9] of field halo stars gives a plateau
abundance of

(

Li

H

)

halo⋆

= (1.23+0.34
−0.16) × 10−10. (2)

However, the lithium abundance in several globular clusters tends to be somewhat higher [10,
11], and a recent result found in [11] gave 7Li/H = (2.34±0.05)×10−10. Thus the theoretically
estimated abundance of the isobar with mass 7 (7Be+7Li) is more than the observationally
determined value by a factor of 2.2 - 4.2 [5], at ηwmap. Relative to the theoretical and
observational uncertainties, this represents a deviation of 4.5-5.5 σ.

This significant discrepancy constitutes the “lithium problem” which could point to lim-
itations in either the observations, our theoretical understanding of nucleosynthesis, or the
post-BBN processing of Li.

On the theoretical front, strategies which have emerged to approach the lithium problem
broadly either address astrophysics or microphysics. On the astrophysical side, one might
attempt to improve our understanding of Li depletion mechanisms operative in stellar models
[12]. This remains an important goal but is not our focus here.

The microphysical solutions to the lithium problem all in some way change the nuclear
reactions for lithium production in order to reduce the primordial (or pre-Galactic) lithium
abundance to observed levels. Some of these work within the Standard Model, focussing
on nuclear physics, in particular the nuclear reactions involved in lithium production. One
approach is to attempt to utilize the experimental uncertainties in the rates [2, 13–15]. A
second, related approach is the inclusion of new effects in the nuclear reaction database such
as poorly understood resonance effects [16]. Finally, it may happen that effects beyond the

1Note that the 7Li abundance reported here differ slightly from that given in [5], primarily due to the
small shift in η as reported in [7].
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Standard Model are responsible for the observed Li abundance. For example, the primordial
lithium abundance can be reduced by cosmological variation of the fine structure constant
associated with a variation in the deuterium binding energy [17], or by the post-BBN de-
struction of Li through the late decays of a massive particle in the early universe [18].

In this paper, we remain within the Standard Model, examining the possible role of
resonant reactions which may have been up to now neglected. The requisite reduction in the
7Li abundance can be achieved by either an enhancement in the rate of destruction of 7Li
or its mirror nucleus 7Be. This approach is more promising than the alternative of reducing
the production of 7Be and 7Li where the reactions are better understood experimentally and
theoretically [19–21], whereas the experimental and especially the theoretical situation for
A = 8 − 11 has made large strides but still allows for surprises at the levels of interest to
us [22].

The use of resonant channels is an approach that has paid off in the past in the context
of stellar nucleosynthesis. Fred Hoyle famously predicted a resonant energy level at 7.68
MeV in the 12C compound nucleus which enhances the 8Be+α → 12C reaction cross-section
and allows the triple alpha reaction to proceed at relatively low densities [23]. Recently,
it was shown that there are promising resonant destruction mechanisms which can achieve
the desired reduction of the total A = 7 isotopic abundance [16]. This paper points to a
resonant energy level at (E, Jπ) = (16.71 MeV, 5/2+) in the 9B compound nucleus which
can increase the rate of the 7Be(d,p)αα and/or 7Be(d, γ)9B and thereby reduce the 7Be
abundance. Here, we take a more general approach and systematically search for all possible
compound nuclei [24] and potential resonant channels which may result in the destruction
of 7Be and/or 7Li.

Because of the large discrepancy between the observed and BBN abundance of 7Li, any
nuclear solution to the lithium problem will require a significant modification to the existing
rates. As we discuss in the semi-analytical estimate in section 2, any new rate or modification
to an existing one, must be 2 - 3 times greater than the current dominant destruction channels
namely, 7Li(p, α)α for 7Li and 7Be(n, p)7Li for 7Be. As discussed in [15] and as we show semi-
analytically in § 2, this is difficult to achieve with non-resonant reactions. Hence, we will
concentrate on possible resonant reactions as potential solutions to the lithium problem. As
we will show, there are interesting candidate resonant channels which may resolve the 7Li
problem. For example, there is a possibility of destroying 7Be through a 1− or 2− 10C excited
state at approximately 15.0 MeV. The energy range between 6.5 and 16.5 MeV is currently
very poorly mapped out and a state near the entrance energy for 7Be + 3He could provide
a solution if the effective width is of order 10 keV. We will also see that these reactions all
require fortuitously favorable nuclear parameters, in the form of large channel radii, as also
found by Cyburt and Pospelov [16] in the case of 7Be + d. Even so, in the face of the more
radical alternative of new fundamental particle physics, these more conventional solutions
to the lithium problem beckon for experimental testing.

The paper is organized as follows: First, we lay down the required range of properties
of any resonance to solve the lithium problem by means of a semi-analytic estimate in-
spired by [25, 26] in § 2. Then, in § 3, we list experimentally identified resonances from
the databases: TUNL [24] and NNDC [27], involving either the destruction of 7Be or 7Li.
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Finally, the solution space of resonant properties, wherein the lithium problem is partially
or completely solved, is mapped for the most promising initial states involving either 7Li or
7Be, by including these rates in a numerical estimation of the 7Li abundance. This exercise
will delineate the effectiveness of experimentally studied or identified resonances as well as
requirements of possible missed resonant energy levels in compound nuclei formed by these
initial states. This is described in § 4. We note that in our analysis, the narrow resonance
approximation is assumed which may not hold true in certain regions of this solution space.
Our key results are pared down to a few resonant reactions described in § 5. A summary
and conclusions are given in § 6.

2 Semi-analytical estimate of important reaction rates

Before we embark on a systemic survey of possible resonant enhancements of the destruction
of A = 7 isotopes, it will be useful to estimate the degree to which the destruction rates must
change in order to have an impact on the final 7Li abundance. The net rate of production
of a nuclide i is given by the difference between the production from nuclides k and l and
the destruction rates via nuclide j, i.e. for the reaction i + j → k + l. This is expressed
quantitatively by the rate equation [28] for abundance change due to nuclear reactions

dni

dt

∣

∣

∣

∣

nuc

= −3Hni +
∑

jkl

nknl〈σv〉kl − ninj〈σv〉ij, (3)

where ni is the number density of nuclide i, H is the Hubble parameter,
∑

ij ninj〈σv〉ij are the
sum of contributions from all the forward reactions destroying nuclide i and

∑

kl nknl〈σv〉kl

are the reverse reactions producing it. 〈σv〉 is the thermally averaged cross-section of the
reaction. The dilution of the density of these nuclides due to the expansion of the universe
can be removed by re-expressing eq. (3) in terms of number densities relative to the baryon
density Yi ≡ ni/nb, as,

dYi

dt
= nb

∑

jkl

YkYl〈σv〉kl − YiYj〈σv〉ij . (4)

Using this general form, the net rate of 7Be production can be approximated in terms of the
thermally averaged cross-sections of its most important production and destruction channels
as

dY7Be

dt
= nb (〈σv〉3HeαY3HeYα − 〈σv〉7BenY7BeYn) . (5)

Here, the reverse reaction rates of these production and destruction channels are neglected,
as they are much smaller than the forward rates at the lithium synthesis temperature. A
similar equation can be written down for 7Li. When quasi-static equilibrium is reached, the
destruction and production rates are equal. In this case, approximate values for new rates,
which can effectively destroy either isobar, can be obtained analytically.
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At temperatures T ≈ 0.04 MeV, both 7Li and 7Be are in equilibrium [26] which gives,

〈σv〉3HeαY3HeYα = 〈σv〉7BenY7BeYn . (6)

Consider a new, inelastic 7Be destruction channel 7Be+X → Y +Z, involving projectile X.
This reaction will add to the right hand side of eq. (6) and shift the equilibrium abundance
of 7Be to a new value as follows,

Y new
7Be ≈

〈σv〉3HeαYαY3He

〈σv〉7BenYn + 〈σv〉7BeXYX
≈

1

1 +
〈σv〉7BeXYX

〈σv〉7Ben
Yn

Y old
7Be . (7)

If the new reaction is to be important in solving the Li problem, it must reduce the 7Be
abundance by a factor of Y new

7Be
/Y old

7Be
∼ 3 − 4 . This in turn demands via eq. (7) that

〈σv〉7BeXYX/〈σv〉7BenYn ∼ 2 − 3, i.e., the rate for the new reaction exceeds that of the usual
n − p interconversion reaction rate. A similar estimate can be made for 7Li.

This reasoning would exclude non-resonant rates as they would be required to have
unphysically large astrophysical S-factors in the range of order 105−109 keV - barn depending
on the channel. Thus we would expect that only resonant reactions can produce the requisite
high rates. Possible resonant reactions are listed in the next section, whose key properties of
resonance strength, Γeff and energy, Eres, lie in appropriate ranges capable of achieving the
required destruction of mass 7.

Finally, we turn to 7Li destruction reactions, 7Li+X → Y +Z. Recall that at the WMAP
value of η, mass 7 is made predominantly as 7Be, with direct 7Li production about an order
of magnitude smaller. This suggests that enhancing direct 7Li destruction will only modestly
affect the final mass-7 abundance; we will see that this expectation is largely correct.2

With these pointers, the list in the next section is reduced and numerical analysis of the
remaining promising rates is done.

3 Systematic Search for Resonances

In this section we describe a systematic search for nuclear resonances which could affect
primordial lithium production. We first begin with general considerations, then catalog the
candidate resonances. We briefly review the basic physics of resonant reactions to establish
notation and highlight the key physical ingredients.

2A subtle point is that normally, the mass-7 abundance is most sensitive to rate 7Be(n, p)7Li [29]. Of
course, this reaction leaves the mass-7 abundance unchanged, but the lower Coulomb barrier for 7Li leaves it
vulnerable to the 7Li(p, α)4He reaction, which is extremely effective in removing 7Li. Thus, for a new, reso-
nant 7Li destruction reaction to be important, it must successfully compete with the very large 7Li(p, α)4He
rate, and even then the mass-7 destruction “bottleneck” remains the 7Be(n, p)7Li rate that limits 7Li ap-
pearance. Thus we would not expect direct 7Li destruction to be effective. We will examine 7Li destruction
below, and confirm these expectations.
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3.1 General Considerations

Energetically, the net process 7Be + A → B + D must have Q + Einit ≥ 0, where the initial
kinetic energy Einit ≃ T <∼ 40 keV is small at the epoch of A = 7 formation. Thus we in
practice require exothermic reactions, Q > 0. Moreover, inelastic reactions with large Q will
yield final state particles with large kinetic energies. Such final states thus have larger phase
space than those with small Q and in that sense should be favored.

Consider now a process 7Be + X → C∗ → Y + Z which destroys 7Be via a resonant
compound state; a similar expression can be written for 7Li destruction. In the entrance
channel 7Be + X → C∗ the energy released in producing the compound state is QC =
∆(7Be) + ∆(X) − ∆(Cg.s.), where ∆(A) = m − Amu is the mass defect. If an excited state
C∗ in the compound nucleus lies at energy Eex, then the difference

Eres ≡ Eex − QC (8)

determines the effectiveness of the resonance. We can expect resonant production of C∗

if Eres <∼ T . In an ordinary (“superthreshold”) resonance we then have Eres > 0, while a
subthreshold resonance has Eres < 0.

Once formed, the excited C∗ level can in decay via some set of channels. The cross section
for 7Be + X → C∗ → Y + Z is given by the Breit-Wigner expression

σ(E) =
πω

2µE

ΓinitΓfin

(E − Eres)2 − (Γtot/2)2
(9)

where E is the center-of-mass kinetic energy in the initial state, µ is the reduced mass and

ω =
2JC∗ + 1

(2JX + 1)(2J7 + 1)
(10)

is a statistical factor accounting for angular momentum. The width of the initial state
(entrance channel) is Γinit, and the width of the final state (exit channel) is Γfin.

One decay channel which must always be available is the entrance channel itself. Obvi-
ously such an elastic reaction is useless from our point of view. Rather, we are interested
in inelastic reactions in which the initial 7Be (or 7Li) is transformed to something else. In
some cases, an inelastic strong decay is possible where the final state particles Y + Z are
both nuclei. Note that it is possible to produce a final-state nucleus in an excited state, e.g.,
C∗ → Y ∗ + Z, in which case the energy release Q′

C is offset by the Y ∗ excitation energy.
This possibility increases the chances of finding energetically allowable final states. Indeed,
such a possibility is has been suggested in connection with the 7Be + d → 9B

∗
→ 8Be

∗
+ p

process [16].
Regardless of the availability of a strong inelastic channel, an electromagnetic transition

C∗ → C(∗)+γ to a lower level is always possible. However, these often have small widths and
thus a small branching ratio Γfin/Γtot. Thus for electromagnetic decays to be important, a
strong inelastic decay must not be available, and the rest of the reaction cross section needs
to be large to compensate the small branching; as seen in eq. (9), this implies that Γinit be
large.
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Note that in all charged-particle reactions, the Coulomb barrier is crucially important
and is implicitly encoded via the usual exponential Gamow factor in the reaction widths of
both initial and final charged-particle states. However, if the reaction has a high Q, the final
state kinetic energy will be large and thus there will not be significant final-state Coulomb
supression; this again favors final states with large Q. In addition, if the entrance or exit
channel has orbital angular momentum L > 0, there is additional exponential suppression,
so that L > 0 states are disfavored for our purposes.

With these requirements in mind, we will systematically search for resonant reactions
which could ameliorate or solve the lithium problem. We begin by identifying possible
processes which are

1. new resonances not yet included in the BBN code;

2. 2-body to 2-body processes, since 3-body rates are generally very small in BBN due
to phase space suppression as well as the relatively low particle densities and short
timescales;

3. experimentally allowed – in practice this means we seek unidentified states in poorly
studied regimes;

4. narrow resonances having Γtot <∼ T , which is around Γtot < 40 keV but we will also
consider somewhat larger widths to be conservatively generous.

5. relatively low-lying resonances with Eres <∼ few × T ∼ 100 − 300 keV, which are
thermally accessible; here again we err on the side of a generous range.

Once we have identified all possible candidate resonances, we will then assess their viability
as solutions to the lithium problem based on available nuclear data.

3.2 List of Candidate Resonances

As described above, we will explore the resonant destruction channels of both 7Li and 7Be.
Some of the potential resonances which might be able to reduce the mass 7 abundance to the
observed value were recently considered in [16]. This analysis eliminates several candidate
resonances, leaving as genuine solutions only the resonance related to the 7Be(d, γ)9B and
7Be(d, p)αα reactions and associated with the 16.71 MeV level in the 9B compound nucleus.
Here, we make an exhaustive list of possible promising resonances that may be important
to either 7Be or 7Li destruction channels. In order to do so systematically and account for
all possible resonances that may be of importance, we study the energy levels in all possible
compound nuclei that may be formed in destroying 7Be or 7Li, making extensive use of
databases at TUNL and the NNDC [24,27].

The available 2-body destruction channels 7A+X may be classified by X = n, p, d, t, 3He, α,
and γ. Consequently, the compound nuclei that can be formed starting from mass 7 have
mass numbers ranging from A = 8 to A = 11, and the ones of particular interest are
8Li, 8Be, 8B, 9Be, 9B, 10Be, 10B, 10C, 11B and 11C. All relevant, resonant energy levels in these
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compound nuclei that may provide paths for reduction of mass 7 abundance are listed in
Tables 1 – 10.

There are quantum mechanical and kinematic restrictions to our selection of candidates.
The candidate resonant reactions must obey selection rules. The partial widths for a channel,
which may be viewed as probability currents of emission of the particle in that channel
through the nuclear surface, are given as

ΓL(E) = 2 ka PL(E, a)γ2(a) (11)

where a is the channel radius and E is the projectile energy. Here k is the wavenumber of the
colliding particles in the centre-of-mass frame and γ2 is the reduced width, which depends
on the overlap between the wavefunctions inside and outside the nuclear surface, beyond
which the nuclear forces are unimportant. The reduced width, γ2 is independent of energy
and has a statistical upper limit called the Wigner limit given by [30]

γ2 ≤
3~

2

2µa2
, (12)

The pre-factor of 3
2

is under the assumption that the nucleus is uniform and can change
to within a factor of order unity if this assumption changes. The Wigner limit depends
sensitively on the channel radius and thus varies with the nuclei involved. For the nuclei of
our interest, typical values of γ2 range from a few hundred keVs to a few MeVs.

In eq. (11), PL(E, a) is the Coulomb penetration probability for angular momentum L
and is a strong and somewhat complicated function of E and a. Thus, while the Wigner
limit sets a theoretical limit on the reduced width, the upper limit on the full width, ΓL(E),
depends on the values of PL(E, a) and is sensitive to the details of the resonant channel
being considered. In light of this complexity, our strategy is as follows. We evaluate the
ΓL(E) needed to make a substantial impact on the lithium problem. Then for the cases of
highest interest, we will compare our results with the theoretical limit set by the Coulomb
suppressed Wigner limit for those specific cases.

We also limit our consideration to two body initial states, with resonance energies Eres ≤
650 keV. The high resonance energy limit ensures that all possible resonances which may
influence the final 7Li abundance are taken into account, though many of the channels with
such high resonance energies will inevitably be eliminated. Excited final states have also been
considered in making this list. Different excited states of final state products are marked as
separate entries in the table, since each one has its own spin and therefore a different angular
momentum barrier. And thereby the significance of each excited state in destroying mass
7 is varied. Also, we usually eliminate the reactions with a negative Q-value except for the
7Li(d, p)8Li, 7Be(d, 3He)6Li, 7Be(d, p)8Be

∗
(16.922 MeV) and 7Li(3He, p)9Be

∗
(11.283 MeV)

as they are only marginally endothermic.
For a number of the reactions listed in these tables, 1-10, the total spin of the initial

state reactants is equal to that of the compound nucleus, which is equal to the total spin of
the products, with L = 0. However, for many reactions, angular momentum is required in
the initial and/or final state, which decreases the penetration probability and thereby the
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width for that particular channel. In fact for some of these reactions, parity conservation
demands higher angular momentum which worsens this effect. However, we do not reject any
channel based on the angular momentum suppression of its width in these tables. Later we
will shortlist those resonant channels which are not very suppressed and indeed potentially
effective in destroying mass 7.

The reactions of interest are listed in increasing order of the mass of the compound nuclei
formed. The particular resonant energy levels of interest Eex and their spins are listed in the
table. In general, different initial states involving 7Li and 7Be can form these energy levels
and so all these relevant initial states are listed. For each one, the various final product
states for an inelastic reaction are enumerated. Again, each of the final state products can
also be formed in an excited state. These excited states must have lower energy than the
initial state energies for the reaction to be exothermic. In addition spin and parity must
be conserved. Enforcing these, the minimum final state angular momenta Lfin are evaluated
from the spin of the resonant energy level and are listed in the tables. The total widths of
the energy levels are listed whenever available. The partial widths of the different channels
including the elastic one, out of each energy level are also listed.

We adopt the narrow resonance approximation to evaluate the effect of these resonances
and either retain or dismiss them as potential solutions to the lithium problem. Some of
the partial widths or limits on them are high enough that they easily qualify to be broad
resonances. This implies that the narrow resonance formula used to see their effect is not
precise, but still gives a rough idea of whether the resonance is ineffective or not.

Our expression for thermonuclear rates in the narrow resonance approximation is ex-
plained in detail in Appendix A, and is given by

〈σv〉 = ω Γeff

(

2π

µT

)3/2

e−|Eres|/T f (2Eres/Γtot) (13)

This rate is controlled by two parameters specific to the compound nuclear state: Eres and
Γeff . Here Eres is given in eq. (8), and measures the offset from the entrance channel and the
compound state. The resonance strength is quantified via

Γeff =
ΓinitΓfin

Γtot
(14)

with Γinit and Γfin being the entrance and exit widths of a particular reaction, and Γtot the
sum of the widths of all possible channels. Of these widths, the smaller of Γinit and Γfin along
with Γtot are listed in the table above. The resonance strength, Γeff ≈ Γinit, if Γfin dominates
the total width, and vice versa. If Γinit and Γfin are the dominant partial widths and they
are comparable to each other, then the strength is even higher.

As discussed in Appendix A, our narrow resonance rate in eq. (13) improves on the form
of the usual expression for narrow resonance in two ways: (a) it extends to the subthresold
domain; and (b) it introduces the factor f which accounts for a finite Eres/Γtot ratio.

It is important to make a systematic and comprehensive search for all possible experimen-
tally identified resonances capable of removing this discrepancy. In addition, it is possible
that resonances and indeed energy levels themselves were missed, especially at the higher

8



energies, where uncertainties are greater. Therefore it is useful to map the parameter space
where the lithium discrepancy is removed to apriori lay down our expectations of such missed
resonances. This can be done by looking at interesting initial states involving 7Li and 7Be,
and abundant projectiles p, n, d, t, 3He, α, and parametrize the effect of inelastic channels on
the mass 7 abundance. This is described in § 4.

4 Narrow resonance solution space

In order to study the effect of resonances in different compound nuclei on the abundance of
mass 7. Our strategy is to specify the reaction rate for possible resonances, and then run the
BBN code to find the mass 7 abundance in the presence of these resonances. In particular,
for reactions involving light projectile X, we are interested in considering the general effect
of states 7A+X → C∗, including those associated with known energy levels in the compound
nucleus, as well as possible overlooked states.

We assume that the narrow resonance approximation holds true at least as a rough guide.
If the reaction pathway is specified, i.e., all of the nuclei 7A+X → C∗ → Y +Z are identified,
then the reduced mass µ, reverse ratio and the Q-value are uniquely determined. In this
case, the thermally averaged cross-section is given by eq. (13), with two free parameters: the
product ωΓeff and the resonance energy, Eres. Because the state C∗ is unspecified, so is its
spin J∗. On the other hand, we do know the spins of the initial state particles, and thus ω
is specified up to a factor 2J∗ + 1 (eq. 10). For this reason, the ωΓeff dependence reduces to
(2J∗ + 1)Γeff , which we explicitly indicate in all of our plots.

In a few cases we will be interested in one specific final quantum state, e.g., 7Be(t, 3He)7Li;
when the final state is specified, the reaction can be completely determined, including the
effect of the reverse rates. However, in most situations we are interested in the possibility
of an overlooked excited state in the compound nucleus, and thus in unknown final states.
In this scenario we thus have only a “generic” inelastic exit channel. Consequently, for such
plots we cannot evaluate the reverse reaction rate (which is in all interesting cases small)
and so we set the reverse ratio to zero.

The resonant rates are included in the BBN code, individually for compound nuclei with
an interesting initial state. The plots below show contours of constant, reduced mass 7
abundances. A general feature of all the plots, is the near linear relation between log Γeff

and Eres in the region of larger, positive values of Γeff and Eres. This can seen quantitatively
as follows. The thermal rate is integrated over time or equivalently temperature to give the
final abundance of mass 7 or 7Li as it exists. Now assuming that the thermal rate operates at
an effective temperature, TLi, at which 7Li production peaks, a given value for this effective
〈σv〉 will give a fixed abundance. This implies,

δY7/Y7 ∼ 〈σv〉peak ∼ Γeff e−Eres/TLi ∼ constant (15)

This gives a feel for the linear relation in the plot.
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

8Li, 3+, 2.255 MeV 7Li + n 1 1 222.71 keV 33 ± 6 keV γ(ground state) 7.0 ± 3.0 × 10−2 eV
(Included) 1 n (elastic) ≈100% 33 ± 6 keV

8Be, 2+, 16.922 MeV 7Li + p 1 2 -333.1 keV 74.0 ± 0.4 keV γ(ground state) 8.4 ± 1.4 × 10−2 eV
1 γ(3.04 MeV) < 2.80 ± 0.18 eV
2 α ≈ 100% ≈ 74.0 keV
1 p (elastic) unknown

8Be, 1+, 17.640 MeV 7Li + p 1 1 384.9 keV 10.7 keV γ(ground state) 16.7 eV
1 γ(3.04 MeV) 6.7 ± 1.3 eV
2 γ(3.04 MeV) 0.12 ± 0.05 eV
1 γ(16.63 MeV) (3.2 ± 0.3) × 10−2 eV
1 γ(16.92 MeV) (1.3 ± 0.3) × 10−3 eV
1 p (elastic) 98.8% 10.57 keV

8Be, 2−, 18.91 MeV 7Be + n 0 1 10.3 keV 122 keV* γ(16.922 MeV) 9.9 ± 4.3 × 10−2 eV
(Included) 1 γ (16.626 MeV) 0.17 ± 0.07 eV

0 p < 105.1 keV*
2 p + 7Li

∗
(0.4776 MeV) < 105.1 keV*

0 n (elastic) 16.65 keV*
8Be, 3+, 19.07 MeV 7Be + n 1 1 170.3 keV 270 ± 20 keV p ≈ 100% < 270 keV

(Included) 3 p + 7Li
∗

(0.4776 MeV) < 270 keV
1 γ(3.03 MeV) 10.5 eV
1 n (elastic) unknown

8Be, 3+, 19.235 MeV 7Be + n 1 1 335.3 keV 227 ± 16 keV p ≈ 50% ≈ 113.5 keV
(Included) 1 γ(3.03 MeV) 10.5 eV

1 n (elastic) ≈ 50% ≈ 113.5 keV
8Be, 1−, 19.40 MeV 7Be + n 0 0 500.3 keV 645 keV p unknown

0 p + 7Li
∗

(0.4776 MeV) unknown
0 n (elastic) unknown
1 α unknown

8B
g.s.

, 2+, 0 MeV 7Be + p 1 1 -0.1375 MeV unknown p (elastic) unknown
0 EC→ 8Be 8.5 × 10−19 eV

8B, 1+, 0.7695 MeV 7Be + p 1 1 630 ±3 keV 35.7 ± 0.6 keV γ (ground state) 25.2 ± 1.1 meV
(Included) 1 p (elastic) 100% 35.7 ± 0.6 keV

Table 1: This table lists the potential resonances in 8Li, 8Be and 8B which may achieve
required destruction of mass 7. These are all allowed by selection rules and includes some
resonances already accounted for in determining the current theoretical 7Li abundance in-
dicated as (Included). The entrance and exit channels along with their partial and total
widths (Γtot), minimum angular momenta (Linit, Lfin) as well as resonance energies are listed
wherever experimental data is available. The starred widths are a result of fits from R-matrix
analysis. The list includes final products in ground and excited states with the latter marked
with a star in the superscript.

4.1 A = 8 Compound Nucleus

As seen in Table 1, the only resonance energy level of interest in the 8Li compound nucleus
at 2.255 MeV is already accounted for in the 7Li+n reaction. In the 8Be compound nucleus,
there are six levels of relevance for destroying either 7Li or 7Be at 16.922, 17.64, 18.91, 19.07,
19.24 and 19.40 MeV within our limit on Eres. The 16.922 MeV level is more than 300 keV
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below threshold and has a maximum total width of only 74 keV. Therefore, it is expected
to have a weak effect. The 17.64 MeV level has typically low photon widths (≈ 20 eV ) and
a total width of 10.7 keV. But this state’s decay is dominated by the elastic channel which
makes this channel uninteresting.

The energy level diagram for 8Be [31] shows the initial state, 7Be + n at an entrance
energy of E = 18.8997 MeV bringing the 18.91, 19.07, 19.235 and 19.40 MeV levels into
play. From among these the effect of the 18.91, 19.07 and 19.235 MeV resonances are
already accounted for in the well known 7Be(n, p)7Li reaction [19]. The (18.91 MeV, 2−),
resonance with Linit = 0 is the dominant contributor [32, 33]. Being a broad resonance with
a total width of ≈ 122 keV, the Breit-Wigner form is not used and instead an R-matrix fit to
the data [19], is used to evaluate the contribution of the resonant rate. The remaining level
at 19.40 should also contribute to this reaction through ground and excited states. Only
the 19.40 MeV channel can have an α exit channel due to parity considerations. And this
resonance, despite a high resonance energy of ≈ 500 keV, can in principle be important due
to its large total width of 645 keV, if the proton branching ratio is high.

Figure 1 shows the 7Li abundance in the (Γeff , Eres) plane for the 7Be(n, p)7Li reaction.
Contours for 7Li/H ×1010 = 1.23 (in red), 2.0, 3.0, 4.0, and 5.0 (as labelled) are plotted as
functions of the effective width and resonant energy. Below ≈ (2J∗ + 1)40 = 120 keV, we
expect our results based on the narrow resonance approximation to be quite accurate. As
one can see from this figure, to bring the 7Li abundance down close to observed values, one
would require a very low resonance energy (of order ±30 keV with a relatively large effective
width. Unfortunately, the 19.40 MeV level of 8Be corresponds to Eres = 500 keV as shown
by the vertical dashed line and does not make any real impact on the 7Li abundance.

Figure 2 shows the effect of a 8B resonance with 7Be and p in the initial state, plotted
in the (Γeff , Eres) plane with contours of constant mass 7 abundances. According to Fig. 2
resonance energies of a few 10’s of keV’s, resonance strength of a few meV is sufficient to
attain the observational value of mass 7. However, from the energy level diagram for 8B, [34],
the closest resonant energy level, Eex is at 0.7695 MeV [34], whose effect is already included
via the 7Be(p, γ)8B reaction. The experimental value of resonance energy is 632 keV which is
off the scale in this figure. The only other close energy level to the 7Be + p entrance channel
is at -0.1375 MeV which means that the ground state is a sub-threshold state. This is not
the usual resonant reaction, since the ground state doesn’t have a width in the sense we
refer to a width for the other reactions. But at these energies, the astrophysical S-factor is
≈ 10 eV-barn which is very small and will yield a low cross-section. This too is off scale in
the figure and verifies that the 7Be(p, γ)8B reaction does not yield an important destruction
channel.

4.2 A = 9 Compound Nucleus

The energy level diagram for 9Be, [35] shows energy levels of interest at 16.671, 16.9752 and
17.298 MeV; these appear in Table 2. The 7Li+d entrance channel sits at 16.6959 MeV. The
lowest lying resonant state is at 16.671 MeV and is a sub-threshold state with Eres = −24.9
keV which lies within the total width of 41 keV. This resonance is thus obviously tantalizing–
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Figure 1: The effect of resonances in the 8Be compound nucleus involving initial states
7Be+n. It shows the range of values for the product of the resonant state spin degeneracy
and resonance strength, (2J + 1)Γeff , versus the resonance energy. Contours indicate where
the lithium abundance is reduced to 7Li/H = 1.23×10−10 (red), 2.0×10−10 (blue), 3.0×10−10

(green) 4.0 × 10−10 (black) and 5.0 × 10−10 (magenta). Normal resonances have Eres > 0,
while subthreshold resonances lie in the Eres < 0. The horizontal dot-dashed black line is the
experimental value of the strength of the resonance corresponding to the 19.40 MeV energy
level. The vertical dashed black line shows the position of Eres for the same state.

12



Figure 2: As in Fig. 1 for the resonances in the 8B compound nucleus involving initial states
7Be+p.
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it is well-tuned energetically and involves and abundant, stable projectile. The 7Li abundance
contours for the 9Be resonance states are shown in Fig. 3. Perhaps disappointingly, the figure
shows that the effect on primordial mass 7 is minor. This illustrates the inability of direct 7Li
destruction channels to reduce the mass-7 abundance, as explained in §2. Given the overall
difficulty of this channel, it is clear that the other possible resonant energy levels (16.9752
MeV and 17.298 MeV) also fail to substantially reduce the mass 7 abundance.

Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

9Be, 7Li + d 1 unknown -24.9 keV 41 ± 4 keV γ unknown
(5/2+), 16.671 MeV 2 n + 8Be unknown

0 n + 8Be
∗

(3.03 MeV) unknown
2 n + 8Be

∗
(11.35 MeV) unknown

0 p unknown
1 α unknown
1 d (elastic) unknown

9Be, 7Li + d 0 1 279.3 keV 389 ± 10 eV γ (ground state) 16.9 ± 1.0 eV
1/2−, 16.9752 MeV 1 γ (1.68 MeV) 1.99 ± 0.15 eV

2 γ (2.43 MeV) 0.56 ± 0.12 eV
1 γ (2.78 MeV) 2.2 ± 0.7 eV

unknown γ (Unknown level TUNL) < 0.8 eV
1 γ (4.70 MeV) 2.2 ± 0.3 eV
1 p 12+12

−6 eV
1 n < 288 eV
1 n + 8Be

∗
(3.03 MeV) < 288 eV

3 n + 8Be
∗

(11.35 MeV) < 288 eV
2 α < 241 eV
0 d (elastic) 62 ± 10 eV

9Be, 7Li + d 0 unknown 602.1 keV 200 keV γ (ground state) unknown
(5/2)−, 17.298 MeV 1 p 194.4 keV

(Included) 3 n + 8Be unknown
1 n + 8Be

∗
(3.03 MeV) unknown

1 n + 8Be
∗

(11.35 MeV) unknown
2 α unknown
0 d (elastic) unknown

Table 2: As in Table 1 listing the potential resonances in 9Be.

The 9B compound nucleus is relevant for studying the effect of the 7Be(d, p)2α and its
competitors such as 7Be(d, 3He)6Li and 7Be(d, α)5Li. As seen in Table 3, the only two
levels of interest here are the 16.71 and 17.076 MeV levels. The 16.71 MeV level, which
corresponds to a resonance energy of 220 keV as shown by the vertical dashed line in the
Fig. 4 [36]. The widths are unknown experimentally. The approximate narrow resonance
limit on the resonance width which is shown by the horizontal solid line is around 40 keV.
The p exit channel leads to the 7Be(d, p)8Be

∗
reaction through the excited state at 16.63

MeV in 8Be. This should eventually lead to formation of alpha particles. Fig. 4 shows the
effect of the 16.71 MeV resonance on the mass 7 abundance as a function of the resonance
strength and energy under the narrow resonance approximation. From the plot, we see that
the 7Li abundance is reduced by 50% for (2J + 1)Γeff = 240 keV. This state has J = 5/2
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Figure 3: As in Fig. 1 for the resonances in the 9Be compound nucleus.
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

9B, (5/2+), 16.71 MeV 7Be + d 1 2 219.9 keV unknown p + 8Be unknown
0 p + 8Be

∗
(3.03 MeV) unknown

2 p + 8Be
∗

(11.35 MeV) unknown
0 p + 8Be

∗
(16.626 MeV) unknown

0 p + 8Be
∗

(16.922 MeV) unknown
2 3He unknown
1 α + 5Li unknown
3 α + 5Li

∗
(1.49 MeV) unknown

1 d (elastic) unknown
9B, (1/2−), 17.076 MeV 7Be + d 0 1 585.9 keV 22 keV p + 8Be unknown

1 p + 8Be
∗

(3.03 MeV) unknown
3 p + 8Be

∗
(11.35 MeV) unknown

1 p + 8Be
∗

(16.626 MeV) unknown
1 3He unknown
2 α + 5Li unknown
0 α + 5Li

∗
(1.49 MeV) unknown

0 d (elastic) unknown

Table 3: As in Table 1 listing the potential resonances in 9B.

and therefore, a value Γeff = 40 keV or more will have substantial impact on the problem.
Furthermore, as ΓL ≥ Γeff , we require ΓL >∼ 40 keV. This result confirms the conclusion
of [16]. Later in § 5 we will see how this compares with theoretical limits. As the decay
widths are largely unknown, experimental data on the width is needed.

The state at 17.076 MeV corresponds to a resonant energy of Eres = 586 keV and is
beyond the scale shown in Fig. 4. A solution using this state is very unlikely.

4.3 A = 10 Compound Nucleus

Table 4 shows that the 10Be compound nucleus has energy levels at 17.12 and 17.79 MeV [37]
which are close to the initial state 7Li+ t at 17.2509 MeV. The former is far below threshold
and does not contribute to 7Li destruction. The 17.79 MeV level is around 540 keV above
the entrance energy and its spin and parity and parity are unknown. The total width [37]
is Γtot = 112 keV which implies a small overlap with the entry channel which renders this
resonance insignificant despite having a number of n exit channels with both ground state
and excited states of 9Be. As seen in Fig. 5, the effect of 7Li + t is small for the interesting
region of parameter space.

The 10B compound nucleus has energy levels at 18.2, 18.43, 18.80 and 19.29 MeV, which
we investigate. The 18.2 MeV level is uncertain experimentally [38] as indicated in Table 5,
and hence ideal for parametrizing. There is a 3He entrance channel a little over 400 keV
below this level. The current total experimental width is 1.5 MeV which is very large and
the branching ratios are unknown. The current uncertainty in the Eres is 200 keV. However,
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Figure 4: As in Fig. 1 for the resonances in the 9B compound nucleus. The vertical dashed
line at 220 keV indicates the experimental central value of the resonance energy of the 16.71
MeV level.
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Compound Nucleus, Initial State Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex Channels Width
10Be, 7Li + t 0 0 -130.9 keV ≈ 150 keV n + 9Be unknown

(2−), 17.12 MeV 1 n + 9Be
∗

(1.684 MeV) unknown
0 n + 9Be

∗
(2.4294 MeV) unknown

2 n + 9Be
∗

(2.78 MeV) unknown
1 n + 9Be

∗
(3.049 MeV) unknown

1 n + 9Be
∗

(4.704 MeV) unknown
0 n + 9Be

∗
(5.59 MeV) unknown

2 n + 9Be
∗

(6.38 MeV) unknown
3 n + 9Be

∗
(6.76 MeV) unknown

0 n + 9Be
∗

(7.94 MeV) unknown
0 t (elastic) unknown

10Be, 7Li + t unknown unknown 539.1 keV 112 ± 35 keV γ 3 + 2 eV
unknown, 17.79 MeV unknown n + 9Be < 77 keV

unknown n + 9Be
∗

(1.684 MeV) < 77 keV
unknown n + 9Be

∗
(2.4294 MeV) < 77 keV

unknown n + 9Be
∗

(2.78 MeV) < 77 keV
unknown n + 9Be

∗
(3.049 MeV) < 77 keV

unknown n + 9Be
∗

(4.704 MeV) < 77 keV
unknown n + 9Be

∗
(5.59 MeV) < 77 keV

unknown n + 9Be
∗

(6.38 MeV) < 77 keV
unknown n + 9Be

∗
(6.76 MeV) < 77 keV

unknown n + 9Be
∗

(7.94 MeV) < 77 keV
unknown t (elastic) 78 keV

Table 4: As in Table 1 listing the potential resonant reactions in 10Be.

according to the plot in Fig. 5, even a 200 keV reduction in Eres would not be sufficient to
cause any appreciable destruction of 7Li as this reaction has negligible effect on the mass 7
abundance. This is another illustration of the fact that reactions involving direct destruction
of 7Li are unimportant.

The 18.43 MeV level is better understood [39] and with a resonance energy of ∼ 640 keV
for the 7Li + 3He initial state (Table 6) and a total width of 340 keV has a lower entrance
probability and therefore is likely to be ineffective. This is evident from Fig. 5. This level
is also a sub-threshold resonance for the 7Be + t state (Table 7), with resonance energy,
Eres = −239.1 keV. This is far below threshold rendering it ineffective.

Staying with 7Be + t, the closest energy level above the entrance energy of 18.669 MeV
is the 18.80 MeV (2+) level (Table 8), which corresponds to a resonance energy of ≈ 130
keV [38]. The exit channel widths for p and 3He are unknown experimentally and thus, this
is a candidate for parametrization. There is a weak upper limit on Γtot < 600 keV [38], which
for J∗ = 2 is off scale in Figs. 6 and 7. The contour plot in Fig. 6 shows that for central value
of resonance energy of ≈ 130 keV shown by the vertical dashed line, resonance strength of
just under an MeV is required which is very high. Also, parity requirements forces L = 1,
which will cause suppression of this channel. We note that there is no quoted uncertainty for
this energy level and neighboring levels have typical uncertainties of 100-200 keV. Therefore
it may be possible (within 1-2σ) that the state lies at an energy of 100 keV lower and would
energetically, have a chance at solving the 7Li problem. This is true for the p exit channel.
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Figure 5: As in Fig. 1 for the resonances in the 10Be compound nucleus involving the initial
state 7Li+t (left), and in the 10B compound nucleus involving the initial state 7Li+3He.
(right).

The 3He exit channel may also reduce mass 7, through the formation of the 7Li which is
much easier to destroy. This is reflected in Fig. 7, which shows that at resonance energies of
≤ 100 keV, a strength of a few 100 keV, but less than 600 keV may be sufficient to achieve
comparable destruction of 7Be as the 16.71 MeV resonance. The caveat is that for such values
of strengths, the narrow resonance approximation does not hold true and this may lead to a
reduced effect. Nevertheless, this is yet another case deserving a detailed comparison with
the theoretical limits which will follow in § 5. Once again, definitive conclusions can be
drawn only based on experimental data.

The 19.29 MeV level (Table 9) is energetically harder to access and with a total width of
only 190 keV, it is unlikely to be of significance, despite being less studied.

The 10C nucleus [40] appearing in Table 10 shows large uncertainties and experimental
gaps at higher energy levels which may be relevant to entrance channels involving 7Be.
Reactions involving the 7Be + 3He initial state could contribute in destroying 7Be if there
exists a resonance in the parameter space shown in the Fig. 8. These reactions win over
those involving the 7Be + t state, because 3He is substantially more abundant than t, but
are worse off due to a higher Coulomb barrier. The entrance energy for 7Be + 3He is 15.0
MeV. As one can see from the figure, a 1− or 2− state with a resonance energy of either -10
keV or 40 keV corresponding to energy levels of 14.99 and 15.04 MeV respectively with a
strength as high as a few 10’s of keVs is what it will take to solve the lithium problem with
this initial state. Thus, any 10C resonance near these energies which may have been missed
by experiment may be interesting as a solution to the lithium problem; we return to this
issue in more detail in § 5.
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Figure 6: As in Fig. 1 for the resonances in the 10B compound nucleus involving initial states
7Be+t.
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Figure 7: As in Fig. 1 for the resonances in the reaction 7Be(t,3He)7Li.
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

10B, 7Li + 3He unknown unknown 411.7 keV 1500 ± 300 keV p + 9Be unknown
unknown, (18.2 MeV) unknown p + 9Be

∗
(1.684 MeV) unknown

unknown p + 9Be
∗

(2.4294 MeV) unknown
unknown p + 9Be

∗
(2.78 MeV) unknown

unknown p + 9Be
∗

(3.049 MeV) unknown
unknown p + 9Be

∗
(4.704 MeV) unknown

unknown p + 9Be
∗

(5.59 MeV) unknown
unknown p + 9Be

∗
(6.38 MeV) unknown

unknown p + 9Be
∗

(6.76 MeV) unknown
unknown p + 9Be

∗
(7.94 MeV) unknown

unknown p + 9Be
∗

(11.283 MeV) unknown
unknown n + 9B unknown
unknown n + 9B

∗
(1.6 MeV) unknown

unknown n + 9B
∗

(2.361 MeV) unknown
unknown n + 9B

∗
(2.75 MeV) unknown

unknown n + 9B
∗

(2.788 MeV) unknown
unknown n + 9B

∗
(4.3 MeV) unknown

unknown n + 9B
∗

(6.97 MeV) unknown
unknown d + 8Be unknown
unknown d + 8Be

∗
(3.03 MeV) unknown

unknown d + 8Be
∗

(11.35 MeV) unknown
unknown t unknown
unknown α + 6Li unknown
unknown α + 6Li

∗
(2.186 MeV) unknown

unknown α + 6Li
∗

(3.563 MeV) unknown
unknown α + 6Li

∗
(4.31 MeV) unknown

unknown α + 6Li
∗

(5.37 MeV) unknown
unknown 3He (elastic) unknown

Table 5: As in Table 1 listing the ground and excited final states for the 18.2 MeV energy
level in 10B.

4.4 A = 11 Compound Nucleus

For 11B [41], Table 10 shows that the entrance channel, 7Li + α is at 8.6637 MeV which is
103.7 keV above the resonant energy level at 8.560 MeV and ≈ 260 keV below the resonant
energy level at 8.92 MeV. Parity demands angular momentum to be 0. Both states are at
relatively large |Eres| and are not capable of making a sizable impact on the 7Li abundance.
Table 10 further lists states 9.19 MeV (which requires L = 3 and has a total width of < 2 eV)
and 9.271 MeV (whose decay is dominated by the elastic channel) which have progressively
larger resonant energies and are unlikely to provide a solution.

For 11C [42], the entrance channel, 7Be + α is at 7.543 MeV which is 43 keV above the
resonant energy level at 8.560 MeV and 557 keV below the resonant energy level at 8.10
MeV.

As seen in Fig. 9, we find that the sub-threshold resonance in the 11C nucleus, produces
a very insignificant effect on 7Be in agreement with the claim in [16]. The super-threshold
resonance states are also too far away at resonance energies, 557 keV and 260 keV for
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

10B, 7Li + 3He 0 unknown 641.7 keV 340 keV γ(ground state) ≥ 3 eV
2−, 18.43 MeV unknown γ (4.77 MeV) ≥ 17eV

0 n + 9B unknown
unknown n + 9B

∗
(1.6 MeV) unknown

0 n + 9B
∗

(2.361 MeV) unknown
2 n + 9B

∗
(2.75 MeV) unknown

1 n + 9B
∗

(2.788 MeV) unknown
unknown n + 9B

∗
(4.3 MeV) unknown

2 n + 9B
∗

(6.97 MeV) unknown
0 p + 9Be unknown
1 p + 9Be

∗
(1.684 MeV) unknown

0 p + 9Be
∗

(2.4294 MeV) unknown
2 p + 9Be

∗
(2.78 MeV) unknown

1 p + 9Be
∗

(3.049 MeV) unknown
1 p + 9Be

∗
(4.704 MeV) unknown

0 p + 9Be
∗

(5.59 MeV) unknown
2 p + 9Be

∗
(6.38 MeV) unknown

3 p + 9Be
∗

(6.76 MeV) unknown
0 p + 9Be

∗
(7.94 MeV) unknown

2 p + 9Be
∗

(11.283 MeV) unknown
0 p + 9Be

∗
(11.81 MeV) unknown

1 d + 8Be unknown
1 d + 8Be

∗
(3.03 MeV) unknown

1 d + 8Be
∗

(11.35 MeV) unknown
1 α + 6Li unknown
1 α + 6Li

∗
(2.186 MeV) unknown

1 α + 6Li
∗

(4.31 MeV) unknown
1 α + 6Li

∗
(5.37 MeV) unknown

1 α + 6Li
∗

(5.65 MeV) unknown
0 3He (elastic) unknown

Table 6: As in Table 1 listing the ground and excited final state channels for the 18.43 MeV
energy level in 10B for the 7Li + 3He initial state.

7Be(α, γ)11C and 7Li(α, γ)11B respectively.
However, Fig. 9 shows that the presence of a (missed) resonance at resonance energies of

few tens of keV ’s, requires a very meagre strength of the order of tens of meV ’s to destroy
mass 7 substantially. Strengths of this order are typical of electromagnetic channels. It is
difficult to assess the probability that a 11C state at 7.55 MeV has been overlooked.

5 Reduced List of Candidate Resonances

Having systematically identified all possible known resonant energy levels which could affect
BBN, we find most of these levels are ruled out immediately as promising solutions, based on
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

10B, 7Be + t 0 unknown -239.1 keV 340 keV γ(ground state) ≥ 3 eV
2−, 18.43 MeV unknown γ (4.77 MeV) ≥ 17 eV

0 n + 9B unknown
unknown n + 9B

∗
(1.6 MeV) unknown

0 n + 9B
∗

(2.361 MeV) unknown
2 n + 9B

∗
(2.75 MeV) unknown

1 n + 9B
∗

(2.788 MeV) unknown
unknown n + 9B

∗
(4.3 MeV) unknown

2 n + 9B
∗

(6.97 MeV) unknown
0 p + 9Be unknown
1 p + 9Be

∗
(1.684 MeV) unknown

0 p + 9Be
∗

(2.4294 MeV) unknown
2 p + 9Be

∗
(2.78 MeV) unknown

1 p + 9Be
∗

(3.049 MeV) unknown
1 p + 9Be

∗
(4.704 MeV) unknown

0 p + 9Be
∗

(5.59 MeV) unknown
2 p + 9Be

∗
(6.38 MeV) unknown

3 p + 9Be
∗

(6.76 MeV) unknown
0 p + 9Be

∗
(7.94 MeV) unknown

2 p + 9Be
∗

(11.283 MeV) unknown
0 p + 9Be

∗
(11.81 MeV) unknown

1 d + 8Be unknown
1 d + 8Be

∗
(3.03 MeV) unknown

1 d + 8Be
∗

(11.35 MeV) unknown
1 α + 6Li unknown
1 α + 6Li

∗
( 2.186 MeV) unknown

1 α + 6Li
∗

( 4.31 MeV) unknown
1 α + 6Li

∗
( 5.37 MeV) unknown

1 α + 6Li
∗

( 5.65 MeV) unknown
0 t (elastic) unknown

Table 7: As in Table 1 listing the ground and excited final state channels for the 18.43 MeV
energy level in 10B for the 7Be + t initial state.

their measured locations, strengths, and widths. As expected, the existing electromagnetic
channels are too weak to cause significant depletion of lithium owing to their small width.

From amongst the various hadronic channels listed in the tables above, we have seen that
all channels are unimportant except the 7Be+d channels involving the 16.71 MeV resonance
in 9B, the 7Be+t channels involving the 18.80 MeV resonance in 10B and 7Be+3He channels.
These are ones where a more detailed theoretical calculation of widths is required to decide
whether they may be important or not. For each reaction, the Wigner limit, eq. (12), to the
reduced width γ2 imposes a bound on ΓL via eq. (11). Specifically, the penetration factor,
PL(E, a), must be estimated to see if the required strengths according to Figs. 4, 6 7, and
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Compound Nucleus, Initial State Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex Channels Width

10B, 7Be + t 1 unknown 130.9 keV < 600 keV γ (0.72 MeV) ≥ 20 eV
2+, 18.80 MeV unknown γ (3.59 MeV) ≥ 20 eV

1 n + 9B unknown
unknown n + 9B

∗
(1.6 MeV) unknown

1 n + 9B
∗

(2.361 MeV) unknown
1 n + 9B

∗
(2.75 MeV) unknown

0 n + 9B
∗

(2.788 MeV) unknown
unknown n + 9B

∗
(4.3 MeV) unknown

1 n + 9B
∗

(6.97 MeV) unknown
1 p + 9Be unknown
2 p + 9Be

∗
(1.684 MeV) unknown

1 p + 9Be
∗

(2.4294 MeV) unknown
1 p + 9Be

∗
(2.78 MeV) unknown

0 p + 9Be
∗

(3.049 MeV) unknown
0 p + 9Be

∗
(4.704 MeV) unknown

1 p + 9Be
∗

(5.59 MeV) unknown
1 p + 9Be

∗
(6.38 MeV) unknown

2 p + 9Be
∗

(6.76 MeV) unknown
1 p + 9Be

∗
(7.94 MeV) unknown

1 p + 9Be
∗

(11.283 MeV) unknown
1 p + 9Be

∗
(11.81 MeV) unknown

2 d + 8Be unknown
0 d + 8Be

∗
(3.03 MeV) unknown

2 d + 8Be
∗

(11.35 MeV) unknown
1 3He + 7Li unknown
1 3He + 7Li

∗
(0.47761 MeV) unknown

2 α + 6Li unknown
2 α + 6Li

∗
(2.186 MeV) unknown

2 α + 6Li
∗

(3.56 MeV) unknown
0 α + 6Li

∗
(4.31 MeV) unknown

0 α + 6Li
∗

(5.37 MeV) unknown
2 α + 6Li

∗
(5.65 MeV) unknown

1 t (elastic) unknown

Table 8: As in Table 1 listing the ground and excited final state channels for the 18.80 MeV
energy level in 10B for the 7Be + t initial state.

8 to solve the problem is at all attainable. The penetration factor is given by

PL(E, a) =
1

G2
L(E, a) + F 2

L(E, a)
(16)

where GL(E, a) and FL(E, a) are Coulomb wavefunctions.
We note that the Coulomb barrier penetration factor decreases as the energy of the

projectile and/or the channel radius, a, increases. For a narrow resonance, the relevant
projectile energy is E ≈ Eres, which is set by nuclear experiments (where available) and
their uncertainties. The channel radius corresponds to the boundary between the compound
nucleus in the resonant state and the outgoing / incoming particles. Therefore, the channel
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Compound Nucleus, Initial State Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex Channels Width

10B, 2−, 19.29 MeV 7Be + t 0 unknown 620.9 keV 190 ± 20 keV γ unknown
0 n + 9B unknown

unknown n + 9B
∗

(1.6 MeV) unknown
0 n + 9B

∗
(2.361 MeV) unknown

2 n + 9B
∗

(2.75 MeV) unknown
1 n + 9B

∗
(2.788 MeV) unknown

unknown n + 9B
∗

(4.3 MeV) unknown
0 p + 9Be unknown
1 p + 9Be

∗
(1.684 MeV) unknown

0 p + 9Be
∗

(2.4294 MeV) unknown
2 p + 9Be

∗
(2.78 MeV) unknown

1 p + 9Be
∗

(3.049 MeV) unknown
1 p + 9Be

∗
(4.704 MeV) unknown

0 p + 9Be
∗

(5.59 MeV) unknown
2 p + 9Be

∗
(6.38 MeV) unknown

3 p + 9Be
∗

(6.76 MeV) unknown
0 p + 9Be

∗
(7.94 MeV) unknown

2 p + 9Be
∗

(11.283 MeV) unknown
0 p + 9Be

∗
(11.81 MeV) unknown

1 d + 8Be unknown
1 d + 8Be

∗
(3.03 MeV) unknown

3 d + 8Be
∗

(11.35 MeV) unknown
0 3He unknown
1 α + 6Li unknown
1 α + 6Li

∗
(2.186 MeV) unknown

1 α + 6Li
∗

(4.31 MeV) unknown
1 α + 6Li

∗
(5.37 MeV) unknown

1 α + 6Li
∗

(5.65 MeV) unknown
0 t (elastic) unknown

Table 9: As in Table 1 listing the ground and excited final state channels for the 19.29 MeV
energy level in 10B for the 7Be + t initial state.

radius depends on the properties of the compound state and the particles into which it
decays.

Consider the case of 7Be+d, which has resonance energy, Eres = 220±100 keV and initial
angular momentum, Linit = 1. A naive choice for the channel radius is the “hard-sphere”
approximation,

a12 = 1.45 (A
1/3
1 + A

1/3
2 )fm (17)

which gives a27 = 4.6 fm. Using the Coulomb functions, Γ1 is of order a few keVs. The
corresponding strength, Γeff should be essentially the same and we further gain a factor of
6 from the spin of this state. This suggests by using figure 4, that this resonance should fall
short of the width required to solve or even ameliorate the problem.

However, reactions involving light nuclides including A = 7 are found to have channel
radii exceed the hard-sphere approximation [16]. We thus consider larger radii and find that
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Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

10C, 7Be + 3He unknown unknown unknown unknown p unknown
unknown unknown (Q = 15.003 MeV) α unknown

3He (elastic) unknown
11B, 7Li + α 0 1 -103.7 keV 1.346 eV γ (ground state) 0.53 ± 0.05 eV

(3/2−), 8.56 MeV 1 γ (2.125 MeV) 0.28 ± 0.03 eV
1 γ (4.445 MeV) (4.7 ± 1.1) × 10−2 eV
1 γ (5.020 MeV) (8.5 ± 1.2) × 10−2 eV
1 α (elastic) Unknown

11B, 7Li + α 2 1 256.3 keV 4.37 ± 0.02 eV γ (ground state) 4.10 ± 0.20 eV
(5/2−), 8.92 MeV 2 γ (ground state) (5.0 ± 3.6) × 10−2 eV

(Included) 1 γ (4.445 MeV) 0.22 ± 0.02 eV
1 α (elastic) Unknown

11B, 7Li + α 3 1 526.3 keV 1.9+1.5
−1.1 eV γ (ground state) (2.7 ± 1.2) × 10−3eV

7/2+, 9.19 MeV 2 γ (4.445 MeV) 0.25 ± 0.09 eV
0 γ (6.743 MeV) (3.8 ± 1.3) × 10−2 eV
1 α (elastic) Unknown

11B, 7Li + α 1 1 606.3 keV 4 keV γ (ground state) 0.212 eV
5/2+, 9.271 MeV 0 γ (4.445 MeV) 0.802 eV

0 γ (6.743 MeV) 0.137 eV
1 γ (6.792 MeV) < 0.007 eV
1 α (elastic) ≈ 4 keV

11C, 7Be + α 1 1 -43.3 keV 0.0105 eV γ (ground state) Unknown
3/2+, 7.4997 MeV 0 γ (2.0 MeV) Unknown

1 α(elastic) Unknown
11C, 7Be + α 0 1 557 keV 11 ± 7 eV γ (ground state) 0.26 ± 0.06 eV

(3/2−), 8.10 MeV 1 γ (2.0 MeV) (9.1 ± 2.3) × 10−2 eV
0 α(elastic) Unknown

Table 10: As in Table 1 listing resonances in 10C, 11B and 11C.

for values higher than around 10 fm, we get a width which has the potential to change the
7Li abundance noticeably. The Wigner limit

a2 =
3~

2

2 µ Eres

(18)

gives a larger radius, a27 = 13.5 fm, which gives one a better chance of solving the problem.
This is consistent with the conclusions drawn by [16].

For the 7Be + t initial state, the 18.80 MeV state of 10B has a resonance energy E =
0.131 MeV and Linit = 1. There is no experimental error bar on the resonance energy. The
hard sphere approximation gives a37 = 4.9 fm. This gives a width, Γ1, which is less than
a tenth of a keV, and is orders of magnitude lower than what is needed. In the spirit of
what we did in the earlier case, using eq. (18) gives a channel radius, a37 = 15 fm improving
the situation by almost 2 orders of magnitude in Γ1. If, in addition to increasing a37, the
resonance energy were to be higher by 100 keV, then Γ1 could be large enough to change
the 7Li abundance noticeably.

The 7Be + 3He initial state will have 10C as the compound state. The structure of the
10C nucleus is not well studied experimentally [40] nor theoretically. In particular, we are
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Figure 8: As in Fig. 1 for the resonances in 10C involving initial state 7Be + 3He

unaware of any published data on 10C states near the 7Be + 3He entrance energy, i.e., states
at or near Eex(

10C) ≈ Q(7Be + 3He) = 15.003 MeV. To our knowledge, there has not been
any search for narrow states in this region. The potential exit channels of importance are
9B + p and 6Be + α. Since and Jπ(3He) = 1/2+ Jπ(7Be) = 3/2−, to have Linit = 0 and thus
no entrance angular momentum barrier would require the 10C state to have

Jπ = (1 or 2)− (19)

Because Jπ(9B) = 3/2−, the entrance channel spin and parity required to give Linit = 0 will
also allow Lfin = 0 for the 9B+p. On the other hand, in the final state 6Be+α both 6Be and
4He have Jπ = 0+. Thus if the putative 10C state has Jπ = 1−, this forces the 6Be + α final
state to have Lfin = 1, and thus this channel will be suppressed by an angular momentum
barrier relative to 9B + p.
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Figure 9: As in Fig. 1 for the resonances in 11C involving initial states 7Be+α.
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Using eq. (17), we again get a37 = 4.9 fm. Taking Linit = 0 and E = 0.2 MeV, Γ0 is
about 10−3 keV and is extremely small. However, the penetration factor is highly sensitive
to the channel radius and a relatively small increase in a increases the width by orders of
magnitude. Increasing the energy does reduce the penetration barrier, but a higher width
is required due to thermal suppression. In order to get a sizable width, which is required to
solve the problem according to figure 8, implies a37 >∼ 30 fm. At this energy, this radius is
somewhat larger than what is afforded by Eq. 18.

Compound Nucleus, Initial Linit Lfin Eres Γtot Exit Exit Channel
Jπ, Eex State Channels Width

9B, (5/2+), 16.71 MeV 7Be + d 1 0 219.9 keV unknown p + 8Be
∗

(16.63 MeV) unknown
1 α + 5Li unknown

10B, 7Be + t 1 1 130.9 keV < 600 keV p + 9Be
∗

(11.81 MeV) unknown
2+, 18.80 MeV 1 3He unknown

2 α unknown
10C, 7Be + 3He unknown unknown unknown unknown p unknown

unknown unknown (Q = 15.003 MeV) α unknown
3He (elastic) unknown

Table 11: This table lists surviving candidate resonances.

6 Discussion and Conclusions

The lithium problem was foreshadowed before precision CMB data, was cast in stark light
by the first-year WMAP results, and has only worsened since. While astrophysical solutions
are not ruled out, they are increasingly constrained. Thus, a serious and thorough evaluation
of all possible nuclear physics aspects of primordial lithium production is urgent in order to
determine whether the lithium problem truly points to new fundamental physics.

Reactions involving the primordial production of mass-7, and its lower-mass progeni-
tor nuclides, are very well studied experimentally and theoretically, and leave no room for
surprises at the level needed to solve the lithium problem [3,15,16]. Lithium destruction re-
actions are less well-determined. While the dominant destruction channels 7Be(n, p)7Li and
7Li(p, α)α have been extensively studied, in contrast, the subdominant destruction channels
are less well-constrained.

We therefore have exhaustively cataloged possible resonant, mass-7 destruction channels.
As evidenced by the large size of Tables 1–10, the number of potentially interesting compound
states is quite large. However, it is evident that the basic conservation laws such as angular
momentum and parity coupled with the requirement of resonant reactions to be 2–3 times
the 7Be(n, p)7Li rate prove to be extremely restrictive on the options for a resonant solution
to the lithium problem, and reduces the possibilities dramatically.

Given existing nuclear data, there are several choices for experimentally identified nuclear
resonances which come close to removing the discrepancy between the lithium WMAP+BBN
predictions and observations as tabulated in § 5. The 16.71 MeV level in 9B compound
nucleus, and the 18.80 MeV level in the 10B compound nucleus are two such candidates. It
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is possible, however, that resonant effects have been neglected in reactions passing through
states which have been entirely missed. In all of the plots above, we have illustrated the
needed positions and strengths of such states, if they exist. One possibility involving the
compound state 10C is poorly studied experimentally, especially at higher energy states close
to the Q-value for 7Be + 3He.

Any of these resonances (or a combination) could offer a partial or complete soluition
othe lithium problem, but in each case, we find that large channel radii (a > 10 fm) are
needed in order that the reaction widths are large enough. We confirm the results of Cyburt
and Pospelov [16] in this regard concerning 7Be + d, and we also find similar channel radii
are needed for 7Be + t, while larger radii are required for 7Be + 3He. Obviously, nature
need not be so kind (or mischievous!) in providing such fortuitious fine-tuning. But given
the alternative of new physics solutions to the lithium problem, it is important that all
conventional approaches be exhausted.

Thus, based on our analysis, quantum mechanics could allow resonant properties that can
remove or substantially reduce the lithium discrepancy. An experimental effort to measure
the properties of these resonances, however can conclusively rule out these resonances as
solutions. If all possible resonances are measured and found to be unimportant for BBN,
this together with other recent work [15], will remove any chance of a “nuclear solution”
to the lithium problem, and substantially increase the possibility of a new physics solution.
Thus, regardless of the outcome, experimental probes of the states we have highlighted will
complete the firm empirical foundation of the nuclear physics of BBN and will make a crucial
contribution to our understanding of the early universe.

We are pleased to acknowledge useful and stimulating conversations with Robert Wiringa,
Livius Trache, Shalom Shlomo, Maxim Pospelov, Richard Cyburt, and Robert Charity. The
work of KAO was supported in part by DOE grant DE–FG02–94ER–40823 at the University
of Minnesota.

A The Narrow Resonance Approximation

Consider a reaction A + b → C∗ → c + D, which passes through an excited state of the
compound nucleus C∗. We treat separately normal and subthreshold reactions, defined
respectively by a positive and negative sign of the resonance energy Eres = Eex −QC , where
Eex is the excitation energy of the C∗ state considered, and QC = ∆(A) + ∆(B) − ∆(C∗).

In general, the thermally averaged rate is

〈σv〉 =

∫

d3v e−µv2/2T σv
∫

d3v e−µv2/2T
=

√

8

πµ
T−3/2

∫ ∞

0

dE E σ(E)e−E/T (20)

For a Breit-Wigner resonance with widths not strongly varying with energy, this becomes

〈σv〉 =
4πωΓinitΓfin

(2πµT )3/2

∫ ∞

0

dE
e−E/T

(E − Eres)2 + (Γtot/2)2
(21)
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Thus the thermal rate is controlled by the integral of the Lorentzian resonance profile mod-
ulated with the exponential Boltzmann factor.

The narrow resonance approximation has usually only been applied to the normal reso-
nance case, and assumes that the total resonance width is small compared to the temperature:
Γtot ≪ T .

A.1 Narrow Normal Resonances

In the normal or “superthreshold” case, the integral includes the peak of the Lorentzian
where E = Eres. The narrow condition then guarantees that over the Lorentzian width, the
Boltzmann factor does not change appreciably, and so we make the approximation

exp

(

−
E

T

)

≈ exp

(

−
Ê

T

)

(22)

where we choose the “typical” energy to be the peak of the Lorentzian, Ê = Eres. Then the
integral becomes

〈σv〉Γtot≪T ≈
ωΓinitΓfin

2(2πµT )3/2
e−Eres/T

∫ ∞

0

dE
1

(E − Eres)2 + (Γtot/2)2
(23)

Furthermore, for it is usually also implicitly assumed that the resonance energy is large
compared to the width: Eres ≫ Γtot. Then the integral gives 2π/Γtot, and the thermally
averaged cross-section under these approximation is given by [43],

〈σv〉Γtot≪T,Eres
= ω Γeff

(

2π

µT

)3/2

e−Eres/T (24)

= 2.65 × 10−13µ−3/2 ω Γeff T
−3/2
9 exp(−11.605 Eres/T9) cm3s−1 (25)

where the latter expression has T9 = T/109 K.
Note however, that eq. (21) is exactly integrable as it stands and does not require we

make the usual Eres ≫ Γtot approximation. Thus for the normal case we modify the usual
reaction rate and instead adopt the form

〈σv〉narrow,normal = 〈σv〉Γtot≪T,Eres
f(2Eres/Γtot) (26)

Here we introduce a temperature-independent correction for finite Eres/Γtot (still with Eres >
0)

f(u) =
1

2
+

1

π
arctan u . (27)

This factor spans f → 1/2 for Eres ≪ Γtot to f → 1 for Eres ≫ Γtot.
In practice, we adopt a slightly modified version of the correction factor in our plots.

Recall that in Figs. 2–9, we show results for lithium abundances in the presence of resonant
reactions with fixed input channels, but without reference to a specific final state. Without
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the correction factor, the resonant reaction rate is characterized by two parameters, Eres and
Γeff . These two parameters are insufficient to specify the correction factor, which depends
on Eres/Γtot. Rather than separately introduce Γtot, we instead approximate the correction
factor as f(2Eres/Γeff). Because Γeff < Γtot and f is monotonically increasing, this always
underestimates the value of f and thus conservatively understates the importance of the
resonance we seek (but the approximation is never off by more than a factor of 2 in the
normal case).

A.2 Narrow Subhreshold Resonances

Still making the narrow resonance approximation Γtot ≪ T , we now turn to the subthreshold
case, in which Eres < 0. To make effect of the sign change explicit, we rewrite eq. (21) as

〈σv〉 =
ωΓinitΓfin

2(2πµT )3/2

∫ ∞

0

dE
e−E/T

(E + |Eres|)2 + (Γtot/2)2
(28)

Now the integrand always excludes the resonant peak, and only includes the high-energy
wing. As with the normal case, the narrowness of the resonance implies that the Boltzmann
exponential does not change much where the Lorentzian has a significant contribution, and so
we again will approximate e−E/T ≈ e−Ê/T . Since we avoid the resonant peak, the choice of Ê
not as straightforward in the subthreshold case where we took Ê = Eres. This choice makes
no sense in the subthreshold case, because the e−Eres/T > 1 in the subthreshold case, yet
obviously kinetic energy E > 0 and thus the Boltzmann factor must always be a suppression
and not an enhancement!

Yet clearly |Eres| remains an important scale. Thus we put Ê = û|Eres|, and we have
examined results for different values of the dimensionless parameter û. We find good agree-
ment with numerical results when we adopt û ≈ 1, i.e., Ê = |Eres|. Thus for the subthreshold
case we adopt a reaction rate which is in closely analogous to the normal case:

〈σv〉narrow, subthreshold = ω Γeff

(

2π

µT

)3/2

e−|Eres|/T f (−2|Eres|/Γtot) (29)

Similarly to the normal case, as the reaction becomes increasingly off-resonance, i.e., as
|Eres| grows, there is an exponential suppression. In addition, the correction factor has
limits f → 1/2 for |Eres| ≪ Γtot, and f → 0 as |Eres| ≫ Γtot. Finally, note that, as a function
of Eres, our subthreshold and normal rates match at Eres = 0, as they must physically.
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