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The F-lipped SU(5)xU(1)x Grand Unified Theory (GUT) supplemented by TeV-scale vector-like
particles from F-theory, together dubbed F-SU(5), offers a natural multi-phase unification process
which suggests an elegant implementation of the No-Scale Supergravity boundary conditions at
the unification scale Mr ~ 7 x 107 GeV. Enforcing the No-Scale boundary conditions, including
B, (Ms) = 0 on the Higgs bilinear soft term, with the precision 7-year WMAP value on the dark
matter relic density isolates a highly constrained “Golden Point” located near M,/ = 455 GeV
and tan 3 = 15 in the tan 3 — M/, plane, which simultaneously satisfies all known experiments,
and moreover corresponds to an imminently observable proton decay rate. Because the universal
gaugino mass is actually determined from established low energy data via Renormalization Group
Equation (RGE) running, there are no surviving arbitrary scale parameters in the present model.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv

Introduction — The driving aim of theoretical physics
is to achieve maximal efficiency in the correlation of ob-
servations. This entails the unification of apparently dis-
tinct forces under a master symmetry group, and the suc-
cessful reinterpretation of experimentally constrained pa-
rameters and finely tuned scales as dynamically evolved
consequences of the underlying equations of motion.

We propose in this paper a variation of the No-Scale
Supergravity [1] scenario which successfully eliminates
all extraneously adjustable degrees of freedom while dy-
namically addressing all fundamental scales and main-
taining consistency with all low energy phenomenol-
ogy constraints, including the precision electroweak scale
data [2], the 7-year WMAP constraint on dark matter
relic density [3], the experimental limits on the Flavor
Changing Neutral Current (FCNC) process b — sy [4, 5],
the anomalous magnetic moment of the muon [6], the
process B — ptpu~ [7], and the LEP limit on the light-
est CP-even Higgs boson mass [8], additionally predicting
an experimentally safe, yet still imminently observable
proton lifetime.

The No-Scale picture inherits an associative weight
of motivation from its robustly generic and natural ap-
pearance across string-, M-, and F-theory derived model
building efforts [9, 10]. It represents moreover a case
study in reductionism, wherein the universal scalar mass
My, universal trilinear soft term A and Higgs bilinear
soft term B, each vanish at some common high mass
boundary, and only the single universal gaugino mass
parameter M/, is left to float free. All low energy scales
are dynamically generated by quantum corrections, i.e.
running under the RGEs, to the classically flat potential.

This appealing perspective however, has historically
been undermined by a basic inconsistency of the My = 0

condition as applied at a GUT scale of order 10'6 GeV
with precision phenomenology. Attempts [11-13] to rein-
terpret the No-Scale paradigm as a boundary near the
Planck scale have met with some exciting success, but
we suggest that these efforts have been missing one
most crucial piece of the puzzle. Our prior study, suc-
cinctly dubbed F-SU(5) [14-16], of the F-lipped SU(5)
GUT [17, 18] supplemented by F-theory derived vector-
like multiplets at the TeV scale, provides the essential
rationale for the separation of an initial unification of the
SU(3)¢ x SU(2)r, gauge symmetry at a mass Mso near
the traditional GUT scale, from a second phase running
up to a point Mz of final unification near the reduced
Planck mass [14, 15]. The dual high scales of F-SU(5)
fit hand to glove with the proposal for salvaging the no-
scale conditions.

Only a small portion of viable parameter space ap-
pears to be consistent with the B,(Mz) = 0 condi-
tion, which thus constitutes a strong constraint. In the
narrow region of overlap, we identify a highly confined
“Golden Point” at which all phenomenological limits are
respected. Moreover, since the boundary value of the uni-
versal gaugino mass M 3, and even the unification scale
M itself, are established by the low energy experiments
via RGE running, we are not left with any surviving scale
parameters in the present model.

No Scale Supergravity — Supersymmetry (SUSY)
naturally solves the gauge hierarchy problem in the Stan-
dard Model (SM), and suggests, along with R parity
conservation, the lightest supersymmetric particle (LSP)
as a suitable cold dark matter candidate. Since we do
not see mass degeneracy of the superpartners however,
SUSY must be broken around the TeV scale. In GUTs
with gravity mediated supersymmetry breaking, called



the supergravity models, we can fully characterize the
supersymmetry breaking soft terms by four universal pa-
rameters (gaugino mass M, 9, scalar mass Mo, trilinear
soft term A, and the low energy ratio of Higgs vacuum
expectation values (VEVs) tan3), plus the sign of the
Higgs bilinear mass term p.

No-Scale Supergravity was proposed [1], to address the
cosmological flatness problem, as the subset of supergrav-
ity models which satisfy the following three constraints:
(i) The vacuum energy vanishes automatically due to
the suitable K&hler potential; (ii) At the minimum of
the scalar potential, there are flat directions which leave
the gravitino mass M3/ undetermined; (iii) The quan-
tity StrAM? is zero at the minimum. If the third condi-
tion were not true, large one-loop corrections would force
M35 to be either identically zero or of the Planck scale.
A simple Kéahler potential which satisfies the first two
conditions is [1]

K = =3Wm(T+T-)Y &), (1)

where T is a modulus field and ®; are matter fields. The
third condition is model dependent and can always be
satisfied in principle [19]. For the simple K&hler potential
in Eq. (1) we automatically obtain the no-scale boundary
condition My = A = B, = 0 while M/, is allowed, and
indeed required for SUSY breaking. Because the mini-
mum of the electroweak (EW) Higgs potential (Vew )min
depends on M3/, the gravitino mass is determined by
the equation d(Vew )min/dMsz/; = 0. Thus, the super-
symmetry breaking scale is determined dynamically. No-
scale supergravity can be realized in the compactification
of the weakly coupled heterotic string theory [9] and the
compactification of M-theory on S*/Z, at the leading or-
der [10].

Models —In the flipped SU(5) GUT [17] there are
three families of SM fermions whose quantum numbers
under the SU(5) x U(1)x gauge group are

F;=(10,1), f; = (5,-3), I; = (1,5), (2)

where i = 1,2, 3.
To break the GUT and electroweak gauge symmetries,
we introduce two pairs of Higgs fields

H = (10,1), H = (10,-1), h = (5,-2), h = (5,2).(3)

To separate the M3, and Mz scales and obtain true
string-scale gauge coupling unification in free fermionic
string models [14, 18] or the decoupling scenario in F-
theory models [15], we introduce vector-like particles
which form complete flipped SU(5) x U(1)x multiplets.
In order to avoid the Landau pole problem for the strong
coupling constant, we can only introduce the following
two sets of vector-like particles around the TeV scale [14]

Z1:XF=(10,1), XF = (10,-1) ; (4)

7Z2:XF, XF, Xl=(1,-5), XI=(1,5). (5)

In this paper, we only consider the flipped SU(5)xU (1) x
models with Z2 set of vector-like particles. The discus-
sions for the models with Z1 set and heavy threshold
corrections [15] are similar.

The Golden Point — In the No-Scale context, we im-
pose Mo = A = B, = 0 at the unification scale Mz, and
allow distinct inputs for the single parameter M /5(Mr)
to translate under the RGEs to distinct low scale out-
puts of B, and the Higgs mass-squares M?Iu and M%Id.
This continues until the point of spontaneous breakdown
of the electroweak symmetry at Mg + p? =0, at which
point minimization of the broken potential establishes
the physical low energy values of u and tan (. In prac-
tice however, this procedure is at odds with the existing
SuSpect 2.34 code [20] base from which our primary
routines have been adapted. In order to impose the min-
imal possible refactoring, we have instead opted for an
inversion wherein M/, and tan /3 float as two effective
degrees of freedom. Thus, we do not fix B, (Mz). We
take i > 0 as suggested by the results of g, — 2 for the
muon, and use 1 TeV for the universal vector-like particle
mass [21].

The relic LSP neutralino density, WIMP-nucleon di-
rect detection cross sections and photon-photon anni-
hilation cross sections are computed with MicrOMEGAs
2.1 [22] wherein the revised SuSpect RGEs have also
implemented. We use a top quark mass of m; = 173.1
GeV [2] and employ the following experimental con-
straints: (1) The WMAP 7-year measurements of the
cold dark matter density [3], 0.1088 < €, < 0.1158.
We allow €2, to be larger than the upper bound due to
a possible O(10) dilution factor [23] and to be smaller
than the lower bound due to multicomponent dark mat-
ter. (2) The experimental limits on the FCNC process,
b — sv. We use the limits 2.86 x 107% < Br(b — svy) <
4.18 x 107* [4, 5]. (3) The anomalous magnetic moment
of the muon, g, — 2. We use the 20 level boundaries,
11 x 1071 < Aa, < 44 x 107'° [6]. (4) The pro-
cess B — ptu~ where we take the upper bound to
be Br(B? — ptp~) < 5.8x 1078 [7]. (5) The LEP limit
on the lightest CP-even Higgs boson mass, m, > 114
GeV [8].

In the tanf8 — M/, plane, B, (Mz) is then calcu-
lated along with the low energy supersymmetric parti-
cle spectrum and checks on various experimental con-
straints. The subspace corresponding to a No-Scale
model is clearly then a one dimensional slice of this man-
ifold, as demonstrated in Fig. 1. It is quite remarkable
that the B, (Mz) = 0 contour so established runs suffi-
ciently perpendicular to the WMAP strip that the point
of intersection effectively absorbs our final degree of free-
dom, creating what we have labeled as a No-Parameter
Model. It is truly extraordinary however that this in-
tersection occurs exactly at the centrally preferred relic
density, that being our strongest experimental constraint.
We emphasize again that there did not have to be an ex-
perimentally viable B, (Mz) = 0 solution, and that the
consistent realization of this scenario depended crucially
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FIG. 1: Viable parameter space in the tan 3—M /5 plane. The
Golden Point is annotated. The thin, dark green line denotes
the WMAP T7-year central value 0, = 0.1123. The dashed
purple contours label p — (e|u)+7r0 proton lifetime predictions,
in units of 10*° years.

on several uniquely identifying characteristics of the un-
derlying proposal. Specifically again, it appears that the
No-Scale condition comes into its own only when applied
at near the Planck mass, and that this is naturally identi-
fied as the point of the final F-SU(5) unification, which is
naturally extended and decoupled from the primary GUT
scale only via the modification to the RGEs from the
TeV scale F-theory vector-like multiplet content. The
union of our top-down model based constraints with the
bottom-up experimental data exhausts the available free-
dom of parameterization in a uniquely consistent and
predictive manner, phenomenologically defining a truly
Golden Point near M, /5 = 455 GeV and tan 8 = 15.

TABLE I: Spectrum (in GeV) for the Golden Point in Fig. 1.
Here, Q, = 0.1123, os; = 1.9 x 107'° pb, and (ov).,, =
1.7x 10728 ¢m3/s. The central prediction for the p— (e|u)n°
proton lifetime is 4.6 x 103" years.

X195 || X& |185||er|150 ||t [489||ur| 951 || ms |120.1
9l 1ss]| %7 [826eL]507| 7] 909]|@L [1036][man| 920
331821 7., |501 || 71 [ 10|61 |859][dr | 992 [[mpe | 925

Xo(824| 7, [493]| 7 [501|[b2|967||dL [1039] G | 620

The Golden Point parameters are M/, = 455.3 GeV,
tan 8 = 15.02, and the point is in full compliance with the
WMAP T7-year results with ©, = 0.1123. It also satisfies
the CDMSIT [24], Xenon100 [25], and FERMI-LAT space
telescope constraints [26], with og; = 1.9 x 10710 pb
and (ov),, = 1.7 x 107** ¢m?/s. The proton lifetime

is about 4.6 x 103* years, which is well within reach of
the upcoming Hyper-Kamiokande [27] and DUSEL [28]
experiments. Inspecting the supersymmetric particle and
Higgs spectrum for the Golden Point in Table I reveals
that the additional contribution of the 1 TeV vector-like
particles lowers the gluino mass quite dramatically. The
gluino mass M3 runs flat from the M39 unification scale to
1 TeV as shown in Fig. 2, though, due to supersymmetric
radiative corrections, the physical gluino mass at the EW
scale is larger than M3 at the Mss scale. This is true
for the full parameter space. For the Golden Point, the
LSP neutralino is 99.8% Bino. Similarly to the mSUGRA
picture, the point is in the stau-neutralino coannihilation
region, but the gluino is lighter than the squarks in our
models, with the exception of the lightest stop.
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FIG. 2: RGE Running of the SM gauge couplings and gaug-
ino masses from the EW scale to the unification scale Mr.
Notice the discontinuity of U(1)y as it remixes between the
U(1)x and that which emerges out of broken SU(5) at the
scale M3z ~ 1x10'® GeV. Advancing from this interim stage,
SU(5)xU(1)x is unified at a higher scale Mz ~ 7x10'7 GeV.

We plot gauge coupling and gaugino mass unifica-
tion for the Golden Point in Fig. 2. The figure ex-
plicitly demonstrates the two-step unification of flipped
SU(5) x U(1)x. In this work, we consider the two-
loop RGE running for the gauge couplings, however, we
only consider the one-loop RGE running for the gaugino
masses. In F-SU(5) models, the one-loop beta function
for SU(3)¢ is zero due to the vector-like particle contri-
butions. Therefore, as shown in Fig. 2, M3 is constant
from the electroweak scale to the M35 scale since the beta
coefficient b3 = 0. In contrast, the gauge couplings and
gaugino masses for the SU(2); x U(1)y gauge symmetry
track each other in Fig. 2 since the gauge couplings for
SU(2)r, x U(1l)y are weak, thus the two-loop effects are



small. In addition, we present the RGE running for the
u term, the SUSY breaking scalar masses, trilinear A-
terms, and bilinear B, term in Fig. 3. Note in particular
that the EW symmetry breaking occurs when H2 + p?
goes negative.
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FIG. 3: RGE Running of the p term and SUSY breaking soft
terms from the EW scale to the unification scale M.

Conclusion — We have studied No-Scale Supergrav-
ity in the context of a F-lipped SU(5) x U(1)x GUT
supplemented with F-theory derived TeV-scale vector-
like particles. With the no-scale boundary condition ap-
plied at the point of final unification Mz, we find a very
small “Golden Point” of viable parameter space that is
consistent with all known experiments, while fixing all
extraneous model parameters. For the Golden Point, we
have discussed unification of the SM gauge couplings and
gaugino masses, and the RGE running for the p term and
supersymmetry breaking soft terms. Proton decay pre-
dictions are well within the range accessible to the future
Hyper-Kamiokande and DUSEL experiments. Because
the universal gaugino mass is determined by the low en-
ergy known experiments via RGE running, we emphasize
that there are no surviving arbitrary scale parameters in
this model.
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