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In the Standard Model, custodial symmetry is violated by the hypercharge U(1) gauge interactions
and the Yukawa couplings, while being preserved by the Higgs scalar potential. In the two-Higgs
doublet model (2HDM), the generic scalar potential introduces new sources of custodial symme-
try breaking. We obtain a basis-independent expression for the constraints that impose custodial
symmetry on the 2HDM scalar potential. These constraints impose CP-conservation on the scalar
potential and vacuum, and in addition add one extra constraint on the scalar potential parameters.
We clarify the mass degeneracies of the 2HDM that arise as a consequence of the custodial symme-
try. We also provide a computation of the “oblique” parameters (S, T , and U) for the most general
CP-violating 2HDM in the basis-independent formalism. We demonstrate that the 2HDM contri-
butions to T and U vanish in the custodial symmetry limit, as expected. Using the experimental
bounds on S and T from precision electroweak data, we examine the resulting constraints on the
general 2HDM parameter space.

1. INTRODUCTION: THE CP-VIOLATING TWO HIGGS DOUBLET MODEL (2HDM)

In the most general two-Higgs-doublet extension of the Standard Model (2HDM), the two hypercharge-one Higgs
doublet fields Φ1 and Φ2 are indistinguishable. Consequently, all physical observables must be independent of a
change in the scalar basis, which corresponds to a redefinition of the scalar doublets by a global U(2) transformation,
Φa → Uab̄Φb. In refs. [1] and [2], a basis-independent formalism for the 2HDM was introduced and developed.1 In
particular, a basis-independent form for the most general 2HDM interactions was obtained in ref. [2]. A recap of the
basis-independent formalism for the 2HDM is provided in Section 2 in order to make this paper self-contained.

However, the most general form of the 2HDM is certainly not realized in nature. For example, for generic 2HDM
parameters, one expects large flavor-changing neutral currents and a significant violation of custodial symmetry, in
conflict with experimental observations. These problems are ameliorated in restricted parameter regimes of the 2HDM.
These restricted regions are either fine-tuned or can be implemented by imposing additional symmetries (e.g. discrete
symmetries or supersymmetry) on the 2HDM scalar potential. Such additional symmetries would in general distinguish
between the two-Higgs doublet fields, and thereby choose a preferred basis. If 2HDM phenomena are observed in
nature, one important goal of experimental Higgs studies at future colliders will be to determine the nature of the
additional symmetry structures (if present) that restrict the 2HDM parameters, and the associated preferred scalar
basis. However, prior to determining whether such a preferred scalar basis exists, the basis-independent techniques
will be critical for exploring the phenomenological profile of the 2HDM and determining its theoretical structure.

In this paper, we provide a basis-independent formulation of custodial symmetry for the most general 2HDM. If
custodial symmetry were exact, then there would be no Higgs sector corrections to the tree-level relation m2

W =
m2

Z cos2 θW to all orders in perturbation theory. Of course, custodial symmetry is not an exact symmetry of the
Standard Model, as it is violated by the hypercharge gauge interactions and the Higgs–fermion Yukawa interactions.
The precision measurements of electroweak observables by LEP and the Tevatron suggest that additional sources of
custodial symmetry breaking beyond that which is contained in the Standard Model must be small. This imposes
interesting constraints on the most general 2HDM.

The custodial symmetric 2HDM scalar potential must be CP-conserving. Thus, in Section 3 we first review the basis-
independent conditions for a CP-conserving 2HDM potential. We then establish the basis-independent conditions for
a custodial symmetric 2HDM scalar potential in Section 4. These results clarify the significance of the conditions for
custodial symmetry in the 2HDM obtained previously in the literature [7]. The effects of the custodial symmetry-
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1 There is an alternative approach, which we do not employ in this paper, that emphasizes the role of gauge-invariant scalar field bilinears.

For further details, see e.g. refs. [3–6].
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violating terms on the 2HDM have phenomenological consequences. In particular, these terms would lead to shifts in
the Peskin-Takeuchi T and U parameters [8]. In contrast, shifts in the S parameter [8] can be generated even in the
presence of an exact custodial symmetry. In Section 5, we have obtained basis-independent expressions for the 2HDM
contributions to the oblique parameters S, T and U . Using these results, we present in Section 6 a numerical study
of the size of the 2HDM contributions to the oblique parameters as a function of the 2HDM parameter space. By
comparing these results to the experimental bounds on S and T , we determine some of the features of the constraints
on the 2HDM parameter space. Conclusions are given in Section 7.

Some details have been relegated to the appendices. In Appendix A, we reproduce the cubic and quartic bosonic
couplings of the 2HDM obtained in ref. [2]. These couplings are critical for determining the CP-quantum numbers of
the neutral Higgs states for the CP-conserving scalar potential. In Appendix B, we record some useful expressions
involving the neutral Higgs masses and invariant mixing angles. In Appendix C we summarize the basis-independent
treatment of the CP-conserving 2HDM. This appendix also examines a number of special cases in which some of the
neutral Higgs scalars are mass-degenerate. Appendix D provides details of the computation of the 2HDM contributions
to S, T and U , along with the relevant Feynman rules (in the basis-independent formalism) and one-loop graphs.
Appendix E summarizes the key features of the decoupling limit of the 2HDM. Finally, in Appendix F, we examine
the tree-level unitarity bounds on the scalar potential parameters in the basis-independent formalism. These bounds
are implemented in the parameter space scans of Section 6.

2. RECAP OF THE BASIS-INDEPENDENT FORMALISM FOR THE 2HDM

The scalar potential may be written in a basis-independent form as [1, 9]

V = Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd) , (2.1)

where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies Yab̄ = (Ybā)∗ and Zab̄cd̄ = (Zbādc̄)
∗. The indices a, b, c and d label the two

Higgs doublets, and there is an implicit sum over unbarred–barred index pairs. The barred indices help keep track of
which indices transform with U and which transform with U †. For example, under a global U(2) transformation, the
parameters of the scalar potential change according to

Yab̄ → Uac̄Ycd̄U
†

db̄
and Zab̄cd̄ → UaēU

†

fb̄
UcḡU

†

hd̄
Zef̄gh̄ . (2.2)

The vacuum expectation values of the two Higgs fields can be parametrized as

〈Φa〉 =
v√
2

(
0
v̂a

)
, with v̂a ≡ eiη

(
cosβ

sin β eiξ

)
, (2.3)

where v = 246 GeV and η is an arbitrary phase. The unit vector v̂a satisfies v̂av̂∗ā = 1, where v̂∗ā ≡ (v̂a)∗. If we define
the hermitian matrix Vab̄ ≡ v̂av̂∗

b̄
, then the scalar potential minimum condition is given by the invariant condition:

Tr(V Y ) + 1
2v2Zab̄cd̄VbāVdc̄ = 0 . (2.4)

The orthonormal eigenvectors of Vab̄ are v̂b and

ŵb ≡ v̂∗āǫab = e−iη

(
− sin β e−iξ

cosβ

)
, (2.5)

where ǫ12 = −ǫ21 = 1 and ǫ11 = ǫ22 = 0. Under the U(2) transformation, v̂a → Uab̄v̂b, whereas

ŵa → (det U)−1 Uab̄ ŵb ,

where det U ≡ eiχ is a pure phase. That is, ŵa is a pseudo-vector with respect to global U(2) transformations. One
can use ŵa and ŵ∗

ā ≡ (ŵa)∗ to construct a proper second-rank tensor, Wab̄ ≡ ŵaŵ∗
b̄
≡ δab̄ − Vab̄.

One can always define the so-called Higgs basis in which only one of the two Higgs doublets has a neutral component
with a non-zero vacuum expectation value [9, 10]. The Higgs basis fields are given by

H1 = v̂∗āΦa , H2 = ŵ∗
āΦa . (2.6)

Since v̂a and ŵa are orthonormal vectors, it follows that

〈H0
1 〉 =

v√
2

, 〈H0
2 〉 = 0 . (2.7)
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Note that H1 is an invariant field whereas H2 → (detU)H2 is a pseudo-invariant field under the global U(2)
transformation. The scalar potential can then be expressed using the Higgs basis fields as follows:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.]

+ 1
2Z1(H

†
1H1)

2 + 1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

, (2.8)

where Y1, Y2 and Z1,2,3,4 are real-valued U(2)-invariants,

Y1 ≡ Tr(Y V ) , Y2 ≡ Tr(Y W ) , (2.9)

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄ WbāWdc̄ , (2.10)

Z3 ≡ Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā (2.11)

and Y3 and Z5,6,7 are complex “pseudoinvariants,”

Y3 ≡ Yab̄ v̂∗ā ŵb , Z5 ≡ Zab̄cd̄ v̂∗ā ŵb v̂∗c̄ ŵd , (2.12)

Z6 ≡ Zab̄cd̄ v̂∗ā v̂b v̂∗c̄ ŵd , Z7 ≡ Zab̄cd̄ v̂∗ā ŵb ŵ∗
c̄ ŵd . (2.13)

which transform as

[Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (detU)−2Z5 . (2.14)

The scalar potential minimum condition [eq. (2.4)] fixes

Y1 = − 1
2Z1v

2 , Y3 = − 1
2Z6v

2 . (2.15)

The three physical neutral Higgs boson mass-eigenstates can be determined by diagonalizing a 3× 3 squared-mass
matrix in the Higgs basis. The diagonalizing matrix is a 3 × 3 real orthogonal matrix that depends on three angles:
θ12, θ13 and θ23. As shown in ref. [2], under a U(2) transformation,

θ12 , θ13 are invariant and eiθ23 → (detU)−1eiθ23 . (2.16)

In particular, with respect to the invariant Higgs basis neutral fields {Re H0
1 , Re(eiθ23H0

2 ) , Im(eiθ23H0
2 )}, where

H0
1 ≡ H0

1 − (v/
√

2), the neutral Higgs squared-mass matrix is given by:

M2 = v2




Z1 Re(Z6 e−iθ23) −Im(Z6 e−iθ23)
Re(Z6e

−iθ23) A2/v2 + Re(Z5 e−2iθ23) − 1
2 Im(Z5 e−2iθ23)

−Im(Z6 e−iθ23) − 1
2 Im(Z5 e−2iθ23) A2/v2


 , (2.17)

where

A2 ≡ Y2 + 1
2 [Z3 + Z4 − Re(Z5e

−2iθ23)]v2 . (2.18)

Note that M2 is manifestly basis-independent, in which case the neutral Higgs mass eigenstates are invariant fields
with respect to U(2) transformations. Diagonalizing the neutral Higgs squared-mass matrix then gives

RM2 RT = M2
D = diag(m2

1 , m2
2 , m2

3) , (2.19)

where m1, m2 and m3 are the neutral Higgs boson masses and

R =




c12c13 −s12 −c12s13

s12c13 c12 −s12s13

s13 0 c13


 , (2.20)

where cij ≡ cos θij and sij ≡ sin θij . As shown in ref. [2], one can choose a convention (without loss of generality)
where − 1

2π ≤ θ12 , θ13 < 1
2π. The neutral Goldstone boson is identified as G0 ≡ Im H0

1 . One can express the mass

eigenstate neutral Higgs bosons, hk (k = 1, 2, 3) and the neutral Goldstone boson (h4 ≡ G0) directly in terms of the

original shifted neutral fields, Φ0
a ≡ Φ0

a − vv̂a/
√

2,

hk =
1√
2

[
Φ0 †

ā (qk1v̂a + qk2ŵae−iθ23) + (q∗k1v̂
∗
ā + q∗k2ŵ

∗
āeiθ23)Φ0

a

]
, (2.21)
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TABLE I: The U(2)-invariant quantities qkℓ, defined in ref. [2], are reproduced below. The qkℓ are functions of the the invariant
mixing angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij . By convention, we choose − 1

2
π ≤ θ12 , θ13 < 1

2
π.

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

where qkℓ are basis-independent quantities composed of the invariant mixing angles θ12 and θ13 given in Table I.
The charged Goldstone and Higgs bosons are immediately identified in terms of Higgs basis fields as: G± ≡ H±

1

and H± = H±
2 . The latter implies that H± → (detU)±1H± under the U(2) transformation. If necessary, one can

define an invariant charged Higgs field, e±iθ23H±. The charged Higgs mass is given by:

m2
H± = Y2 + 1

2Z3v
2, (2.22)

Finally, inverting eq. (2.21) yields:

Φa =




G+v̂a + H+ŵa

v√
2
v̂a +

1√
2

4∑

k=1

(
qk1v̂a + qk2e

−iθ23ŵa

)
hk


 . (2.23)

Inserting this result into eq. (2.1) immediately yields the basis-independent form of the Higgs self-couplings given
in Appendix A. Likewise, the invariant forms of the Higgs boson couplings to vector bosons can be obtained by
expanding out the covariant derivatives that appear in the Higgs kinetic energy terms; these couplings are also given
in Appendix A.

The Higgs boson couplings to the fermions arise from the Yukawa Lagrangian, which can be written in terms of
the quark mass-eigenstate fields as:2

−LY = ULΦ0 ∗
ā ηU

a UR − DLK†Φ−
ā ηU

a UR + ULKΦ+
a ηD †

ā DR + DLΦ0
aηD †

ā DR + h.c. , (2.24)

where K is the CKM mixing matrix. The ηU,D are 3 × 3 Yukawa coupling matrices. We can construct invariant and
pseudo-invariant matrix Yukawa couplings:

κQ ≡ v̂∗āηQ
a , ρQ ≡ ŵ∗

āηQ
a , (2.25)

where Q = U or D. Inverting these equations yields ηQ
a = κQv̂a + ρQŵa. One can rewrite eq. (2.24) in the Higgs

basis,3

−LY = UL(κUH0 †
1 + ρUH0 †

2 )UR − DLK†(κUH−
1 + ρUH−

2 )UR

+ULK(κD †H+
1 + ρD †H+

2 )DR + DL(κD †H0
1 + ρD †H0

2 )DR + h.c. (2.26)

Note that under the U(2) transformation,

κQ is invariant and ρQ → (detU)ρQ . (2.27)

By construction, κU and κD are proportional to the (real non-negative) diagonal quark mass matrices MU and MD,
respectively. In particular,

MU =
v√
2
κU = diag(mu , mc , mt) , MD =

v√
2
κD † = diag(md , ms , mb) . (2.28)

2 Eq. (2.24) corrects an error in eq. (75) of ref. [2].
3 Eq. (2.26) corrects an error in eq. (76) of ref. [2].
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The matrices ρU and ρD are independent complex 3 × 3 matrices. The final form for the Yukawa couplings of the
mass-eigenstate Higgs bosons and the Goldstone bosons to the quarks is:

−LY =
1

v
D

{
MD(qk1PR + q∗k1PL) +

v√
2

[
qk2 [eiθ23ρD]†PR + q∗k2 eiθ23ρDPL

]}
Dhk

+
1

v
U

{
MU (qk1PL + q∗k1PR) +

v√
2

[
q∗k2 eiθ23ρUPR + qk2 [eiθ23ρU ]†PL

]}
Uhk

+

{
U

[
K[ρD]†PR − [ρU ]†KPL

]
DH+ +

√
2

v
U [KMDPR − MUKPL] DG+ + h.c.

}
. (2.29)

By writing [ρQ]†H+ = [ρQeiθ23 ]†[eiθ23H+], we see that the Higgs-fermion Yukawa couplings depend only on invariant
quantities: the diagonal quark mass matrices, ρQeiθ23 , and the invariant angles θ12 and θ13. Since ρQeiθ23 is in general
a complex matrix, eq. (2.29) contains CP-violating neutral-Higgs–fermion interactions. Moreover, eq. (2.29) exhibits
Higgs-mediated flavor-changing neutral currents (FCNCs) at tree-level in cases where the ρQ are not flavor-diagonal.
Thus, for a phenomenologically acceptable theory, the off-diagonal elements of ρQ must be small.

Note that the parameter tanβ [where the angle β is defined in eq. (2.3)] does not appear in any of the Higgs couplings
[cf. Appendix A and eq. (2.29)]. This is to be expected, since tan β is a basis-dependent quantity in the general 2HDM
and is therefore an unphysical parameter [2]. Of course, tanβ can be promoted to a physical parameter in special
situations in which a particular basis is physical (e.g., in the presence of a discrete symmetry or supersymmetry, which
restricts the form of the scalar potential in a particular basis). In this paper, we do not assume that any basis (apart
from the Higgs basis and the neutral scalar mass-eigenstate basis) has physical significance.

3. BASIS-INDEPENDENT CONDITIONS FOR CP-CONSERVATION

At present, all known CP-violating effects can be attributed to a phase in the CKM matrix K. The source of
this CP-violation is an unremovable complex phase in the Higgs–fermion Yukawa couplings of the Standard Model.
When we extend the Standard Model by adding a second Higgs doublet, new sources of CP-violation can arise from
potentially complex Higgs self-couplings and new Higgs–fermion Yukawa couplings. In this section, we determine
the basis-independent conditions that yield no new sources of CP-violation (at tree-level) beyond the one non-trivial
phase of the CKM matrix, and explore some of its consequences.

The Higgs scalar potential is explicitly CP-conserving if there exists a basis, called the real basis, in which all scalar
potential parameters are simultaneously real [11]. In addition, if there exists a real basis in which the Higgs vacuum
expectation values are simultaneously real, then CP is also preserved by the vacuum (and is not spontaneously broken).
In the latter case, it is then possible to perform an O(2) global transformation on the fields of the Higgs basis, which
maintains the reality of the scalar potential parameters. Hence, the condition for a CP-conserving Higgs potential
and vacuum is the existence of a real Higgs basis. The only surviving basis freedom in defining the Higgs basis is the
rephasing of H2. Thus, it follows from eq. (2.8) that the Higgs scalar potential and vacuum are CP-conserving if and
only if 4

Im(Z∗
5Z2

6 ) = Im(Z∗
5Z2

7) = Im(Z∗
6Z7) = 0 , (3.1)

which are equivalent to conditions first established in ref. [10], and subsequently rederived in refs. [1] and [11].
We now add in the Higgs-fermion interactions and impose the requirement of CP-conserving neutral Higgs boson-

fermion interactions. This requirement is satisfied if the coefficients of the neutral Higgs boson-fermion interactions
are simultaneously real in a real Higgs basis. It then follows from eq. (2.26) that5

Z5(ρ
Q)2 , Z6 ρQ , and Z7 ρQ are real matrices (Q = U, D and E) . (3.2)

4 No separate condition is required for the complex parameter Y3 due to the potential minimum condition of eq. (2.15).
5 Eq. (3.2) corrects an error in eq. (D3) of ref. [2], which incorrectly stated that the matrices of eq. (3.2) must be hermitian. To derive

this result, consider the interaction Lagrangian,
Lint = AijQiPLQj + h.c.,

and note that (AijQiPLQj)
† = A∗

ijQjPRQi = (A†)ijQiPLQj . Under a CP transformation,

UCP(AijQiPLQj)U
−1

CP
= AijQjPRQi = (AT )ijQiPRQj .

Imposing CP-invariance of the interaction Lagrangian yields A† = AT ; i.e., A is a real matrix.
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Note that if eq. (3.2) is satisfied then Z
1/2
5 ρQ is either a purely real or a purely imaginary matrix. In particular, given

a basis in which Z5 is real and Z6, Z7 and the matrix ρQ are purely imaginary, one can always transform to a real
Higgs basis via H2 → iH2.

It is instructive to provide the explicit basis-independent form of the CP transformation law. In the Higgs basis, it
is convenient to employ the invariant Higgs fields, H1 and eiθ23H2. Then, under a CP transformation,

UCPH1(~x, t)U−1
CP = H†

1(−~x, t) , UCP[η∗eiθ23H2(~x, t)]U−1
CP = [η∗eiθ23H2(−~x, t)]† , (3.3)

where UCP is a unitary operator acting on the Hilbert space of fields, and η is a basis-independent complex phase
factor to be determined. Applying this transformation to the Higgs scalar potential in the Higgs basis [eq. (2.8)], it
follows that the Higgs scalar potential and vacuum is CP-invariant, i.e. UCP V U−1

CP = V and UCP| 0 〉 = | 0 〉, if

Im(η2Z5e
−2iθ23) = 0 , Im(ηZ6e

−iθ23) = 0 , Im(ηZ7e
−iθ23) = 0 . (3.4)

These results immediately yield the conditions of eq. (3.1). Likewise, if we demand that the neutral Higgs-fermion
Yukawa interaction is CP-invariant, it follows that

Im(η∗ρQeiθ23) = 0 , (Q = U, D and E) . (3.5)

Combining eqs. (3.4) and (3.5), we obtain the conditions of eq. (3.2).
In a generic basis, the CP transformation law is easily obtained by applying a global U(2) transformation to the

Higgs basis fields in eq. (3.3). Using [2]
(

H1

H2

)
=

(
ŵ2 −ŵ1

−v̂2 v̂1

) (
Φ1

Φ2

)
. (3.6)

it follows that

Φa(~x, t) → (v̂av̂b + η2e−2iθ23ŵaŵb)Φ
∗
b̄ (−~x, t) . (3.7)

One can easily check that the invariance of the scalar potential in the generic basis [eq. (2.1)] with respect to the
transformation law of eq. (3.7) again yields eq. (3.1), as expected. Note that the matrix

Uab ≡ v̂av̂b + η2e−2iθ23ŵaŵb , (3.8)

is unitary and symmetric. Thus, the CP-transformation law in the generic basis takes the general form (cf. ref. [11]):

UCPΦa(~x, t)U−1
CP = UabΦ

∗
b̄(−~x, t) , (3.9)

and invariance of the vacuum under CP requires [9]:

〈Φa〉 = Uab〈Φb̄〉∗ , (3.10)

where U is any symmetric unitary 2 × 2 matrix. Indeed, eq. (3.8) satisfies the above conditions.
If eqs. (3.1) and (3.2) are satisfied, then the neutral Higgs boson tree-level interactions are CP-conserving, and the

neutral Higgs fields are eigenstates of CP. We follow the standard notation [12] and denote the CP-odd Higgs field by
A0 and the lighter and heavier CP-even neutral Higgs fields by h0 and H0, respectively.

The neutral Higgs mass eigenstates determine the mixing angles θij . Thus, in the CP-conserving case, the require-
ment6 that the neutral Higgs bosons are CP-eigenstates determines the phase factor η that appears in eqs. (3.3),
(3.4), (3.7), (3.8) and (3.11). By examining the Higgs interaction terms given in Appendix A, one can determine a
consistent set of assignments for the CP quantum numbers of the neutral Higgs bosons such that their interactions
with gauge bosons and Higgs bosons is CP-invariant. For example, the CP-odd Higgs boson can be identified in
general as7

A0 = Im(η∗eiθ23H0
2 ) . (3.11)

In Sections 3.1–3.3, we have examined all possible cases for the Higgs scalar parameters in which the scalar potential
and vacuum is CP-conserving, and for each case the value of the phase factor η2 is determined. For simplicity, we
assume that the three neutral Higgs masses are non-degenerate. The mass-degenerate cases are treated in Appendix C.

6 In the case of non-degenerate neutral Higgs boson masses, it is automatic that the neutral Higgs mass eigenstates are simultaneously
CP-eigenstates. In the case where the CP-odd Higgs boson is mass-degenerate with a CP-even Higgs boson, it is always convenient
(though not strictly necessary) to choose the physical mass-degenerate states to be CP-eigenstates.

7 In the case of Z6 = Z7 = ρQ = 0, one of the three neutral Higgs bosons is CP-even and the the other two neutral Higgs bosons
have opposite CP quantum numbers. But for this special case, one cannot determine which of these latter two scalars is CP-odd. See
Section 3.2 for further details.
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3.1. The CP-conserving 2HDM with Z6 6= 0

For Z6 6= 0 (and no restrictions on the possible values of Z5 or Z7), a CP-invariant Higgs potential can arise in the
2HDM under one of the three cases listed in Table II. The derivation of these results (given in ref. [2]) is reviewed
in Appendix C. Note that eqs. (3.4) and (3.5) correlate the overall phases of Z6, Z7 and the ρQ. In particular, in
Case I, Im(Z6e

−iθ23) = Im(Z7e
−iθ23) = Im(ρQeiθ23) = 0, whereas Re(Z6e

−iθ23) = Re(Z7e
−iθ23) = Re(ρQeiθ23) = 0 in

Cases IIa and b.
The U(2)-invariant quantities qkℓ for each of the three cases shown in Table II are exhibited in Tables III, IV and

V.

TABLE II: Basis-independent conditions for a CP-conserving scalar potential and vacuum when Z6 6= 0. The neutral Higgs
mixing angles θij are defined with respect to the mass-ordering mh1

≤ mh2
≤ mh3

. The phase factor η2 governs the CP
transformation law [cf. eq. (3.7)]. Additional conditions in which Z6 is replaced by Z7 and by ρQ ∗ (Q = U, D or E), respectively,
must also hold due to the phase correlations implicit in eqs. (3.4) and (3.5). In the case where two of the neutral Higgs masses
are equal, one linear combination of neutral Higgs states will be CP-even and the orthogonal linear combination will be CP-odd.
The latter defines the relevant mixing angle, θ12 in Case I and θ13 in Case II, respectively.

Cases conditions η2 A0 h0 H0

I s13 = Im(Z5 e−2iθ23 ) = Im(Z6 e−iθ23) = 0 +1 h3 h1 h2

IIa s12 = Im(Z5 e−2iθ23 ) = Re(Z6 e−iθ23) = 0 −1 h2 h1 h3

IIb c12 = Im(Z5 e−2iθ23) = Re(Z6 e−iθ23) = 0 −1 h1 h2 h3

TABLE III: The U(2)-invariant
quantities qkℓ for Case I

k qk1 qk2

1 c12 −s12

2 s12 c12

3 0 i

TABLE IV: The U(2)-invariant
quantities qkℓ for Case IIa

k qk1 qk2

1 0 1
2 −c13 is13

3 s13 ic13

TABLE V: The U(2)-invariant
quantities qkℓ for Case IIb

k qk1 qk2

1 c13 −is13

2 0 1
3 s13 ic13

It is convenient to define an invariant quantity, ε56, by the relation

Re(Z∗
5Z2

6 ) = ε56|Z5| |Z6|2 , ε56 ≡ ±1 . (3.12)

Since Im (Z5e
−2iθ23) = 0 is satisfied in Cases I and II, it follows that

Re(Z∗
5Z2

6 ) = Re(Z5e
−2iθ23)

[
Re(Z6e

−iθ23)2 − Im(Z6e
−iθ23)2

]
= ±|Z6|2Re(Z5e

−2iθ23) , (3.13)

where we take the positive [negative] sign depending on whether Im(Z6 e−iθ23) = 0 [Re(Z6 e−iθ23) = 0]. Hence,
eqs. (3.12) and (3.13) yield

Re(Z5e
−2iθ23) =

{
ǫ56|Z5| , if Im(Z6 e−iθ23) = 0 ,

−ǫ56|Z5| , if Re(Z6 e−iθ23) = 0 .
(3.14)

Note that ε56 is the sign of Z5 in the real basis.8 Eq. (3.14) can be rewritten more compactly as:

Re(Z5e
−2iθ23) = η2ǫ56|Z5| . (3.15)

One can use eq. (3.11) to identify the CP-odd Higgs boson, A0. The identity of A0 is also easily discerned from
Tables III, IV and V, since any neutral Higgs state hk with qk1 6= 0 must be CP-even. As there is one CP-odd state
in the neutral Higgs spectrum, it must correspond to the qk1 = 0 entries of Tables III, IV and V.

8 In the real Higgs basis as defined above, θ23 = nπ for integer n. Since Im(Z5e−2iθ23 ) = 0, it follows from eq. (3.14) that Z5 = ǫ56|Z5|.
That is, ε56 is the sign of Z5 in the real Higgs basis.
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The squared-masses of the neutral bosons are given by:

m2
h0,H0 = 1

2v2

[
Y2/v2 + Z1 + 1

2 (Z3 + Z4 + ε56|Z5|) ∓
√[

Y2/v2 − Z1 + 1
2 (Z3 + Z4 + ε56|Z5|)

]2
+ 4|Z6|2

]
,

(3.16)

m2
A0 = Y2 + 1

2v2(Z3 + Z4 − ε56|Z5)|) , (3.17)

where ǫ56 is defined above [cf. eqs. (3.12) and (3.14)]. In particular, Case I corresponds to the mass ordering mA0 >
mH0 , and Cases IIa and IIb correspond to mA0 < mH0 . Moreover, the two separate parameter regimes corresponding
to Cases IIa and IIb correspond to the two possible mass orderings mA0 < mh0 and mA0 > mh0 , respectively, as
exhibited in Table II.

3.2. The CP-conserving 2HDM with Z6 = 0 and Z7 6= 0

For the case of Z6 = 0 and Z7 6= 0, a CP-invariant Higgs potential can arise in the 2HDM under any one of the
following six conditions listed in Table VI. The U(2)-invariant quantities qkℓ for the cases shown in Table VI are
exhibited in Tables VII, VIII and IX. A derivation of these results is given in Appendix C.

TABLE VI: Basis-independent conditions for a CP-conserving scalar potential and vacuum when Z6 = 0, Z7 6= 0. The neutral
Higgs mixing angles θij are defined with respect to the mass-ordering mh1

≤ mh2
≤ mh3

, and θ23 ≡ θ23−θ12. The phase factor
η2 governs the CP transformation law [cf. eq. (3.7)]. Additional conditions in which Z7 is replaced by ρQ ∗ (Q = U, D and E),
respectively, must also hold due to the phase correlations implicit in eqs. (3.19) and (3.20). The two CP-even states are denoted
as h0

1 and h0
2, where m2

h0
1

= Z1v
2 and m2

h0
2

= Y2 + 1

2
(Z3 + Z4 + ε57|Z5|)v

2. The couplings of h0
1 coincide with those of the

Standard Model Higgs boson. The squared-mass of the CP-odd Higgs boson is given by: m2

A0 = Y2 + 1

2
(Z3 + Z4 − ε57|Z5|)v

2.

If Z1 is chosen such that h0
1 is degenerate in mass with either h0

2 or A0, then θ12 in Cases I′ and II′ or θ13 in Case III′ are
fixed by the requirement that the properties of the mass-degenerate state h0

1 coincide with those of the Standard Model Higgs
boson. Additional cases not included in this table that can arise when two of the neutral Higgs bosons are degenerate in mass
are treated in Table XIII.

Cases conditions η2 A0 h0
1 h0

2

I′a s13 = s12 = Im(Z5 e−2iθ23) = Im(Z7 e−iθ23) = 0 +1 h3 h1 h2

I′b s13 = s12 = Im(Z5 e−2iθ23 ) = Re(Z7 e−iθ23) = 0 −1 h2 h1 h3

II′a s13 = c12 = Im(Z5 e−2iθ23 ) = Im(Z7 e−iθ23) = 0 +1 h3 h2 h1

II′b s13 = c12 = Im(Z5 e−2iθ23) = Re(Z7 e−iθ23) = 0 −1 h1 h2 h3

III′a c13 = Im(Z5 e−2iθ23) = Im(Z7 e−iθ23) = 0 e2iθ12 h1 h3 h2

III′b c13 = Im(Z5 e−2iθ23) = Re(Z7 e−iθ23) = 0 −e2iθ12 h2 h3 h1

TABLE VII: The U(2)-
invariant quantities qkℓ for
Cases I′a and I′b

k qk1 qk2

1 1 0
2 0 1
3 0 i

TABLE VIII: The U(2)-
invariant quantities qkℓ for
Cases II′a and II′b

k qk1 qk2

1 0 1
2 −1 0
3 0 i

TABLE IX: The U(2)-invariant
quantities qkℓ for Cases III′a
and III′b

k qk1 qk2

1 0 ieiθ12

2 0 eiθ12

3 −1 0
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Cases I′a and I′b correspond to the combination of Cases I and IIa of Table II. Cases II′a and II′b correspond to
the combination of Cases I and IIb of Table II. Finally, Cases III′a and III′b are new. In these last two cases,

θ23 ≡ θ23 − θ12 , η2 = η2e−2iθ12 = ±1 , (3.18)

play the roles of θ23 and η2, respectively. Note that eqs. (3.4) and (3.5) correlate the overall phases of Z7 and the ρQ.
In particular,

Cases I′a and II′a: Im(Z7e
−iθ23) = Im(ρQeiθ23) = 0, Case III′a: Im(Z7e

−iθ23) = Im(ρQeiθ23) = 0, (3.19)

Cases I′b and II′b: Re(Z7e
−iθ23) = Re(ρQeiθ23) = 0, Case III′b: Re(Z7e

−iθ23) = Re(ρQeiθ23) = 0. (3.20)

The Higgs state corresponding to qk1 6= 0 in Tables VII, VIII and IX is a CP-even Higgs boson. Moreover, as
qk1 = ±1 and |qk2| = 0 in each case, it follows from Appendix A that this state has precisely the couplings of the
Standard Model Higgs boson! Note that the qk1 vanish for the other two neutral Higgs states, and thus cannot be
used to fix the absolute CP quantum numbers of these two states. In the Z6 = 0 model, it is Z7 and/or ρQ that
determine which of these two states is CP-even and which is CP-odd.

It is convenient to define an invariant quantity, ε57, by the relation

Re(Z∗
5Z2

7 ) = ε57|Z5| |Z7|2 , ε57 ≡ ±1 . (3.21)

Since Im(Z5e
−2iθ23) = 0 is satisfied in Cases I′ and II′, it follows that

Re(Z5e
−2iθ23) =

{
ǫ57|Z5| , if Im(Z7 e−iθ23) = 0 ,

−ǫ57|Z5| , if Re(Z7 e−iθ23) = 0 .
(3.22)

Note that ε57 is the sign of Z5 in the real basis. Eq. (3.22) can be rewritten more compactly as:

Re(Z5e
−2iθ23) = η2ǫ57|Z5| . (3.23)

In Case III′, Im(Z5e
−2iθ23) = 0, in which case, eqs. (3.22) and (3.23) hold with θ23 and η2 are replaced by θ23 and

η2, respectively.
The masses of the neutral Higgs bosons are as follows. There is one CP-even Higgs boson whose squared-mass is

given by:9

m2
h0
1

= Z1v
2 . (3.24)

As noted above, the mass and couplings of h0
1 are exactly the same as those of the Standard Model Higgs boson.10

The squared-masses of the remaining two neutral Higgs bosons (a CP-even state h0
2 and a CP-odd state A0) are given

by:

m2
h0
2

= Y2 + 1
2 (Z3 + Z4 + ε57|Z5|)v2 , (3.25)

m2
A0 = Y2 + 1

2 (Z3 + Z4 − ε57|Z5|)v2 . (3.26)

Cases involving mass-degenerate neutral Higgs bosons are examined in Appendix C.
The above results are valid as long as either Z6 or Z7 is non-vanishing. If both Z6 = 0 and Z7 = 0, the model has

some extra features, which we examine in the following section.

9 In eqs. (3.24) and (3.25), we employ the notation h0
1

and h0
2

for the two CP-even Higgs bosons (rather than h0 and H0), since the mass
ordering of these states depends on the the choice of the 2HDM parameters.

10 The Standard Model properties of h0
1

are independent of its mass and the masses of h0
2

and A0. In this sense, this case is not a decoupling
limit, although the properties of h0

1
are identical to the corresponding properties of the lightest CP-even Higgs boson in the decoupling

limit.
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3.3. The 2HDM with Z6 = Z7 = 0

In Sections 3.1 and 3.2, we established basis-independent conditions for which the 2HDM scalar potential and
vacuum were CP-conserving. If Z6 = Z7 = 0 (and Y3 = 0 by virtue of the potential minimum condition), then Z5 is
the the only potentially complex parameter of the scalar potential in the Higgs basis. Consequently, one can rephase
the Higgs field H2 to obtain a real Higgs basis (where Z5 is real). Hence, if Z6 = Z7 = 0 then the 2HDM scalar
potential and vacuum automatically preserve the CP symmetry.11

Starting from any real basis of a CP-invariant 2HDM scalar potential, one can always apply an O(2) transformation
to the Higgs fields to define another generic real basis. In general, all possible real basis choices can be reached in this
way. However, in the case of Y3 = Z6 = Z7 = 0, there exists a particular U(2) transformation, diag(1, i), that is not
an O(2) transformation, which has the effect of changing the sign of Z5. This corresponds to redefining the second
Higgs field by

H2 → iH2 . (3.27)

Following Appendix A of ref. [11] (where the analogous arguments for the time-reversal-invariant 2HDM is presented),
the CP transformation law is unique only if all real basis choices are related by an O(2) transformation. If all real basis
choices are related by a larger global transformation group, O(2)×D ⊂U(2), then the CP transformation law (within
the Higgs/gauge boson sector) is not unique and the number of inequivalent CP transformation laws is equal to the
number of elements of the (non-trivial) discrete group D. Applying this to the 2HDM with Y3 = Z6 = Z7 = 0, we
identify D = Z2, which is the discrete group consisting of the identity element and diag(1, i) ∈U(2) [the latter changes
the sign of Z5]. We conclude that for the Y3 = Z6 = Z7 = 0 model, there are two inequivalent definitions of CP in
the Higgs/gauge boson sector. For example, in Cases I′ and II′ of Table VI, the two definitions of CP correspond to
η2 = ±1 in eq. (3.7) [for Case III′, simply replace θ23 with θ23 and η2 with η2].

In particular, consider the U(2)-invariant couplings qkℓ given in Tables VII, VIII and IX. The Higgs boson h0
1, defined

here as the scalar hk corresponding to |qk1| = 1, is CP-even. For either choice of the two inequivalent definitions of CP,
the couplings of h0

1 precisely match those of the Standard Model Higgs boson [as previously noted below eq. (3.20)].
But, for the two Higgs states h0

2 and h0
3 with qk1 = 0, the Higgs/gauge boson interactions are insufficient to uniquely

identify the CP-odd Higgs field as noted above. The squared-mass of the neutral Higgs bosons must be the same as
in the previous subsection (where Z6 = 0 and Z7 6= 0), since the neutral Higgs squared-mass matrix is independent
of Z7. However, when Z7 = 0, we cannot employ eqs. (3.25) and (3.26) since ε57 is no longer defined. Nevertheless,
one can directly analyze the squared-mass matrix given by eq. (2.17), which is diagonal. Defining Z5 ≡ |Z5|e2iθ5 , and
noting that Im(Z5e

−2iθ23) = 0, it follows that θ5−θ23 = 1
2nπ for some integer n. Hence Re(Z5e

−2iθ23) = ±|Z5|, where

the ± corresponds to the two possible choices θ5 − θ23 = 0 or 1
2π. We conclude that the squared-masses of h0

2 and h0
3

are given by:

m2
h0
2
,h0

3

= Y2 + 1
2v2(Z3 + Z4 ∓ |Z5|) , (3.28)

where by convention, we choose mh0
2

< mh0
3
.

If the neutral Higgs–fermion Yukawa interactions are CP-conserving, then the ambiguity of the CP quantum
numbers of h0

2 and h0
3 can be resolved. The results of Table VI still apply if Z7 is replaced by ρQ ∗ (for either Q = U, D

or E). It is convenient to define an invariant quantity, ε5Q, by the relation,

Re[Z5(ρ
Q
ij)

2] = ε5Q|Z5| |ρQ
ij |2 , ε5Q ≡ ±1 , (3.29)

where ρQ
ij is any non-vanishing matrix element of ρQ. Following the derivation of eqs. (3.21), (3.22) and (3.23), it

then follows that

Re(Z5e
−2iθ23) =

{
ǫ5Q|Z5| , if Im(eiθ23ρQ) = 0 ,

−ǫ5Q|Z5| , if Re(eiθ23ρQ) = 0 ,
(3.30)

for Cases I′ and II′ (for Case III′, θ23 and η2 are replaced by θ23 and η2, respectively). Note that ε5Q is the sign of
Z5 in the real Higgs basis in which the scalar potential parameters and the Higgs-fermion Yukawa coupling matrices

11 One can implement Y3 = Z6 = Z7 = 0 by imposing a Z2 symmetry in the Higgs basis. If the Higgs-fermion couplings also respect this
discrete symmetry, then the resulting 2HDM is the Inert Doublet Model [13], since the model contains no interaction vertices with an
odd number of H2 fields.
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are simultaneously real. In particular, ε5Q is independent of the choice of i and j in eq. (3.29) [assuming ρQ
ij 6= 0].

Even though Z6 = Z7 = 0, the sign of Z5 in the real Higgs basis is meaningful due to the presence of the Yukawa
couplings. Eq. (3.30) can be rewritten more compactly as:

Re(Z5e
−2iθ23) = η2ǫ5Q|Z5| . (3.31)

The two choices of η2 = ±1 are now distinguishable. For example, in Case I′, the diagonal parts of the QQhk

interactions are given by:

LQQh2
=

−1√
2

3∑

i=1

Qi

[
Re(eiθ23ρQ) ± iγ5Im(eiθ23ρQ)

]
ii

Qih2 , (3.32)

LQQh3
=

−1√
2

3∑

i=1

Qi

[
∓iγ5Re(eiθ23ρQ) + Im(eiθ23ρQ)

]
ii

Qih3 , (3.33)

where the upper (lower) sign corresponds to Q = U (Q = D, E). It follows that in Case I′, h3 is CP-odd if η2 = 1,
i.e. Im(eiθ23ρQ) = 0 and h2 is CP-even if η2 = −1, i.e. Re(eiθ23ρQ) = 0. That is, the neutral-Higgs-fermion Yukawa
interaction selects one of the two inequivalent definitions of CP. Cases II′ and III′ can be similarly treated. In a real
Higgs basis, the unique CP transformation law depends on whether ρQ is a purely real or purely imaginary matrix.
If the neutral Higgs–fermion Yukawa interactions are CP-violating, then neither h0

2 nor h0
3 can be assigned a definite

CP quantum number.

3.4. CP symmetries in the 2HDM

Generalized CP-transformations (GCPs) in the 2HDM have been examined in refs. [14] and [15]. In a generic basis,
a GCP transformation is of the form given in eq. (3.9), where U is an arbitrary 2 × 2 unitary matrix. Three classes
of GCPs were identified in refs. [14] and [15] according to the value of UU∗:

(i) CP1 : UU∗ = 12×2 , i.e., U is a unitary symmetric matrix , (3.34)

(ii) CP2 : UU∗ = −12×2 , i.e., U is a unitary antisymmetric matrix , (3.35)

(iii) CP3 : UU∗ 6= ±12×2 , (3.36)

where 12×2 is the 2 × 2 identity matrix. The CP1 transformation corresponds to eq. (3.8). Imposing CP1 on the
2HDM scalar potential implies that there exists a basis in which all the scalar potential parameters are real. Imposing
CP2 and CP3 yields additional constraints on the scalar potential, which are not especially relevant to the matters
addressed in this paper. In ref. [15], the possibility of imposing symmetries in a specific basis is discussed. This
can lead to additional conditions on the scalar potential parameters, which may or may not correspond to a higher
symmetry of the 2HDM.

In refs. [16] and [17], the CP1 transformation is applied directly in the Higgs basis. In particular, these authors
examine:

(
H1

H2

)
=

(
eiξ 0
0 e−iξ

) (
H∗

1

H∗
2

)
, (3.37)

where 0 ≤ ξ ≤ π. Imposing this CP1 transformation on the Higgs basis constrains the potentially complex scalar
potential parameters as follows:

1. If ξ = 0 =⇒ Y3, Z5, Z6, Z7 ∈ R , (3.38)

2. If ξ = π =⇒ Z5 ∈ R, Y3 = Z6 = Z7 = 0 , (3.39)

3. If ξ 6= 0 , π =⇒ Y3 = Z5 = Z6 = Z7 = 0 . (3.40)

This analysis singles out the importance of the Z6 = Z7 = 0 model discussed in Section 3.3, which is designated as a
“twisted” CP-conserving model in ref. [16].12 The case of Z5 = Z6 = Z7 = 0 possesses similar properties to the former
model, with the added feature that the two Higgs scalars of indefinite CP quantum number are mass-degenerate.

12 In ref. [16], the twisted model is associated with the Z6 = Z7 = 0 model with custodial symmetry. Here, we see that custodial symmetry
has nothing to do with the existence of this class of models, but is an additional constraint that can be imposed on the CP-conserving
scalar potential. See Section 4.1.3 for further discussions of this point.
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4. BASIS-INDEPENDENT CONDITIONS FOR CUSTODIAL SYMMETRY IN THE 2HDM

In the Standard Model, the tree-level relation, m2
W = m2

Z cos θW , is a consequence of an accidental global symmetry
of the Higgs potential. In particular, the SM Higgs Lagrangian possesses an SO(4)∼=SU(2)L×SU(2)R/Z2 global
symmetry, whereas the full electroweak Lagrangian is invariant under SU(2)×U(1)Y , which is a subgroup of the
larger global symmetry group. The global custodial SU(2)V symmetry, which is the diagonal (vector) subgroup of
SU(2)L×SU(2)R (where V = L + R), is responsible for the gauge boson tree-level mass relation.

The U(1)Y hypercharge gauge interactions and the Higgs–fermion Yukawa couplings break the custodial symmetry.
This leads to finite one-loop radiative corrections to the gauge boson tree-level mass relation. The dominant part of
these corrections can be parameterized by a single quantity called T , introduced by Peskin and Takeuchi [8]. It is
convenient to define T relative to a “reference Standard Model,” in which the Higgs mass is fixed. A convenient choice is
to define T = 0 for a Standard Model Higgs mass of 117 GeV.13 Deviations from T = 0 can be accommodated by either
changing the value of the Higgs mass or adding new custodial-violating interactions to the theory. Experimentally, T
is observed to be quite small, which suggests that the custodial-breaking effects of the electroweak Lagrangian due to
new physics beyond the Standard Model (or a Standard Model Higgs mass that differs significantly from 117 GeV)
must be quite small.

In the 2HDM with a generic scalar potential, the Higgs Lagrangian does not possess a global custodial symmetry.
One can therefore write the Higgs Lagrangian in the form

LHiggs = LCSC + LCSV , (4.1)

where LCSC and LCSV are the custodial symmetry conserving and violating pieces, respectively. The terms that
contribute to LCSV reside in the scalar potential, and do not effect the gauge boson mass relation at tree-level.
Hence, these terms only contribute a finite correction at one-loop to the T parameter. Nevertheless, the experimental
determination of T can place significant constraints on the parameters of the 2HDM scalar potential. In this section,
we formulate a basis-independent characterization of custodial symmetry. This will permit a clean basis-independent
separation of the custodial symmetry conserving and violating pieces of the Higgs Lagrangian as in eq. (4.1).

4.1. Custodial symmetry of the Higgs Sector

4.1.1. Basis-dependent conditions for custodial symmetry

Conditions for custodial symmetry of the Higgs sector in the 2HDM doublet model has been previous addressed by
Pomarol and Vega [7]. Consider the 2HDM scalar potential in a generic basis,

V = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2 + 1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

{
1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}

, (4.2)

where m2
11, m2

22, λ1, λ2, λ3, λ4 ∈ R are real parameters, and m2
12, λ5, λ6, λ7 ∈ C are potentially complex. The vacuum

expectation values of the neutral Higgs fields, denoted by

〈Φ0
a〉 ≡

va√
2
∈ C , a = 1, 2 , (4.3)

are also generically complex. Pomarol and Vega asserted that the imposition of custodial symmetry on the 2HDM
scalar potential yields two independent cases [in the notation of eq. (4.2)]:

Case 1 : v1, v2 ∈ R , λ4 = λ5 , and m2
12, λ5, λ6, λ7 ∈ R , (4.4)

Case 2 : v1 = v∗2 ∈ C , m2
11 = m2

22 , λ1 = λ2 = λ3 , λ6 = λ7 , and m2
12, λ5, λ6, λ7 ∈ C . (4.5)

13 The choice of Higgs mass is dictated by the global Standard Model fit to precision electroweak data [18–20], which suggests that the
Higgs mass must lie above but not too far away from the lower Higgs mass bound (at 95% CL) of 114.4 GeV established at LEP [21].
In Ref. [19], a Higgs mass of 117 GeV is chosen for the reference Standard Model in the analysis of new physics contributions to the
Peskin-Takeuchi S, T and U parameters.
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These conditions are derived as follows.
In Case 1, one constructs two 2 × 2 matrix fields,14

M1 ≡ (Φ̃1 , Φ1), M2 ≡ (Φ̃2 , Φ2), (4.6)

where Φ̃ ≡ iσ2Φ
∗. The matrix fields transform under SU(2)L×SU(2)R as

Ma → L Ma R† , a = 1, 2 . (4.7)

The SU(2)L×SU(2)R scalar potential is constructed by employing the manifestly invariant combinations, Tr[M †
1M1],

Tr[M †
2M2] and Tr[M †

1M2].
15 Explicitly,

V = 1
2m2

11Tr[M †
1M1] + 1

2m2
22Tr[M †

2M2] − m2
12Tr[M †

1M2] + 1
8λ1

(
Tr[M †

1M1]
)2

+ 1
8λ2

(
Tr[M †

2M2]
)2

+ 1
4λ3Tr[M †

1M1]Tr[M †
2M2] + 1

2λ
(
Tr[M †

1M2]
)2

+ 1
2

(
λ6Tr[M †

1M1] + λ7Tr[M †
2M2]

)
Tr[M †

1M2] , (4.8)

where hermiticity implies that all the coefficients above are real. Thus, imposing the SU(2)L×SU(2)R symmetry on
the scalar potential and comparing with eq. (4.2) then yields λ = λ4 = λ5 and m2

12, λ5, λ6, λ7 ∈ R. If the scalar field
vacuum expectation values satisfy:

〈Ma〉 =
1√
2

(
v∗a 0
0 va

)
=

va√
2
12×2 , (4.9)

then 〈Ma〉 is invariant under the SU(2)V custodial symmetry group, since 〈Ma〉 → L〈Ma〉R† = 〈Ma〉 when L = R.
Eq. (4.9) imposes the condition va ∈ R, and eq. (4.4) is thus established.

In Case 2, one constructs the 2 × 2 matrix field,

M12 ≡ (Φ̃1 , Φ2), (4.10)

which transforms under SU(2)L×SU(2)R as

M12 → L M12 R† . (4.11)

The SU(2)L×SU(2)R scalar potential is constructed by employing the manifestly invariant combinations Tr[M †
12M12],

detM12, det(M12)
2 and det[M †

12M12]. Explicitly,

V = m2Tr[M †
12M12] −

(
m2

12 detM12 + h.c.
)

+ 1
2λ

(
Tr[M †

12M12]
)2

+λ4 det[M †
12M12] + 1

2

(
λ5 det(M12)

2 + h.c.
)

+
(
λ′ det M12Tr[M †

12M12] + h.c.
)

. (4.12)

Thus, imposing the SU(2)L×SU(2)R symmetry on the scalar potential and comparing with eq. (4.2) then yields
m2 = m2

11 = m2
22, λ = λ1 = λ2 = λ3, λ′ = λ6 = λ7 and m2

12, λ5, λ6, λ7 ∈ C. If the scalar field vacuum expectation
values satisfy:

〈M12〉 =
1√
2

(
v∗1 0
0 v2

)
=

v2√
2
12×2 , (4.13)

then 〈M21〉 is invariant under the SU(2)V custodial symmetry group. Eq. (4.13) imposes the condition v∗1 = v2 ∈ C,
and eq. (4.5) is thus established.

Although the two cases of Pomarol and Vega appear to be distinct, a more careful analysis shows that the two
cases are in fact equivalent, and correspond to the formulation of the 2HDM in two different choices of the scalar field
basis. This can be established as follows. First, we note that in both Cases 1 and 2, the scalar potential depends on

14 In the notation of eq. (4.6), eΦa is the first column and Φa is the second column of the matrix Ma (for a = 1, 2).
15 One can check that Tr[M†

1
M2] = Tr[M†

2
M1] and det Ma = 1

2
Tr[M†

aMa] (for a = 1, 2), so only three independent invariant quadratic
forms are relevant.
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three independent squared-mass parameters and six independent scalar self-coupling parameters. Now, suppose one
begins with a 2HDM subject to the constraints of Case 2 [eq. (4.5)]. It is convenient to define:

v̂1 = v̂∗2 =
1√
2
eiθ , m2 ≡ m2

11 = m2
22 , λ ≡ λ1 = λ2 = λ3 , λ′ ≡ λ6 = λ7 , (4.14)

where v̂a is defined in eq. (2.3). By performing a basis transformation, Φa → Uab̄Φb, with

U =
1√
2

(
e−iθ eiθ

−ie−iθ ieiθ

)
, (4.15)

the coefficients of the scalar potential [cf. eq. (4.2)] are transformed to [in the notation of eq. (2.8)]:

Y1 = m2 − Re(m2
12e

−2iθ) , (4.16)

Y2 = m2 + Re(m2
12e

−2iθ) , (4.17)

Y3 = −Im(m2
12e

−2iθ) , (4.18)

Z1 = λ + 1
2λ4 + 1

2Re(λ5e
−4iθ) + 2Re(λ′e−2iθ) , (4.19)

Z2 = λ + 1
2λ4 + 1

2Re(λ5e
−4iθ) − 2Re(λ′e−2iθ) , (4.20)

Z3 = λ − 1
2λ4 − 1

2Re(λ5e
−4iθ) , (4.21)

Z4 = Z5 = 1
2λ4 − 1

2Re(λ5e
−4iθ) , (4.22)

Z6 = 1
2 Im(λ5e

−4iθ) + Im(λ′e−2iθ) , (4.23)

Z7 = − 1
2 Im(λ5e

−4iθ) + Im(λ′e−2iθ) , (4.24)

while the normalized scalar field vacuum expectation values are transformed to:

v̂a −→ Uab̄v̂b = δa1 . (4.25)

Eq. (4.25) defines the Higgs basis {H1 , H2}, up to a phase redefinition of H2. We immediately note that Z4 = Z5 and
the vacuum expectation values and all the scalar potential parameters are real. Thus, the Higgs basis satisfies all the
conditions of Case 1 of Pomarol and Vega [cf. eq. (4.4)]. Moreover, it is easy to check that any additional O(2) basis
transformation preserves λ4 = λ5 and the reality of the scalar potential parameters. Thus, we have confirmed that
Cases 1 and 2 of Pomarol and Vega are equivalent and simply represent different choices of the scalar field basis.16

Of course, one can also perform arbitrary U(2) transformations of the Higgs fields. The resulting scalar potential
parameters and vacuum expectation values will in general satisfy neither case 1 nor case 2 of Pomarol and Vega. Yet,
all these parameterizations are physically equivalent and maintain the custodial symmetry. Clearly, it is desirable to
formulate a basis-independent description of custodial symmetry. We shall provide such a formulation in the next
subsection.

4.1.2. The Basis-Independent Condition for Custodial Symmetry in the Scalar Sector

It is possible generalize the two implementations of custodial symmetry presented in the previous subsection by
constructing an SU(2)L×SU(2)R invariant scalar potential using the Higgs basis fields, H1 and H2. The advantage of
this basis choice is that no supplementary conditions on the vevs are required. In particular, we define 2 × 2 matrix
fields: M1 ≡ (H̃1 , H1), M2 ≡ (H̃2 , H2), M12 ≡ (H̃1 , H2), M21 ≡ (H̃2 , H1) . (4.26)

16 In ref. [22], it was shown that in Type-I and Type-II 2HDMs, the corresponding Higgs-fermion Yukawa couplings (defined in the standard
basis where the discrete symmetry Φ2 → −Φ2 is manifest) are custodial symmetric if and only if the scalar potential parameters satisfy
eqs. (4.4) and (4.5), respectively. The two ways to implement custodial symmetry given by eqs. (4.7) and (4.11), respectively, can be
distinguished based on the presence or absence of the A0GG effective interaction. This is possible, as the special forms of the Type I
and II Higgs-Yukawa interactions effectively select a “preferred” basis.
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Since 〈H0
1 〉 = v/

√
2 (where v = 246 GeV) and 〈H0

2 〉 = 0, it follows that

〈M1〉 =
v√
2
12×2 , 〈M2〉 = 0 , (4.27)

whereas neither 〈M12〉 nor 〈M21〉 are proportional to the identity matrix. Consequently, if we wish to preserve a
custodial SU(2)V after electroweak symmetry breaking, the scalar potential in the Higgs basis must be solely a
function of M1 and M2.

In the Higgs basis, the field H1 is basis-invariant, as it is defined such that 〈H0
1 〉 ≡ v/

√
2 is real and positive. On the

other hand, since 〈H0
2 〉 = 0 it follows that H2 is only defined up to an overall rephasing. That is, H1 is an invariant

field with respect to basis transformations, whereas H2 is a pseudo-invariant field. As a result, the SU(2)L×SU(2)R

transformation laws for M1 and M2 are given by:M1 → LM1R
† , M2 → LM2R

′ † , L ∈ SU(2)L , R , R′ ∈ SU(2)R . (4.28)

Since Hi and H̃i (i = 1, 2) are doublets under the weak SU(2)L gauge transformation, the transformation matrices
L appearing in eq. (4.28) must be the same in the SU(2)L×SU(2)R transformation laws of M1 and M2. As noted by
[16], the same requirement does not hold for the SU(2)R transformation; hence in general R′ 6= R. However, R and
R′ are related by the fact that the gauged U(1) hypercharge operator, Y ≡ diag(−1 , +1), is a diagonal generator of
SU(2)R. In particular, if we write R ≡ exp(iθnaT a

R) where (n1, n2, n3) is a unit vector, then T 3
R is proportional to Y .

Since the Hi are hypercharge +1 fields and the H̃i are hypercharge −1 fields, the relation between R and R′ is fixed
by R′ ≡ PRP−1, where P is an SU(2) matrix and P exp (iθY )P−1 = exp (iθY ) for all θ [16]. By expanding in θ, it
follows that PY = Y P , which constrains P to be of the form P = diag(e−iχ , eiχ), where 0 ≤ χ < 2π. We conclude
that the most general form for the SU(2)L×SU(2)R transformation laws for M1 and M2 is given byM1 → LM1R

† , M2 → LM2PR†P−1 , (4.29)

where

L ∈ SU(2)L , R ∈ SU(2)R , P ≡
(

e−iχ 0
0 eiχ

)
, (0 ≤ χ < 2π) . (4.30)

The phase angle χ can be interpreted as representing the freedom to rephase the field H2. In particular, if one definesM′
1 ≡ M1 and M′

2 ≡ M2P , then the transformation laws for M′
1 and M′

2 are the same, i.e. M′
a → LM′

aR
† for a = 1, 2.

The SU(2)L×SU(2)R scalar potential is constructed by employing the manifestly invariant combinations, Tr[M†
1M1],

Tr[M†
2M2] and Tr[M†

1M2P ].17 Explicitly,

V = 1
2Y1Tr[M†

1M1] +
1
2Y2Tr[M†

2M2] + Ỹ3Tr[M†
1M2P ] + 1

8Z1

(
Tr[M†

1M1]
)2

+ 1
8Z2

(
Tr[M†

2M2]
)2

+ 1
4Z3Tr[M†

1M1]Tr[M†
2M2] +

1
2λ

(
Tr[M†

1M2P ]
)2

+ 1
2

(
Z̃6Tr[M†

1M1] + Z̃7Tr[M†
2M2]

)
Tr[M†

1M2P ] , (4.31)

where hermiticity implies that all coefficients above are real. Eq. (4.31) is equivalent to

V = Y1H
†
1H1 + Y2H2

†H2 + [Y3H
†
1H2 + h.c.]

+ 1
2Z1(H

†
1H1)

2 + 1
2Z2(H2

†H2)
2 + Z3(H

†
1H1)(H2

†H2) + Z4(H
†
1H2)(H2

†H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H2

†H2)
]
H†

1H2 + h.c.
}

, (4.32)

where

Ỹ3 = Y3e
−iχ = Y ∗

3 eiχ ∈ R , λ = Z4 = Z5e
−2iχ = Z∗

5e2iχ ∈ R ,

Z̃6 = Z6e
−iχ = Z∗

6eiχ ∈ R , Z̃7 = Z7e
−iχ = Z∗

7eiχ ∈ R . (4.33)

17 Note that Tr[M†
1
M2P ] = Tr[M†

2
M1P−1], so only three independent invariant quadratic forms are possible.
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Eq. (4.33) implies that:

Im(Y3e
−iχ) = Im(Z5e

−2iχ) = Im(Z6e
−iχ) = Im(Z7e

−iχ) = 0 , (4.34)

which immediately implies that the scalar potential is CP-conserving. Hence according to eq. (4.33), the conditions
for custodial symmetry are given by

Z4 = Z5e
−2iχ ∈ R , Z6e

−iχ , Z7e
−iχ ∈ R . (4.35)

Note that the conditions of eq. (4.35) are basis-independent. In particular, under a basis transformation Φa → Uab̄Φb,

eiχ → (detU)−1eiχ . (4.36)

In the case of Z6 6= 0 and/or Z7 6= 0, one can relate the angle χ to θ23. In particular, by comparing eqs. (3.4) and
(4.34) it follows that e−iχ = ±ηe−iθ23 . The ± ambiguity is removed by squaring this result, which yields

e−2iχ = η2e−2iθ23 . (4.37)

The phase η2 is specified in Tables II and VI for the various cases under which CP conservation holds. In general,
the basis-independent condition for custodial symmetry is:

Z4 = η2Re(Z5e
−2iθ23) , (4.38)

where we have used the fact that Im(Z5e
−2iθ23) = 0 for a CP-conserving 2HDM scalar potential.18

One can also eliminate the phase angle χ using eq. (4.33):

e−2iχ =
Z∗

6

Z6
=

Z∗
7

Z7
. (4.39)

Consequently, if Z6 6= 0 then eq. (4.35) is equivalent to19

Z4 =
Z5Z

∗2
6

|Z6|2
= ε56|Z5| , (4.40)

where the invariant quantity ε56 was introduced initially in eq. (3.12). The condition for custodial symmetry given
by eq. (4.40) is manifestly basis-independent.20 Similarly, if Z7 6= 0, the basis-independent condition for custodial
symmetry can be written in the following form:

Z4 =
Z5Z

∗2
7

|Z7|2
= ε57|Z5| , (4.41)

where the invariant quantity ε57 was introduced initially in eq. (3.21). Finally, if ρQ 6= 0, then under the assumption
that Z6 6= 0 and/or Z7 6= 0, one can use eqs. (3.31) and (4.38) to obtain:21

Z4 = ε5Q|Z5| . (4.42)

In the real Higgs basis, defined as the basis in which the scalar potential parameters and the Yukawa coupling matrices
ρQ are simultaneously real, ε56, ε57 and ε5Q coincide with the sign of Z5. Thus eqs. (4.40), (4.41) and (4.42) reduce
to the simple relation, Z4 = Z5, in the real Higgs basis. This result is consistent with eq. (4.22) obtained previously.
Note that the condition Z4 = Z5 is invariant with respect to H2 → −H2, which is the only remaining basis freedom
within the real basis.

The special case of Z6 = Z7 = 0 must be treated separately. In this case, Y3 = 0 by virtue of eq. (2.15) and Z5 is the
only potentially complex parameter of the scalar potential in the Higgs basis. The condition for a custodial symmetric
scalar potential is now given by the single condition, Z4 = Z5e

−2iχ ∈ R [cf. eq. (4.35)]. Writing Z5 = |Z5|e2iθ5 , it

18 For Case III′ of Table VI, one must replace θ23 and η2 with θ23 and η2, respectively [cf. eq. (3.18)].
19 CP conservation requires that Im(Z5Z∗2

6 ) = Im(Z5Z∗2
7 ) = 0. Hence the numerators of eqs. (4.40) and (4.41) are manifestly real, as

required since Z4 is a real parameter.
20 Eq. (4.40) can also be obtained from eqs. (3.15) and (4.38), after noting that η4 = 1.
21 In deriving eq. (4.42) we used the fact that η4 = 1 in Cases I′ and II′, and η4 = 1 in Case III′
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follows that θ5 + χ = nπ/2 for some integer n. That is, the basis-independent condition for custodial symmetry is
given simply by:

Z4 = ±|Z5| . (4.43)

In contrast to eqs. (4.40), (4.41) and (4.42), where Z4 is uniquely determined (and is equal to Z5 in the real Higgs basis),
in the special case of Z6 = Z7 = 0, there are two solutions for Z4 that are consistent with a custodial symmetric
scalar potential. This result can also be deduced by noting that when Z6 = Z7 = 0, eqs. (3.4) and (4.34) yield
e−2iχ = ±ηe−2iθ23 , where the ± ambiguity cannot be removed [in contrast to eq. (4.37)]. Hence, when Z6 = Z7 = 0,
the basis-independent condition for custodial symmetry is [cf. footnote 18]:

Z4 = ±η2Re(Z5e
−2iθ23) , (4.44)

which again exhibits two possible solutions. Since η2 = ±1 and Im(Z5e
−2iθ23) = 0, eq. (4.44) is equivalent to eq. (4.43)

as expected.
The above results do not depend on the Yukawa coupling matrix ρQ. If ρQ = 0, then one is free to redefine

H2 → iH2, which has the effect of transforming Z5 → −Z5. In this case, the sign of Z5 in the real Higgs basis is
basis-dependent, and the two conditions Z4 = ±Z5 are equivalent. Nevertheless, there are still two solutions for Z4

since a custodial symmetric scalar potential is possible with either sign for Z4. If ρQ 6= 0, then the transformation
H2 → iH2 has the effect of transforming ρQ to iρQ. If the neutral Higgs–fermion interactions are CP-conserving, then
a real Higgs basis exists in which Z5 and ρQ are simultaneously real. In this case, the sign of Z5 in the real Higgs
basis is meaningful. In contrast to eq. (4.42), the condition for a custodial symmetric scalar potential, which can be
obtained directly from eqs. (3.31) and (4.44), is given by:

Z4 = ±ε5Q|Z5| . (4.45)

The existence of these two possible solutions when Z6 = Z7 = 0 has a critical impact on the nature of the Higgs mass
degeneracy in the custodial limit, as shown in the next subsection. If the neutral Higgs–fermion interactions are CP-
violating, then ε5Q has no meaning and eq. (4.45) must be discarded. Nevertheless, the conclusion that Z4 = ±|Z5|
for a custodial symmetric scalar potential with Z6 = Z7 = 0 still applies.

In summary, the basis-independent condition for a custodial-symmetric scalar potential is given by:

Z4 =





ε56|Z5| , for Z6 6= 0 ,

ε57|Z5| , for Z7 6= 0 ,

±|Z5| , for Z6 = Z7 = 0 .

(4.46)

The above conditions do not depend on the form of the neutral Higgs–fermion interactions. However, if the neutral
Higgs–fermion interactions are CP-conserving, then there exists an invariant quantity ε5Q, defined in eq. (3.29), which
is equal to the sign of Z5 in the real Higgs basis (where all scalar potential parameters and ρQ are real). In this case,
we also have

Z4 =

{
ε5Q|Z5| , for Z6 6= 0 and/or Z7 6= 0 ,

±ε5Q|Z5| , for Z6 = Z7 = 0 .
(4.47)

In a real Higgs basis, the general condition for a custodial symmetric scalar potential is Z4 = Z5. In the special case
of Z6 = Z7 = 0, the condition Z4 = −Z5 also yields a custodial symmetric scalar potential. These two conditions are
physically inequivalent when ρQ 6= 0.

4.1.3. Higgs mass degeneracy in the custodial limit

The squared-mass of the charged Higgs boson is given by eq. (2.22). If Z6 6= 0 and/or Z7 6= 0 and if CP is conserved
in the neutral Higgs sector, then the squared-mass of the CP-odd Higgs boson is given by eqs. (3.17) and (3.26), which
we can rewrite as:

m2
A0 =

{
m2

H± + 1
2v2(Z4 − ε56|Z5|) , if Z6 6= 0 ,

m2
H± + 1

2v2(Z4 − ε57|Z5|) , if Z7 6= 0 .
(4.48)
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In the custodial limit eq. (4.46) applies, and it follows that

m2
H± = m2

A0 = Y2 + 1
2Z3v

2 , (4.49)

in agreement with the results of [7]. That is, the charged Higgs boson and the CP-odd Higgs boson are mass-degenerate
in the custodial limit.

The case of Z6 = Z7 = 0 is special, as discussed in Section 3.3. In this case, there is one neutral CP-even Higgs
boson, denoted by h0

1, with squared-mass m2
h0
1

= Z1v
2 and two neutral Higgs states of indeterminate CP quantum

number, denoted by h0
2 and h0

3, with squared-masses given by eq. (3.28), which yields:

m2
h0
2
,h0

3

= m2
H± + 1

2v2(Z4 ∓ |Z5|) . (4.50)

According to eq. (4.46), Z4 = ±|Z5| in the custodial limit. We conclude that either one of the states h0
2 or h0

3 can be
degenerate in mass with the charged Higgs boson. However, the CP-quantum number of h0

2 and h0
3 are indeterminate

(if the Higgs-fermion interactions are neglected), since there are two inequivalent definitions of CP when Z6 = Z7 = 0.
This ambiguity can be resolved if the neutral Higgs-fermion interactions are CP-conserving.22 In this case, the two
neutral states can be identified as a CP-even state h0 or H0 and a CP-odd state A0. Using eqs. (4.47) and (3.28), it
follows that:

m2
H± =





m2
A0 if Z4 = ε5Q|Z5| and Z6 = Z7 = 0 ,

m2
h0 if Z4 = −ε5Q|Z5| , m2

H± < Z1v
2 and Z6 = Z7 = 0 ,

m2
H0 if Z4 = −ε5Q|Z5| , m2

H± > Z1v
2 and Z6 = Z7 = 0 .

(4.51)

where mH0 > mh0 by convention. In particular, m2
H± = m2

A0 if Z4 = Z5 in the real Higgs basis, whereas m2
H± = m2

H0

if Z4 = −Z5 in the real Higgs basis. This result is easy to understand. If Z4 = −Z5, we can perform a basis
transformation H2 → iH2, which yields Z4 = Z5 and ρQ → iρQ. The effect of the latter is to transform the
pseudoscalar Yukawa coupling of the neutral Higgs boson into a scalar Yukawa coupling. The case in which the
charged Higgs boson is mass-degenerate with the CP-even neutral Higgs boson corresponds to the case of “twisted
custodial symmetry” introduced in [16].

Although this final conclusion is the same, we disagree with the interpretation of “twisted custodial symmetry”
given in ref. [16]. As employed in ref. [16], the term “twisted” is associated with a particular choice of the angle
χ in the SU(2)L×SU(2)R transformation law of M2 given in eq. (4.29). However, we have shown above that this
angle is basis-dependent and thus has no physical significance. It is also argued in ref. [16] that custodial symmetry
plays a critical role in formulating the “twisted” scenario. We have shown above that the “twisted” scenario is a
consequence of the two-fold ambiguity in the definition of CP in the special case of Z6 = Z7 = 0 (in the absence of
the Higgs–fermion Yukawa couplings). This ambiguity exists whether or not the custodial symmetry is present, as
shown in Section 3.3. The custodial symmetry is relevant in the following sense. The possibility that m2

H± = m2
h0 or

m2
H± = m2

H0 arises precisely because the custodial symmetry condition Z4 = ±ε5Q|Z5| allows for a negative sign in
this relation if and only if Z6 = Z7 = 0.

4.2. Custodial symmetry in the Higgs-fermion sector for the general 2HDM

We now examine the Higgs-fermion Yukawa interactions in more detail, and discuss the implications of custodial
symmetry for this sector.

Custodial symmetry in the Yukawa Lagrangian was analyzed for the Type I and II 2HDM in [22]. Here we will
shall examine the general 2HDM without assuming additional conditions to restrict the terms of the Higgs–fermion
Yukawa Lagrangian. In a generic basis, the Higgs-fermion Lagrangian is given by eq. (2.24). It is convenient to rewrite
this Lagrangian in the following compact form:

−LY = QLΦ̃āηU
a UR + QLΦaηD †

ā DR + h.c. , (4.52)

22 If the neutral Higgs–fermion interactions are CP-violating, then the neutral Higgs state that is degenerate in mass with the charged
Higgs boson does not possess a well-defined CP quantum number.
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where U ≡ K†U , QL ≡ (U D)L, and Φa ≡
(

Φ+
a

Φ0
a

)
. In the Higgs basis, the corresponding Lagrangian given in

eq. (2.26) can likewise be expressed compactly as:

−LY = QL(H̃1κ
U + H̃2ρ

U )UR + QL(H1κ
D † + H2ρ

D †)DR + h.c. , (4.53)

where the basis-invariant coupling matrices κQ and ρQ are defined in eq. (2.25).

4.2.1. Basis-dependent formulation of custodial symmetry in the Higgs–fermion sector

We first examine the conditions for custodial symmetry of the Higgs-fermion Yukawa interactions in the two basis
choices of Pomarol and Vega following the results of Section 4.1.1. In Case 1, one writes the Yukawa interactions in
terms of the 2× 2 matrix fields M1 and M2 defined in eq. (4.6). The form of the Yukawa interactions invariant under
SU(2)L×SU(2)R is then given by:

−LY = η1QL M1

(
UR

DR

)
+ η2QL M2

(
UR

DR

)
+ h.c. , (4.54)

One can easily check that eq. (4.54) is manifestly invariant under the SU(2)L × SU(2)R transformations

Mi → LMiR
† , QL → QLL† ,

(
UR

DR

)
→ R

(
UR

DR

)
. (4.55)

Comparing with eq. (4.52) then yields the custodial symmetry conditions,

η1 = ηU
1 = ηD†

1 , η2 = ηU
2 = ηD†

2 . (4.56)

In Case 2, one writes the Yukawa interactions in terms of the 2 × 2 matrix fields

M12 ≡ (Φ̃1 , Φ2) , M21 ≡ (Φ̃2 , Φ1) , (4.57)

which transforms under SU(2)L×SU(2)R as

M12 → L M12 R† , M21 → L M21 R† . (4.58)

The form of the Yukawa interactions invariant under SU(2)L×SU(2)R is then given by:

−LY = η12QL M12

(
UR

DR

)
+ η21QL M21

(
UR

DR

)
+ h.c. . (4.59)

Comparing with eq. (4.52) then yields the custodial symmetry conditions,

η12 = ηU
1 = ηD†

2 , η21 = ηU
2 = ηD†

1 . (4.60)

As in Section 4.1.1, we can demonstrate that Cases 1 and 2 are equivalent and simply represent different choices of
the scalar field basis. To prove this assertion, we start from the basis of Case 2 and perform the basis transformation
to the Higgs basis as specified by the unitary matrix given by eq. (4.15). Then, κQ, ρQ are related to the Yukawa

coupling matrices ηQ
1 , ηQ

2 via
(

κQ

ρQ

)
=

1√
2

(
e−iθ eiθ

−ie−iθ ieiθ

) (
ηQ
1

ηQ
2

)
. (4.61)

Using the Case 2 custodial symmetry conditions given in eq. (4.60), it follows that:23

κU =
1√
2

(
eiθηU

2 + e−iθηU
1

)
= κD † , (4.62)

ρU =
i√
2

(
eiθηU

2 − e−iθηU
1

)
= ρD † . (4.63)

23 Using eq. (2.25) with bv1 = bv∗
2

= 1√
2

eiθ, one immediately reproduces eq. (4.62). The corresponding result for ρQ differs by an overall

factor of i. But, we are free to redefine the Higgs-basis field H2 → iH2, which yields ρQ → iρQ in agreement with eq. (4.63).
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That is, in the Higgs basis, the Case 1 custodial symmetry conditions given by eq. (4.56) are satisfied. Moreover,
these conditions are preserved under any additional O(2) basis transformation. Thus, we have verified that Cases 1
and 2 of Pomarol and Vega, including the SU(2)L×SU(2)R Higgs–fermion Yukawa interactions specified above, are
equivalent and simply represent different choices of the scalar field basis.

Using eq. (2.28), the condition κU = κD † is equivalent to the equality of the up and down-type fermion mass
matrices,

MU = MD , (4.64)

which is clearly a basis-independent condition. However, the condition ρU = ρD † is not quite basis-independent, as ρQ

is a pseudo-invariant quantity. At this stage, eq. (4.63) has been obtained in a real Higgs basis. In the next subsection,
we obtain the basis-independent conditions for custodial symmetry of the Higgs–fermion Yukawa interactions.

4.2.2. Basis-independent formulation of custodial symmetry in the Higgs–fermion sector

Following Section 4.1.2, we introduce the 2×2 matrix fields in the Higgs basis, denoted by M1 and M2 [cf. eq. (4.26)],
whose transformation properties under SU(2)L×SU(2)R are given by eqs. (4.29) and (4.30). Note that the transfor-
mation law for M2 includes a phase angle degree of freedom χ that reflects the freedom to rephase the Higgs-basis
field H2. The form of the Yukawa interactions invariant under SU(2)L×SU(2)R is then given by:

−LY = κQL M1

(
UR

DR

)
+ ρQL M2P

(
UR

DR

)
+ h.c. , (4.65)

where P ≡ diag(e−iχ , eiχ). Comparing with eq. (4.53) yields,

κ = κU = κD † , ρ = eiχρU = e−iχρD † . (4.66)

The first condition above implies MU = MD, which reproduces the result of eq. (4.64). The second condition is basis
independent in light of eqs. (2.27) and (4.36).

For a generic custodial-symmetric Higgs–fermion Yukawa interaction, the matrices ρU and ρD are correlated ac-
cording to eq. (4.66), but they can be non-diagonal and complex. Thus, the custodial symmetry does not imply
CP-conserving neutral Higgs–fermion couplings. However, we can impose CP-conservation of the neutral Higgs-
fermion interactions if the conditions listed in eq. (3.2) are respected. An equivalent set of conditions (which are more
useful as they do not rely on Z5, Z6 and Z7) is given by eq. (3.5). In this case, it is convenient to use eq. (4.37) to
rewrite the second condition of eq. (4.66) as follows,24

eiθ23ρU = η2[eiθ23ρD]† , (4.67)

which is manifestly basis-independent. The sign factor η2 is given in Tables II and VI. If Z6 = Z7 = 0, then Table VI
applies with Z7e

−iθ23 replaced by ρQeiθ23 (Q = U, D). In particular, note that for a CP-conserving Higgs–fermion
interaction, Im(ρUeiθ23) = Im(ρDeiθ23) = 0 if η = +1 and Re(ρUeiθ23) = Re(ρDeiθ23) = 0 if η = −1.

5. THE OBLIQUE PARAMETERS S, T AND U

The S, T , and U parameters, introduced by Peskin and Takeuchi [8], are independent ultraviolet-finite combinations
of radiative corrections to gauge boson two-point functions (the so-called “oblique” corrections). The parameter T
is related to the well known ρ-parameter of electroweak physics [23] by ρ − 1 = αT . The oblique parameters can be

24 As usual, in Case III′ of Table VI, one must replace θ23 and η2 with θ23 and η2, respectively [cf. eq. (3.18)].
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expressed in terms of the transverse part of the gauge boson two-point functions [19, 24]:25

α T ≡ Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

, (5.1)

α

4s2
Zc2

Z

S ≡ Πnew
ZZ (m2

Z) − Πnew
ZZ (0)

m2
Z

−
(

c2
W − s2

W

cW sW

)
Πnew

Zγ (m2
Z)

m2
Z

−
Πnew

γγ (m2
Z)

m2
Z

, (5.2)

α

4s2
Zc2

Z

(S + U) ≡ Πnew
WW (m2

W ) − Πnew
WW (0)

m2
W

− c̄W

s̄W

Πnew
Zγ (m2

W )

m2
W

−
Πnew

γγ (m2
W )

m2
W

, (5.3)

where s̄W ≡ sin θW (mZ), c̄W ≡ cos θW (mZ), and α ≡ ḡ2s̄2
Z
/(4π) are defined in the MS scheme evaluated at mZ .

The Πnew
VaVb

are the new physics contributions to the one-loop Va—Vb vacuum polarization functions. New physics
contributions are defined as those that enter relative to the Standard Model with a particular choice of the Standard
Model Higgs mass (denoted in what follows by mφ). In ref. [19], the value of mφ = 117 GeV is chosen.

In the linear approximation [8], which is a good approximation if the energy scale new physics that contributes to
the oblique parameters is significantly larger than mZ , we may approximate:

Πnew
ij (q2) ≃ Aij(0) + q2Fij(q

2) . (5.4)

Electromagnetic gauge invariance implies that:26

Aγγ(0) = AZγ(0) = 0 . (5.5)

In the linear approximation, the oblique parameters take the following form [25]

αT ≡ AWW (0)

m2
W

− AZZ(0)

m2
Z

(5.6)

g2

16πc2
W

S ≡ FZZ (m2
Z) − Fγγ(m2

Z) −
(

c2
W − s2

W

sW cW

)
FZγ(m2

Z) (5.7)

g2

16π
(S + U) ≡ FWW (m2

W ) − Fγγ(m2
W ) − cW

sW
FZγ(m2

W ) , (5.8)

where we have dropped the bars for ease of notation.
The S, T and U parameters are defined relative to the Standard Model, so that S = T = U = 0 corresponds to the

Standard Model with a particular “reference” choice of the Higgs mass mφ. The 2HDM yields new contributions to
S, T and U that in general shift their values away from zero. To compute the 2HDM contributions to S, T and U , we
evaluate the relevant one-loop gauge boson polarization functions in which the Higgs bosons appear as intermediate
states, and then subtract out the corresponding contributions due to the Standard Model Higgs boson of mass mφ.
In our computations, we initially leave mφ as a free parameter.

5.1. 2HDM contributions to S, T and U

The derivations of S, T and U are provided in Appendix D. The 2HDM contributions to S are given by:

S =
1

πm2
Z

{
3∑

k=1

q2
k1

[
B22(m

2
Z ; m2

Z , m2
k) − m2

ZB0(m
2
Z ; m2

Z , m2
k)

]

+q2
11B22(m

2
Z ; m2

2, m
2
3) + q2

21B22(m
2
Z ; m2

1, m
2
3) + q2

31B22(m
2
Z ; m2

1, m
2
2)

−B22(m
2
Z ; m2

H± , m2
H±) − B22(m

2
Z ; m2

Z , m2
φ) + m2

ZB0(m
2
Z ; m2

Z , m2
φ)

}
, (5.9)

25 In the definition of U , we differ slightly from that of ref. [19] by evaluating Πnew
Zγ and Πnew

γγ at m2
W (instead of m2

Z ). This choice was

advocated in ref. [24].
26 Although ΠZγ(0) 6= 0 (when all Standard Model contributions are included), the new physics contributions to ΠZγ(0) considered in

this paper can be shown to vanish as a consequence of electromagnetic gauge invariance.
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where

B22(q
2; m2

1, m
2
2) ≡ B22(q

2; m2
1, m

2
2) − B22(0; m2

1, m
2
2) , (5.10)

B0(q
2; m2

1, m
2
2) ≡ B0(q

2; m2
1, m

2
2) − B0(0; m2

1, m
2
2) , (5.11)

and the mk are the masses of the neutral Higgs hk (k = 1, 2, 3). The functions B22 and B0 appearing in eqs. (5.10)
and (5.11), defined in ref. [26], arise in the evaluation of the two-point loop integrals. They can be evaluated in
dimensional regularization using the following formulae of ref. [25]:

B22(q
2; m2

1, m
2
2) = 1

4 (∆ + 1)[m2
1 + m2

2 − 1
3q2] − 1

2

∫ 1

0

dxX ln(X − iǫ), (5.12)

B0(q
2; m2

1, m
2
2) = ∆ −

∫ 1

0

dx ln(X − iǫ), (5.13)

where

X ≡ m2
1x + m2

2(1 − x) − q2x(1 − x) , ∆ ≡ 2

4 − d
+ ln 4π − γ , (5.14)

in d space-time dimensions. Note that

B22(q
2; m2

1, m
2
2) = B22(q

2; m2
2, m

2
1) , B0(q

2; m2
1, m

2
2) = B0(q

2; m2
2, m

2
1) . (5.15)

The 2HDM contributions to T and U + S are given by:

T =
1

16πm2
W s2

W

{
3∑

k=1

|qk2|2F(m2
H± , m2

k) − q2
11F(m2

2, m
2
3) − q2

21F(m2
1, m

2
3) − q2

31F(m2
1, m

2
2)

+

3∑

k=1

q2
k1

[
F(m2

W , m2
k) −F(m2

Z , m2
k) − 4m2

W B0(0; m2
W , m2

k) + 4m2
ZB0(0; m2

Z , m2
k)

]]

+F(m2
Z , m2

φ) −F(m2
W , m2

φ) + 4m2
W B0(0; m2

W , m2
φ) − 4m2

ZB0(0; m2
Z , m2

φ)

}
, (5.16)

S + U =
1

πm2
W

{
−

3∑

k=1

q2
k1m

2
WB0(m

2
W ; m2

W , m2
k) + m2

WB0(m
2
W ; m2

W , m2
φ) − B22(m

2
W ; m2

W , m2
φ)

+
3∑

k=1

[
q2
k1B22(m

2
W ; m2

W , m2
k) + |qk2|2B22(m

2
W ; m2

H± , m2
k)

]
− 2B22(m

2
W ; m2

H± , m2
H±)

}
, (5.17)

where the function F is defined by

F(m2
1, m

2
2) ≡ 1

2 (m2
1 + m2

2) −
m2

1m
2
2

m2
1 − m2

2

ln

(
m2

1

m2
2

)
. (5.18)

Note that

F(m2
1, m

2
2) = F(m2

2, m
2
1) , F(m2, m2) = 0 . (5.19)

One can simplify the expression for T by making use of the identity:

m2
1B0(0; m2

1, m
2
3) − m2

2B0(0; m2
2, m

2
3) = F(m2

1, m
2
3) −F(m2

2, m
2
3) + A0(m

2
1) − A0(m

2
2) − 1

2 (m2
1 − m2

2) , (5.20)

where

A0(m
2) ≡ m2(∆ + 1 − lnm2) . (5.21)
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TABLE X:
Case I: s13 = 0. In a real basis,

e−iθ23 = sgn Z6 ≡ ε6. The neutral
Higgs fields are h1 = h0,

h2 = −ε6H
0 and h3 = ε6A

0. The
angular factors are c12 = sin(β − α)

and s12 = −ε6 cos(β − α).

k qk1 qk2

1 c12 −s12

2 s12 c12

3 0 i

TABLE XI:
Case IIa: s12 = 0. In a real basis,

e−iθ23 = i sgn Z6 ≡ iε6. The
neutral Higgs fields are h1 = h0,
h2 = ε6A

0 and h3 = ε6H
0. The

angular factors are c13 = sin(β − α)
and s13 = ε6 cos(β − α).

k qk1 qk2

1 c13 −is13

2 0 1
3 s13 ic13

TABLE XII:
Case IIb: c12 = 0. In a real basis,

e−iθ23 = i sgn Z6 ≡ iε6. The
neutral Higgs fields are h1 = ε6A

0,
h2 = −h0 and h3 = ε6H

0. The
angular factors are c13 = sin(β − α)

and s13 = ε6 cos(β − α).

k qk1 qk2

1 0 1
2 −c13 is13

3 s13 ic13

Applying the identity of eq. (5.20) in the expression for T then yields:

T =
1

16πm2
W s2

W

{
3∑

k=1

|qk2|2F(m2
H± , m2

k) − q2
11F(m2

2, m
2
3) − q2

21F(m2
1, m

2
3) − q2

31F(m2
1, m

2
2)

+3

3∑

k=1

q2
k1

[
F(m2

Z , m2
k) −F(m2

W , m2
k)

]
− 3

[
F(m2

Z , m2
φ) −F(m2

W , m2
φ)

]
}

, (5.22)

which reproduces the result first obtained in ref. [7]. In particular, note that terms in eq. (5.20) of the form A0(m
2
1)−

A0(m
2
2) − 1

2 (m2
1 − m2

2) are independent of m2
3 and hence cancel out exactly in eq. (5.22).

Using eqs. (5.9) and (5.17), we can isolate the U -parameter,

U = G(m2
W ) − G(m2

Z) +
1

πm2
W

{
3∑

k=1

[|qk2|2B22(m
2
W ; m2

H± , m2
k) − 2B22(m

2
W ; m2

H± , m2
H±)

}

− 1

πmZ

{
q2
11B22(m

2
Z ; m2

2, m
2
3) + q2

21B22(m
2
Z ; m2

1, m
2
3) + q2

31B22(m
2
Z ; m2

1, m
2
2) − B22(m

2
Z ; m2

H± , m2
H±)

}
,

(5.23)

where

G(m2
V ) ≡ 1

πm2
V

{
3∑

k=1

q2
k1

[
B22(m

2
V ; m2

V , m2
k) − m2

V B0(m
2
V ; m2

V , m2
k)

]
− B22(m

2
V ; m2

V , m2
φ) + m2

V B0(m
2
V ; m2

V , m2
φ)

}
.

(5.24)

5.2. S, T , and U in the CP-conserving limit

To obtain S, T and U in the CP-conserving limit, we must identify the values of qk1 and qk2 and the corresponding
neutral Higgs masses mk in the CP-conserving limit. For example, in ref. [2], the values of the qkℓ and mk were
obtained for Cases I, IIa and IIb defined in Section 3.1. For the reader’s convenience, we reproduce those results
here in Tables X–XII. These three cases correspond to three different mass orderings of the neutral Higgs bosons (by
assumption, we assume here that mh1

< mh2
< mh3

).
In the CP-conserving limit, it is traditional to employ the factors cos(β −α) and sin(β −α), where α is the mixing

angle obtained from diagonalizing the 2 × 2 CP-even Higgs squared-mass matrix in a generic real basis [12]. These
angle factors are related to the qkℓ as indicated in the captions to Tables X–XII. The results for S, T and U do
not depend on which Case is employed to compute the qkℓ, since the different cases simply correspond to different
mass-orderings of the neutral Higgs bosons. Plugging in the values of the qkℓ parameters from any of the Cases
exhibited in Tables X–XII into eqs. (5.9)–(5.17), and choosing the reference Higgs mass mφ = mh0 (where h0 is the
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lightest CP-even neutral Higgs boson), we obtain:

S =
1

πm2
Z

{
−B22(m

2
Z ; m2

H± , m2
H±) + sin2(β − α)B22(m

2
Z ; m2

H0 , m2
A0)

+ cos2(β − α)
[
B22(m

2
Z ; m2

h0 , m2
A0) + B22(m

2
Z ; m2

Z , m2
H0) − B22(m

2
Z ; m2

Z , m2
h0)

−m2
ZB0(m

2
Z ; m2

Z , m2
H0) + m2

ZB0(m
2
Z ; m2

Z , m2
h0)

]}
, (5.25)

T =
1

16πs2
W m2

W

{
F(m2

H± , m2
A0) + sin2(β − α)

[
F(m2

H± , m2
H0) −F(m2

A0 , m2
H0)

]

+ cos2(β − α)
[
F(m2

H± , m2
h0) −F(m2

A0 , m2
h0) + F(m2

W , m2
H0 ) −F(m2

W , m2
h0)

−F(m2
Z , m2

H0) + F(m2
Z , m2

h0) + 4m2
ZB0(0; m2

Z , m2
H0) − 4m2

ZB0(0; m2
Z , m2

h0)

−4m2
W B0(0; m2

W , m2
H0) + 4m2

W B0(0; m2
W , m2

h0)
]}

, (5.26)

S + U =
1

πm2
W

{
B22(m

2
W ; m2

H± , m2
A0) − 2B22(m

2
W ; m2

H± , m2
H±) + sin2(β − α)B22(m

2
W ; m2

H± , m2
H0)

+ cos2(β − α)
[
B22(m

2
W ; m2

h0 , m2
H±) + B22(m

2
W ; m2

W , m2
H0 ) − B22(m

2
W ; m2

W , m2
h0)

+m2
WB0(m

2
W ; m2

W , m2
H0) − m2

WB0(m
2
W ; m2

W , m2
h0)

]}
. (5.27)

The above results agree with results previously obtained in refs. [25] and [27].27

5.3. T and U and the custodial limit

In the custodial symmetric limit, both the T and U -parameters must vanish [8]. Using eq. (5.22), we can verify
this behavior. In the 2HDM, custodial symmetry-breaking arises from two sources. The first source is the gauged
U(1)-hypercharge interactions that are always present. The second source is the custodial symmetry-breaking terms
of the scalar potential. Let us look at both sources in turn.

We can formally restore custodial symmetry in the gauge sector by taking the limit of g′ → 0 (in which case,
mZ = mW ). If we set mW = mZ in eq. (5.22), we see that the second line of this equation vanishes. That is, the
second line of eq. (5.22) is a consequence of the gauged U(1)-hypercharge interactions. Formally, this term must be
proportional to g′. Noting that

α

s2
W m2

W

=
g2

4π2m2
W

=
g′ 2

4π(m2
Z − m2

W )
, (5.28)

it follows that

αT =
3g′ 2

64π2(m2
Z − m2

W )

{
3∑

k=1

q2
k1

[
F(m2

Z , m2
k) −F(m2

W , m2
k)

]
−F(m2

Z , m2
φ) + F(m2

W , m2
φ)

}

+
g2

64πm2
W

{
3∑

k=1

|qk2|2F(m2
H± , m2

k) − q2
11F(m2

2, m
2
3) − q2

21F(m2
1, m

2
3) − q2

31F(m2
1, m

2
2)

}
. (5.29)

In this form, one can explicitly identify the term in T proportional to g′ as the piece that arises from the gauged
U(1)-hypercharge interactions.28

27 In eq. (3.47) of ref. [25], there is a typographical error in the expression for T . The right bracket at the end of the third line of eq. (3.47)
is misplaced and should appear at the end of the fifth line.

28 Note that the expression in eq. (5.29) that multiplies g′ 2 approaches a finite limit as mZ → mW . Hence, the entire term does indeed
vanish in the custodial symmetry limit as expected.



25

The term proportional to g in eq. (5.29) arises as a consequence of custodial symmetry breaking in the scalar
potential. Thus, we should verify that this term vanishes in the limit of a custodial symmetric scalar potential. In
this limit, CP is conserved, so we may use the results of Table X–XII to evaluate eq. (5.29) [any one of the three
Cases can be used as noted in the previous subsection]. For convenience, we again choose mφ = mh0 , in which case,

αT =
3g′2 cos2(β − α)

64π2(m2
Z − m2

W )

{
F(m2

Z , m2
H0) −F(m2

W , m2
H0) −F(m2

Z , m2
h0) + F(m2

W , mm0
h

)

}

+
g2

64πm2
W

{
F(m2

H± , m2
A0) + sin2(β − α)

[
F(m2

H± , m2
H0 ) −F(m2

A0 , m2
H0)

]

+ cos2(β − α)
[
F(m2

H± , m2
h0) −F(m2

A0 , m2
h0)

]
}

. (5.30)

For a custodial symmetric scalar potential, the term proportional to g2 in eq. (5.30) must vanish, i.e.

F(m2
H± , m2

A0) + sin2(β − α)
[
F(m2

H± , m2
H0) −F(m2

A0 , m2
H0)

]
+ cos2(β − α)

[
F(m2

H± , m2
h0) −F(m2

A0 , m2
h0)

]
= 0 .
(5.31)

In Section 4.1.3, we demonstrated that for a custodial symmetric scalar potential, m2
H± = m2

A0 [cf. eq. (4.49)], in
nearly all cases. Indeed, for sin(β − α) cos(β − α) 6= 0, the only solution to eq. (5.31) is m2

H± = m2
A0 . However,

we identified the special case of Z6 = Z7 = 0 in which the custodial symmetric scalar potential could also yield
m2

H± = m2
h0 or m2

H± = m2
H0 [cf. eq. (4.51)]. For example, by comparing Table X with Tables VII and VIII, we see

that the special case of Z6 = Z7 = 0 corresponds to cos(β − α) = 0 and sin(β − α) = 0, respectively. In these two
cases, eq. (5.31) reduces to the following two equations:

F(m2
H± , m2

A0) + F(m2
H± , m2

H0) −F(m2
A0 , m2

H0) = 0 , if cos(β − α) = 0 , (5.32)

F(m2
H± , m2

A0) + F(m2
H± , m2

h0) −F(m2
A0 , m2

h0) = 0 if sin(β − α) = 0 . (5.33)

Of course, m2
H± = m2

A0 remains as a possible solution to both of the above equations. But, for each equation above,
a second solution exists, namely m2

H± = m2
H0 for eq. (5.32) and m2

H± = m2
h0 for eq. (5.33). Thus, we confirm that

in the case of Z6 = Z7 = 0, the custodial symmetric mass relations identified in eq. (4.51) are consistent with the
vanishing of the T parameter (in the limit of g′ = 0 and mW = mZ).

So far, we have focused on the contributions of the bosonic sector of the 2HDM to the T parameter. In addition,
there are also fermion loop contributions since the Higgs–fermion Yukawa interactions can also violate the custodial
symmetry. However, at one-loop, the only custodial-violating contribution to the T -parameter arises due to the non-
degeneracy of the up and down fermion mass matrices. But, this effect also is present in the Standard Model with
one Higgs doublet, as first noted in ref. [23]. New custodial symmetry breaking effects in the Higgs–fermion Yukawa
interactions that are present due to the second Higgs doublet must involve ρQ. Since the dependence of the gauge
boson polarization functions on ρQ only enters at two loops in the perturbative expansion, we shall not include them
in the present analysis. It would be an interesting exercise to verify that the corresponding two-loop contributions to
the T parameter vanish exactly in the custodial symmetric limit specified in eq. (4.67).

The analysis of the U -parameter is similar. Using eqs. (5.23) and (5.24), we see that when mW = mZ , the general
expression for U reduces to:

U =
1

πm2
W

{
3∑

k=1

[|qk2|2B22(m
2
W ; m2

H± , m2
k) − q2

11B22(m
2
W ; m2
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}
. (5.34)

In the CP-conserving limit (with mW = mZ),
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. (5.35)
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If sin(β − α) cos(β − α) 6= 0, then U = 0 if and only if m2
H± = m2

A0 . In the special case of Z6 = Z7 = 0, it follows
that either sin(β − α) = 0 or cos(β − α) = 0, in which case U = 0 when

B22(m
2
W ; m2

H± , m2
A) − B22(m

2
W ; m2

H± , m2
H±) + B22(m

2
W ; m2

H± , m2
H0) − B22(m

2
W ; m2

H0 , m2
A0) = 0 ,

if cos(β − α) = 0 , (5.36)

B22(m
2
W ; m2

H± , m2
A) − B22(m

2
W ; m2

H± , m2
H±) + B22(m

2
W ; m2

H± , m2
h0) − B22(m

2
W ; m2

h0 , m2
A0) = 0 ,

if sin(β − α) = 0 . (5.37)

Of course, m2
H± = m2

A0 remains as a possible solution to both of the above equations. But, for each equation above,
a second solution exists, namely m2

H± = m2
H0 for eq. (5.37) and m2

H± = m2
h0 for eq. (5.37). Thus, we confirm that

in the case of Z6 = Z7 = 0, the custodial symmetric mass relations identified in eq. (4.51) are consistent with the
vanishing of the U parameter.

5.4. S, T and U in the decoupling limit

In the decoupling limit of the 2HDM [28], one neutral Higgs boson, conventionally denoted by h1, is kept light, with
mass m1 <∼ O(mZ), and the other neutral Higgs bosons h2 and h3 and the charged Higgs boson H± have masses of
order Λ ≫ mZ . In Appendix E, the Higgs masses and invariant mixing angles are evaluated in the decoupling limit.
The resulting masses are given in eqs. (E.21)–(E.24) and the invariant mixing angles are given in eq. (E.28). The
explicit forms for the qki given in Table I are given by

q2
11 ≃ |q22|2 ≃ |q32|2 ≃ 1 −O

(
v4

Λ4

)
, q2

21 ≃ q2
31 ≃ |q12|2 ≃ O

(
v4

Λ4

)
. (5.38)

We now turn to the computation of the oblique parameters in the decoupling limit. As a first step, we eliminate
q11 in favor of q21 and q31 using the identity,

3∑

i=1

q2
k1 = 1 . (5.39)

It is also convenient to set the reference Higgs mass mφ = m1. Then, one can write the general expression for S as
follows:
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Employing the decoupling limit conditions of eq. (5.38),
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. (5.41)

Using eqs. (E.29)–(E.31) and noting the expansion,

B22(m
2
Z ; Λ2 + av2, Λ2 + bv2) = − 1

12m2
Z

[
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2Λ2
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+ O

(
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, (5.42)

it then follows that:

S ≃ m2
2 + m2

3 − 2m2
H±

24πm2
3

=
Z4v

2

24πm2
3

, (5.43)

where terms of O(v2/Λ4) have been neglected.
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One can evaluate T in a similar manner. Setting mφ = m1 in eq. (5.16), and employing the decoupling limit
conditions of eq. (5.38), we obtain:

T =
1

16πs2
W m2
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[
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. (5.44)

Using eqs. (E.29)–(E.31) and noting the expansion,

F(Λ2 + av2, Λ2 + bv2) ≃ 1
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+ O

(
v4

Λ4

)]
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it then follows that:

T ≃ (m2
H± − m2

3)(m
2
H± − m2

2)

48πs2
Wm2

W m2
3

=
(Z2

4 − |Z5|2)v2

48πe2m2
3

, (5.46)

after using e = gsW = 2sW mW /v. In the custodial limit, H± is degenerate in mass with either h2 or h3,
29 in which

case T must vanish. Indeed, eq. (5.46) satisfies this requirement. This result is not surprising since to leading order
in the decoupling limit, we may set cos(β − α) = 0 in which case eq. (5.32) applies.

As a check of the above computations, one can use eqs. (5.43) and (5.46) to calculate the contributions of the Higgs
sector of the minimal supersymmetric Standard Model (MSSM) to S and T in the decoupling limit. The quartic
couplings of the MSSM Higgs potential, defined in a supersymmetric basis [29], satisfy:

λ1 = λ2 = 1
4 (g2 + g′ 2) , λ3 = 1

4 (g2 − g′ 2) , λ4 = − 1
2g2 , λ5 = λ6 = λ7 = 0 , (5.47)

where the λi are defined in eq. (4.2). In the supersymmetric basis, the ratio of vacuum expectation values is tanβ ≡
v2/v1. Since the MSSM Higgs sector is CP-conserving, one can transform to the real Higgs basis, which yields:

Z1 = Z2 = 1
4 (g2 + g′ 2) cos2 2β , Z5 = 1

4 (g2 + g′ 2) sin2 2β , Z7 = −Z6 = 1
4 (g2 + g′ 2) sin 2β cos 2β ,

(5.48)

Z3 = 1
4

[
(g2 + g′ 2) sin2 2β + g2 − g′ 2

]
, Z4 = 1

4

[
(g2 + g′ 2) sin2 2β − 2g2

]
. (5.49)

Note that Z5 > 0 which means that ε56 = ε57 = +1. Using eqs. (2.22) and (3.17) yields the exact (tree-level) mass
relation,

m2
H± = m2

A0 + m2
W . (5.50)

Moreover, in the decoupling limit, eq. (E.30) yields m2
H0 = m2

A0 + Z5v
2 + O(v2/m2

A0), which can be rewritten using
eq. (5.48),

m2
H0 = m2

A0 + m2
Z sin2 2β + O(v2/m2

A0). (5.51)

Substituting eqs. (5.48) and (5.49) [or equivalently, eqs. (5.50) and (5.51)] into eqs. (5.43) and (5.46) yields
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Z sin2 2β − 2m2

W

24πm2
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,

TMSSM ≃ m2
W − m2

Z sin2 2β

48πs2
W m2

A0

, (5.52)

which reproduce the results previously obtained in ref. [25].
Finally, we examine U in the decoupling limit. Setting mφ = m1 in eq. (5.17) and employing the decoupling limit

conditions of eq. (5.38), we obtain:

S + U =
1

πm2
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[
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29 In general H± is degenerate in mass with A0 whose identity (either h2 or h3) is determined from eqs. (E.32) and (E.33). If Z6 = Z7 = 0,
H± may instead be degenerate in mass with H0 in the custodial limit as noted in eq. (4.51). Of course, in the decoupling limit H± can
never be degenerate in mass with h0 since mh0 ≪ mH± .
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Using eqs. (E.22) and (E.23) and eq. (5.42), we obtain:

S + U ≃ m2
2 + m2

3 − 2m2
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24πc2
W m2

3
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2

24πc2
W m2

3
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S

c2
W

. (5.54)

Finally, we use eq. (5.43) to isolate U :

U ≃ S tan2 θW . (5.55)

In the custodial limit where g′ = 0, it follows that tan θW = 0, in which case U = 0. Remarkably, we find that U = 0 in
this limit independently of the values of the neutral Higgs masses. Thus, custodial symmetry breaking effects arising
from the scalar potential do not generate a non-zero value for U at O(v2/Λ2) in the approach to the decoupling
limit. However, eqs. (5.35)–(5.37) imply that a non-zero value for U would be generated at order O(v4/Λ4). This
observation suggests that U ≪ T over a significant range of the 2HDM parameter space, a fact that can be verified
numerically.

6. NUMERICAL ANALYSIS

The parameters S, T and U obtained from an analysis of precision electroweak data are found to be [19]:

S = 0.01 ± 0.10,

T = 0.03 ± 0.11,

U = 0.06 ± 0.10, (6.1)

relative to the Standard Model, with a reference Higgs mass of mφ = 117 GeV. Similar results have been obtained
by the GFITTER collaboration [20]. Alternatively, if one assumes that U = 0 (typically, one expects U ≪ S in many
models of new physics beyond the Standard Model), then the corresponding analysis of S and T yields [19]:

S = 0.03 ± 0.09 , T = 0.07 ± 0.08 . (6.2)

These limits indicate that new physics contributions to the oblique parameters are tightly constrained. In particular,
if one assumes that the new physics contributions to S, T and U arise solely from the 2HDM sector, then eqs. (6.1)
and (6.2) would constrain the parameters of the 2HDM scalar potential. Such studies have appeared in the literature
in a less general framework. For example, in ref. [30], ρ ≡ αT was used to constrain a modified version of the 2HDM
in which certain scalar couplings were set equal to zero, and tanβ was assumed to be a physical observable. In
our approach, only basis-independent quantities are employed. A full numerical study of the constraints of precision
electroweak data on the general 2HDM contributions to the oblique parameters will be presented elsewhere (for a
preliminary study, see ref. [31]). In this section, we shall outline our analysis methods and describe some of the key
results and features of our study.

The parameters of the 2HDM that are constrained by S, T , and U can be taken to be Z1, Z3, Z3 + Z4, Z5 e−2iθ23 ,
Z6 e−iθ23 and Y2, since these 6 quantities determine the physical Higgs masses [cf. eqs. (2.17) and (2.22)] and the
invariant quantities qkℓ [specified in Table I]. We impose one theoretical constraint by demanding that the |Zi| do
not exceed upper bounds corresponding to the requirement that all bosonic scattering amplitudes satisfy tree-level
unitarity (the relevant upper bounds are derived in Appendix F). In order to compare with the determination of
of S, T and U in ref. [19], we fix the reference Higgs mass at mφ = 117 GeV. The procedure used here to study
the effect of the 2HDM on the oblique parameters was to choose random values of the six parameters in the space
allowed by the tree-level unitarity bounds. Then the Higgs masses and qkℓ are calculated numerically and inserted
into eqs. (5.9)–(5.17) to obtain S, T , and U for each point in the parameter space.

In our first study, we imposed an additional requirement that the mass of the lightest neutral Higgs boson, m1, fall
within 10 GeV of the reference Higgs mass. It was found that the 2HDM consistently produces values of U within
0.02 of zero. Thus, in order to derive constraints on the 2HDM parameters, one can reliably set U = 0 and compare
the computed S and T values of the 2HDM with the results given in eq. (6.2). Scanning the 2HDM parameter space
and comparing with the allowed 2 σ contour ellipse in S–T plane produces the results shown in Fig. 1.

From the scatter plots shown in Fig. 1, it is evident that the values of S produced are all consistent with the
experimental constraints of eq. (6.2). In contrast, there are many points that lie outside the allowed range for T .
These points correspond to 2HDM parameters that significantly violate the custodial symmetry of the scalar potential.
In particular, one must have a significant splitting between the masses of the H± and one of the heavy neutral Higgs
bosons (identified in the generic CP-conserving 2HDM as A0). This region of parameter space is very far away from
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FIG. 1: Scatter plots for T as a function of S, with m1 = 117 ± 10 GeV. The ellipses, representing the 1 σ and 2 σ contours
allowed by precision electroweak data, are based on ref. [19], with the parameter U fixed to zero. Plot (a) shows the expanded
view in the S–T plane, and plot (b) shows a close-up view of the allowed region.

the decoupling region in which the 2HDM contributions to T are quite small. When T is large, the large values of the
corresponding heavy Higgs masses are driven primarily by large values of the Ziv

2 that compete with (and in some
regions dominate) the contribution of Y2. Even though the maximal values of the Zi are constrained by tree-level
unitarity, there is still a robust region of the 2HDM parameter space in which |T | lies significantly outside of the
interval allowed by eq. (6.2). It is also interesting to note that both positive and negative signs for T are allowed,
with roughly equal probability over the 2HDM parameter space.

In the analysis above, we have fixed the value of the lightest neutral Higgs mass, m1, to be close to 117 GeV. One
can now investigate the consequence of relaxing this assumption. First, consider the decoupling limit of the 2HDM
where m1 ≪ m2, m3. As m1 increases (in a mass regime in which h1 is still significantly lighter than h2 and h3), we
should simply reproduce the known constraints of precision electroweak observables on the mass of m1. As a concrete
example, consider the following input parameters:

mφ = 117 GeV, Z1 = 0.227, Y2 = (1 TeV)2, (6.3)

with all other invariant Z parameters equal to 0.01. The mass spectrum corresponding to these values is m1 = 117
GeV, m2 = m3 = mH± = 1 TeV. As expected, in this limit one finds that S ≃ T ≃ 0. As Z1 is increased from 0.227
to 0.505, m1 increases from 117 GeV to 175 GeV, at which point T and S exceed the boundary of the 2 σ ellipse. In
Fig. 2, the resulting S and T are shown as m1 is varied from 117 GeV to 500 GeV.

If we depart significantly from the decoupling limit, then the custodial-symmetry breaking mass splitting between
the H± and one of the heavy neutral Higgs states can contribute positively to T and offset the negative T values
shown in Fig. 2. In this way, values of the lightest Higgs boson mass above 150 GeV may still be consistent with
precision electroweak data. This possibility is illustrated by the following example. With mφ fixed at 117 GeV, let
us choose Y2 = (50 GeV)2 and Z3 = 5.2. This produces mH± = 400 GeV. With Z1 = 4, Z4 is adjusted such that
m1 = 350 GeV, with all other Z parameters set equal to 0.01. One can then dial up Z3 (keeping m1 fixed at 350
GeV by simultaneously adjusting Z4) until S and T lie within the 2 σ contour ellipse. For the above choice of Z1,
the allowed range for the charged Higgs mass is 443 GeV < mH± < 489 GeV, as shown in column (a) of Fig. 3.
We can repeat this exercise by fixing Z1 at its tree-level unitarity limit. In this case the allowed range is 470 GeV
< mH± < 505 GeV, as shown in column (b) of Fig. 3. With the charged Higgs boson mass in its prescribed range, a
“light” neutral Higgs mass of 350 GeV is consistent with precision electroweak data!

One can increase the value for m1 arbitrarily high and still find values of mH± that are consistent with S and
T in the allowed range. However, one eventually violates the unitarity of Z3 + Z4 (if m1 is too high) or Z3 alone
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FIG. 2: The effect on S and T when m1 is increased from 117 GeV to 500 GeV. Both S and T are zero at m1 = mφ = 117
GeV. When m1 reaches 175 GeV, S and T exceed the boundary of the 2 σ contour ellipse.
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FIG. 3: The effect on S and T when mH± is varied by increasing Z3, for m1 = 350 GeV and mφ = 117 GeV. In column (a),
Z1 = 4; in column (b), Z1 = 4 π. When mH± is in the range 443–489 GeV [470–505 GeV], the points in column (a) [column
(b)] fall within the 2 σ contour ellipse.

(if mH± is too high.) As an example, by choosing Y2 = (50 GeV)2, Z1 = 4π, Re(Z5 e−2iθ23) = Im(Z5 e−2iθ23)v2 =
Re(Z6e

−iθ23) = Im(Z6e
−iθ23) = 0.01, one can adjust Z3 + Z4 to get m1 as high as 873 GeV before violating unitarity,

which gives a mass spectrum of

m1 = 873 GeV, m2 = 874 GeV, m3 = 875 GeV. (6.4)

With this value of m1, choosing Z3 so that 716 GeV < mH± < 750 GeV will put S and T in the upper right hand
corner of the allowed 2 σ contour ellipse.30

We conclude that the regions of S and T allowed by precision electroweak data place significant constraints on the
possible regions of the 2HDM parameter space. In the decoupling limit of the 2HDM, the only surviving constraint is
on the mass of the lightest Higgs boson, which coincides with the corresponding Standard Model Higgs mass upper
bound deduced from precision electroweak data. In regions of the 2HDM parameter space far from the decoupling

30 Note that for this choice of parameters, mH± < m1. In fact, there are higher values of mH± which are within the allowed ellipse, but
they correspond to values of Z3 that exceed its unitarity bound.
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regime, a large chunk of the 2HDM parameter space is ruled out on the basis of the T parameter. Nevertheless, there
are regions of parameter space in the non-decoupling regime, consistent with precision electroweak data, in which the
lightest Higgs mass is significantly larger than the Standard Model Higgs mass upper bound.31 This possibility is
realized when large negative corrections to T from h1 are compensated by large positive corrections to T from the
other Higgs bosons of the 2HDM.

7. CONCLUSIONS

In this paper, we have employed basis-independent methods in examining the properties of the most general (CP-
violating) 2HDM. Our primary aim to provide a basis-invariant characterization of a custodial-symmetric 2HDM scalar
potential. Since custodial symmetry in the scalar sector of the 2HDM implies CP-conservation, we first examined in
detail the basis-independent description of the most general CP-conserving 2HDM. All possible generic and special
cases were examined, which depend on the values of the potentially complex quartic Higgs self-couplings in the Higgs
basis. One special case where Z6 = Z7 = 0 is noteworthy, due to the fact that the CP quantum numbers of two of the
three neutral Higgs states cannot be determined by the bosonic couplings of the model. This behavior can be traced
to the existence of two inequivalent definitions of CP which give opposite signs for the CP-quantum numbers of each
of the two neutral states. However, the ambiguity is resolved by the Higgs-fermion Yukawa interactions that uniquely
selects one of the two definitions for CP and thus determines the CP quantum numbers of the two neutral states
(assuming that the Yukawa interactions are CP-conserving). In fact, the Yukawa interactions could be CP-violating,
even if the scalar potential and the Yukawa interactions respect the custodial symmetry, in which case it does not
make sense to assign definite CP quantum numbers to the neutral Higgs states.

After providing a catalog of possible cases that define the CP-conserving 2HDM, we imposed custodial symmetry
and determined the basis-independent condition that guarantees the presence of this symmetry. We have clarified the
results of a previous analysis given in ref. [7], where it was asserted that there were two distinct cases for the custodial-
symmetric scalar potential. We have demonstrated in this paper that the two cases of ref. [7] are in fact equivalent
and simply correspond to two different basis choices for the scalar potential. We also showed that generically the
charged Higgs boson and the CP-odd Higgs boson are mass-degenerate in the limit of a custodial symmetric scalar
potential. However, in the special case of Z6 = Z7 = 0, it is possible that the charged Higgs boson and one of the
CP-even Higgs bosons are mass-degenerate in the limit of a custodial symmetric scalar potential, depending on the
structure of the Higgs-fermion interactions.

We have also provided a basis-independent computation of the 2HDM contributions to the oblique parameters S,
T , and U . Since T = U = 0 in the custodial-symmetry limit, our computation provides an important check on the
implications of the various mass-degeneracies noted above. The oblique parameters of the CP-violating 2HDM were
analyzed numerically and found to be inconsistent with the experimental electroweak constraints over a nontrivial
region of the 2HDM parameter space. Of course, there is still a significant region of the parameter space in which
the oblique parameters lie within the allowed 2σ error ellipse in the S–T plane. (U is quite small over nearly the
entire 2HDM parameter space, and one can set it to zero to good approximation.) In the decoupling limit, the only
constraints on the 2HDM parameters are associated with the requirement that the lightest neutral Higgs boson, which
is Standard Model-like in its properties, must have a mass below about 150 GeV (equivalent to the constraints of the
Standard Model global fits). In the region of the 2HDM parameter space far from the decoupling regime, it is possible
that the lightest neutral Higgs boson mass is significantly heavier than 150 GeV. In this case, the large negative value
of T generated by the lightest neutral Higgs boson is compensated by positive corrections to T from the other physical
Higgs bosons of the 2HDM.

Note Added

After this work was completed, a paper by B. Grzadkowski, M. Maniatis and J. Wudka [33] appeared that employs
the formalism of gauge-invariant scalar field bilinears (cf. footnote 1) in the analysis of custodial symmetry in the
2HDM. They obtain conditions for a custodial symmetric 2HDM scalar potential that are consistent with the results
obtained in this paper.

31 This possibility has been considered previously in ref. [32].
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Appendix A: Cubic and quartic bosonic couplings in the 2HDM

The Higgs boson interactions of the 2HDM can be expressed in terms of the basis-independent qkℓ defined in Table
I. The cubic and quartic vector-scalar couplings were obtained in ref. [2] and are reproduced below:

LV V H =

(
gmW W+

µ Wµ− +
g

2cW
mZZµZµ

)
qk1hk

+emWAµ(W+
µ G− + W−

µ G+) − gmZs2
W Zµ(W+

µ G− + W−
µ G+) , (A.1)
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, (A.2)
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where repeated indices j, k = 1, 2, 3 are summed over. In obtaining the above interactions from ref. [2], we have made
two simplifications. In the W+W−hjhk and ZZhjhk interactions, we have employed

qj1qk1 + Re(q∗j2qk2) = δjk , for j, k = 1, 2, 3. (A.5)

In the Zhjhk interactions (j, k = 1, 2, 3), we have made use of the identity

Im(q∗j2qk2) =

3∑

ℓ=1

ǫjkℓqℓ1 . (A.6)

Likewise, a basis-independent form for the cubic and quartic scalar self-interactions has been obtained in ref. [2] and
are reproduced below. In listing the scalar self-interactions, it is convenient to include terms involving the Goldstone
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field by denoting h4 ≡ G0.

V3 = 1
2v hjhkhℓ

[
qj1q

∗
k1Re(qℓ1)Z1 + qj2q

∗
k2 Re(qℓ1)(Z3 + Z4) + Re(q∗j1qk2qℓ2Z5 e−2iθ23)

+Re
(
[2qj1 + q∗j1]q

∗
k1qℓ2Z6 e−iθ23

)
+ Re(q∗j2qk2qℓ2Z7 e−iθ23)

]

+v hkG+G−

[
Re(qk1)Z1 + Re(qk2 e−iθ23Z6)

]
+ v hkH+H−

[
Re(qk1)Z3 + Re(qk2 e−iθ23Z7)

]

+ 1
2v hk

{
G−H+ eiθ23

[
q∗k2Z4 + qk2 e−2iθ23Z5 + 2Re(qk1)Z6 e−iθ23

]
+ h.c.

}
, (A.7)

V4 = 1
8hjhkhlhm

[
qj1qk1q

∗
ℓ1q

∗
m1Z1 + qj2qk2q

∗
ℓ2q

∗
m2Z2 + 2qj1q

∗
k1qℓ2q

∗
m2(Z3 + Z4)

+2Re(q∗j1q
∗
k1qℓ2qm2Z5 e−2iθ23) + 4Re(qj1q

∗
k1q

∗
ℓ1qm2Z6 e−iθ23) + 4Re(q∗j1qk2qℓ2q

∗
m2Z7 e−iθ23)

]

+ 1
2hjhkG+G−

[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2Re(qj1qk2Z6 e−iθ23)

]

+ 1
2hjhkH+H−

[
qj2q

∗
k2Z2 + qj1q

∗
k1Z3 + 2Re(qj1qk2Z7 e−iθ23)

]

+ 1
2hjhk

{
G−H+ eiθ23

[
qj1q

∗
k2Z4 + q∗j1qk2Z5 e−2iθ23 + qj1q

∗
k1Z6 e−iθ23 + qj2q

∗
k2Z7 e−iθ23

]
+ h.c.

}

+ 1
2Z1G

+G−G+G− + 1
2Z2H

+H−H+H− + (Z3 + Z4)G
+G−H+H− + 1

2Z5H
+H+G−G−

+ 1
2Z∗

5H−H−G+G+ + G+G−(Z6H
+G−+ Z∗

6H−G+) + H+H−(Z7H
+G−+ Z∗

7H−G+) , (A.8)

summing over j, k, ℓ, m = 1, 2, 3, 4. Note that Re(qk1) = qk1 for k = 1, 2, 3, whereas Re(q41) = 0.
One can easily verify that if qk1 = ±1 and qk2 = 0 for a fixed value of k = 1, 2 or 3. then it follows that the

couplings of the neutral Higgs field, ±hk, are precisely those of the Standard Model Higgs boson.

Appendix B: Neutral Higgs masses and invariant mixing angles

The neutral Higgs mass eigenstates are denoted by hk (k = 1, 2, 3). The corresponding squared-masses are obtained
by solving the characteristic equation of the neutral Higgs squared-mass matrix, M2 [see eq. (2.17)],

det(M− x13×3) = −x3 + Tr(M)x2 − 1
2

[
(TrM)2 − Tr(M2)

]
x + det(M) = 0 , (B.1)

where 13×3 is the 3 × 3 identity matrix and

Tr(M) = 2Y2 + (Z1 + Z3 + Z4)v
2 ,

Tr(M2) = Z2
1v4 + 1

2v4
[
(Z3 + Z4)

2 + |Z5|2 + 4|Z6|2
]
+ 2Y2[Y2 + (Z3 + Z4)v

2] ,

det(M) = 1
4

{
Z1v

6[(Z3 + Z4)
2 − |Z5|2] − 2v4[2Y2 + (Z3 + Z4)v

2]|Z6|2

+4Y2Z1v
2[Y2 + (Z3 + Z4)v

2] + 2v6Re(Z∗
5Z2

6)

}
. (B.2)

In the general (CP-violating) case, the analytic expressions for the squared-masses are quite cumbersome, when
expressed solely in terms of the scalar potential parameters. In ref. [2], a more convenient expression for the neutral
Higgs squared-masses was derived in terms of the Zi and invariant mixing angles,

m2
k = |qk2|2A2 + v2

[
q2
k1Z1 + Re(qk2)Re(qk2Z5 e−2iθ23) + 2qk1Re(qk2Z6 e−iθ23)

]
, (B.3)

where m2
k ≡ m2

hk
(for k = 1, 2, 3) and the basis-invariant qki are given in Table I.
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In ref. [2], we also obtained a set of equations that determine the neutral Higgs mixing angles:32

s13Re(Z6 e−iθ23) = 1
2c13Im(Z5 e−2iθ23) , (B.4)

(Z1 − A2/v2)s13c13 = (c2
13 − s2

13)Im(Z6 e−iθ23) , (B.5)

(c2
12 − s2

12)
[
c13Re(Z6 e−iθ23) + 1

2s13Im(Z5 e−2iθ23)
]

= s12c12

[
Re(Z5 e−2iθ23) − (Z1 − A2/v2)c2

13

−2s13c13Im(Z6 e−iθ23)
]
, (B.6)

where

A2 ≡ Y2 + 1
2

[
Z3 + Z4 − Re(Z5 e−2iθ23)

]
v2 . (B.7)

Eqs. (B.3)–(B.6) can be used to derive the following results:

Re(Z6 e−iθ23) v2 = c13s12c12(m
2
2 − m2

1) , (B.8)

Im(Z6 e−iθ23) v2 = s13c13(c
2
12m

2
1 + s2

12m
2
2 − m2

3) , (B.9)

Re(Z5 e−2iθ23) v2 = (s2
12 − s2

13c
2
12)m

2
1 + (c2

12 − s2
12s

2
13)m

2
2 − c2

13m
2
3 , (B.10)

Im(Z5 e−2iθ23) v2 = 2s13s12c12(m
2
2 − m2

1) . (B.11)

The following identity will also prove useful,

Im(Z∗
5Z2

6) = 2 Re(Z5e
−2iθ23)Re(Z6 e−iθ23) Im(Z6 e−iθ23)

− Im(Z5e
−2iθ23)

{
[Re(Z6 e−iθ23)]2 − [Im(Z6 e−iθ23)]2

}
. (B.12)

Using the results of eqs. (B.8)–(B.12) it then follows that:

v6Im(Z∗
5Z2

6 ) = s13c
2
13 sin 2θ12 (m2

2 − m2
1)(m

2
3 − m2

1)(m
2
3 − m2

2) . (B.13)

Appendix C: Basis-Independent treatment of the CP-conserving 2HDM

In the CP-conserving Higgs sector, two of the neutral Higgs bosons, h0 and H0 (with mh0 < mH0 ) are CP-even
and one neutral Higgs boson, A0, is CP-odd. Basis-independent conditions for a CP-conserving bosonic sector have
been given in refs. [1, 10, 11, 34]. In ref. [1], these conditions were recast into the form given by eq. (3.1). Since the
Higgs masses and mixing angles do not depend on Z7, we focus on the implications of the condition Im[Z∗

5Z2
6 ] = 0

for the structure of the neutral Higgs squared-mass matrix and the invariant mixing angles.

1. The CP-conserving limit: Z6 6= 0

If Z6 6= 0, then eqs. (B.8) and (B.9) imply that c13 6= 0. Suppose that the three neutral Higgs masses are non-
degenerate. Under the latter assumption, if the CP-conserving condition Im(Z∗

5Z2
6 ) = 0 holds, then eq. (B.13) implies

that s13s12c12 = 0. We examine the two resulting cases in turn.33

Case I: s13 = 0. Then, eqs. (B.4)–(B.9) imply that:

Im(Z5 e−2iθ23) = Im(Z6 e−iθ23) = 0 . (C.1)

32 Denoting the quadratic terms in the scalar potential by m2

H±H+H− + 1

2
v2

P
j,k Cjkhjhk, it follows that Cjk = 0 for j 6= k. This

provides three conditions, which yield eqs. (B.4)–(B.6).
33 Note that setting eq. (B.12) to zero determines Re(Z5 e−2iθ23 ) in terms of Im(Z5 e−2iθ23 ), Re(Z6 e−iθ23 ) and Im(Z6 e−iθ23 ). However,

this is not sufficient to impose the conditions given in Cases I and II. This is because the diagonalization of the neutral Higgs squared-mass
matrix yields an extra (basis-dependent) condition that fixes the value of θ23.
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Case II: s12c12 = 0. Then, eqs. (B.8) and (B.13) imply that:

Im(Z5 e−2iθ23) = Re(Z6 e−iθ23) = 0 . (C.2)

In Section 3.1, Case II is further broken down into two subcases (a) and (b) corresponding to s12 = 0 and c12 = 0,
respectively. The three cases I, IIa and IIb simply correspond to three possible mass orderings of the neutral Higgs
bosons—the CP-even h0 and H0 (where mh0 < mH0 by definition) and the CP-odd A0.

It is convenient to define the invariant angle φ ≡ θ6 − θ23, where θ6 ≡ arg Z6. That is,

Re(Z6 e−iθ23) ≡ |Z6| cosφ , Im(Z6 e−iθ23) ≡ |Z6| sin φ . (C.3)

Then, Cases I and II correspond to sinφ = 0 and cosφ = 0, respectively. That is, if CP is conserved then sin 2φ = 0.
Note that the converse is not necessarily valid. In particular,

Im(Z5 e−2iθ23) =
1

|Z6|2
[
Re(Z∗

5Z2
6 ) sin 2φ − Im(Z∗

5Z2
6 ) cos 2φ

]
. (C.4)

Thus, if sin 2φ = 0 and Im(Z5 e−2iθ23) 6= 0, then the Higgs sector violates CP.
The quantum numbers of the neutral Higgs bosons can be determined from the form of the Higgs self-couplings. For

example, noting that a charged Goldstone boson pair is necessarily CP-even, the couplings of G+G− to the neutral
Higgs bosons can be used to identify the CP-even scalars. In Appendix A, the following couplings are given:

G+G−h1 : c12c13Z1 − s12Re(Z6 e−iθ23) + c12s13Im(Z6 e−iθ23) , (C.5)

G+G−h2 : s12c13Z1 + c12Re(Z6 e−iθ23) + s12s13Im(Z6 e−iθ23) , (C.6)

G+G−h3 : s13Z1 − c13Im(Z6 e−iθ23) , (C.7)

where the mixing angles are defined such that mh1
≤ mh2

≤ mh3
. Since one of the three neutral states is CP-odd, its

coupling to G+G− must vanish. Taking Z1 and Z6 as independent and non-vanishing,34

if h1 is CP odd , c12 = Re(Z6 e−iθ23) = cosφ = 0 , (C.8)

if h2 is CP odd , s12 = Re(Z6 e−iθ23) = cosφ = 0 , (C.9)

if h3 is CP odd , s13 = Im(Z6 e−iθ23) = sin φ = 0 , (C.10)

which reproduces Cases I and II [eqs. (C.1) and (C.2)] for non-degenerate neutral Higgs masses.
The masses of the three neutral Higgs bosons can be evaluated explicitly using eqs. (B.1) and (B.2). In evaluating

det(M), we employ the condition Im(Z∗
5Z2

6 ) = 0, which implies that [Re(Z∗
5Z2

6 )]2 = |Z5|2 |Z6|4, and leads to two
possible cases:

Re(Z∗
5Z2

6 ) = ε56|Z5| |Z6|2 , ε56 ≡ ±1 . (C.11)

In both cases, eq. (B.1) factors into a product of a linear and a quadratic polynomial. Solving for the roots, the
resulting neutral Higgs squared-masses are given by eqs. (3.16) and (3.17), where the CP-odd state is identified
according to the results of eq. (B.3) and eqs. (C.8)–(C.10).

2. Degenerate masses in the CP-conserving limit with Z6 6= 0

So far, we have working under the assumption that the three Higgs masses are unequal. However, it is also possible
that two of the Higgs bosons are mass-degenerate.35 In this case, it follows from eq. (B.13) that Im(Z∗

5Z2
6 ) = 0,

independently of the mixing angles (some of which may not be well-defined in the mass-degenerate limit). If Z5 = 0
and Z6 6= 0, then eqs. (3.16) and (3.17) imply that the three three neutral Higgs masses are distinct. Hence, in what
follows we assume that Z5 6= 0, in which case A0 and one of the CP-even scalars are degenerate in mass if:36

Z1 = Y2/v2 + 1
2 (Z3 + Z4 − ε56|Z5|) +

|Z6|2
ε56|Z5|

and Im(Z∗
5Z2

6 ) = 0 . (C.12)

34 Similar conclusions can be obtained by considering the ZZhi, the Zhihj , and the ZG0hi couplings.
35 Under the assumption Z6 6= 0, it is not possible to have three mass-degenerate neutral Higgs bosons.
36 One can also verify the condition for degenerate roots directly from eq. (B.1). The cubic equation z3 + a2z2 + a1z + a0 has (at least)

two degenerate roots if and only if [35]

ˆ
1

3
a1 − 1

9
a2
2

˜3
+

ˆ
1

6
(a1a2 − 3a0) − 1

27
a3
2

˜2
= 0 .

With a little help from Mathematica, one can show that by imposing the above equation, eq. (C.12) is satisfied.
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Inserting this result for Z1 back into eqs. (3.16) and (3.17) then yields:

m2
h0 = m2

A0 = Y2 + 1
2 (Z3 + Z4 − |Z5|)v2 , (C.13)

m2
H0 = Y2 + 1

2 (Z3 + Z4 + |Z5|)v2 +
|Z6|2v2

|Z5|
, for ε56 = +1 , (C.14)

and

m2
h0 = Y2 + 1

2 (Z3 + Z4 − |Z5|)v2 − |Z6|2v2

|Z5|
, (C.15)

m2
H0 = m2

A0 = Y2 + 1
2 (Z3 + Z4 + |Z5|)v2 , for ε56 = −1 . (C.16)

In the mass-degenerate case, the mixing angle θ23 and the corresponding invariant angle φ are no longer well-
defined, as one can redefine the mixing angles by rotating within the degenerate subspace. Hence, the choice of sin 2φ
is arbitrary. However, because CP is conserved in the neutral Higgs sector, the structure of the Higgs interactions
guarantees that there exists one linear combination of the mass-degenerate neutral Higgs states that is CP-even and
an orthogonal linear combination that is CP-odd. The latter defines the relevant mixing angle, θ12 in Case I and
θ13 in Case II, respectively. In particular, the identification of eigenstates of definite CP quantum numbers imposes
the constraint s13 = s12c12 = sin 2φ = 0, and the conditions of Cases I and II continue to hold. A summary of the
basis-independent conditions for CP-invariance, under the assumption that Z6 6= 0, along with the identification of
the CP quantum numbers of the three neutral Higgs states can be found in Table II.

In Section 4.1.2, we determined the basis-independent conditions for a custodial symmetric scalar potential. In the
case of Z6 6= 0, the relevant condition is Z4 = ǫ56|Z5| [cf. eq. (4.46)]. Using eqs. (4.49), (C.13) and (C.16), we conclude
that when eq. (C.12) holds, the custodial symmetric scalar potential yields two neutral Higgs bosons, one CP-even
and one CP-odd, that are both degenerate in mass with the charged Higgs boson.

3. The CP-conserving Limit: Z6 = 0

The case where Z6 = 0 (with Z5 6= 0) merits special attention. In this case, eqs. (B.4)–(B.6) simplify to:

c13Im(Z5 e−2iθ23) = 0 , (C.17)

(Z1v
2 − A2)s13c13 = 0 , (C.18)

1
2s13(c

2
12 − s2

12)Im(Z5 e−2iθ23) = s12c12

[
Re(Z5 e−2iθ23) − (Z1 − A2/v2)c2

13

]
. (C.19)

First we consider cases in which the three neutral Higgs masses are non-degenerate. Then in the CP-conserving
limit, eq. (B.13) implies that s13s12c12 = 0. If c13s13 6= 0, then eqs. (C.17) and (C.18) yield Im(Z5 e−2iθ23) = 0 and
Z1v

2 = A2. In this case Re(Z5 e−2iθ23) = ±|Z5| and A2 = Y2 + 1
2v2(Z3 + Z4 ∓ |Z5|), where both sign choices are

possible. For either sign choice, eqs. (3.24)–(3.26) imply that two of the neutral Higgs bosons are degenerate in mass,
which contradicts our initial assumption. Thus, if the Higgs bosons are non-degenerate, then eq. (C.18) implies that
either s13 = 0 or c13 = 0. If s13 = 0 then eqs. (C.17) and (C.18) yield either s12c12 = 0 or Re(Z5 e−2iθ23) = Z1−A2/v2.
However, in the latter case one again finds that two of the neutral Higgs bosons are degenerate in mass, which again
contradicts our initial assumption. Thus, in the case of non-degenerate neutral Higgs masses, there are three cases to
consider:

Case I′: s13 = s12 = Im(Z5 e−2iθ23) = 0. This is a combination of the previous Cases I and IIa.

Case II′: s13 = c12 = Im(Z5 e−2iθ23) = 0. This is a combination of the previous Cases I and IIb.

When Z6 = 0 and CP is conserved, a new third possibility arises in which c13 = 0. In this case, eq. (C.19) yields
1
2s13(c

2
12 − s2

12)Im(Z5 e−2iθ23) = s12c12Re(Z5 e−2iθ23), where s13 = ±1. Following the convention specified in Table I,
we choose s13 = −1. In this convention, θ12 + θ23 is indeterminate, and the quantity

θ23 ≡ θ23 − θ12 , (C.20)

plays the role of θ23. We designate this new case

Case III′: c13 = Im(Z5 e−2iθ23) = 0.
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To determine the CP-quantum numbers of the hk, we first examine the G+G−hk couplings when Z6 = 0
[cf. eqs. (C.5)–(C.7)]:

G+G−h1 : c12c13Z1 , (C.21)

G+G−h2 : s12c13Z1 , (C.22)

G+G−h3 : s13Z1 , (C.23)

One of these three couplings is non-vanishing in Cases I′, II′ and III′, which implies that the corresponding neutral
Higgs state (hk for k = 1, 2 or 3) is CP-even. Moreover, in this case, qk1 = ±1 and qk2 = 0, which implies that
the couplings of the neutral Higgs field ±hk are precisely those of the Standard Model Higgs boson. Henceforth, we
identify the Standard Model–like CP-even neutral Higgs field by h0

1. We then use eq. (B.3) to obtain m2
h0
1

= Z1v
2

[cf. eq. (3.24)]. If we order the states hi such that mh1
< mh2

< mh3
, then the three cases I′, II′ and III′ above

correspond to the three possible mass orderings of h0
1.

By examining the non-vanishing Zhihj couplings, one immediately concludes that the relative CP quantum number
of the other two neutral Higgs bosons is negative. However, there is no unique assignment for the individual CP
quantum numbers if Z7 = ρQ = 0. For simplicity, we assume that Z7 6= 0.37 The following identity, analogous to
eq. (B.13), will also prove useful:

Im(Z∗
5Z2

7) = 2 Re(Z5e
−2iθ23)Re(Z7 e−iθ23) Im(Z7 e−iθ23)

− Im(Z5e
−2iθ23)

{
[Re(Z7 e−iθ23)]2 − [Im(Z7 e−iθ23)]2

}
. (C.24)

Under the assumption of a CP-conserving Higgs sector, we impose the condition Im(Z∗
5Z2

7 ) = 0, which implies that
[Re(Z∗

5Z2
7 )]2 = |Z5|2 |Z7|4, and leads to two possible cases:

Re(Z∗
5Z2

7 ) = ε57|Z5||Z7|2 , ε57 = ±1 . (C.25)

In Cases I′ and II′, Im(Z5 e−2iθ23) = 0, whereas Im(Z5 e−2iθ23) = 0 in Case III′. Then, eq. (C.24) yields:

Case I′, II′ : Re(Z7 e−iθ23) Im(Z7 e−iθ23) = 0 . (C.26)

Case III′ : Re(Z7 e−iθ23) Im(Z7 e−iθ23) = 0 . (C.27)

We can use the H+H−hk couplings to determine the CP-quantum numbers of the other two neutral Higgs bosons.
In cases I′ and II′,

H+H−h1 : c12c13Z3 − s12Re(Z7 e−iθ23) + c12s13Im(Z7 e−iθ23) , (C.28)

H+H−h2 : s12c13Z3 + c12Re(Z7 e−iθ23) + s12s13Im(Z7 e−iθ23) , (C.29)

H+H−h3 : s13Z3 − c13Im(Z7 e−iθ23) . (C.30)

In Case III′, these couplings simplify to:

H+H−h1 : −Im(Z7 e−iθ23) , (C.31)

H+H−h2 : Re(Z7 e−iθ23) , (C.32)

H+H−h3 : −Z3 . (C.33)

Since one of the three neutral states is CP-odd, its coupling to H+H− must vanish. Taking Z3 and Z7 as independent
and non-vanishing, we can identify the CP-odd Higgs boson. Hence, using eqs. (C.28)–(C.33),

• if h1 is CP-odd, then either

s13 = c12 = Re(Z7 e−iθ23) = 0 [Case II′b] or c13 = Im(Z7 e−iθ23) = 0 [Case III′a] , (C.34)

• if h2 is CP-odd, then either

s13 = s12 = Re(Z7 e−iθ23) = 0 [Case I′b] or c13 = Re(Z7 e−iθ23) = 0 [Case III′b] , (C.35)

37 If Z7 = 0 but ρQ 6= 0, then our analysis still goes through with Z7 replaced by ρQ ∗ (Q = U , D or E).
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• if h3 is CP-odd, then either

s13 = s12 = Im(Z7 e−iθ23) = 0 [Case I′a] or s13 = c12 = Im(Z7 e−iθ23) = 0 [Case II′a] . (C.36)

These correspond to six possible mass orderings of h1, h2 and h3 in Cases I′, II′ and III′.
We previously identified the CP-even state h0

1, whose couplings coincide with those of the Standard Model Higgs
boson. Using eq. (B.3), the squared-masses of the remaining two neutral Higgs bosons (a CP-even state h0

2 and a
CP-odd state A0) are given by eqs. (3.25) and (3.26), after making use of eq. (3.22) for Cases I′ and II′ (and replacing
θ23 with θ23 for Case III′). We identify the states h0

1 and h0
2 with h0 and H0 or vice versa, depending on the mass-

ordering. If Z7 = 0, then ε57 is not well-defined (since in the real basis, the sign of Z5 can be flipped by transforming
H2 → iH2). In this case, the individual CP-quantum numbers of h0

2 and A0 are not fixed by the interactions of the
Higgs boson/gauge boson sector. The corresponding masses are given in eq. (3.28), which can be derived by directly
solving the characteristic equation of the neutral Higgs squared-mass matrix [cf. eq. (B.1)].

A summary of the basis-independent conditions for CP-invariance, under the assumption that Z6 = 0 and the Higgs
masses are non-degenerate, along with the identification of the CP quantum numbers of the three neutral Higgs states
can be found in Table VI.

4. Degenerate masses in the CP-conserving limit with Z6 = 0

It is possible to have two mass-degenerate neutral Higgs bosons in the 2HDM with Z6 = 0, for special choices of
Z1. If Z1 satisfies

Z1 = Y2/v2 + 1
2 (Z3 + Z4 − ε57|Z5|)v2 , (C.37)

then eqs. (3.24) and (3.26) yield mh0
1

= mA0 [this is the analogue of eq. (C.12)]. Likewise, if Z1 satisfies

Z1 = Y2/v2 + 1
2 (Z3 + Z4 + ε57|Z5|)v2 , (C.38)

then eqs. (3.24) and (3.25) yield mh0
1

= mh0
2

(this has no analogue with any of the Z6 6= 0 cases). In the presence of
mass degeneracies, one must reconsider the definition of the mixing angles θ12 and θ13. As in the discussion below
eq. (C.16), if two neutral scalar states of opposite CP quantum number are mass degenerate, then the structure of
the Higgs interactions guarantees that there exists one linear combination of the mass-degenerate neutral Higgs states
that is CP-even and an orthogonal linear combination that is CP-odd. If the two neutral mass-degenerate scalar
states are CP-even, then there exists one linear combination whose properties coincide precisely with those of the
Standard Model Higgs boson. We designate this scalar field by h0

1 and the orthogonal linear combination by h0
2. In

light of these remarks, the results of Table VI continue to hold even in the mass-degenerate case.
However, there are three new cases that arise if two of the neutral Higgs fields are mass-degenerate, which are

not accounted for by Cases I′, II′ and III′. These exceptional cases correspond to the omitted cases described below
eq. (C.19). In particular, mass-degeneracies arise for a special choice of Z1 in following cases:

Case IV′: s13 = Im(Z5e−2iθ23) = 0 and s12c12 6= 0. In this case, eq. (C.19) yields

Z1 = A2/v2 + Re(Z5e
−2iθ23) = Y2/v2 + 1

2

[
Z3 + Z4 + Re(Z5e

−2iθ23)
]

, (C.39)

where we have used the definition of A2 given in eq. (B.7). The quantity Re(Z5e
−2iθ23) is fixed by eq. (3.22).

Case V′: c12 = Im(Z5e−2iθ23) = 0 and s13c13 6= 0. In this case, eq. (C.18) yields

Z1 = A2/v2 = Y2/v2 + 1
2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]

. (C.40)

Case VI′: s12 = Im(Z5e−2iθ23) = 0 and s13c13 6= 0. In this case, eq. (C.18) yields

Z1 = A2/v2 = Y2/v2 + 1
2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]

. (C.41)

Once again, we find that mh0
1

= mA0 if eq. (C.37) is satisfied and mh0
1

= mh0
2

if eq. (C.38) is satisfied.

To identify the CP quantum numbers of the neutral Higgs mass eigenstates, we first examine the G+G−hk couplings
given in eqs. (C.21)–(C.23) in order to identify the mass-degenerate state h0

1, which is defined below eq. (C.38) to be
the linear combination of mass-degenerate neutral Higgs fields whose interactions coincide with that of the Standard
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Model Higgs boson . The CP quantum numbers of the orthogonal linear combination of mass-degenerate neutral
Higgs fields and the third non-degenerate state can be obtained by examining the H+H−hk couplings given in
eqs. (C.28)–(C.30).

For example, in Case IV′, s13 = 0 which yields

H+H−h1 : c12Z3 − s12Re(Z7 e−iθ23) , m2
h1

= Z1v
2 , (C.42)

H+H−h2 : s12Z3 + c12Re(Z7 e−iθ23) , m2
h2

= Z1v
2 , (C.43)

H+H−h3 : −Im(Z7 e−iθ23) , m2
h3

=
[
Z1 − Re(Z5e

−2iθ23)
]
v2 . (C.44)

Since h1 and h2 are degenerate, we can redefine new linear combinations to obtain:

H+H−(c12h1 + s12h2) : c12Z3 , (C.45)

H+H−(c12h2 − s12h1) : Re(Z7 e−iθ23) , (C.46)

H+H−h3 : −Im(Z7 e−iθ23) . (C.47)

Likewise, the corresponding G+G−hk interactions are:

G+G−(c12h1 + s12h2) : Z1 , (C.48)

G+G−(c12h2 − s12h1) : 0 , (C.49)

G+G−h3 : 0 . (C.50)

Thus, one can immediately identify h0
1 = c12h1 + s12h2, since this linear combination possesses the Higgs couplings of

the Standard Model Higgs boson. The second CP-even Higgs state is identified by its non-zero coupling to H+H− and
depends on whether Z7e

−iθ23 is purely real or purely imaginary. For example, if Im(Z7e
−iθ23) = 0, then c12h2 − s12h1

is CP-even and h3 is CP-odd, and vice versa if Re(Z7e
−iθ23) = 0.

Cases V′ and VI′ can be similarly treated. In particular,

Case V′ : m2
h1

=
[
Z1 + Re(Z5e

−2iθ23)
]
v2 , m2

h2
= m2

h3
= Z1v

2 , (C.51)

Case VI′ : m2
h2

=
[
Z1 + Re(Z5e

−2iθ23)
]
v2 , m2

h1
= m2

h3
= Z1v

2 . (C.52)

If we impose the mass ordering mh1
≤ mh2

≤ mh3
in order not to duplicate regions of the 2HDM parameter space,

then we can omit Case VI′. We summarize the exceptional mass-degenerate cases in Tables XIII, XIV, XV and XVI.

TABLE XIII: Basis-independent conditions for a CP-conserving 2HDM scalar potential and vacuum when Z6 = 0 and Z5,
Z7 6= 0, assuming at least two degenerate neutral Higgs boson masses. The cases below are exceptional, as they do not arise
as limits of Cases I′, II′ and III′ [cf. Table VI]. If we impose the mass-ordering mh1

≤ mh2
≤ mh3

, then Cases VI′a and b
can be eliminated. The neutral Higgs mixing angles θ12 in Case IV′ and θ13 in Cases V′ and VI′ are defined such that the
couplings of h0

1 (defined as the linear combination of mass-degenerate neutral Higgs fields specified below) coincides precisely
with those of the Standard Model Higgs boson. The phase factor η2 that governs the CP transformation law [cf. eq. (3.7)] is
equal to +1 in cases IV′a, V′a, and VI′a, and −1 in cases IV′b, V′b, and VI′b. Additional conditions in which Z7 is replaced
by ρQ ∗ (Q = U, D and E), respectively, must also hold due to the phase correlations implicit in eqs. (3.19) and (3.20). The
squared-mass of the two mass-degenerate neutral Higgs states is equal to Z1v

2, while the third non-degenerate neutral state
has a squared-mass equal to (Z1 ± ǫ57|Z5|)v

2, where the plus sign is taken in cases IV′b, V′a, and VI′a, and the minus sign is
taken in cases IV′a, V′b, and VI′b.

Cases conditions [in all cases below, Im(Z5 e−2iθ23) = 0] A0 h0
1 h0

2

IV′a s13 = Im(Z7 e−iθ23) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 + ǫ57|Z5|) h3 c12h1 + s12h2 c12h2 − s12h1

IV′b s13 = Re(Z7 e−iθ23 ) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 − ǫ57|Z5|) c12h2 − s12h1 c12h1 + s12h2 h3

V′a c12 = Im(Z7 e−iθ23) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 − ǫ57|Z5|) c13h3 + s13h2 c13h2 − s13h3 h1

V′b c12 = Re(Z7 e−iθ23) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 + ǫ57|Z5|) h1 c13h2 − s13h3 c13h3 + s13h2

VI′a s12 = Im(Z7 e−iθ23) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 − ǫ57|Z5|) c13h3 − s13h1 c13h1 + s13h3 h2

VI′b s12 = Re(Z7 e−iθ23 ) = 0 , Z1 = Y2/v2 + 1

2
(Z3 + Z4 + ǫ57|Z5|) h2 c13h1 + s13h3 c13h3 − s13h1

In the analysis presented above, we assumed that Z5 6= 0. If Z5 = Z6 = 0, then eqs. (3.25) and (3.26) imply that h0
2

and A0 are mass-degenerate, independently of any special choice for Z1. In the special case of Z1 = Y2/v2+ 1
2 (Z3+Z4),

all three neutral scalars are degenerate in mass. Moreover, the invariant form of the Higgs squared-mass matrix given
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TABLE XIV: The U(2)-
invariant quantities qkℓ for
Cases IV′a and IV′b

k qk1 qk2

1 c12 −s12

2 s12 c12

3 0 i

TABLE XV: The U(2)-
invariant quantities qkℓ for
Cases V′a and V′b

k qk1 qk2

1 c13 −is13

2 0 1
3 s13 ic13

TABLE XVI: The U(2)-
invariant quantities qkℓ for
Cases VI′a and VI′b

k qk1 qk2

1 0 1
2 −c13 is13

3 s13 ic13

in eq. (2.17) is diagonal. Thus, in this case it is simplest to take θ12 = θ13 = θ23 = 0 (instead of imposing a mass
ordering of the hk fields). Eq. (C.21) implies that h1 is the CP-even neutral Higgs field whose couplings coincide
with that of the Standard Model Higgs boson. Eqs. (C.29) and (C.30) imply that h3 is CP-odd and h2 is CP-even if
Im(Z7e

−iθ23) = 0 and vice versa if Re(Z7e
−iθ23) = 0. In this case, θ23 simply keeps track of the overall phase of Z7.

Finally, in the special case of Z5 = Z6 = Z7 = 0 (cf. Section 3.4), the individual CP quantum numbers of h2 and h3

can not be determined from the bosonic sector alone.
In Section 4.1.2, we determined the basis-independent conditions for a custodial symmetric scalar potential. In

the case of Z6 = 0 and Z5, Z7 6= 0, the relevant condition is Z4 = ǫ57|Z5| [cf. eq. (4.46)], which yields mA0 = mH±

[cf. eq. (4.49)]. If we apply this limit to Table XIII, we discover that there are two possibilities: either A0 is degenerate
in mass with H± (cases IV′a, V′b and VI′b), or there are two neutral fields, one CP-even and one CP-odd, that are
degenerate in mass with H± (cases IV′b, V′a, and VI′a). If Z5 6= 0, Z6 = Z7 = 0 and the Higgs–fermion interactions
are CP-conserving, then as shown in Section 4.1.3, there are two possible conditions, Z4 = ±ǫ5Q|Z5|, that yield a
custodial symmetric scalar potential. Table XIII can again be used if one replaces ε57 replaced by ε5Q. As shown in
eq. (4.51), the relation Z4 = ǫ5Q|Z5| yields mA0 = mH± , and one recovers the results given above for the possible
Higgs mass degeneracies. In contrast, the relation Z4 = −ǫ5Q|Z5| yields mH0 = mH± . In this case, there are again two
possibilities: either H0 is degenerate in mass with H± (cases IV′b, V′a and VI′a), or there are two neutral CP-even
fields, h0

1 and h0
2, that are degenerate in mass with H± (cases IV′a, V′b, and VI′b). If one now imposes one additional

condition, Z4 = Z5 = 0, then all three neutral Higgs bosons are degenerate with the charged Higgs boson. Hence,
any permutation of possible neutral Higgs mass-degeneracies with the charged Higgs boson is a possible consequence
of custodial symmetry, if one allows for sufficiently restrictive conditions on the scalar potential.

Appendix D: Calculation of the 2HDM contributions to S, T and U

The one-loop corrections to the gauge boson two-point functions contain three- and four-point interactions between
gauge bosons and the Higgs bosons, the form of which can be read off from eqs. (A.1) and (A.2). The resulting
Feynman rules in the t’Hooft-Feynman gauge are exhibited in Table XVII. The 2HDM contributions to S are
displayed in Tables XVIII and XIX. The 2HDM contributions to T are displayed in Tables XX and XXI. The 2HDM
contributions to U are displayed in Table XXII. The reference Standard Model contributions, which are subtracted
out from the 2HDM contributions, are shown in Table XXIII.

The loop integrals are defined and evaluated following ref. [36]:
∫

d4k

(2π)4
1

(k2 − m2)
=

i

16π2
A0(m

2) , (D.1)

∫
d4k

(2π)4
1

(k2 − m2
1)[(k + q)2 − m2

2]
=

i

16π2
B0(q

2; m2
1, m

2
2) , (D.2)

∫
d4k

(2π)4
kµkν

(k2 − m2
1)[(k + q)2 − m2

2]
=

i

16π2
gµνB22(q

2; m2
1, m

2
2) . (D.3)

The following two relations are noteworthy:

B0(0; m2
1, m

2
2) =

A0(m
2
1) − A0(m

2
2)

m2
1 − m2

2

, (D.4)

4B22(0; m2
1, m

2
2) = F(m2

1, m
2
2) + A0(m

2
1) + A0(m

2
2) , (D.5)

where

F(m2
1, m

2
2) ≡ 1

2 (m2
1 + m2

2) −
m2

1m
2
2

m2
1 − m2

2

ln

(
m2

1

m2
2

)
. (D.6)
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TABLE XVII: Feynman rules used in the calculation of the oblique parameters. The four momentum p1 points into the vertex,
and the four-momentum p2 points out of the vertex.

W µ
+

W µ
+

hk

hk

1

2
ig2gµνgµν

Zµ

Zµ

hk

hk

ig2

2c2
W

gµνgµν

W µ
+

W µ
+

H+

H+

1

2
ig2gµν

Zµ

Zµ

H+, G+

H+, G+

ig2

2c2
W

(c2
W − s2

W )gµν

W µ
+

W µ
+

hk
igqikmW gµν

Zµ

Zµ

hi ig

cW
qi1mZ gµν

W µ
+

H−

hk

− 1

2
igqk2(p1 + p2)

µ
Zµ

h3, G
0

h2, h1

g

2cW
q11(p1 + p2)

µ

W µ
+

G−

hk

− 1

2
igqk1(p1 + p2)

µ
Zµ

h1, G
0

h3, h2

g

2cW
q21(p1 + p2)

µ

W µ
+

G−

φ

− 1

2
ig(p1 + p2)

µ
Zµ

h2, G
0

h1, h3

g

2cW
q31(p1 + p2)

µ

γµ H+, G+

H+, G+

igsW (p1 + p2)
µ

Zµ H+

H+

ig

2cW
(c2

W − s2
W )(p1 + p2)

µ

W µ
+

W µ
+

φ
igmW gµν

Zµ

Zµ

φ ig

cW
mZ gµν

Zµ
φ

G0

− g

2cW
(p1 + p2)

µ

The contributions to S from the diagrams in Table XVIII, XIX and Table XXIII are evaluated by employing
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eq. (5.4) and eq. (5.7), with the following result: 38

S ≡ 16πc2
W

g2

{
F 2H

ZZ (m2
Z) − FSM

ZZ (m2
Z) − F 2H

γγ (m2
Z) + FSM

γγ (m2
Z) − c2W

sW cW

[
F 2H

Zγ (m2
Z) − FSM

Zγ (m2
Z)

]}

=
1

πm2
Z

{
3∑

k=1

q2
k1

[
B22(m

2
Z ; m2

Z , m2
k) − m2

ZB0(m
2
Z ; m2

Z , m2
k)

]
+ q2

11B22(m
2
Z ; m2

2, m
2
3) + q2

21B22(m
2
Z ; m2

1, m
2
3)

+q2
31B22(m

2
Z ; m2

1, m
2
2) − B22(m

2
Z ; m2

H± , m2
H±) − B22(m

2
Z ; m2

Z , m2
φ) + m2

ZB0(m
2
Z ; m2

Z , m2
φ)

}
,

(D.7)

where the Fij(m
2
V ) are defined in eq. (5.4).

TABLE XVIII: Diagrams representing the 2HDM contributions to S, part 1.

Contributions to Π2H
ZZ(m2

Z)

Z Z

Z

hi (i = 1, 2, 3)

= −
g2M2

Z

16π2c2
W

q2
i1B0(m

2
Z ; m2

Z , m2
i )

Z Z

G0

hi (i = 1, 2, 3)

= g2

16π2c2
W

q2
i1B22(m

2
Z ; m2

Z , m2
i )

Z Z

h3

h1

= g2

16π2c2
W

q2
21B22(m

2
Z ; m2

1, m
2
3)

Z Z

h3

h2

= g2

16π2c2
W

q2
11B22(m

2
Z ; m2

2, m
2
3)

Z Z

h1

h2

= g2

16π2c2
W

q2
31B22(m

2
Z ; m2

1, m
2
2)

Z Z

H+

H+

= g2

16π2c2
W

c2
2W B22(m

2
Z ; m2

H± , m2

H±)

The parameter T can be calculated in a similar manner, where eqs. (D.4)–(D.6) are especially useful. Adding the

38 The 2H superscript indicates the 2HDM contributions and the SM superscript indicates the contributions from the Standard Model
with a reference Higgs mass mφ that is subtracted off from the 2HDM result. This subtraction procedure is necessary in order to get a
finite result.
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TABLE XIX: Diagrams representing the 2HDM contributions to S, part 2.

Contributions to Π2H
γγ (m2

Z) and Π2H
Zγ (m2

Z)

γ γ

H+

H+

= 4 g2

16π2 s2
W B22(m

2
Z ; m2

H± , m2

H±)

Z γ

H+

H+

= 2g2

16π2cW

sW c2W B22(m
2
Z ; m2

H± , m2

H±)

contributions to T from all the diagrams shown in Tables XX, XXI and XXIII yields

αT ≡ A2H
WW (0)

m2
W

− A2H
ZZ(0)

m2
Z

−
[
ASM

WW (0)

m2
W

− ASM
ZZ (0)

m2
Z

]

=
g2

16π2m2
W

{
3∑

k=1

|qk2|2B22(0; m2
H± , m2

k) − q2
11B22(0; m2

2, m
2
3) − q2

21B22(0; m2
1, m

2
3) − q2

31B22(0; m2
1, m

2
2)

+

3∑

k=1

q2
k1

[
B22(0; m2

W , m2
k) − B22(0; m2

Z , m2
k) − m2

W B0(0; m2
W , m2

k) + m2
ZB0(0; m2

Z , m2
k)

]

− 1
2A0(m

2
H±) − B22(0; m2

W , m2
φ) + B22(0; m2

Z , m2
φ) + m2

W B0(0; m2
W , m2

φ) − m2
ZB0(0; m2

Z , m2
φ)

}
,

(D.8)

where the Aij(0) are defined in eq. (5.4). Using α = g2s2
W /(4π) to isolate T and simplifying the result by employing

eq. (D.5), we end up with:

T =
1

16πm2
W s2

W

{
3∑

k=1

|qk2|2F(m2
H± , m2

k) − q2
11F(m2

2, m
2
3) − q2

21F(m2
1, m

2
3) − q2

31F(m2
1, m

2
2)

+

3∑

k=1

q2
k1

[
F(m2

W , m2
k) −F(m2

Z , m2
k) − 4m2

W B0(0; m2
W , m2

k) + 4m2
ZB0(0; m2

Z , m2
k)

]]

+F(m2
Z , m2

φ) −F(m2
W , m2

φ) + 4m2
W B0(0; m2

W , m2
φ) − 4m2

ZB0(0; m2
Z , m2

φ)

}
. (D.9)
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TABLE XX: Diagrams representing the 2HDM contributions to T , part 1.

Contributions to A2H
WW (0)

W + W +

W +

hi (i = 1, 2, 3)

= −
g2m2

W

16π2 q2
i1B0(0; m

2
W , m2

i )

W + W +

G+

hi (i = 1, 2, 3)

= g2

16π2 q2
i1B22(0; m

2
W , m2

i )

W + W +

h1

H+

= g2

16π2 |q12|
2B22(0; m

2

H± , m2
1)

W + W +

h2

H+

= g2

16π2 |q22|
2B22(0; m

2

H± , m2
2)

W + W +

h3

H+

= g2

16π2 |q32|
2B22(0; m

2

H± , m2
3)

W + W +

hi (i = 1, 2, 3)

= − 1

2

g2

16π2 A0(m
2
i )

W + W +

H+

= − 1

2

g2

16π2 A0(m
2

H±)
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TABLE XXI: Diagrams representing the 2HDM contributions to T , part 2.

Contributions to A2H
ZZ(0)

Z Z

Z

hi (i = 1, 2, 3)

= −
g2m2

Z

16π2c2
W

q2
i1B0(0; m

2
Z , m2

i )

Z Z

G0

hi (i = 1, 2, 3)

= g2

16π2c2
W

q2
i1B22(0; m

2
Z , m2

i )

Z Z

h3

h1

= g2

16π2c2
W

q2
21B22(0; m

2
1, m

2
3)

Z Z

h3

h2

= g2

16π2c2
W

q2
11B22(0; m

2
2, m

2
3)

Z Z

h1

h2

= g2

16π2c2
W

q2
31B22(0; m

2
1, m

2
2)

Z Z

hi (i = 1, 2, 3)

= − 1

2

g2

16π2c2
W

A0(m
2
i )

Z Z

H+

= − 1

2

g2

16π2c2
W

c2
2W A0(m

2

H±)

Z Z

H+

H+

= g2

16π2c2
W

c2
2W B22(0; m

2

H± , m2

H±)

= 1

2

g2

16π2c2
W

c2
2W A0(m

2

H±)

Lastly, adding all of the contributions to S + U in Tables XXII and XXIII gives the following:

S + U =
16π

g2

[
FWW (m2

W ) − Fγγ(m2
W ) − cW

sW
FZγ(m2

W )

]

=
1

πm2
W

{
−

3∑

k=1

q2
k1m

2
WB0(m

2
W ; m2

W , m2
k) + m2

WB0(m
2
W ; m2

W , m2
φ) − B22(m

2
W ; m2

W , m2
φ)

+

3∑

k=1

[
q2
k1B22(m

2
W ; m2

W , m2
k) + |qk2|2B22(m

2
W ; m2

H± , m2
k)

]
− 2B22(m

2
W ; m2

H± , m2
H±)

}
. (D.10)
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The formulae for the oblique parameters in a general extended-Higgs sector model with an arbitrary number of
scalar singlets and doublets has been presented in ref. [37]. In contrast to our above results, the treatment of ref. [37]
employs a basis-dependent scalar-mixing matrix. In particular, our expressions for the oblique parameters depend
only on the masses of the physical Higgs fields and the basis-invariant functions qkℓ.

TABLE XXII: Diagrams representing the 2HDM contributions to S + U .

Contributions to Π2H
WW (m2

W )

W + W +

W +

hi (i = 1, 2, 3)

= −
g2m2

W

16π2 q2
i1B0(m

2
W ; m2

W , m2
i )

W + W +

G+

hi (i = 1, 2, 3)

= g2

16π2 q2
i1B22(m

2
W ; m2

W , m2
i )

W + W +

H+

hi (i = 1, 2, 3)

= g2

16π2 |qi2|
2B22(m

2
W ; m2

H± , m2
i )

Contributions to Π2H
γγ (m2

W ) and Π2H
Zγ (m2

W )

γ γ

H+

H+

= 4 g2

16π2 s2
W B22(m

2
W ; m2

H± , m2

H±)

Z γ

H+

H+

= 2 g2sW c2W

16π2cW

B22(m
2
W ; m2

H± , m2

H±)



47

TABLE XXIII: Standard Model contributions to the oblique parameters.

Contributions to ΠSM
WW (m2

W ) and ΠSM
ZZ (m2

Z)

W + W +

W +

φ

= −
g2m2

W

16π2 B0(m
2
W ; m2

W , m2
1)

W + W +

G+

φ

= g2

16π2 B22(m
2
W ; m2

W , m2
1)

Z Z

Z

φ

= −
g2m2

Z

16π2c2
W

B0(m
2
Z; m2

Z , m2
1)

Z Z

G0

φ

= g2

16π2c2
W

B22(m
2
Z ; m2

Z , m2
1)

Contributions to ASM
WW (0) and ASM

ZZ (0)

W + W +

W +

φ

= −
g2m2

W

16π2 B0(0; m
2
W , m2

1)

W + W +

G+

φ

= g2

16π2 B22(0; m
2
W , m2

1)

Z Z

Z

φ

= −
g2m2

Z

16π2c2
W

B0(0; m
2
Z , m2

1)

Z Z

G0

φ

= g2

16π2c2
W

B22(0; m
2
Z , m2

1)



48

Appendix E: Higgs masses and mixing angles in the decoupling limit

In the decoupling limit of the 2HDM [28], one neutral Higgs boson is kept light, with mass <∼ O(mZ), and the
other Higgs boson masses are taken large compared to mZ . In this case, one can formally integrate out the heavy
Higgs states, and the effective low-energy theory consists of a one-Higgs-doublet model. In the decoupling limit, the
properties of the light neutral Higgs boson must approach those of the Standard Model Higgs boson. It is simplest to
characterize the decoupling limit in the Higgs basis as follows:

(i) |Zi| <∼ O(1) , (E.1)

(ii) Y2 ≫ v2 . (E.2)

We shall define Λ to be the mass scale that characterizes the heavy Higgs states, i.e. Y2 ∼ O(Λ). In light of eq. (2.22),
these two requirements imply that mH± ≫ v.

It is convenient to work in the basis of neutral Higgs mass-eigenstate h1, h2 and h3, in which the corresponding
squared-masses are given by eq. (B.3). Assuming eqs. (E.1) and (E.2), the squared-masses are given by:

m2
1 = (s2

12 + c2
12s

2
13)Y2 + O(v2) , (E.3)

m2
2 = (c2

12 + s2
12s

2
13)Y2 + O(v2) , (E.4)

m2
3 = c2

13Y2 + O(v2) , (E.5)

after employing the qk2 given in Table I. In the decoupling limit, precisely two of the three neutral Higgs masses are of
O(Y2) whereas the third neutral Higgs boson mass is of order O(v2). Moreover, to preserve consistency of eqs. (B.5)
and (B.6), we required that terms of O(Y2/v2) cancel in these two equations, which yield the conditions:

Y2s13c13 <∼ O(v2) , Y2c
2
13s12c12 <∼ O(v2) . (E.6)

The above requirements lead to three possible cases:

Case I′: |s12| ∼ |s13| <∼ O(v2/Y2) =⇒ m2, m3 ≫ m1,

Case II′: |c12| ∼ |s13| <∼ O(v2/Y2) =⇒ m1, m3 ≫ m2,

Case III′: |c13| <∼ O(v2/Y2) =⇒ m1, m2 ≫ m3.

The nomenclature for these three cases follows that of Appendix C.3, although we do not assume that Z6 = 0
in the present discussion. In all three cases, we can now obtain expressions for the corresponding neutral Higgs
squared-masses.

In Case I′,

m2
1 ≃ Z1v

2 , (E.7)

m2
2 ≃ Y2 + 1

2

[
Z3 + Z4 + Re(Z5e

−2iθ23)
]
v2 , (E.8)

m2
3 ≃ Y2 + 1

2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]
v2 . (E.9)

In Case II′,

m2
1 ≃ Y2 + 1

2

[
Z3 + Z4 + Re(Z5e

−2iθ23)
]
v2 , (E.10)

m2
2 ≃ Z1v

2 , (E.11)

m2
3 ≃ Y2 + 1

2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]
v2 . (E.12)

In Case III′,

m2
1 ≃ Y2 + 1

2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]
v2 , (E.13)

m2
2 ≃ Y2 + 1

2

[
Z3 + Z4 + Re(Z5e

−2iθ23)
]
v2 , (E.14)

m2
3 ≃ Z1v

2 , (E.15)

where θ23 is defined in eq. (C.20) [cf. the comments that precede this equation]. In all cases above, we omit terms of
O

(
v4/Y2

)
.
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Despite appearances, the above mass formulae are consistent. In Cases I′ and II′, eq. (B.4) implies that
Im(Z5e

−2iθ23) <∼ O
(
v2/Y2

)
. It follows that Re(Z5e

−2iθ23) = ε|Z5| + O
(
v2/Y2

)
, where

ε ≡ sgn
[
Re(Z5e

−2iθ23)
]

. (E.16)

Hence, in Cases I′ and II′, the squared-masses of the two heavy states are given by

Y2 + 1
2 (Z3 + Z4 ± |Z5|) + O

(
v2

Y2

)
. (E.17)

In Case III′, eq. (B.6) implies that Im(Z5e
−2iθ23) <∼ O

(
v2/Y2

)
. In this case, in then follows that Re(Z5e

−2iθ23) =

ε|Z5|+O
(
v2/Y2

)
, where ε = sgn[Re(Z5e

−2iθ23)]. Once again, the squared-masses of the two heavy states again reduce
to eq. (E.17).

In the analysis above, no assumption was made for the value of Z6. If Z6 = 0 then eqs. (C.17)–(C.19) imply that

Im(Z5e
2iθ23) = 0 in Cases I′ and II′ and Im(Z5e

2iθ23) = 0 in Case III′. In this case, one can diagonalize the neutral
Higgs squared-mass matrix exactly [cf. eq. (2.17)]. In particular, in the case of Z6 = 0, the squared-mass formulae
given in eqs. (E.7)–(E.15) [and in eq. (E.17)] are exact, with no O(v2/Y2) corrections.

In the case of a CP-conserving scalar potential and Z6 6= 0, we note that Case I of Table II is consistent with Case
I′ above, and the decoupling limit is specified by |s12| ∼ O(v2/Y2). Case IIb of Table II is consistent with Case II′

above, and the decoupling limit is specified by |s13| ∼ O(v2/Y2). Finally, Case IIa of Table II is consistent with either
Cases I′ or III′. The corresponding decoupling limit is |s13| ∼ O(v2/Y2) in Case I′ and |c13| ∼ O(v2/Y2) in Case III′.

It is convenient to adopt a convention where m1 < m2, m3. In this convention, only Case I′ is relevant in the
decoupling limit. Henceforth, we shall assume that h1 is the lightest neutral Higgs boson in the decoupling limit. No
mass-ordering of h2 and h3, which depends on the sign ε, will be assumed.

For completeness (and as a check of the above results), we provide an alternate derivation of the neutral Higgs
squared-masses and mixing in the decoupling limit. We may compute the eigenvalues of eq. (2.17) directly by setting
Z6 = 0 and treating Z6 as a small perturbation. In first approximation,

m2
1 ≃ Z1v

2 , (E.18)

m2
2,3 ≃ m2

H± + 1
2 (Z4 ± |Z5|)v2 , (E.19)

where we have used eq. (2.22). To determine which squared masses in eq. (E.19) correspond to h2 and h3, one can
also treat the off-diagonal 23 and 32 elements of eq. (2.17) perturbatively, in which case one finds:

m2
2 − m2

3 ≃
{

|Z5|v2 , for Re(Z5e
−2iθ23) ≥ 0 ,

−|Z5|v2 , for Re(Z5e
−2iθ23) ≤ 0 .

(E.20)

That is, all the heavy scalar squared-masses can be written in terms of a single large squared-mass parameter Λ2 as
follows:

m2
3 ≡ Λ2 , (E.21)

m2
2 = Λ2 + ε|Z5|v2 , (E.22)

m2
H± = Λ2 − 1

2 [Z4 − ε|Z5|] v2 , (E.23)

where ε is defined in eq. (E.16).
Corrections proportional to Z6 enter at second-order in perturbation theory and contribute terms that are para-

metrically smaller than the results displayed in eqs. (E.18) and (E.19). In particular,

m2
1 ≃ Z1v

2 − |Z6|2v4

Λ2
. (E.24)

The invariant neutral Higgs mixing angles in the decoupling limit can be determined directly from eqs. (C21) and
(C25) of ref. [2], which we reproduce below:

s2
13 =

(Z1v
2 − m2

1)(Z1v
2 − m2

2) + |Z6|2v4

(m2
3 − m2

1)(m
2
3 − m2

2)
, (E.25)

c2
13s

2
12 =

(Z1v
2 − m2

1)(m
2
3 − Z1v

2) − |Z6|2v4

(m2
2 − m2

1)(m
2
3 − m2

2)
. (E.26)
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These expressions are exact. Assuming that Z5 6= 0, it then immediately follows from eqs. (E.21)–(E.24) that:39

s2
13 ∼ s2

12 ∼ O
(

v4

Λ4

)
, (E.27)

since the numerators of eqs. (E.25) and (E.26) are of order v6/Λ2, whereas the denominators are of order Λ2v2. Some
care is required to treat the case of Z5 = 0 [since in this case m2

2−m2
3

<∼ O(v4/Λ2)]. Nevertheless, our original analysis
above confirms that eq. (E.27) still holds. Hence, in the decoupling limit,40

|s12| ∼ |s13| ≃ O
(

v2

Λ2

)
, c12 ∼ c13 ≃ 1 , (E.28)

in a convention where h1 is defined to be the lightest neutral Higgs boson.
In the CP-conserving limit, the neutral Higgs masses in the decoupling limit can be obtained directly from eqs. (3.16)

and (3.17) by assuming that Y2 ≫ Z1v
2. In the case of Z6 6= 0,

m2
h0 ≃ Z1v

2 , (E.29)

m2
H0 ≃ m2

A + ε56|Z5|v2 , (E.30)

m2
A0 ≃ m2

H± + 1
2 (Z4 − ǫ56|Z5|)v2 , (E.31)

as one approaches the decoupling limit, in agreement with eqs. (E.18) and (E.21)–(E.23). In particular, referring to
Table II, we identify h1 = h0 and

h2 = H0 , h3 = A0 , and Re(Z5e
−2iθ23) = ε56|Z5| , (Case I) (E.32)

h2 = A0 , h3 = H0 , and Re(Z5e
−2iθ23) = −ε56|Z5| , (Case IIa) (E.33)

from which it follows that

ε = η2ǫ56 . (E.34)

In the case of Z6 = 0, eq. (E.29) is an exact result. In addition, eqs. (E.30)–(E.34) apply with ε56 replaced by ε57

and/or ε5Q as appropriate, with the new versions of eqs. (E.32) and (E.33) applying in Cases I′a and I′b of Table VI,
respectively.

Finally, we note that in the limit of custodial symmetry, the 2HDM potential and vacuum are CP-conserving and
eq. (4.38) is satisfied. That is,

Z4 = η2ε|Z5| , (E.35)

in the case of a generic scalar potential. Consider first the case of Z6 6= 0. Then, using eqs. (E.29)–(E.31),

m2
A0 − m2

H± = 1
2 |Z5|(η2ε − ǫ56)v

2 , (E.36)

m2
H0 − m2

H± = 1
2 |Z5|(η2ε + ǫ56)v

2 . (E.37)

Using eq. (E.34), it follows that m2
H± = m2

A0 , as expected. For Z6 = 0 and Z7 6= 0, simply replace ε56 with ε57 and
the same conclusions follow. In the special case of Z6 = Z7 = 0 (and assuming CP-conserving Higgs–fermion Yukawa
interactions), it is also possible to have a custodial symmetric scalar potential with Z4 = −η2ε|Z5| [cf. eq. (4.44)
and Section 4.1.3]. Replacing ε56 above with ε5Q, it then follows that m2

H± = m2
H0 . Of course, both these Higgs

mass-degeneracies are enforced by the custodial symmetry independently of the decoupling limit.

Appendix F: Derivation of tree-level unitarity limits

The assumption of tree-level unitarity in scattering processes implies an upper bound on the magnitudes of the Zi

parameters. This places an upper limit on the masses of the heavy Higgs states in parameter regimes in which the

39 If Z6 = 0 then m2
1

= Z1v2 is exact, in which case s12 = s13 = 0 with no additional corrections.
40 By convention, we take − 1

2
π ≤ θ12 , θ13 < 1

2
π, in which case c12, c13 ≥ 0.
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decoupling limit does not apply. The implications of unitarity for the 2HDM has been studied in the context of the
scattering of gauge bosons and the physical scalars in refs. [38, 39]. By placing an upper limit on the amplitude for a
process ϕAϕB → ϕCϕD, one can quantify the constraints from tree-level unitarity as follows:

|gABCD| < 8π. (F.1)

For tree-level scattering processes, only the quartic bosonic couplings are relevant, namely W+W−W+W−,
W+W−H+H−, (H+eiθ23)(H+eiθ23)W−W− + h.c., Z0Z0Z0hm, G0hmG−(H+eiθ23) + h.c., Z0Z0H+H−, and
Z0Z0W−(H+eiθ23).

The equivalence theorem [40] allows one equate a high energy scattering amplitude involving gauge bosons to the
analogous amplitude involving Goldstone bosons, up to an unimportant overall sign, by making the replacements
W± → G± and Z0 → G0. Thus, one can translate limits on the gauge boson/Higgs couplings into limits on the
Goldstone/Higgs couplings. The resulting constraints on Z1, Z3, Z3 + Z4, Re(Z5e

−2iθ23), and Re(Z6e
−iθ23) can be

read off directly from eqs. (A.8), as shown in Table XXIV.

TABLE XXIV: Calculation of tree-level unitarity limits on the CP-conserving quartic couplings. Combinatorial factors are
included to take into account identical particles.

Relevant term in the scalar potential Amplitude Resulting unitarity bound

1

2
Z1G

+G−G+G− 1

16π
( 1

2
Z1) · 4 |Z1| < 4π

1

2
Z3G

0G0H+H− 1

16π
( 1

2
Z3) · 2 |Z3| < 8π

(Z3 + Z4)G
+G−H+H− 1

16π
(Z3 + Z4) |Z3 + Z4| < 8π

1

2
Z5e

−2iθ23(H+eiθ23)(H+eiθ23)G−G− + h.c. 1

16π
Re(Z5e

−2iθ23) · 4 |Re(Z5e
−2iθ23 )| < 2π

Z6e
−iθ23G0G0G−(H+eiθ23) + h.c. 1

16π
Re(Z6e

−iθ23) · 4 |Re(Z6e
−iθ23)| < 2π

The CP-violating parameters Im(Z5e
−2iθ23) and Im(Z6e

−iθ23) appear in a more complicated form in the quartic
scalar potential. From the interaction 1

2 Im(qm2Z6 e−iθ23)G0G0G0hm and Table I, one can write Feynman rules for
m = 1, 2:

gG0G0G0h1
= 3

{
−s12Im[Z6e

−iθ23 ] − c12s13Re[Z6e
−iθ23 ])

}
,

gG0G0G0h2
= 3

{
c12Im[Z6e

−iθ23 ] − s12s13Re[Z6e
−iθ23 ]

}
, (F.2)

after including an overall symmetry factor 3! corresponding to three identical particles at the vertex. Unitarity
requires |gG0G0G0hm

| < 8π. It is convenient to combine the two limits in quadrature to isolate Im(Z6e
−iθ23). That is,

|gG0G0G0h1
|2 + |gG0G0G0h2

|2 < 64π2, which yields

[
Im(Z6e

−iθ23)
]2

+ s2
13

[
Re(Z6e

−iθ23)
]2

<
64π2

9
. (F.3)

Since s2
13

[
Re(Z6e

−iθ23)
]2

is real and non-negative, it must be true that |Im(Z6e
−iθ23)| < 8π/3.

Similarly, one can use the term 1
2 i G0hm

{
G−H+eiθ23

[
q∗m2Z4 − qm2Z5e

−2iθ23

]
+ h.c.

}
with m = 1, 2 to derive

gG0G−(H+eiθ23 )h1
= −c12s13Z4 − s12Im(Z5e

−2iθ23) − c12s13Re(Z5e
−2iθ23),

gG0G−(H+eiθ23 )h2
= −s12s13Z4 + c12Im(Z5e

−2iθ23) − s12s13Re(Z5e
−2iθ23). (F.4)

Adding the contributions of the two couplings above in quadrature and applying the unitarity bound yields after some
simplification:

s2
13

[
Z4 + Re(Z5e

−2iθ23)
]2

+
[
Im(Z5e

−2iθ23)
]2

< 64π2. (F.5)

In particular, one must satisfy |Im(Z5e
−2iθ23)| < 8π.
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