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Abstract

We study an improved AdS/QCD model at finite temperature and chemical poten-

tial. An Ansatz for the β-function for the boundary theory allows for the derivation

of a charged dilatonic black hole in bulk. The solution is asymptotically RN-AdS in

the UV and AdS2 × R
3 in the IR. We discuss the thermodynamical aspects of the

solution. The fermionic susceptibilities are shown to deviate from the free fermionic

limits at asymptotic temperatures despite the asymptotically free nature of the gauge

coupling at the boundary. The Polyakov line, the temporal and spatial string tensions

dependence on both temperature and chemical potential are also discussed.



1 Introduction

Non-perturbative QCD at finite chemical potential is still elusive. First principle formula-

tions such as the lattice suffer from the sign problem [1]. Most non-perturbative formulations

based on semiclassics such as the instanton or dyon formulations require further insights on

the role of the fermionic zero modes at finite chemical potential. Some insights on the role

of the chemical potential at finite temperature can be gleaned from strong coupling lattice

QCD [2] or models [3]. Most of these models for light 2-flavor QCD suggest a second order

transition at small chemical potential and finite temperature, and a first order transition at

higher chemical potential. Noteworthy is the occurence of a tricritical point which appears

to be sensitive to the nature of the confining forces.

Non-perturbative QCD with a large number of colors at finite chemical potential is likely a

crystal of confined baryons. The crystal binding energy can be parametrically small, causing

it to melt under quantum fluctuations and/or temperature. The result is a strongly coupled

baryonic liquid. The original Skyrme model supports this descriptive although it suffers

from the inherent shortcomings of the higher order chiral terms at high density [4]. The

chiral holographic approaches to QCD support the crystal structure in the large number of

colors limit without the shortcomings of the Skyrme model [5]. The crystal is found to melt

at relatively small temperatures by the Lindemann criterion, resulting into a holographic

liquid of instantons at low density and dyons at higher densities. Therefore, it is reasonable

to think that the cold and dense inhomogeneous phase gives way to a homogeneous phase

under the effects of temperature.

The purpose of this work is to address issues in relation to the dense and hot homogeneous

baryonic phase using the (bottom-up) holographic approach. Specifically, we will use a

variant of the improved (bottom-up) holographic approach to finite temperature Yang-Mills

in the large number of colors limit put forward by Gursoy et al. [6, 7, 8] with the addition

of a fermion chemical potential to account for baryon number. In [6, 7] a potential for

the dilaton field is constructed to reproduce some key features of Yang-Mills theory in 4

dimensions, namely heavy quark confinement in the infrared and asymptotic freedom in the

ultraviolet. Recently, a variant of this construction was suggested in [8] whereby the dilaton

field is directly tied to the running of the gauge coupling in the Yang-Mills theory. This

construction is more transparent physically as it directly ties the holographic direction to

the running of the gauge coupling constant. It is also less numerically intensive. We follow [8]

and add a U(1) charge field in bulk to account for the effects of a finite chemical potential

at the boundary.
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In section 2 we discuss the bottom-up improved holographic model in 5 dimensions with

bulk gravity coupled to a dilaton and the U(1) charged field. The dilaton dynamics follows

from the running of the gauge coupling. The dilaton potential is fixed by the equations of

motion. Explicit solutions are constructed in section 3. In section 4 we discuss the small

and big charged black hole solutions, and their ensuing bulk thermodynamics. In section 5

we analyze the fermionic susceptibilities and compare them to the ideal gas limit. In section

6, the Polyakov line is evaluated at finite temperature and chemical potential. In section 7

we discuss the role of the chemical potential on the spatial and temporal string tension. Our

conclusions are in section 8. The sensitivity of the model to the dilaton-gauge-field coupling

is discussed in Appendix A. In Appendix B we derive (quark) susceptibilities for a warped

holographic model without a dilaton.

2 The Model

In the Einstein frame the 5-dimensional Einstein-Maxwell action in the background of a

scalar or dilaton field φ, is given by [6, 7]

S =
1

16πG5

(
∫

d5x
√−g

(

R − 4

3
∂Aφ∂Aφ + V (φ) − L

2

4
ecφFABF AB

)

− 2

∫

d4x
√

hK

)

(1)

with the U(1) gauge field tensor FAB = ∂[AAB] and L the radius of the AdS-space in

the conformal limit. The Gibbons-Hawking boundary term gives no contribution to the

equations of motion but is crucial for evaluating the on-shell action [9]. The coupling to the

U(1) charge is a generalization of [10], where we consider the parameter c in the exponential

gauge coupling as a free parameter. A recent analysis in this direction is found in [11]. For a

non-constant scalar field φ = φ(z) the Bianchi identity ∇AGAB = 0 (with GAB the Einstein

tensor) ensures that the Einstein equations imply the equation of motion for the scalar field.

With the following Ansatz for the metric

ds2 = b(z)2

(

−f(z)dt2 + d~x2 +
1

f(z)
dz2

)

(2)

we follow [6, 7, 8] and assume that the β-function for the gauge field theory on the boundary

at z = 0 is given by

β(λ) = b
dλ

db
= −β0λ

q (3)

with the running t’Hooft coupling λ(z) = eφ(z) ∼ g2
Y MNc. Note that (3) does not follow from

varying the action (1). q ≥ 1 ensures confinement in the IR and the values q = 10/3 and
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β0 = 488.8 have been shown in [12] to reproduce the dilaton potential in [13] to lowest order

in λ. We will use these values in our numerical analysis. For a static, charged black hole

solution the equation of motion for the scalar potential A0(z) is given by

b(z)−5∂z

(

b(z)ecφ(z)A′
0(z)

)

∝ δ(z − zcharge)

A′
0(z) = − e

L3

e−cφ(z)

b(z)
(4)

with A′
0(z) = ∂

∂z
A0(z) and the electric charge e located at some position zcharge behind the

horizon of the black hole. We can now solve the Einstein equations

6
b′2

b2
− 3

b′′

b
− 4

3
φ′2 = 0 (5)

3

2

b′f ′

b
+

1

2
f ′′ − L

2ecφ

2b2
A′2

0 = 0 (6)

9

2

b′f ′

bf
+ 3

b′′

b
+ 6

b′2

b2
+

1

2

f ′′

f
− b2

f
V = 0 (7)

together with (3) and (4). Note that the factor f(z) drops out from the spatial components

of the energy-momentum tensor for the gauge field.

3 Solutions

The solution for the electrostatic potential is given by

A0(z) = − e

L3

∫ z

0

dx
e−cφ(x)

b(x)
+ µ . (8)

The integration constant µ is interpreted as the chemical potential since A0(z → 0) = µ [14].

The requirement for the electrostatic potential to vanish at the horizon of the black hole,

see (23), gives

A0(zH) = 0 ⇔ µ =
e

L3

∫ zH

0

dx
e−cφ(x)

b(x)
. (9)

The warping factor b(z) is not influenced by the presence of the charge and the solution to

(3) is given by

Q = ln
b

b0

=
1

(q − 1)β0

1

λq−1
. (10)

Since

W (λ) =
−b′(z)

b(z)2
= W (0)e

a
4Q (11)
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and a =
(

4
3(1−q)

)2

, (5) yields

z =
L

b0

∫ ∞

Q

dx e−x− a
4x , (12)

where the constant 1/W (0) = L is fixed by the boundary value of the potential V (z), see

(22) and [8]. (10) and (12) imply that neither the warping b(z), nor the coupling λ depend

on the temperature or chemical potential. (12) introduces a scale Λ = b0
L

for our model and

implies an upper bound on the radial coordinate

z ≤ L

b0

∫ ∞

0

dxe−x− a
4x = zw . (13)

A static wall in the IR is generated which leads to an area law for the Polyakov loop as we

will detail below.

Expanding the integral in (12) for small z (large Q)

∫ ∞

Q

dxe−x− a
4x =

∞
∑

0

1

n!

(

−a

4

)n

Γ(1 − n, Q) (14)

= exp

[

−Q − a

4Q

](

1 +
a

4Q2
− a

2Q3
+ ...

)

(15)

with the incomplete Gamma-function Γ(1 − n, Q) we obtain b(z → 0) = L

z
and φ(z →

0) ∝ − log (− log Λz), which reproduces a logarithmic running coupling for the model on the

boundary.

Changing variables from z to Q in (6) reads

∂2
Qf(Q) +

(

− a

4Q2
+ 4

)

∂Qf(Q) =
((q − 1)β0)

c
q−1 e2

L2b6
0

e
−a
2Q

−6QQ
c

q−1 . (16)

The two asymptotic conditions on f(z), f(z = 0) = f(Q = ∞) = 1 and f(QH) = 0 at the

horizon QH = Q(zH), fix the two integration constants and we obtain

f(Q) = 1 + C1i(Q) + δ
(µ/Λ)2

j(QH)2

∫ Q

∞
dx e−

a
4x

−4x

∫ x

∞
dy e−

a
4y

−2yy
c

q−1 (17)

with δ = 1

((q−1)β0)
3c

1−q
and

C1 =
−1 − δ (µ/Λ)2

j(QH)2

∫ QH

∞ dx e−
a
4x

−4x
∫ x

∞ dy e−
a
4y

−2yy
c

q−1

i(QH)
(18)

j(Q) =

∫ Q

∞
dx e−

a
4x

−2xx
c

1−q (19)

i(Q) =

∫ Q

∞
dx e−

a
4x

−4x. (20)
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We see that our solutions for f(z) reduces to the one obtained in [8] for µ = 0. With a

vanishing coupling of the dilaton to the gauge field, i.e. c = 0, the metric in the Einstein

frame (2) approaches the RN-AdS-metric for z → 0 with

f(z → 0) → 1 − C1

4
(Λz)4 +

(µ/Λ)2

24j(QH)2
(Λz)6 . (21)

We can now solve (7) for the scalar potential

V (Q) = W (0)2e
a

2Q

(1

2
∂2

Q +
(

5 − a

8Q2

)

∂Q + 12 − 3a

4Q2

)

f(Q) (22)

As φ is temperature independent this implies V (Q) = V (φ, T, µ). The dependence on tem-

perature and chemical potential follows from f(Q). The normalization V (z → 0) = V (Q →
∞) = 12

L2 gives 1
W (0)

= L.

4 Thermodynamics

The Hawking temperature of the black hole,

T =
1

4π
f ′(zH) , (23)

is given by

T =
−Λ

4π

e−3QH

i(QH)

(

1 − δ(µ/Λ)2 k(QH)

j(QH)2

)

(24)

with zH , QH = Q(zH) the position of the horizon and

k(Q) =

∫ Q

∞
dxe−

a
4x

−4x

∫ Q

x

dye−
a
4y

−2yy
c

q−1 . (25)

At vanishing chemical potential the black hole solution has a minimal non-zero tempera-

ture. The two regions T ′(zH) > 0 (T ′(QH) < 0) and T ′(zH) < 0 (T ′(QH) > 0) correspond to

a small and a big black hole branch. Since the solution for µ = 0 shows a minimum temper-

ature, a certain density (µ0 = 2.8Λ) is needed to obtain a solution with zero temperature.

Here, we will focus on the case of vanishing dilaton-gauge-field coupling, i.e. c = 0, and

consider the case c = 4 separately in Appendix A. For T → 0 and µ ≥ µ0, the small black

hole vanishes leaving only the big black hole solution, see Fig. 1, and the metric in the IR

becomes AdS2 ×R
3, [15, 16]. With (z − zH) = γ/ζ , t = 2/(γf ′′(zH))τ and γ → 0, ζ, τ finite,

(2) reduces to

ds2 =

(

2b(zH)2

f ′′(zH)

)

1

ζ2

(

−dτ 2 + dζ2
)

+ b(zH)2d~x2 . (26)
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Figure 1: Left: The Hawking temperature at chemical potentials µ/Λ = 0 (solid), 1 (dashed),

3.5 (dotted) as a function of the scaled horizon zHΛ. Right: The chemical potential at T = 0.

(c = 0)

One crucial step in the above analysis is that the temperature as a function of the horizon

does not have a minimum as T → 0, i.e. f ′′ (zH(T = 0, µ)) 6= 0. In our case this translates

to the disappearance of the small black hole as T → 0.

Note that regularizing the action in (1) by subtracting a ’vacuum’ (thermal gas) solution

with functions φ0, b0, f0 = 1 does not necessarily yield the grand potential since the scalar

potential (22) has additional temperature and chemical potential dependence thereby up-

setting the Gibbs relations. This notwithstanding, we can still define the entropy density

s(T, µ) carried by the black hole through its area as

s(T, µ) =
b3
0

4G5
e3QH . (27)

The small (big) black hole branches have negative (positive) specific heat, cv ∝ Tds/dT , and

are unstable (stable).

The scaled entropy density s/T 3 reaches its asymptotic value around T ≃ 2T0 and de-

velops a peak with increasing µ. A low temperature and high density expansion yields

s(µ ≫ T ) =
b3
0

4G5

(

1

6
√

6

µ3

Λ3
+

π

4

µ2T

Λ3
+

π23
√

3

8
√

2

µT 2

Λ3
+

aπ
√

3

16
√

2

µT 2

Λ3 log µ

Λ
√

6

+ O(T/µ)

)

. (28)

(28) reduces to the RN-AdS entropy [17] up to logarithmic corrections. Much like the RN-

AdS black hole, our black hole solution carries a finite entropy at zero temperature and a

linear specific heat, see Fig. 4. The effects of the running coupling through the scalar field

causes only logarithmic corrections much like the high temperature case.
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2
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6

8

s

T3

Figure 2: The scaled entropy density s/T 3 at chemical potentials µ/Λ = 0 (solid), 1 (dashed),

1.5 (dotted) with T0 = 170MeV and Λ = 321MeV. Both the contributions from the small

and big black hole are shown.

The pressure at vanishing chemical potential is obtained by integrating the entropy den-

sity over the small and big black hole branch

p(T, µ = 0) =

∫ QH(T,µ=0)

0

dQ

(

∂T

∂Q

)

s(Q(T, µ = 0)). (29)

The scale Λ = b0
L

is fixed by requiring that the pressure at µ = 0 vanishes at a critical

temperature T0 = 170MeV or Λ = 321MeV. Comparison with an ideal gluon gas gives
b30
G5

= 16N2
c Λ3

45π
[8].

The pressure of the small black hole is negative, indicating its instability. Fig. 3 shows the

big black hole contribution to the pressure. For T/T0 < 1 the ’vacuum’ solution dominates.

The integration constant in (29) is fixed by analyzing the high temperature thermodynamics

of the small black hole, [9]. Since the small black hole vanishes for T = 0, we fix the

integration constant by setting the zero temperature pressure to zero at µ0 = µmin

∣

∣

∣

T=0
=

µ (T = 0, QH = 0) = 2.8Λ,

p(T = 0, µ) =

∫ QH(T=0,µ)

0

dQ

(

∂µ

∂Q

)

n(Q(T = 0, µ)), (30)

with the charge density n given by (31). Fig. 3 shows that the black hole solution is

unstable against the vacuum solution below µ0. In contrast, the RN-AdS black hole at zero

temperature [18], dominates the action for all chemical potentials down to µ = 0.

For fixed chemical potential the charge density n(T, µ) is proportional to the electric
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Figure 3: Left: Big black hole pressure at µ = 0 (Nc = 3) and pressure of an ideal gluon gas

Pideal gas/T
4 = 2 (N2

c − 1) π2

90
(dashed). Right: Pressure at T = 0 (Nc = Nf = 3). For an

ideal relativistic Fermi gas of Nf massless quark flavors Pideal gas/µ
4 =

Nf

4π2 .

charge e and using (9) we write

n =
α

b4
0

e =
αL

3µ

b4
0

∫ zH

0
dxe−cφ(x)

b(x)

=
−αδ−1/3µ

Λ2m(QH)
(31)

with the proportionality constant α and

m(Q) =

∫ Q

∞
dxExp

(

− a

4x
− 2x

)

x
c

q−1 . (32)

For µ ≫ T we obtain

n(µ ≫ T ) =
2α

Λ

(

1

6

µ3

Λ3
(1 +

a

4 log µ

Λ
√

6

) +
µ2T

Λ3
(

π√
6

+
aπ(3 +

√
6)

24 log µ

Λ
√

6

) + O(T/µ)

)

. (33)

As in the RN-AdS, the leading order low temperature correction is linear in T . The deviation

from the pure RN-AdS shows up as logarithmic corrections.

5 Susceptibilities

In QCD at low density and high temperature the pressure can be expanded as

p(T, µ)

T 4
=

∞
∑

n=0

cn(T )
(µ

T

)n

(34)
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Figure 4: Left: Scaled charge density n/T 3 for the big black hole at densities µ/Λ =

0.5 (solid), 1 (dashed), 1.5 (dotted) with α = 3
2π2 Λ

4. Right: s/µ3 (solid), n/µ3 (dashed),

e/µ4 (dotted) at T = 0.

with the (flavor symmetric) quark susceptibilities

cn(T ) =
1

n!

∂n

∂( µ
T
)n

p(T, µ)

T 4

∣

∣

∣

µ=0
. (35)

Various hadronic susceptibilities in the transition region around T0 = 170MeV at vanishing

quark chemical potential show distinct characteristics. In particular, lattice studies [19]

and expectations from PNJL models [20] both confirm that c4, c6 show distinct peaks at a

critical temperature Tc. Asymptotics of the susceptibilities come close to the ideal gas values

at temperatures T ≃ 2Tc. These charge density fluctuations are obtained as derivatives with

respect to the density on the grand canonical partition function.

The quark number susceptibility in hard and soft wall AdS/QCD models were studied in

[21, 22]. In these models the first non-vanishing coefficient in the expansion (34) show a jump

at a critical temperature due to a Hawking-Page transition. In the improved model under

consideration with running gauge coupling, we can explicitly assess the first few moments in

(34). We first note that the odd moments vanish since m(QH) in (31) receives corrections

at high T (high QH) of the form µ2/T 2. From (31) we obtain

c2(T ) =
1

2T 2

∂

∂µ
n(T, µ)

∣

∣

∣

µ=0
(36)

=
−αδ−1/3

2T 2Λ2

1

m(QH)

∣

∣

∣

µ=0
. (37)

Note that eqn. (23) implies
(

∂QH

∂µ

)

∣

∣

∣

µ=0
= 0 , (38)
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(

∂2QH

∂µ2

)

∣

∣

∣

µ=0
=

δ

2πΛT

Exp (−3QH)
[

3i(QH) + Exp(−4QH − a
4QH

)
]

k(QH)

(j(QH))2

∣

∣

∣

µ=0
, (39)

(

∂4QH

∂µ4

)

∣

∣

∣

µ=0
= −3

(

∂2QH

∂µ2

)2(
∂2T

∂Q2
H

)(

∂QH

∂T

)

∣

∣

∣

µ=0
. (40)

We obtain for c4(T ), c6(T )

c4(T ) =
1

24

∂3

∂µ3
n(T, µ)

∣

∣

∣

µ=0
(41)

=
−αδ−1/3

24Λ2

(

∂2QH

∂µ2

)

∂

∂QH

1

m(QH)

∣

∣

∣

µ=0
(42)

c6(T ) =
T 2

6!

∂5

∂µ5
n(T, µ)

∣

∣

∣

µ=0
(43)

=
−αδ−1/3T 2

6!Λ2

(

(∂4QH

∂µ4

) ∂

∂QH
+ 3
(∂2QH

∂µ2

)2 ∂2

∂Q2
H

)

1

m(QH)

∣

∣

∣

µ=0
. (44)

As can be seen from a high temperature expansion of the integrals in (37), (44) (QH → ∞)

c4 and c6 do not converge to a finite asymptotic high temperature value unless c = 0. Thus,

a meaningful comparison to QCD demands a vanishing coupling of the dilaton φ to the U(1)

charge. With c = 0 the high temperature asymptotics are given by

c2 → π2
( α

Λ4

)

(45)

c4 → 1

18

( α

Λ4

)

(46)

c6 → 1

540π2

( α

Λ4

)

. (47)

1.5 2.0 2.5

T

To

1.2

1.3

1.4

1.5

c2

0.9 1.0 1.1 1.2 1.3 1.4

T

To

0.05

0.10

c4

Figure 5: Susceptibilities for the big black hole. Dashed line: ideas gas value for Nc = Nf = 3.
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-0.04
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Figure 6: Left: c6 and ideal gas value for Nc = Nf = 3 (dashed). Right: Ratios c4/c2 (solid)

and c6/c4 (dashed)

As a result of the non-trivial warping b(z), the susceptibilities are non-constant and a

comparison with recent lattice data [19] shows that the susceptibilities c2, c4, c6 obtained in

this model have the correct shape around the critical temperature T0. c2 and c6 approach

its asymptotic value from below, while c4 shows a distinct peak at the critical temperature.

All high temperature asymptotics of the susceptibilities are strictly positive. For the model

proposed in [23], the susceptibilities vanish as explained in Appendix B.

In comparison, for an ideal gas of massless quarks and anti-quarks the susceptibilities read

cideal gas
2 =

NcNf

6
, cideal gas

4 =
NcNf

12π2 , cideal gas
6 = 0 with the ratios cideal gas

4 /cideal gas
2 = 1/(2π2),

c6/c4 = 0. In our model: c4/c2 = 1/(18π2), c6/c4 = 1/(30π2). While the scale Λ was fixed

by the gluonic part of the pressure, we fix the constant α by comparing to the fermionic part

of the pressure of an ideal gas. For Nc = 3, Nf = 3 we fit the high temperature asymptotic

of c2 to the ideal gas value and obtain α = 3
2π2 Λ

4. The susceptibilities in the holographic

model considered in [17] with a non-confining RN-AdS black hole are constant and given

by cRN−AdS
2 = N2

c γ2/8, cRN−AdS
4 = N2

c γ4

48π2 , cRN−AdS
6 = −N2

c γ6

216π4 , where the flavor dependence is

embedded in the parameter γ2 ∝ Nf/Nc.

It is now straightforward to evaluate the density contribution to the pressure, ∆p(T, µ 6=
0)/T 4 =

∑∞
n=2 cn(T )

(

µ
T

)n ≃ c2(T )
(

µ
T

)2
+ c4(T )

(

µ
T

)4
+ c6(T )

(

µ
T

)6
, and the energy density

e(T, µ) = Ts − p + µn at high temperatures and small charge density. Fig. 7 shows our

results for (e − 3p)/T 4 at different densities.
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Figure 7: ∆p/T 4 and (e − 3p)/T 4 for µ/Λ = 0.25 (solid), 0.5 (dashed).

6 Polyakov line

The expectation value of the Polyakov line can be schematically written as [24, 25]

〈L(T, µ)〉 =
∑

n

wnExp(−Sn) , (48)

with weights wn associated with a renormalized area Sn. We will approximate the area using

the Nambu-Goto action describing a fundamental string stretched between the horizon and

the boundary at z = 0. While on-shell quantities such as the susceptibilities do not depend

on the frame, quantities such as the Polyakov line may depend on it. The appropriate

background for the string is given by the metric in the string frame

gs
AB(z) = e

4
3
φ(z)gAB(z) , (49)

where gAB is given in eqn. (2). For a static configuration with the parametrization ξ1 = t,

ξ2 = z the action is given by

SNG =
1

2πα′

∫

d2ξ
√

gs
AB∂MXA∂NXN (50)

=
1

2πα′T

∫ zH

0

dzb(z)2λ(z)
4
3

√

1 + f(z)~x ′(z)2. (51)

The first integral gives the equation of motion for ~x(z)

d

dz

(

b(z)2λ(z)
4
3 f(z)~x ′(z)

√

1 + f(z)~x ′(z)2

)

= 0. (52)

It is easy to check that the dominant contribution to the integral in (51) comes from the

solution ~x = const., and we will neglect other solutions. Since our metric is asymptotically

12



RN-AdS, implying that b(z → 0) = L

z
, the action defined in (51) is divergent. We renormalize

the action by subtracting the vacuum contribution stretching from the boundary (z = 0)

upto the wall at zw. The Polyakov line in the saddle-point approximation (48) reads

〈L(T, µ)〉 ≃ w0Exp (−Sren
NG) (53)

= w0Exp

(

1

2πα′T

∫ zH

0

dzb(z)2λ(z)
4
3 − 1

2πα′T

∫ zw

0

dzb(z)2λ(z)
4
3

)

(54)

= w0Exp

(

1

2πα′T

∫ zH

zw

dzb(z)2λ(z)
4
3

)

. (55)

At vanishing chemical potential, the ’low’ temperature limit of the Polyakov line is given by

〈L(T → Tmin, 0)〉 ∝ Exp
[

Exp

(

− 1

Ln(T/Tmin)

)(

1

Ln(T/Tmin)

)
4

3(q−1) ]

(56)

and, thus, shows little deviation from its high temperature asymptotic value. Fig. 8 shows

the behavior of the approximate order parameter of the phase transition. The constant

b2
0/α

′ is fixed by comparing the spatial string tension with lattice data, see next section. At

fixed µ the expectation value of the Polyakov line jumps rapidly from a minimum value at

a temperature T = Tmin and approaches a constant value in the high temperature region.

A direct comparison with lattice data is unfortunately not possible given the subtraction

dependence inherent in the definition of the Polyakov line both on the lattice and in our

case. This point is generally overlooked in most analyses.
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Figure 8: Left: Polyakov line with µ/Λ = 0 (solid), 1 (dashed), 1.5 (dotted); (w0 = 1).

Right: Big black hole contribution to the spatial string tension at densities µ/Λ =

0 (solid), 1.5 (dashed), 2.5 (dotted).
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7 String tensions

The analyses of the spatial and temporal (effective) string tension, σs and σ at finite tem-

perature and density, are identical to those carried in [12] at finite temperature. Indeed, a

rerun of their analysis shows that for the spatial string tension σs, the density dependence

is entirely encoded in the position of the horizon zH(T, µ) with

σs(T, µ) =
1

2πα′
bs(z)2

∣

∣

∣

z=zH

=
1

2πα′
b(z)2λ(z)

4
3

∣

∣

∣

z=zH

, (57)

where bs(z) is the warping in the string frame. A comparison with lattice data [26] at T = T0,

µ = 0 fixes b0√
α′

= 3 ∗ 10−4MeV−1. For chemical potentials up to µ = 2.5Λ, the spatial string

tension shows a weak dependence on the chemical potential in this improved holographic

model.

In the temporal Wilson loop, the string tying a heavy quark and antiquark in the bi-

fundamental representations extends in the holographic direction in bulk. The further the

spatial separation L, the deeper the string extends in bulk z. Specifically [12]

L(z∗) = 2

∫ z∗

0

dz
1

√

f(z)
(

b4s(z)f(z)
bs(z∗)f(z∗)

− 1
)

(58)

with z∗ the maximum holographic depth for the pending string. In the black hole background

with f 6= 1, L(z∗) is finite for any temperature and chemical potential as shown in Fig. 9.
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L z*
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L z*

0.07

0.08

0.09

0.10

LL

Figure 9: Length separating two heavy quarks. Left: µ = 0 with T = T0 (solid) and

T = 1.5T0 (dashed). Right: T = T0, µ = µ0 = 2.8Λ (solid) and T = 0, µ = 4Λ (dashed).
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In the black hole background two heavy-quarks still tie up to distances of order Lmax

which is the location of the maximum in Fig. 9. In other words, for 0 < L < Lmax we expect

a linear-like free energy between two heavy quarks, while for L > Lmax the heavy quarks

”screen” through the large entropy of the string (at zero density) or through fundamental

matter (at finite density) causing the free energy to plateau at twice the screening masses.

Around the phase transition points, T = T0 and µ = 0, Lmax = 1.24Λ−1 ≈ 0.76 fm, while

for T = 0 and µ = µ0 = 2.8Λ, Lmax = 0.10Λ−1 ≈ 0.06 fm. The larger the density, the larger

the screening.

8 Conclusions

Finite density QCD both at zero and finite temperature is still a challenging problem from

first principles. In the double limit of a large number of colors and large t’Hooft coupling

the holographic approach offers a non-perturbative tool for investigating QCD-like gauge

theories at finite temperature and density. The current analysis provides a step in that

direction whereby finite density effects are incorporated in an improved AdS/QCD model

with a bulk U(1) charge. Without a dilaton-gauge coupling, our improved AdS/QCD metric

at finite (charge) density is asymptotically RN-AdS on the boundary with a non-trivial

dilaton profile interpreted as a running coupling. The effects of the density do not alter the

warping factor of the underlying gravitational metric.

At zero density but for temperatures larger than a minimum temperature, the gravita-

tional equations yield a pair of black holes of different holographic sizes. A small black hole

that is unstable thermodynamically, and a large black hole that is stable. The occurence of

a minimum temperature in the improved model reflects on the (first order) transition from a

’vacuum’ (thermal gas) to a black hole solution. The unstable solution is found to disappear

at large densities. For zero temperature, the small black hole solution disappears while the

large black hole solution requires a minimum chemical potential µ0 = 2.8Λ. As a result, the

metric becomes AdS2 × R
3 in the infrared. Evaluating the pressure at finite µ and T = 0

shows that the ’vacuum’ becomes unstable against black hole solution at a critical µ = µ0

indicating a first order Hawking-Page transition.

The (quark) susceptibilities c2, c4, c6 show rapid variations across the critical temperature

T0 in the improved holographic model, in contrast to the RN-AdS model where they are

found to be constant. The variations are overall consistent with the ones reported by lattice

simulations. However, their asymptotic ratios are off compared to the free fermion (quark)
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limits, despite the fact that in the improved holographic model the gauge coupling on the

boundary runs weak at high temperature.

To further clarify the nature of the charged black hole solutions, we have analyzed the

subtracted Polyakov line and found that it jumps at both finite temperature and/or finite

density. The jump is suggestive of screening which is expected to be larger at finite charge

density. Indeed, our analysis of the temporal Wilson loop confims that two heavy quarks

detach more easily at higher density. Spatial Wilson loops are midly affected by the charge

screening in the black-hole background.

The bottom-up model with running coupling constant appears to capture some essentials

of a first order transition from a vacuum with matter characterized by f = 1 and a charged

black-hole characterized by f 6= 1. This first order geometrical transition captured by the

holographic gravity equations appears to encode some of the features expected from a first

order transition in QCD with a large number of colors in the homogeneous regime. The

latter is expected to be dominant for a broad range of temperatures and densities. However,

it has two major shortcomings: 1/ The (quark) susceptibilities asymptote the wrong values

despite the fact that the bulk thermodynamics (pressure, entropy and energy densities)

can be adjusted to asymptote the correct values. 2/ The very low temperature phase is

likely inhomogeneous. While the latter issue is readily overcome [5], the former issue is more

problematic at higher temperature. It goes to the heart of high fermionic charge fluctuations

in dense matter and therfore the very interpretation of our charged black hole solutions.
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A Non-trivial dilaton-gauge coupling: c = 4

In this Appendix, we show that a non-trivial dilaton-gauge coupling affects considerably the

formation of the large black hole solution in the model we discussed above.
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zHL
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Figure 10: Left: The Hawking temperature at chemical potentials µ/Λ =

0 (solid), 1 (dashed), 3.5 (dotted) as a function of the scaled horizon zHΛ. Right: The

density at T = 0.

Fig. 10 shows, that the big black hole branch vanishes completely for densities larger

than µ0 leaving only the unstable solution with an absolute maximum temperature in the

IR region (zH → zw). In this region, the size of the black hole at a given temperature is

insensitive to changes in the charge density. Discarding the unstable small black hole, the

range of validity for this setup is dictated by T ≥ Tmin, µ ≤ µ0.
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Figure 11: The scaled entropy density s/T 3 at chemical potentials µ/Λ =

0 (solid), 1 (dashed), 1.5 (dotted) and the pressure at T = 0.
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The scaled entropy density, s/T 3, peaks at finite µ around T = 5T0 and the high temper-

ature asymptotic behavior is much slower as in the case of vanishing dilaton-gauge coupling,

Fig. 11. The susceptibilities c4, c6 do not asymptote for large temperatures. The pressure at

T = 0 is negative for small µ/Λ and asymptotes to zero for µ/Λ ≥ 10. Thus, the ’vacuum’

solution is stable against the black hole solution at T = 0 for all ranges of the chemical

potential and no phase transition expected.
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Figure 12: Left: Polyakov line with µ/Λ = 0 (solid), 1 (dashed), 1.5 (dotted).

Right: Big black hole contribution to the spatial string tension at densities µ/Λ =

0 (solid), 1.5 (dashed), 2.5 (dotted). (w0 = 1)

The Polyakov line shows a peak around T = T0 that is enhanced with increasing charge

density. Fig. 12 shows the results for the Polyakov line and the spatial string tension with

non-trivial dilaton-gauge coupling.

B Warped Model

We discuss the asymptotics of the susceptibilites as obtained for the warped metric proposed

in [23] with a charged black hole. At finite temperature and density the metric reads

ds2 =
L

2

z2
e0.45GeV2z2

(

−f(z)dt2 + d~x 2 +
1

f(z)
dz2

)

(59)

and we assume that the relation between the horizon zH and the temperature, density is

given by the RN-AdS result [18]

zH = 2

(

πT +

√

π2T 2 +
4

3
γ2µ2

)−1

. (60)
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The solution (9) is generic and we obtain

µ =
e

L3

∫ zH

0

dx
x

L
e−0.225GeV2x2

= − e

L40.45GeV2 e0.225GeV2z2
H . (61)

The charge density is proportional to the charge and using (61) yields

n(T, µ) ∝ µe0.225GeV2z2
H . (62)

Unlike the improved holographic model, the corresponding susceptibilities vanish as power

laws at high temperature,

c2 ∝
1

T 2
e

0.225GeV2

π2T2 → 0 (63)

c4 ∝
1

T 4
e

0.225GeV2

π2T2 → 0 (64)

c6 ∝
(

#
1

T 6
+ #

1

T 4

)

e
0.225GeV2

π2T2 → 0 (65)

This warped and charged black hole cannot be used to model up the fermionic fluctuations

in screened QCD.

19



References

[1] P. de Forcrand, ”Simulating QCD at finite density,” arXiv:1005.05392 [hep-lat].

[2] M. Fromm and P. de Forcrand, “Nuclear physics from strong coupling QCD,”

arXiv:0912.2524 [hep-lat].

[3] S. Carignano, D. Nickel and M. Buballa, arXiv:1007.1397 [hep-ph], and references

therein.

[4] I. R. Klebanov, “Nuclear Matter In The Skyrme Model,” Nucl. Phys. B 262, 133 (1985);

B.Y. Park and V. Vento, ”Skyrmion Approach to Finite Density and Temperature,”

arXiv:0906.3263 [hep-ph], and references therein.

[5] K. Y. Kim, S. J. Sin and I. Zahed, “Dense Holographic QCD in the Wigner-Seitz

Approximation,” JHEP 0809, 001 (2008) [arXiv:0712.1582 [hep-th]]; M. Rho, S. J. Sin

and I. Zahed, “Dense QCD: a Holographic Dyonic Salt,” Phys. Lett. B 689, 23 (2010)

[arXiv:0910.3774 [hep-th]].

[6] U. Gursoy and E. Kiritsis, “Exploring improved holographic theories for QCD: Part I,”

JHEP 0802, 032 (2008) [arXiv:0707.1324 [hep-th]].

[7] U. Gursoy, E. Kiritsis and F. Nitti, “Exploring improved holographic theories for QCD:

Part II,” JHEP 0802, 019 (2008) [arXiv:0707.1349 [hep-th]].

[8] J. Alanen, K. Kajantie and V. Suur-Uski, “A gauge/gravity duality model for gauge

theory thermodynamics,” Phys. Rev. D 80, 126008 (2009) [arXiv:0911.2114 [hep-ph]].

[9] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, “Holography and Thermodynamics of

5D Dilaton-gravity,” JHEP 0905, 033 (2009) [arXiv:0812.0792 [hep-th]].

[10] S. S. Gubser and F. D. Rocha, arXiv:0911.2898 [hep-th].

[11] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, arXiv:1005.4690

[hep-th].

[12] J. Alanen, K. Kajantie and V. Suur-Uski, “Spatial string tension of finite temperature

QCD matter in gauge/gravity Phys. Rev. D 80, 075017 (2009) [arXiv:0905.2032 [hep-

ph]].

20



[13] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, “Improved Holographic Yang-Mills at

Finite Temperature: Comparison with Nucl. Phys. B 820, 148 (2009) [arXiv:0903.2859

[hep-th]].

[14] K. Y. Kim, S. J. Sin and I. Zahed, arXiv:hep-th/0608046.

[15] H. Lu, J. w. Mei, C. N. Pope and J. F. Vazquez-Poritz, Phys. Lett. B 673, 77 (2009)

[arXiv:0901.1677 [hep-th]].

[16] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, arXiv:0907.2694 [hep-th].

[17] S. J. Sin and I. Zahed, JHEP 0912, 015 (2009) [arXiv:0907.1434 [hep-th]].

[18] S. J. Sin, JHEP 0710, 078 (2007) [arXiv:0707.2719 [hep-th]].

[19] C. R. Allton et al., Phys. Rev. D 71, 054508 (2005) [arXiv:hep-lat/0501030].

[20] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa and R. Ray, Phys. Rev. D 73, 114007

(2006) [arXiv:hep-ph/0603050].

[21] K. Jo, Y. Kim, H. K. Lee and S. J. Sin, JHEP 0811, 040 (2008) [arXiv:0810.0063

[hep-ph]].

[22] Y. Kim, Y. Matsuo, W. Sim, S. Takeuchi and T. Tsukioka, arXiv:1001.5343 [hep-th].

[23] O. Andreev and V. I. Zakharov, JHEP 0704, 100 (2007) [arXiv:hep-ph/0611304].

[24] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002].

[25] O. Andreev, Phys. Rev. Lett. 102, 212001 (2009) [arXiv:0903.4375 [hep-ph]].

[26] M. Cheng et al., Phys. Rev. D 78, 034506 (2008) [arXiv:0806.3264 [hep-lat]].

21


