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Kirill Tuchin and Dajing Wu
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We calculate the cross section for diffractive hadron production in deep inelastic scattering off

heavy nuclei in the framework of gluon saturation/color glass condensate. We analyze the kinematic

region of the future Electron-Ion Collider. We argue that coherent and incoherent diffractive channels

are very sensitive to the structure of the nuclear matter at low x. This expresses itself in a character-

istic dependence of the cross sections on rapidity and transverse momentum of the produced hadron

and on the nuclear weight. We also discuss dependence on the scattering angle and argue that both

coherent and incoherent cross sections may be within experimental reach at EIC.

I. INTRODUCTION

Diffraction is one of the most effective tools for investigating the structure of the nuclear matter at

low values of Bjorken variable x. Its hallmark is large rapidity gaps (LRG) in rapidity distribution of the

produced hadrons. At high energies, these gaps correspond to scattering processes mediated by exchange of

a collective gluon state with vacuum quantum numbers, known as Pomeron. On the other hand, according

to the Pomerantchuk theorem, high energy asymptotic of QCD is driven by the Pomeron exchange (see e.g.

[1]). Hence, measurements of diffractive structure functions at HERA attracted a lot of interest. Indeed,

diffractive physics at HERA yielded many exciting results that heralded the dawn of the new QCD regime

of gluon saturation/color glass condensate (CGC) [2–11].

A possible launch of Electron Ion Collider (EIC) will open new avenues in studying the physics of

diffraction in high energy nuclear physics. It will not only allow probing lower x and measure dependence of

diffractive processes on nuclear weight, but also make possible studying less inclusive processes. One such

process, diffractive hadron production in DIS is the subject of this paper. Our goal is to make predictions

for DIS on a nucleus at the EIC kinematic region based on the CGC theory. We argue that diffractive hadron

production is very sensitive to parameters of CGC and thus can be very effective instrument in extracting

properties of the nuclear matter at low x. Gluon saturation effects on diffractive gluon production in DIS

on proton at HERA have been discussed in [12–17, 23–25]. A concise discussion of the gluon saturation

effects in semi-inclusive DIS on nuclei is given in [26–28].

This article is structured as follows. In Sec. II we review the formalism developed in our previous

publications [29–31], which allows to calculate coherent and incoherent diffractive gluon production in the

regime of coherent scattering lc � RA, where lc = 1/(MPx) is the coherence length in the nucleus rest
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frame. Coherent diffractive gluon production is the process γ∗+ A→ X +h+ [LRG]+ A. The corresponding

cross section is given by Eqs. (1)–(3) and (6) below. For heavy nuclei A1/3 ∼ 1/α2
s � 1 and at high

energies this type of diffractive process dominates over the incoherent diffraction, which is the process

γ∗+ A→ X +h+ [LRG]+ A with A∗ being excited nucleus. Nevertheless, at EIC energies, cross sections for

coherent and incoherent diffraction processes are often comparable [31]. In pA collisions their dependences

on gluon rapidity y and transverse momentum k and on atomic weight A are quite different. Therefore, as

was pointed out in [31], it is important to separately measure the contributions of these diffractive processes.

In Sec. III we calculate these contributions using the b-CGC model [35] for the color dipole scattering

amplitude. As in [30] we characterize the nuclear effect using the nuclear modification factor (NMF) for

diffractive processes defined in (11). The results of our numerical calculations are presented in Fig. 2. The

most interesting features of the NMF’s are (i) strong dependence of coherent diffractive NMF on gluon

rapidity y (or xIP); (ii) near independence of incoherent diffractive NMF on y and (iii) independence of both

NMF’s on the photon virtuality. This results are discussed in detail in Sec. III.

Separation of coherent and incoherent diffractive contributions pose a great experimental challenge be-

cause it requires measurements of very small scattering angles θ = 2
√
−t/W2, where t is the moment trans-

fer and W is the center-of-mass energy per nucleon of γ∗A process. We address this problem in Sec. IV.

Dependence of the coherent cross section on momentum transfer t is given by (24). It is seen that it de-

creases as 1/|t|3 at |t| � 1/R2
A, where RA is the nuclear radius. On the other hand, incoherent diffraction

cross section decreases exponentially as e−|t|R
2
p/4, but at much larger momentum transfers t > 1/R2

p as seen

in (36). The results of the calculation are plotted in Fig. 3. As expected coherent diffraction dominates at

small momentum transfers −t while the incoherent one at large −t. However, due to different functional

form of t-dependences, the two contributions become of the same order at about −t ∼ R−2
P and remain

comparable even at larger momentum transferes. The corresponding scattering angle for W = 100 GeV is

θ ≈ 0.13o and is very weakly dependent on the hadron transverse momentum, xIP and photon virtuality Q2.

It seems that such scattering angles are within the experimental reach and hopefully the two contribution

can be separated.

II. DIFFRACTIVE GLUON PRODUCTION

A. Dipole cross section

Consider diffractive production of a gluon of transverse momentum k at rapidity y. Let the total rapidity

interval be Y = ln(1/x), where x = Q2/W2, Q2 is photon virtuality and W the center-of-mass energy of γ∗N
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scattering. Cross section for diffractive gluon production reads [18]

dσγ
∗A

diff (Q2, x, k, y)

d2k dy
=

∫
d2r
2π2 dz Φγ∗(Q, r, z)

dσqq̄A
diff (r, x, k, y)

d2k dy
, (1)

where

dσqq̄A
diff (r, x, k, y)

d2k dy
(2)

is the differential cross section for the diffractive gluon production by a qq̄ dipole (a.k.a. onium) of trans-

verse size r scattering off a nucleus. Eq. (1) generalizes the quasi-classical result derived in [19–21]. Other

kinematic variables that are often used are β and xIP. They are defined as ln(1/β) = Y − y and ln(1/xIP) = y,

where Y − y is the rapidity interval between the photon and the produced gluon. We work in the approxi-

mation αs ln(1/x) ∼ 1, αs ln(1/β) ∼ 1. Diffractive production in the region β . 1 was addressed in [12, 22].

We assume that the produced gluon is at the edge of the rapidity gap, so that the total rapidity gap in the

process is y, see Fig. 1.

p

k y

q

Y

FIG. 1: One of the diagrams contributing to the diffractive production of a gluon with transverse momentum k and

rapidity y. y is also the rapidity gap of the process. Unconnected t-channel gluons indicate all possible attachments to

the s-channel gluons, quark and anti-quark.

Virtual photon light-cone wave-function appearing in (1) reads

Φγ∗(Q, r, z) = Φ
γ∗

T (Q, r, z) + Φ
γ∗

L (Q, r, z) (3)

Φ
γ∗

T (Q, r, z) = 2Nc

∑
f

α
f
em

π
{a2K2

1 (ra)[z2 + (1 − z)2] + m2
f K2

0 (ra)} (4)

Φ
γ∗

L (Q, r, z) = 2Nc

∑
f

α
f
em

π
4Q2z2(1 − z)2K2

0 (ra) (5)

where a2 = Q2z(1 − z) + m2
f , α

f
em = e2z2

f /(4π), with z f being electric charge of quark f . Subscripts L and T

refer to the longitudinal and transverse polarizations respectively.
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B. Coherent and incoherent diffraction

We will consider two types of diffractive processes on nuclei – coherent and incoherent diffraction.

Coherent diffraction is a process in which nucleus stays intact. This corresponds to elastic dipole scattering.

At very high energies, such processes constitute half of the total dipole–nucleus cross section, another

half being the inelastic processes. Therefore, contribution of coherent diffractive processes is expected to

rise with energy. Unfortunately, experimental observation of coherent diffraction is challenging because it

requires measurements at very small scattering angles, i.e. at very small momentum transfers |t| ∼ 1/R2
A.

We discuss this in detail in Sec. IV.

Another type of diffractive process is incoherent diffraction when the nucleus decays into colorless

remnants. This process occurs at the nuclear edge where partial scattering amplitude at a given impact

parameter is less than unity. Share of this contribution in the total inelastic cross section decreases with

energy and with nuclear weight. Importance of incoherent diffraction stems from the fact that it measures

fluctuations of the color glass condensate near its quasi-classical mean-field value. Typical momentum

transfer in this case is |t| ∼ 1/R2
p, i.e. determined by the inverse width of the diffuse region; it is much larger

than in the case of coherent diffraction, which allows easier experimental study. In this section we discuss

coherent and incoherent diffraction separately, assuming no experimental cuts on the minimal scattering

angle.

Cross section for coherent diffractive gluon production including the low-x evolution was derived in

[18, 29] and can be written as

dσcd(r, x,k, y)
d2k dy

=
αsCF

π2

1
(2π)2

∫
d2b

∫
d2r′ np(r, r′,Y − y) |Icd(r′, x,k, y,b)|2 , (6)

where we introduced an auxiliary transverse vector

Icd(x − y, x,k, y,b) =

∫
d2z

(
z − x
|z − x|2

−
z − y
|z − y|2

)
e−ik·z

×

{
− NA(z − x,b, y) − NA(z − y,b, y) + NA(x − y,b, y)

+NA(z − x,b, y) NA(z − y,b, y)
}
. (7)

In [18, 29] we presented a detailed analytical and numerical analysis of the the coherent diffractive gluon

production and discussed applications to pA scattering in [30]. Similarly, for incoherent diffraction [31]

dσid(r, x, k, y)
d2k dy

=
αsCF

π2

πR2
p

2(2π)2

∫
d2b

∫
d2r′ n(r, r′,Y − y) ρTA(b) |IID(r′, x, k, y, b)|2 , (8)
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where

Iid(x − y, x, k, y, b) =

∫
d2z

(
z − x
|z − x|2

−
z − y
|z − y|2

)
e−ik·z

×

{ [
1 − NA(z − x,b, y)

] [
1 − NA(z − y,b, y)

] [
Np(z − x, 0, y) + Np(z − y, 0, y)

]
−

[
1 − NA(x − y,b, y)

]
Np(x − y, 0, y)

}
. (9)

For numerical calculation we evaluate both vector functions Iid and Icd in the logarithmic approximation

[18, 29–31]. Dipole density n(r, r′,Y − y)d2r′ in (8) is the number of daughter dipoles of size r′ produced

by a parent dipole of size r in the two-dimensional element of area d2r′ at relative rapidity Y − y. In the

diffusion approximation to the leading order BFKL equation [32, 33] it is given by:

n(r, r′,Y − y) =
1

2π2

1
rr′

√
π

14ζ(3)ᾱs (Y − y)
e(αP−1)(Y−y) e−

ln2 r
r′

14ζ(3)ᾱs (Y−y) . (10)

As discussed in detail in [30], nuclear modification factor RAB for coherent diffractive gluon production

in the quasi-classical regime (i.e. without low-x evolution) is suppressed for large nuclei and large dipoles

as Rqq̄+A ∼ A1/3 exp{−r2Q2
s/4} (modulo logs) for dipole–nucleus scattering. Effect of quantum evolution is

twofold. The larger is the rapidity of the produced gluon y, the stronger is the coherence effect that slows

down growth of the diffractive qq̄ + A cross section with energy as compared to the diffractive qq̄ + p cross

section. As a result, the nuclear modification factor gets an additional suppression in the γ∗ fragmentation

region (forward rapidity). On the other hand, at large Y − y, the dipole density (10) in the virtual photon

γ∗ spreads to a wider range of sizes r′. Apparently, dipoles with sizes r′ � 2/Qs are not suppressed at

all. This effect leads to relative enhancement of the nuclear modification factor in the backward versus

forward rapidity. A quantitative study of diffractive hadron production requires numerical calculations that

we discuss in the next section.

III. NUMERICAL CALCULATIONS

A convenient way to express the nuclear effect on diffractive scattering is to introduce the nuclear mod-

ification factor as a ratio of the diffractive cross sections in DIS on a nucleus per nucleon and on a proton

[30]:

Rcd/id =

dσγ
∗A

cd/id(Q2,x,k,y)

d2k dy

A
dσγ

∗ p
cd/id(Q2,x,k,y)

d2k dy

. (11)

Cross sections appearing in (11) are partonic cross sections (6) and (8) convoluted with the LO pion frag-

mentation function given in [34].
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We performed numerical calculations with b-CGC model of the dipole scattering amplitude N [35],

albeit with a modification: we treat nuclear and proton profiles as step-functions; the saturation scales are

assumed to scale with A as Q2
s ∝ A1/3. The advantage of this model is that (i) its form complies with the

known analytical approximations to the BK equation and (ii) its parameters are fitted to the low x DIS data.

The explicit form of the scattering amplitude N is given by

N(r, 0, y) =


N0

(
r2Q2

s
4

)γ
, rQs ≤ 2;

1 − exp[−a ln2(brQs)] , rQs ≥ 2 ,
(12)

where Q2
s is the the quark saturation scale related to the gluon saturation scale Q2

s – which we have referred

to simply as the ‘saturation scale’ throughout the paper – by Q2
s = (4/9)Q2

s . Its functional form is

Q2
s = A1/3xλ0 eλy GeV2 , (13)

The anomalous dimension is

γ = γs +
1

κ λ y
ln

(
2

rQs

)
. (14)

Parameters γs = 0.628 and κ = 9.9 follow from the BFKL dynamics [36], while N0 = 0.7, x0 = 3 · 10−4

and λ = 0.28 are fitted to the DIS data. Constants a and b are uniquely fixed from by the requirement of

continuity of the amplitude and its first derivative.

Our results are presented in Fig. 2 which exhibits dependence of the nuclear modification factor for

coherent (left column) and incoherent (right column) hadron production on transverse momentum k. We

assumed that the center-of-mass energy of the γ∗A collision is W = 100 GeV per proton, which corresponds

to the total rapidity interval Y = 9.2.

In Fig. 2 (a,b) we show variation of the nuclear modification factor with the nuclear weight. We observe

that Rcd increases with A. This is a signature behavior of higher twist effects and, in particular, coherent

diffraction. In view of the discussion at the end of the previous section, we infer that the effective dipole size

r′ produced in the dipole evolution is r′ � 2/Qs, for otherwise the cross section would decrease for heavier

nuclei. As one can see in Fig. 2 (e,f), NMF has no significant Q2 dependence, and hence no r dependence

as well. Therefore, even at higher y, where evolution effects in the nucleus as well as lack of evolution in γ∗

could have produced suppression of Rcd with A, no such suppression is observed. We checked this statement

up to the most forward direction allowed by our model β = 0.1. Rid decreases with A already at midrapidity

y = 5 because the general property of incoherent diffraction is that it vanishes in the limit A → ∞ when all

partial amplitudes turn black.

Rapidity dependence is displayed in Fig. 2 (c,d). Rcd rapidly decreases in the forward direction, which is

a cumulative effect of evolution in the nucleus and in the virtual photon, whereas Rid is essentially rapidity
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FIG. 2: Nuclear modification factors for coherent (left column) and incoherent (right column) diffractive hadron

production at W = 100 GeV as a function of the hadron transverse momentum k⊥. Shown are dependences on: (a),(b)

atomic number A, (c),(d) hadron rapidity y and (e),(f) photon virtuality Q2.

independent. This effect has already been noticed by one of us in pA case [31]. It arises because of different

physical origins of the two diffractive processes. Coherent diffraction corresponds to elastic scattering of

a color dipole on a nucleus, whereas incoherent diffraction is a part of inelastic scattering that originates

from the nuclear periphery due to variation of the nuclear density with impact parameter. At low x central

impact parameters of a heavy nucleus are black for a typical dipole. Therefore, scattering amplitude of
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dipole on a heavy nucleus is very different from an incoherent superstition of dipole-nucleon scattering

amplitudes, hence strong variation of the nuclear modification factor with energy/rapidity. On the other

hand, incoherent diffraction is non-zero only in the range of impact parameters comparable with the proton

radius. Therefore, energy/rapidity dependence of dipole-nucleus and dipole-proton cross section is similar,

though the geometry is quite different.

Finally, Fig. 2 (e,f) exhibits dependence on photon virtuality Q2, or perhaps better to say no dependence

at all. This can be interpreted as insensitivity of the diffractive cross sections to the size of the parent dipole

r. Indeed, as explained in [29], at k⊥ � Qs,Q diffractive spectra depend only on k⊥. For example, cross

section for coherent diffractive gluon production in the asymptotic kinematic region Qs � 1/r � k reads

(in the double-logarithmic approximation)

dσqq̄A

d2k dy
=
αsCFS A

π5/2k2 N2(1/k, b, y)
1

(2ᾱs(Y − y) ln(rk))1/4 e2
√

2ᾱs(Y−y) ln(rk) . (15)

Clearly, r-dependence cancels out of the nuclear modification factor. Notice, however, that the EIC kine-

matic region can hardly be classified as asymptotic, and one would expect large corrections to (15). In

fact, it is known that corrections to the double-logarithmic approximation are phenomenologically signifi-

cant (see e.g. [16, 37]). However, our numerical calculations imply that they cancel in this particular case.

Unfortunately, we are not able to extend this analysis to higher Q2’s without transgressing the region of

applicability of our model. It would be interesting to analytically investigate the origin of this cancelation.

IV. T-DEPENDENCE

In this section we consider dependence of different diffraction channels on momentum transfer t. t-

dependence translates into dependence on the scattering angle θ. While the dominant contribution to the

diffractive cross sections stems from scattering at small angles, only angles larger than some cutoff angle

are experimentally accessible. In this section, we would like to investigate whether separation of coherent

and incoherent contributions is experimentally feasible at EIC.

A. Coherent diffraction

Consider dipole–nucleus elastic scattering amplitude Γqq̄+A(s,b, {ba}), where b is the dipole impact pa-

rameter and ba’s are positions of nucleons in the nucleus. Average over the nucleon positions will be

denoted as
〈
ΓdA(s,b)

〉
. Cross section for elastic dipole scattering is

σ
qq̄+A
cd =

∫
d2b

∣∣∣∣〈Γqq̄+A(s,b)
〉∣∣∣∣2 . (16)
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In this representation, (16) is also the coherent diffraction cross section. Fourier image of the dipole-nucleus

elastic scattering amplitude carries information about the transferred momentum ∆ (t = −∆2):〈
Γqq̄+A(s,∆)

〉
= 2

∫
d2b

〈
Γqq̄+A(s,b)

〉
eib·∆ . (17)

If only two-body forces are taken into account in the scattering amplitude, which amounts to neglecting cor-

relations between nucleons, then we can express the scattering amplitude on a nucleus through the scattering

amplitudes on individual nucleons as

Γqq̄+A(s,b, {ba}) = 1 −
A∏

a=1

(
1 − Γqq̄+N(s,b − ba)

)
. (18)

In this approximation, averaging can be performed as

〈. . .〉 =

A∏
a=1

∫
d2ba

∫ ∞

−∞

dz ρA(ba, z) . . . =

A∏
a=1

∫
d2baρTA(ba) . . . (19)

where ρA(b, z) is the nuclear density at a given point in the nucleus and ρ is its average over the nucleus

volume.

Impact parameter profile of the dipole-nucleon amplitude is traditionally parameterized as

Γqq̄+N(s,b) =
1
2
σ

qq̄+N
tot (s)

1
πR2

p
e−b2/R2

p , (20)

where we neglected a small imaginary part of Γqq̄+N(s,b). In a heavy nucleus of radius RA � Rp, nucleon

can be approximated by the delta function in impact parameter space. Thus,∫
d2baΓqq̄+N(s,b − ba) ρTA(ba) ≈ ρΓqq̄+N(s, 0) ρTA(b) . (21)

Using (19),(20),(21) in (18) we derive for heavy nuclei〈
Γqq̄+A(s,b)

〉
= 1 − e−

1
2σ

qq̄+N
tot (s)ρTA(b) (22)

Finally, substituting (22) into (17) and (16) we find

dσqq̄+A
cd

dt
=

1
16π

∣∣∣∣∣2 ∫
d2b

(
1 − e−

1
2σ

qq̄+N
tot (s)ρTA(b)

)
eib·∆

∣∣∣∣∣2 . (23)

To estimate the t-dependence of the coherent cross section we can use a simple model for the b-

distribution. Denote 1
2σ

qq̄+N
tot (s)ρTA(b) = ΩS (b) and let the profile function S (b) be given by the step

function S (b) = θ(RA − b). Neglecting contribution of the diffuse region at the nucleus edge is a reasonable

approximation in the case of coherent diffraction because the main contribution stems from b < RA impact

parameters. Substituting into (23) and (16) we get the well-known result (see e.g. [1])

dσqq̄+A
cd

dt
1

σ
qq̄+A
cd

=
J2

1(RA
√
−t)

|t|
. (24)
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Because (24) does not depend on Ω this formula also gives t-dependence of the diffractive coherent gluon

production:

dσγ
∗A

cd (Q2, x, k, y)

d2k dy dt
=

J2
1(RA

√
−t)

|t|

dσγ
∗A

cd (Q2, x, k, y)

d2k dy
. (25)

B. Incoherent diffraction

Coherent diffraction includes only events in which nucleus stays intact. However, generally the nucleus

can be excited and subsequently decays into colorless remnants. Total diffractive cross section of this

process is given by

σ
qq̄+A
dif =

∫
d2b

〈∣∣∣Γqq̄+A(s,b)
∣∣∣2〉 . (26)

The difference between (26) and (16) measures dispersion of the scattering amplitude in the impact param-

eter space. The corresponding physical process is a part of inelastic cross section and is called incoherent

diffraction:

σ
qq̄+A
id =

∫
d2b

〈∣∣∣Γqq̄+A(s,b)
∣∣∣2〉 − ∣∣∣∣〈Γqq̄+A(s,b)

〉∣∣∣∣2 . (27)

Clearly, the incoherent diffraction stems from the region near the nucleus edge (‘diffuse region’). Indeed,

at b � RA all partial dipole-nucleon amplitudes are close to the black disk limit, while at b � RA they all

vanish.

To derive the t−dependence of the incoherent diffraction cross section we define similarly to (17)

Γqq̄+A(s,∆, {ba}) = 2
∫

d2b Γqq̄+A(s,b, {ba})eib·∆ . (28)

Then (26) reads:

dσdif

dt
=

1
16π

〈∣∣∣Γqq̄+A(s,∆, {ba})
∣∣∣2〉 (29)

=
1

4π

∫
d2b

∫
d2b′ei∆·(b−b′)

〈1 − A∏
a=1

(
1 − Γqq̄+N(s,b − ba)

)
1 − A∏

a=1

(
1 − Γqq̄+N(s,b′ − ba)

)
†〉

=
1

4π

∫
d2b

∫
d2b′ei∆·(b−b′)

[
1 − e−

∑
a〈Γ

qq̄+N (s,b−ba)〉 − e−
∑

a〈Γ
qq̄+N (s,b′−ba)〉

+e−
∑

a〈Γ
qq̄+N (s,b−ba)〉+

∑
a〈Γ

qq̄+N (s,b′−ba)〉−〈Γqq̄+N (s,b−ba)Γqq̄+N (s,b′−ba)〉
]
. (30)

Upon subtracting the coherent diffraction part

dσcd

dt
=

1
4π

∫
d2b

∫
d2b′ei∆·(b−b′)

(
1 − e−

∑
a〈Γ

qq̄+N (s,b−ba)〉
) (

1 − e−
∑

a〈Γ
qq̄+N (s,b′−ba)〉

)
(31)
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we end up with

dσid

dt
=

1
4π

∫
d2b

∫
d2b′ei∆·(b−b′)

[
1 − e−

∑
a〈Γ

qq̄+N (s,b−ba)Γqq̄+N (s,b′−ba)〉
]

×e−
∑

a[〈Γqq̄+N (s,b−ba)〉+〈Γqq̄+N (s,b′−ba)〉−〈Γqq̄+N (s,b−ba)Γqq̄+N (s,b′−ba)〉] . (32)

Since elastic qq̄N cross section is small compared with the inelastic one (as it contains extra α2
s [31]), we

expand (32):

dσid

dt
=

1
4π

∫
d2b

∫
d2b′ei∆·(b−b′)e−

∑
a[〈Γqq̄+N (s,b−ba)〉+〈Γqq̄+N (s,b′−ba)〉]

×
∑

a

〈
Γqq̄+N(s,b − ba)Γqq̄+N(s,b′ − ba)

〉
(33)

=
1

4π

∫
d2ba

∣∣∣∣∣∫ d2b ei∆·be−ρTA(b)Γqq̄+N (s,0)Γqq̄+N(b − ba)
∣∣∣∣∣2 ρTA(ba) (34)

Because |b − ba| ∼ Rp � ba ∼ RA, (34) becomes

dσid

dt
=

1
4π

∫
d2ba e−2ρTA(ba)Γqq̄+N (s,0)

∣∣∣∣∣∫ d2b ei∆·bΓqq̄+N(b)
∣∣∣∣∣2 ρTA(ba) . (35)

Finally, using (20) we derive the desired result

dσid

dt
=

1
4π

σ
qq̄+N
tot (s)

2
e−

1
2 tR2

p

∫
d2ba e−2ρTA(ba)Γqq̄+N (s,0)ρTA(ba) =

R2
p

2
e−

1
4 |t|R

2
p σid . (36)

As in the case of coherent diffraction, t-dependence of the cross section for incoherent diffraction is inde-

pendent of other kinematic variables and therefore (36) describes also t-dependence of incoherent diffractive

hadron production:

dσγ
∗A

id (Q2, x, k, y)

d2k dy dt
=

dσγ
∗A

id (Q2, x, k, y)

d2k dy

R2
p

2
e−

1
4 |t|R

2
p . (37)

t-dependence of diffractive coherent and incoherent hadron production is shown in Fig. 3. In Fig. 3(a)

we compare the coherent and incoherent diffractive production as a function of the transferred momentum t

for a particular choice of the collision kinematics. We observe the following general features: (i) At small |t|

coherent diffraction dominates over incoherent one by several orders of magnitude; (ii) At |t| ≈ R−2
p coherent

and incoherent contributions coincide, we will call the corresponding scattering angle θ′; at |t| > R−2
p the

two contributions are similar on average; (iii) Features (i) and (ii) hold for a wide range of parameters. In

particular, θ′ is nearly constant θ′ ≈ 0.13o as is seen in Fig. 3(b). Scattering angles of this size may be

experimentally accessible at EIC.

V. SUMMARY

In this paper we discussed coherent and incoherent diffractive gluon production in DIS off heavy nuclei

in the proposed kinematic region of Electron Ion Collider. Our approach is based on the dipole model
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FIG. 3: (a) t-dependence of diffractive coherent (solid line) and incoherent (broken line) hadron production. (b)

Contour plot of the scattering angle θ′ at which coherent and incoherent diffractive hadron production cross sections

are equal at given k and y = ln(1/xIP).

introduced in [38]. It allows representing cross sections for high energy hadronic scattering as a convolution

of hadronic light-cone wave-functions with the multipole scattering amplitudes. In our case, virtual photon

wave function is determined by the perturbative QED and is given by (3). Dipole-nucleus interaction can

in turn be represented as a product of dipole density (10) in transverse coordinate space, satisfying the

BFKL equation [32, 33], and the dipole-nucleus forward elastic scattering amplitude as displayed in (6),(8),

satisfying QCD evolution equations in the low x region [6, 39]. These formulas are derived in the leading

logarithmic approximation αs ln(1/x) ∼ 1, αs ln(1/β) ∼ 1, which defines the kinematic region where the

results of our calculations are applicable. Note, that hard perturbative factorization is generally broken

at low x, because scattering in this region is characterized by small longitudinal momentum transfer (see

e.g. [40]). At moderate x and large Q2, our formulas reduce to the leading order hard perturbative QCD

expressions that can be cast in the factorized form using the diffractive parton distributions [41–44].

The main results of our calculations are displayed in Fig. 2 and Fig. 3. We found that nuclear modifica-

tion factor strongly varies with nuclear weight, and the functional dependence on A is qualitatively different

for coherent and incoherent processes. Similarly to diffractive hadron production in pA collisions [31],

nuclear effects in coherent diffractive DIS is strongly dependent on rapidity of produced hadron, whereas

they are almost absent in the case of incoherent diffraction. We also made a peculiar observation that the

nuclear modification factor for both diffractive channels is essentially independent of the photon virtuality

in the region 1 < Q2 < 25 GeV2. Finally, our study of non-forward diffractive hadron production indicates

feasibility of experimentally separation of coherent and incoherent diffractive contributions at EIC.
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