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Abstract

According to heavy-meson chiral perturbation theory, the vector form factor f+(q2) of

exclusive semi-leptonic decay B → πℓν is closely related, at least in the soft-pion region

(i.e., q2 ∼ (mB − mπ)2), to the strong coupling gB∗Bπ or the normalized coupling ĝ.

Combining the precisely measured q2 spectrum of B → πℓν decay by the BaBar and Belle

collaborations with several parametrizations of the form factor f+(q2), we can extract

these couplings from the residue of the form factor at the B∗ pole, which relies on an

extrapolation of the form factor from the semi-leptonic region to the unphysical point

q2 = m2
B∗ . Comparing the extracted values with the other experimental and theoretical

estimates, we can test these various form-factor parametrizations, which differ from each

other by the amount of physical information embedded in. It is found that the extracted

values based on the BK, BZ and BCL parametrizations are consistent with each other

and roughly in agreement with the other theoretical and lattice estimates, while the BGL

ansatz, featured by a spurious, unwanted pole at the threshold of the cut, gives a neatly

larger value.
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1 Introduction

The most promising decay mode for a precise determination of the Cabibbo-Kobayashi-Maskawa

(CKM) [1] matrix element |Vub|, both experimentally and theoretically, is the exclusive semi-

leptonic B → πℓν decay [2], for which a number of measurements by various collabora-

tions (CLEO [3], BaBar [4, 5, 6] and Belle [7, 8]) have been made. A fit to the measured

q2 spectrum, on the other hand, allows for a precise extraction of the q2 dependence of the

vector form factor f+(q2), and thus provides a stringent check on our understanding of the

dynamics of hadrons governed by QCD.

The heavy-to-light form factors are complicated nonperturbative objects, which have at-

tracted extensive investigations in the literature. Besides various quark models (see, e.g.,

[9, 10]), which in many aspects help our phenomenological understanding of the heavy-to-light

transitions, there exist two more quantitative predictions based on first principles of QCD, the

lattice QCD (LQCD) simulation (see, e.g., [11, 12, 13]) and the QCD sum rules on the light-

cone (LCSR) (see, e.g., [14, 15, 16, 17]). These two methods are complementary to each other

with respect to the momentum transfer q2: while the LQCD calculations are restricted to the

high q2 region, reliable predictions of the LCSR method can only be made at the low q2 region.

Due to our limited theoretical knowledge of the q2 dependence of the transition form fac-

tors, a variety of parametrizations have been proposed in the literature, trying to capture as

much information as possible on the dynamics of the corresponding mesons. These include

the two-parameter Bećirević-Kaidalov (BK) ansatz [18], the three-parameter Ball-Zwicky (BZ)

ansatz [14, 19], the so-called Series Expansion (SE) ansatz [20, 21, 22, 23], as well as the rep-

resentation from the Omnes solution to the dispersive bounds [24]. It turns out that most of

them could fit the data equally well in the semi-leptonic region [4, 7, 19]. A good review of

these different parametrizations could be found, for example, in Refs. [4, 19].

Most of the above parametrizations include the essential feature that the vector form factor

f+(q2) has a pole at q2 = m2
B∗ , where B∗(1−) is a narrow resonance with mB∗ = 5.325 GeV <

mB + mπ. As the high-precision experimental data on B → πℓν decay is available only in

the semi-leptonic region, 0 ≤ q2 ≤ (mB − mπ)2, in order to extract the pole residue we have

to extrapolate the form factor from this region to the unphysical point q2 = m2
B∗ . Although

lying outside the physical region, the pole residue is of great phenomenological interest. It
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is related to the strong coupling gB∗Bπ, describing the low-energy interaction among the two

heavy B-mesons and a soft pion, or the normalized coupling ĝ, a fundamental parameter in

heavy-meson chiral perturbation theory (HMChPT) [25, 26]. Since the process B∗ → Bπ is

kinematically forbidden, the coupling gB∗Bπ cannot be measured directly but should be fixed

phenomenologically. In this paper, exploiting the experimental knowledge on the form factor

f+(q2) extracted from the semi-leptonic B → πℓν decay, we determine the strong coupling

gB∗Bπ and ĝ from the pole residue by extrapolating the form factor from the physical region to

the unphysical point q2 = m2
B∗ . By comparing the extracted values with other theoretical and

experimental estimates, we can then test the various form-factor parametrizations.

Our paper is organized as follows. In Section 2, we provide the definition of heavy-to-light

form factors, their different parametrizations, and the pole residue at q2 = m2
B∗ . In Section 3,

after collecting the up-to-date measured B → π form-factor shape parameters, we give our

determinations of the strong coupling gB∗Bπ and the corresponding normalized coupling ĝ; some

interesting phenomenological discussions are also presented in this section. Our conclusions are

made in Section 4.

2 Heavy-to-light form factor

2.1 Definition of the heavy-to-light form factor

In exclusive semi-leptonic B → πℓν decay, the hadronic matrix element is usually parameterized

in terms of two form factors f+(q2) and f0(q
2) [27],

〈π(pπ)|ūγµb|B̄(pB)〉 = f+(q2)

[

(pB + pπ)µ − m2
B − m2

π

q2
qµ

]

+ f0(q
2)

m2
B − m2

π

q2
qµ , (1)

where q ≡ pB − pπ is the momentum transferred to the lepton pair, with pB and pπ the four-

momenta of the parent B-meson and the final-state pion, and mB and mπ their masses. For

massless leptons, which is a good approximation for electrons and muons, the form factor f0(q
2)

is absent and we are left with only a single form factor f+(q2).

Precise knowledge of the heavy-to-light form factors is of primary importance for flavour

physics. It is needed for the determination of the CKM matrix element |Vub| from exclusive

semi-leptonic B → πℓν decay. They are also needed as ingredients in the analysis of hadronic B-

3



meson decays, such as B → ππ and B → πK, in the framework of QCD factorization [28], again

with the objective to provide precision determinations of the quark flavour mixing parameters.

The two QCD methods, LQCD and LCSR, result in predictions for different q2 regions. The

LCSR combines the idea of QCD sum rules with twist expansions performed up to O(αs), and

provides estimates of various form factors at low intermediate q2 regions, 0 < q2 < 14 GeV2.

The overall normalization is predicted at the zero momentum transfer with typical uncertainties

of 10 − 13% [14, 15]. The LQCD simulation can, on the other hand, potentially provide the

heavy-to-light form factors in the high-q2 region from first principles of QCD. The unquenched

lattice calculations, in which quark-loop effects in the QCD vacuum and three dynamical quark

flavours (the mass-degenerate u and d quarks and a heavier s quark) are incorporated, are now

available for B → π form factors [11, 12, 13]. Unfortunately, neither the LQCD nor the LCSR

can predict the form factors over the full q2 range.

2.2 Form-factor parametrizations

While predictions of the exact form-factor shape are challenged for any theoretical calculations,

it is well established that the general properties of analyticity, crossing symmetry and unitarity

largely constrain the q2 behavior of the form factor [21, 22, 23]. Specifically, it is expected to

be an analytic function everywhere in the complex q2 plane outside of a cut that extends along

the positive q2 axis from the mass of the lowest-lying bd̄ vector meson. This assumption leads

to an un-subtracted dispersion relation [21],

f+(q2) =
f+(0)/(1 − α)

1 − q2/m2
B∗

+
1

π

∫

∞

(mB+mπ)2
dt

Imf+(t)

t − q2 − iǫ
, (2)

which means that we have a pole residue at q2 = m2
B∗ and a cut from the B π continuum, and

the parameter α gives the relative size of contribution to f+(0) from the B∗ pole.

The various parametrizations proposed in the literature make explicitly or implicitly dif-

ferent simplifications in the treatment of the cut, and the following four ones are widely used,

with their respective salient features sketched below:

1. Bećirević-Kaidalov (BK) ansatz [18]:

f+(q2) =
f+(0)

(1 − q2/m2
B∗)(1 − αBK q2/m2

B∗)
, (3)
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where f+(0) sets the normalization and αBK defines the shape of the form factor. It is

mainly motivated by the scaling laws of the form factors in the heavy quark limit, and

provides an approximate representation of the second term in Eq. (2) by an additional

effective pole m2
B∗/αBK , with αBK < 1 to be consistent with the location of the cut.

2. Ball-Zwicky (BZ) ansatz [14, 19]:

f+(q2) = f+(0)

[

1

1 − q2/m2
B∗

+
rBZ q2/m2

B∗

(1 − q2/m2
B∗) (1 − αBZ q2/m2

B∗)

]

, (4)

where f+(0) is the normalization, and αBZ and rBZ determine the shape of the form

factor. This is an extension of the BK ansatz, related to each other by the simplification

αBK = αBZ = rBZ . The BK and BZ parametrizations are featured by both being intuitive

and having fewer free parameters.

3. Boyd-Grinstein-Lebed (BGL) ansatz [21, 22]:

f+(q2) =
1

P (q2)φ(q2, q2
0)

kmax
∑

k=0

ak(q
2
0)[z(q2, q2

0)]
k , (5)

with the conformal mapping variable defined by

z(q2, q2
0) =

√

t+ − q2 −
√

t+ − q2
0

√

t+ − q2 +
√

t+ − q2
0

, (6)

where t± = (mB ±mπ)2 and q2
0 is a free parameter. The so-called Blaschke factor P (q2) =

z(q2, m2
B∗) accounts for the pole at q2 = m2

B∗ , and the outer function φ(q2, q2
0) is an

arbitrary analytic function, the choice of which affects only the particular values of the

series coefficients ak. The form-factor shape is determined by the values of ak, with

truncation at kmax = 2 or 3. The expansion parameters ak are bounded by unitarity,
∑

k a2
k ≤ 1. Becher and Hill [21] have pointed out that due to the large b-quark mass,

this bound is far from being saturated. For more details we refer to Refs. [21, 22].

4. Bourrely-Caprini-Lellouch (BCL) ansatz [23]:

f+(q2) =
1

1 − q2/m2
B∗

kmax
∑

k=0

bk

{

[z(q2, q2
0)]

k − (−1)k−kmax−1 k

kmax + 1
[z(q2, q2

0)]
kmax+1

}

,

(7)
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where the variable z(q2, q2
0) is defined by Eq. (6), and the free parameter q2

0 can be chosen

to make the maximum value of |z| as small as possible in the semi-leptonic region [23].

In this ansatz, the form-factor shape is determined by the values of bk, with truncation

at kmax = 2 or 3.

Although the BK and the BZ parametrization are intuitive and have few free parameters,

the presence of poles near the semi-leptonic region creates doubt on whether truncating all

but the first one or two terms leaves an accurate estimate of the true form-factor shape. The

BGL and the BCL parametrization are based on some fundamental theoretical concepts like

analyticity and unitarity, and avoid ad hoc assumptions about the number of poles and the pole

masses. Fits to the measured q2 spectrum of B → πℓν decay have, on the other hand, shown

that these different form-factor parametrizations could describe the data equally well [4].

2.3 Pole residue at q2 = m2
B∗ and the strong coupling gB∗Bπ

All the above four parametrizations have the essential feature that the vector form factor f+(q2)

has a pole at q2 = m2
B∗ . Although lying outside the semi-leptonic region, the pole residue at

q2 = m2
B∗ is phenomenologically very interesting. With the following standard definitions [18],

〈0|d̄γµb|B̄∗0(p, ǫ)〉 = fB∗mB∗ǫµ, 〈B−(p)π+(q)|B̄∗0(p + q, ǫ)〉 = gB∗Bπ(q · ǫ) , (8)

it is given by the product of the strong coupling gB∗Bπ and the vector decay constant fB∗ [14, 18],

r1 = lim
q2=m2

B∗

(1 − q2/m2
B∗) f+(q2)

=
fB∗ gB∗Bπ

2mB∗

. (9)

In fact, at the upper end of the physical region (i.e., at the zero recoil point q2 = (mB −mπ)2),

the vector-meson dominance (VMD) of f+(q2) is expected to be very effective [29, 30]. It

has been argued that, in the combined heavy quark and chiral limit, the VMD becomes even

exact [31]. Thus, the strong coupling gB∗Bπ determines the normalization of the vector form

factor f+(q2) near the zero recoil of pion. The strong coupling gB∗Bπ also provides access to the

normalized coupling ĝ, which is, in the limit of exact chiral, heavy flavour and spin symmetries,

the single parameter for heavy-meson chiral perturbation theory (HMChPT) [25, 26]. They are
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related to each other through [32]

ĝ =
gB∗Bπ

2
√

mBmB∗

fπ , (10)

where the convention fπ ≃ 131 MeV is used. Unlike the D∗Dπ coupling gD∗Dπ, which could be

extracted from the available experimental data on the decay D∗ → Dπ [33], there cannot be a

direct experimental indication on the coupling gB∗Bπ, because there is no phase space for the

decay B∗ → Bπ. They could however be related through the heavy quark symmetry [26].

As a result, a precise determination of the couplings gB∗Bπ and ĝ is of particular importance.

During recent years a large number of theoretical studies have been devoted to the calculation

of these couplings in various versions of quark models [29, 34] and QCD sum rules [35, 36].

However, the variation of the obtained values, even within a single class of models, turns

out to be quite large [16, 26], for an overview see [16, 26]1. In addition, there have been

several LQCD simulations of these couplings in both quenched [37, 38] and unquenched [39, 40]

approximations. These strong couplings have also been calculated using a framework based on

QCD Dyson-Schwinger equations [41, 42].

Motivated by the precise experimental knowledge on the vector form factor f+(q2), one can

extract indirectly the values of gB∗Bπ via Eq. (9) and ĝ via Eq. (10), by an extrapolation of the

form factor from the physical region to the pole m2
B∗ , which will be detailed in the next section.

3 Numerical results and discussions

3.1 The relevant input parameters

Before presenting the results for the strong coupling gB∗Bπ, we would like to first fix the relevant

input parameters, such as the decay constants, the CKM matrix element |Vub|, as well as the

free parameter q2
0 in the BGL and BCL parametrizations.

The vector decay constant defined by Eq. (8) is not relevant from a phenomenological point

of view, since the meson B∗ will decay predominantly through the electromagnetic interaction.

It is, however, needed in our case to extract the strong coupling gB∗Bπ from the pole residue

1Values for the couplings obtained prior to 1995 with different approaches could be found, for example, in

[36] and references therein.
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Eq. (9). To take into account the uncertainties induced by this quantity, we shall use the

following two inputs: one is taken from the UKQCD collaboration [43],

f̃B∗ = 28(1)+3
−4 , (11)

which is related to the vector decay constant by f̃B∗ = mB∗/fB∗ , with the first error quoted

statistical and the second systematic, and hence we get fB∗ = (190 ± 7stat.
+32
−18syst.

) MeV; the

other one is taken from the quenched LQCD calculation [44],

fB∗ = (177 ± 6stat. ± 17syst.) MeV . (12)

To extract the normalized form factor f+(0) from the fitted results of the product |Vub|f+(0),

one needs to know the value of the CKM matrix element |Vub|. The two avenues for |Vub|
determination through inclusive and exclusive b → uℓν decays have been reviewed in [45, 46].

How to reconcile the difference between the values for |Vub| obtained from these two methods

remains an intriguing puzzle. At the same time, |Vub| can also be most precisely determined by

a global fit of the unitarity triangle (UT) that uses all available measurements [47, 48]. Since

the presence of New Physics (NP) might, in principle, affect the result of the UT analysis, here

we shall use the tree-level fit result performed by the UTfit collaboration [48],

|Vub| = (3.76 ± 0.20) × 10−3 , (13)

which is almost unchanged by the presence of NP.

In the BGL and BCL parametrizations, both the free parameter q2
0 and the outer function

φ(q2, q2
0) have to be specified. Following the BaBar collaboration [4] and references therein, we

choose the values q2
0 = 0.65t− for the BGL, and q2

0 = (mB + mπ)(
√

mB −√
mπ)2 for the BCL

parametrization. The outer function φ(q2, q2
0) in the BGL parametrization is given explicitly

as [20],

φ+(q2, q2
0) =

√

1

32πχ
(0)
J

(
√

t+ − q2 +
√

t+ − q2
0)(

√

t+ − q2 +
√

t+ − t−)3/2

× (
√

t+ − q2 +
√

t+)−5 (t+ − q2)

(t+ − q2
0)

1/4
, (14)

where χ
(0)
J is a numerical factor that can be calculated via operator product expansion [49]. At

two loops in terms of the pole mass and condensates and taking µ = mb, it is given as [20]

χ
(0)
J =

3[1+1.140 αs(mb)]

32π2m2
b

−mb 〈ūu〉
m6

b

−〈αsG
2〉

12πm6
b

, (15)
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Table 1: The relevant input parameters used in our calculation. All meson masses are taken directly

from the Particle Data Group [46].

mπ+ = 139.6 MeV mπ0 = 135.0 MeV fπ = 130.41 ± 0.20 MeV [46]

mB+ = 5279.2 MeV mB0 = 5279.5 MeV mB∗ = 5325.1 MeV

with mb = 4.88 GeV, mb〈ūu〉 ≃ −0.076 GeV4, 〈αsG
2〉 ≃ 0.063GeV4 [20]. Explicitly the BaBar

collaboration uses χ
(0)
J = 6.889 × 10−4 [4].

For all the other input parameters, we list them in Table 1. Throughout the paper, we use

the isospin-averaged meson masses, for example, mπ = (mπ+ + mπ0)/2.

3.2 The fitted B → π form-factor shape parameters

In order to extrapolate the vector form factor f+(q2) to the B∗ pole based on the various form-

factor parametrizations, we first need to determine their shape parameters from the current

experimental data on B → πℓν decay reported by the BaBar [4, 5, 6] and Belle [7, 8] collab-

orations. Although these measurements employ different experimental techniques in treating

the second B meson in the BB̄ event, the measured total and partial branching fractions agree

well among each other. For more details, we refer to these original references [4, 5, 6, 7, 8].

These experiments have also measured the q2 spectrum of B → πℓν decay, a fit to which

allows for an extraction of the q2 dependence of the vector form factor f+(q2). It is generally

observed that all the four form-factor parametrizations introduced in Section 2.2 could describe

the measured spectrum equally well [4, 7, 19]. A summary of the fitted form-factor shape

parameters based on various parametrizations is given in Table 2, where both a linear (2

para., with kmax = 2) and a quadratic (3 para., with kmax = 3) ansatz for the BGL and

BCL parametrizations are considered in [4], while a third-order polynomial fit (4 para., with

kmax = 4) is performed in [7]. The value of the product |Vub|f+(0) obtained from the fit

extrapolated to q2 = 0, if available, are listed in the last column.

As concluded in Refs. [4, 19], all these form-factor parametrizations could describe the

experimental data equally well, and the central values of the product |Vub|f+(0) agree with

each other. In particular, from Table 2 we can see that, using the BaBar data [4], the qualities
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Table 2: Summary of the form-factor shape parameters obtained by fitting to the BaBar [4] (top)

and Belle [7] (bottom) measurements for the isospin-combined B → πℓν decays, based on various

parametrizations of the vector form factor f+(q2).

Parametrization Fit parameters |Vub|f+(0) [10−3] χ2/dof Prob(χ2/dof)

BK αBK = +0.310 ± 0.085 1.052 ± 0.042 6.8/4 0.148 [4]

BZ rBZ = +0.170 ± 0.124 1.079 ± 0.046 6.0/3 0.112 [4]

αBZ = +0.761 ± 0.337

BCL (2 par.) b1/b0 = −0.67 ± 0.18 1.065 ± 0.042 6.3/4 0.179 [4]

BCL (3 par.) b1/b0 = −0.90 ± 0.46 1.086 ± 0.055 6.0/3 0.112 [4]

b2/b0 = +0.47 ± 1.49

BGL (2 par.) a1/a0 = −0.94 ± 0.20 1.103 ± 0.042 6.6/4 0.156 [4]

BGL (3 par.) a1/a0 = −0.82 ± 0.29 1.080 ± 0.056 6.3/3 0.100 [4]

a2/a0 = −1.14 ± 1.81

BK αBK = +0.60 ± 0.04 0.924 ± 0.028 2.6/4 0.62 [7]

BGL (4 par.) a0 = +0.022 ± 0.002 −−− 12/20 0.916 [7]

a1 = −0.032 ± 0.004

a2 = −0.080 ± 0.020

a3 = +0.081 ± 0.066

of these different fits are quite similar, with χ2 probabilities ranging from 10% to 18%. Thus,

all the four form-factor parametrizations are valid choices to describe the q2 dependence of

the vector form factor f+(q2), at least in the physical region. To further test these different

form-factor parametrizations, more precise and additional information is needed.

3.3 Numerical results for the couplings gB∗Bπ and ĝ

In this subsection, assuming a definite behavior of the q2 dependence of the vector form factor

f+(q2) and using the fitted shape parameters listed in Table 2, we shall extrapolate the form

factor to the B∗ pole and extract the strong couplings gB∗Bπ and ĝ through Eqs. (9) and (10).
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Table 3: The extracted values of the strong couplings gB∗Bπ and ĝ using different form-factor

parametrizations with the shape parameters given in Table 2. The columns Eq. (11) and Eq. (12)

denote the results obtained with the corresponding input for fB∗ given by these two equations.

Parametrization fB∗gB∗Bπ [GeV]
gB∗Bπ ĝ

Eq. (11) Eq. (12) Eq. (11) Eq. (12)

BK 4.32+0.68
−0.55 22.71+4.38

−4.42 24.40+4.72
−3.84 0.28+0.05

−0.05 0.30+0.06
−0.05 [4]

BZ 5.23+1.63
−1.62 27.50+9.11

−9.45 29.55+9.79
−9.57 0.34+0.11

−0.12 0.36+0.12
−0.12 [4]

BCL (2 par.) 4.82+0.74
−0.65 25.34+4.85

−5.07 27.23+5.21
−4.46 0.31+0.06

−0.06 0.33+0.06
−0.05 [4]

BCL (3 par.) 5.78+2.11
−1.56 30.38+11.61

−9.32 32.64+12.48
−9.29 0.37+0.14

−0.11 0.40+0.15
−0.11 [4]

BGL (2 par.) 10.57+1.60
−1.44 55.58+10.48

−11.16 59.72+11.28
−9.85 0.68+0.13

−0.14 0.73+0.14
−0.12 [4]

BGL (3 par.) 7.76+3.44
−3.89 40.81+18.67

−21.30 43.85+20.06
−22.33 0.50+0.23

−0.26 0.54+0.25
−0.27 [4]

BK 6.54+0.77
−0.66 34.40+5.61

−6.15 36.97+6.04
−5.07 0.42+0.07

−0.08 0.45+0.07
−0.06 [7]

BGL (4 par.) 0.34+4.59
−4.59 1.78+24.12

−24.12 1.92+25.91
−25.91 0.02+0.30

−0.30 0.02+0.32
−0.32 [7]

3.3.1 The coupling gB∗Bπ

As mentioned already, the B∗Bπ is only poorly known phenomenologically and the literature

exhibits a wide spread of values [16, 26, 37, 38, 39, 40]. In this subsection, we first present in

Table 3 the extracted values of gB∗Bπ from the pole residue.

Since the vector decay constant fB∗ could not be measured directly and the lattice calcu-

lation still has a large uncertainty [43, 44], we also give the values of the product fB∗gB∗Bπ in

Table 3, which is free of the uncertainty induced by fB∗ . Comparing the values listed in the

two columns Eq. (11) and Eq. (12), we can see that the extracted values of gB∗Bπ and ĝ are

not so sensitive to the vector decay constant, and are consistent with each other within their

respective error bars. Further reduction of the uncertainty on the vector decay constant fB∗ is

welcome from the LQCD simulation.

As can be seen from the upper part in Table 3, the extracted results of the parameters based

on all the four parametrizations are roughly consistent with each other with their respective

uncertainties taken into account; the central values obtained with the BGL parametrization, on
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the other hand, are neatly larger than the ones with the other three parametrizations. As noted

in Refs. [23, 50], this is due to the spurious zero at q2 = t+ in definition of the outer function

φ(q2, q0) in Eq. (14), implying that the BGL parametrization includes a spurious, unwanted

pole at the threshold of the cut. Although being also a series-expansion-based ansatz, the BCL

parametrization could yield a value in good agreement with the BK and BZ ones, which confirms

the reason for generating such a larger value in the BGL ansatz caused by the spurious zero

in φ(q2, q0). In addition, comparing the linear and the quadratic fits in the BGL and BCL

parametrizations, we can see that the errors increase with more expansion parameters added,

leading to a loss of predictive power. This means that the BGL and BCL parametrizations with

more fitting parameters could not be well constrained by the current data in the semi-leptonic

region.

From the lower part in Table 3, on the other hand, we can see that, while the results of

the BK parametrization are roughly consistent with the ones using the other ansatz based the

BaBar data [4], the BGL parametrization performed by the Belle collaboration [7] gives much

smaller results, but with larger uncertainties. This might be due to the fact that the Belle

collaboration [7] uses a different fitting strategy: rather than treating the model-independent

quantity |Vub|f+(0) as a free parameter (as does the BaBar collaboration [4]), they perform a

simultaneous fit of the experimental [7] and the FNAL/MILC [11] LQCD results, where the

free parameters are the CKM matrix element |Vub| and the series-expansion parameters ai. In

order to compare directly with the BaBar results, a similar fit from the Belle collaboration is

necessarily needed.

To check the validity of the form-factor extrapolation, we would like to compare the values

of fB∗gB∗Bπ given in Table 3 with the ones existing in the literature,

fB∗gB∗Bπ =







(4.44 ± 0.97) GeV [36] ,

(7.77, 7.88, 8.20, 10.01) GeV for sets 1 to 4 [14] ,
(16)

from which we can see that our results are generally consistent with them. On the other hand,

it is observed that the result obtained in the LCSR method [36] is smaller than the fits given

in Ref. [14]; this might be due to the failure of the simple quark-hadron duality used for the

contribution of higher resonances and the continuum to the sum rules [51]; the inclusion of

a radial excitation with negative residue in the hadronic parametrization of the correlation
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function does increase the value [51]. With this fact taken into account, our central values are

a bit smaller than that given in Eq. (16).

3.3.2 The normalized coupling ĝ

The normalized coupling ĝ is the single constant in the limit of exact chiral, heavy flavour

and spin symmetries [25, 26]. However, being the parameter of the effective theory, its value

cannot be predicted but should be fixed phenomenologically. Our results are given in last two

columns in Table 3. As is the case for gB∗Bπ, the central values based on the BK, BZ and BCL

parametrizations are consistent with each other, while the ones in the BGL ansatz are larger.

As an improved determination of the B∗Bπ coupling can reduce the systematic uncertainty

in most lattice calculations of B-meson quantities, it has aroused a lot of precise determinations

of the B∗Bπ coupling in the literature [37, 38, 39, 40]. The most recent lattice results are

ĝ =































0.42 ± 0.04stat ± 0.08syst forNf = 0 [37] ,

0.58 ± 0.06stat ± 0.10syst forNf = 0 [38] ,

0.44 ± 0.03stat
+0.07
−0.00syst forNf = 2 [39] ,

0.516 ± 0.005stat ± 0.033chiral ± 0.028pert ± 0.028dics forNf = 2 [40] ,

(17)

which have about 5% and 15% statistical errors for the quenched and unquenched cases, re-

spectively. With their respective uncertainties taken into account, our extracted values are

generally consistent with the above lattice data.

Other estimates of the coupling ĝ are derived using various versions of quark models and

QCD sum rules [16, 26]. The best estimate based on the analyses of both QCD sum rules and

relativistic quark model, quoted in the review [26], is

ĝ ≃ 0.38 , (18)

with an uncertainty around 20%, which is also in agreement with our results given in Table 3.

Both the strong couplings gB∗Bπ and ĝ have also been calculated using a framework based

on QCD’s Dyson-Schwinger equations [41, 42]. By implementing a more realistic representation

of heavy-light mesons, the updated analysis based on this framework gives gB∗Bπ = 30.0+3.2
−1.4

and ĝ = 0.37+0.04
−0.02 [41], both of which are also consistent with our extracted values from the

semi-leptonic B → πℓν decays.
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The coupling ĝ is also related to the measured decay width Γ(D∗ → Dπ) [33]. From the

width of the charged D∗-meson measured by CLEO, Γexp(D∗+) = (96 ± 22) KeV [33], and by

using the experimentally established branching fraction B(D∗+ → D+γ) = (1.6 ± 0.4)% [46],

we can get

Γexp(D∗+)
[

1 − B(D∗+ → D+γ)
]

= Γ(D∗+ → D0π+) + Γ(D∗+ → D+π0)

=
2 mD0 |~kπ+ |3 + mD+ |~kπ0|3

12 π mD∗+ f 2
π

ĝ2 , (19)

where |~kπ+| =

√
[m2

D∗
−(mD+mπ)2] [m2

D∗
−(mD−mπ)2]

2 mD∗

is the three-momentum of pion in the rest frame

of D∗ meson. Using the inputs listed in Table 1, we get numerically

ĝ = 0.61 ± 0.07, (20)

which is a bit larger than both the LQCD simulation and our results. This discrepancy might

be due to the fact that the charm quark is not very heavy and there are potentially large

O(1/mn
c ) corrections to the relation Eq. (10) with B replaced by D.

4 Conclusions

In this paper, motivated by the precisely measured q2 spectrum of semi-leptonic B → πℓν decays

by the BaBar [4, 5, 6] and Belle [7, 8] collaborations, we have performed a phenomenological

study of the strong coupling gB∗Bπ and the normalized coupling ĝ appearing in the HMChPT,

which is related to the pole residue of the vector form factor f+(q2) at the unphysical point

q2 = m2
B∗ .

Through a detailed analysis, we found that the extracted values based on the BK, BZ and

BCL parametrizations are consistent with each other and also roughly in agreement with other

theoretical and lattice estimates, while the BGL ansatz gives much larger values, which is due to

the spurious zero at q2 = t+ in definition of the outer function φ(q2, q0). It is also found that the

errors increase with more expansion parameters added in the BGL and BCL parametrizations,

leading to a loss of predictive power; the BGL and BCL parametrizations with more fitting

parameters could not be well constrained by the current data in the physical region.

In order to gain further information about the q2 behavior of heavy-to-light transition form

factors, much more precise experimental data on exclusive semi-leptonic B-meson decays, as

14



well as additional information on the behavior of the vector form factor f+(q2) outside the

physical region are urgently needed.
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