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We present an analysis on the exclusive rare radiative decay modes Σb → Σγ

and Ξb → Ξγ. The transition form factors which parameterize these processes are

calculated using QCD light-cone sum rules. The decay widths we predict are Γ(Σb →

Σγ) = (7.21± 0.04)× 10−18 GeV and Γ(Ξb → Ξγ) = (1.34± 0.07)× 10−16 GeV. The

Branching ratio of Ξb → Ξγ is predicted to be Br(Ξb → Ξγ) = (3.03± 0.10)× 10−4.

PACS numbers: 14.20.-c, 11.25.Hf, 11.55.Hx, 13.40.-f

I. INTRODUCTION

Heavy flavor physics plays an important role both in the precise test of the standard

model in the relatively high energy region and in the investigation of the hadronization

of quarks at the low energy. Hence, a lot of effort has been payed into it and a large

number of experimental data have been accumulated [1–4]. Theoretically, much progress

has been made in the heavy flavor meson sector for its comparatively simple structure while

knowledge about baryons appears to be limited. Although many literatures have been

provided to decipher these heavy flavor states (such as Refs. [5–8]), a deep understanding of

them undoubtedly demands the information on the dynamical details which are encoded in

various decay modes [9, 10]. Among these modes, the rare radiative decay processes of the

b-baryons are important for that they are not only the ways to study the Cabibbo-Kobayashi-

Maskawa matrix elements Vts and Vtb which are closely attached with the dynamics inside

the baryons, but also the ways to probe new physics beyond the standard model.

This type of processes (such as b → sγ), which are forbidden at the tree level in the

standard model of electroweak theory, are induced by the flavor-changing neutral current

(FCNC) of b-quark. Their amplitudes are dominated by the one-loop diagrams with a

virtual top quark and a W boson, and thus are strongly suppressed by Glashow-Iliopoulos-
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Maiani mechanism. The relative b-meson rare radiative decay modes have been investigated

experimentally since early 1990’s [11–14], while not so many experimental data are availible

for the corresponding b-baryon processes. Theoretical studies on the exclusive processes are

available for both b-mesons and b-baryons [15–19], despite the fact that the dynamics of the

b-baryons decays are far less clarified in comparison with that of the b-mesons. However,

most of the existed literatures are about the process Λb → Λγ, the branching ratio of which

has been predicted to be Br(Λb → Λγ) ≤ 1.3 × 10−3 experimentally [20]. Unfortunately,

this decay mode is not expected to be measured easily in the experiments due to the fact

that the final state Λ baryon is of neutral charged, as argued in Ref. [21]. For this reason,

we turn to study the possible decay modes of other Octet heavy baryons Σb and Ξb, in which

charged final states arises and may be easily tested in experiments. It has been estimated

early in 1990’s that an amount number of b-baryons may be produced at the c.m. energy

level of the LHC [22]. Thus we can expect that these rare decay modes could be measured

by the LHC experiments in the near future, the updated energy of which is expected to be

∼ 14 TeV.

The remainder of this paper is organized as follows. We give an introduction to the

exclusive rare decay mode b → sγ and derive the formula of the decay widths in Sec. II.

Then the light-cone QCD sum rules for the relative transition form factors are derived in

Sec. III. Finally, Sec. IV is devoted to the numerical analysis and a summary is given at

the end of this section.

II. PARAMETRIZATION OF THE TRANSITION FORM FACTORS

In the standard model, the process of the exclusive rare decay b → sγ can be described

by the following effective Hamiltonian [23]:

Heff(b→ sγ) = −4
GF√

2
V ∗

tsVtbC7(µ)O7(µ), (1)

with

O7 =
e

16 π2
s̄ σµν (mbR +msL) b F µν , (2)

where L/R = (1∓ γ5)/2 and F µν is the field strength tensor of the photon. GF is the Fermi

coupling constant and C7(µ) is the Wilson coefficient at the scale µ. Considering the general
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form beyond the standard model, O7 can be represented as

O7 =
e

32 π2
mbs̄ σµν (gV + γ5gA) b F µν . (3)

The decay amplitude is given by the expectation value of the effective Hamiltonian be-

tween the initial and final states at the hadron level

M(Xb → Xγ) = 〈Xγ|Heff |Xb〉 , (4)

where X stands for the baryon involved in the process.

By considering the Lorentz structure, the contribution of the hadronic part to the process,

which is written as the hadronic matrix elements, is generally parameterized in terms of the

following form factors:

〈Xb(P
′)|jν |X(P )〉 = X̄b(P

′)[f1γν − f2iσµνq
µ + f3qν − (g1γν + g2iσµνq

µ + g3qν)γ5]X(P ), (5)

where Xb and X are the spinors of the baryons and the weak current jν is defined as

jν(x) = ib̄(x)σµν(1 − γ5)q
µs(x). (6)

In fact, form factors f3 and g3 do not contribute to the process due to the conservation of

the vector current. Therefore, the form factors we need to calculate are f1(g1) and f2(g2),

which can be determined from the QCD light-cone sum rules. It is noted that the processes

are only related to the form factors at the point q2 = 0, thus we just consider this case in

the following analysis.

With the form factors defined above, the decay width is represented as

Γ(Xb → Xγ) =
G2

F |VtbV
∗

ts|2αem|C7|2m2
b

32π4

(
M2

Xb
−M2

X

MXb

)3

(g2
V f

2
2 + g2

Ag
2
2). (7)

III. LIGHT-CONE SUM RULES FOR THE FORM FACTORS

Now we apply the light-cone QCD sum rule approach to calculate the transition form

factors f1(g1) and f2(g2). The interpolating currents to the heavy baryons are chosen as

jΣb
(0) = ǫijk[qi(0)C/zqj(0)]γ5/zb

k(0) for Σb and jΞb
(0) = ǫijk[si(0)C/zbj(0)]γ5/zq

k(0) for Ξb,

respectively. Herein q stands for u or d quark, C is the charge conjugaion matrix, and z is
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the vector defined on the light-cone z2 = 0. The normalization of these currents is defined

by the parameters fΣb
and fΞb

:

〈0|jΣb
|Σb(P

′)〉 = fΣb
(z · P ′)/zΣb(P

′),

〈0|jΞb
|Ξb(P

′)〉 = fΞb
(z · P ′)/zΞb(P

′). (8)

In the following part, we will take Σ+
b → Σ+γ as an example. Our starting point for

calculating the form factors is the correlation function

Tµ = i

∫
d4xeiqx〈0|jΣb(0)jν(x)|Σ(P, s)〉 (9)

at q2 = 0 and with Euclidean m2
b − P ′2 of about several GeV2. Following the standard

procedure of the light-cone sum rule method, we need to express the correlation function

both phenomenologically and theoretically. By inserting a complete set of intermediate

states and using the definitions (5) and (8), the phenomenological side is represented as

zνTν(P, q) =
2fΣb

(z · P ′)2

M2
Σb

− P ′2
[f1/z − f2/z/q − g1/zγ5 + g2/z/qγ5]Σ(P ) + ..., (10)

where “...” stands for the continuum contributions. The correlation function (9) is contracted

by zν to remove contributions proportional to the light-cone vector zν which is subdominant

on the light-cone.

On the other hand, the theoretical side is gotten by contracting the heavy b quarks in

the correlation function and using the distribution amplitudes presented in Ref.[24–26]. To

make the paper self-contained, we present in the Appendix the definition and the explicit

expressions of the distribution amplitudes of Σ and Ξ used in this paper. After assuming

the quark-hadron duality and performing the Borel transformation, we arrive at the final

light-cone sum rule of the form factor f2(0):

fΣb
f2(0)e

−

M
2
Σ

b

M2

B =

∫ 1

α30

dα3e
−

s

M2

B

{
B0(α3) +

M2

M2
B

B1(α3) −
M4

M4
B

B2(α3)
}

−M2α2
30e

−
s0

M2

B

α2
30M

2 +m2
b

{
B1(α30) −

M2

M2
B

B2(α30) −
d

dα30

α2
30M

2B2(α30)

α2
30M

2 +m2
b

}
, (11)

where s = (1 − α3)M
2 + m2

b/α3, M is the mass of the final baryon, and M2
B is the Borel

parameter which is introduced to suppress the contributions from the higher resonances and

the continuum states. Our calculation shows that f1 = g1 = 0 and f2 = g2. In Eq. (11), the
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following abbreviations are used for convenience:

B0(α3) =

∫ 1−α3

0

dα1V1(α1, 1 − α1 − α3, α3),

B1(α3) = (2Ṽ1 − Ṽ2 − Ṽ3 − Ṽ4 − Ṽ5)(α3),

B2(α3) = (− ˜̃
V1 +

˜̃
V2 +

˜̃
V3 +

˜̃
V4 +

˜̃
V5 − ˜̃

V6)(α3). (12)

The distribution amplitudes with tildes which come from the integration by parts in α3

are defined as

Ṽi(α3) =

∫ α3

0

dα′

3

∫ 1−α′

3

0

dα1Vi(α1, 1 − α1 − α′

3, α
′

3),

˜̃
Vi(α3) =

∫ α3

0

dα′

3

∫ α′

3

0

dα′′

3

∫ 1−α′′

3

0

dα2Vi(α1, 1 − α1 − α′′

3, α
′′

3). (13)

The same procedure is also carried out to calculate the transition form factors of the

process Ξb → Ξγ. We obtain the final sum rule as follows:

fΞb
f2(0)e

−

M
2

Ξb

M
2

B =

∫ 1

α20

dα2e
−

s
′

M
2

B

{
C0(α2) +

M2

M2
B

C1(α2) +
M2

α2M2
B

C2(α2) −
M4

M4
B

C3(α2)
}

+
M2α2

20e
−

s0

M2
B

α2
20M

2 +m2
b

{
C1(α20) +

1

α20

C2(α20) −
M2

M2
B

C3(α20)

+
d

dα20

α2
20M

2C3(α20)

α2
20M

2 +m2
b

}
, (14)

where s′ = (1 − α2)M
2 + m2

b/α2, M is the mass of Ξ, and the following abbreviations are

used:

C0(α2) =

∫ 1−α2

0

dα1T1(α1, α2, 1 − α1 − α2),

C1(α2) = (2T̃1 − T̃2 − T̃5 − 2T̃7 − 2T̃8)(α2),

C2(α2) = (
˜̃
T2 − ˜̃

T3 − ˜̃
T4 +

˜̃
T5 +

˜̃
T7 +

˜̃
T8)(α2),

C3(α2) = (− ˜̃
T1 +

˜̃
T2 +

˜̃
T5 − ˜̃

T6 + 2
˜̃
T7 + 2

˜̃
T8)(α2). (15)

The functions with tildes are defined as

T̃i(α2) =

∫ α2

0

dα′

2

∫ 1−α′

2

0

dα1Ti(α1, α
′

2, 1 − α1 − α′

2),

˜̃
Ti(α2) =

∫ α2

0

dα′

2

∫ α′

2

0

dα′′

2

∫ 1−α′′

2

0

dα2Ti(α1, α
′′

2, 1 − α1 − α′′

2). (16)
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IV. NUMERICAL ANALYSIS AND THE SUMMARY

Before the the numerical evaluation of the sum rules (11) and (14), we need to determine

the input parameters. Two important parameters are the decay constants fΣb
and fΞb

, which

can be calculated with the QCD sum rule approach. Using the same expressions in Refs.

[25] and [26] with the replacements ms → mb for fΣb
and mc → mb for fΞb

, we get the

estimations fΣb
= (6.18 ± 0.03) × 10−3 GeV2 and fΞb

= (3.32 ± 0.46) × 10−3 GeV2. Other

input parameters needed in our calculation can be read from Ref. [27]:

mb = 4.8 GeV, ms = 0.15 GeV, MΣ = 1.189 GeV,

MΞ = 1.314 GeV, MΣb
= 5.729 GeV, MΞb

= 5.81 GeV,

Vts = 0.0403, Vtb = 0.9992, (17)

and

αem = 1/137, GF = 1.166364 × 10−5 GeV−2, C7(mb) = −0.31. (18)

An important step in the numerical analysis of the QCD sum rules is to determine the

Borel mass parameter M2
B and the continuum threshold s0. The continuum threshold s0

can be chosen by demanding that the continuum contribution is subdominant in comparison

with that of the ground state which we are concerned about. Simultaneously, the resulting

form factors should not vary drastically along with the threshold. Thus s0 is generally

connected with the first resonance which has the same quantum numbers as the particle we

care about. Here we fix the threshold s0 in the region 39 GeV2 ≤ s0 ≤ 41 GeV2. As for the

Borel parameter M2
B, which is introduced to suppress the higher resonance contributions

efficiently, we also demand that the higher twists contributions are less significant and the

form factors should vary mildly along with it. Our calculation shows that the working

windows can be chosen properly in the region 8 GeV2 ≤ M2
B ≤ 11 GeV2 for Σb → Σγ and

9 GeV2 ≤M2
B ≤ 12 GeV2 for Ξb → Ξγ.

Using the distribution amplitudes given in Refs. [25] and [26], we obtain the form factors

at the zero momentum transfer f2(g2)(0) as functions of the Borel parameter M2
B, which

are displayed in Fig. 1 . We have also analyzed the contributions from the distributions

of different twists, which are shown in Fig. 2. The results show that the contributions of

the leading and next leading order twists are dominant while the contributions from higher
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FIG. 1: The dependence of the form factors f2(0)’s on the Borel parameter with s0 =

39, 40, 41GeV2 from the top down.
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FIG. 2: The contributions to the form factors f2(0)’s from different twists on the Borel parameter

with s0 = 40GeV2.

twists are suppressed efficiently. This implicates that the light-cone expansion is reasonable

in the cases we considered in this paper.

By using of the form factors we have estimated above, the decay widths of the processes

can be easily evaluated with the formula (7), which turn out to be Γ(Σb → Σγ) = (7.21 ±
0.04)× 10−18 GeV and Γ(Ξb → Ξγ) = (1.34± 0.07)× 10−16 GeV. Although the mean life of

Ξ−

b has been estimated experimentally [3, 4, 28, 29], here we use the average value given in

Ref. [27] to estimate the branching ratio of the process Ξ−

b → Ξ−γ which turns out to be

Br(Ξ−

b → Ξ−γ) = (3.03 ± 0.10) × 10−4. The errors in the widths come from the choices of

the threshold, the sum rule windows, and the uncertainties in the decay constants fΣb
and

fΞb
. It is worth noting that errors from other sources are not considered here because the

sum rule method itself brings in an amount of uncertainties (about 20%), which makes it

less significant to take into account the errors of the input parameters.



8

TABLE I: Decay widths and Branching ratios at different points of mb .

mb(GeV) 4.7 4.8 4.9

Γ(Σb → Σγ)(×10−18 GeV) 6.92 ± 0.03 7.21 ± 0.04 7.26 ± 0.07

Γ(Ξb → Ξγ)(×10−16 GeV) 0.98 ± 0.04 1.34 ± 0.04 1.75 ± 0.05

Br(Ξ−

b → Ξ−γ)(×10−4) 2.21 ± 0.08 3.03 ± 0.10 3.96 ± 0.11

We also investigate the sensitivity of the form factors to the variation of mb at different

points mb = 4.7, 4.8, 4.9 GeV. The corresponding predictions for the decay widths and

branching ratios are given in Table I.

In summary, we have investigated the exclusive rare decay processes Σb → Σγ and

Ξb → Ξγ. The corresponding transition form factors are estimated through the light-cone

QCD sum rule approach and the decay widths of these processes are predicted to be Γ(Σb →
Σγ) = (7.21 ± 0.04) × 10−18 GeV and Γ(Ξb → Ξγ) = (1.34 ± 0.04) × 10−16 GeV. We also

estimate the branching ration of Ξ−

b → Ξ−γ, which is Br(Ξ−

b → Ξ−γ) = (3.03±0.10)×10−4.

As we can see, our prediction is larger than the theoretical estimations for the branching

ratio of the Λb → Λγ. Therefore it is reasonable to regard that this mode may be tested

easily, provided that a good source of Σb or Ξb is available in the future experiments, such

as the LHC experiments.
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Appendix

In the following we give the distribution amplitudes of Σ and Ξ used in the paper. In

general, the distribution amplitudes are defined by the matrix element of the three-quark

operator as

4〈0|ǫijkq1i
α(a1z)q2

j
β(a2z)q3

k
γ(a3z)|X(P )〉
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= V1 (6pC)αβ

(
γ5X

+
)

γ
+ V2 (6pC)αβ

(
γ5X

−
)

γ
+
V3

2
M (γ⊥C)αβ

(
γ⊥γ5X

+
)

γ

+
V4

2
M (γ⊥C)αβ

(
γ⊥γ5X

−
)

γ
+ V5

M2

2pz
(6zC)αβ

(
γ5X

+
)

γ
+
M2

2pz
V6 (6zC)αβ

(
γ5X

−
)

γ

+T1 (iσ⊥pC)
αβ

(
γ⊥γ5X

+
)

γ
+ T2 (iσ⊥ pC)

αβ

(
γ⊥γ5X

−
)

γ

+T3
M

pz
(iσp zC)

αβ

(
γ5X

+
)

γ
+ T4

M

pz
(iσz pC)

αβ

(
γ5X

−
)

γ

+T5
M2

2pz
(iσ⊥ zC)αβ

(
γ⊥γ5X

+
)

γ
+
M2

2pz
T6 (iσ⊥ zC)αβ

(
γ⊥γ5X

−
)

γ

+M
T7

2
(σ⊥⊥′C)αβ

(
σ⊥⊥

′

γ5X
+
)

γ
+M

T8

2
(σ⊥⊥′C)αβ

(
σ⊥⊥

′

γ5X
−

)

γ
, (19)

where M is the mass of the baryon X and C is the charge conjugation matrix. Note that

the other Lorentz structures which do not contribute to the calculations are omitted. For

each distribution amplitudes Fi = Vi , Ti defined above, it can be presented as

F (aip · z) =

∫
Dxe

−ipz
P

i

xiai

F (xi) , (20)

with the relationship 0 < xi < 1,
∑
i

xi = 1, and xi corresponds to the distribution of the

baryon momentum on the quarks. The integration measure is defined as

∫
Dx =

∫ 1

0

dx1dx2dx3δ(x1 + x2 + x3 − 1) . (21)

The distribution amplitudes can be expanded with a conformal spin. The detailed process

is referred to Refs. [24–26]. The explicit expressions of the distribution amplitudes are

collected below:

V1(xi) = 120x1x2x3φ
0
3 , V2(xi) = 24x1x2φ

0
4 ,

V3(xi) = 12x3(1 − x3)ψ
0
4 , V4(xi) = 3(1 − x3)ψ

0
5 ,

V5(xi) = 6x3φ
0
5 , V6(xi) = 2φ0

6 ,

T1(xi) = 120x1x2x3φ
′0
3 , T2(xi) = 24x1x2φ

′0
4 ,

T3(xi) = 6x3(1 − x3)(ξ
0
4 + ξ

′0
4 ) , T4(xi) = −3

2
(x1 + x2)(ξ

′0
5 + ξ0

5)

T5(xi) = 6x3φ
′0
5 , T6(xi) = 2φ

′0
6

T7(xi) = 6x3(1 − x3)(ξ
′0
4 − ξ0

4) , T8(xi) =
3

2
(x1 + x2)(ξ

′0
5 − ξ0

5) . (22)

The parameters in the expressions are like follows:

φ0
3 = φ0

6 = fX , ψ0
4 = ψ0

5 =
1

2
(fX − λ1) ,
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φ0
4 = φ0

5 =
1

2
(fX + λ1), φ′0

3 = φ′0
6 = −ξ0

5 =
1

6
(4λ3 − λ2) ,

φ′0
4 = ξ0

4 =
1

6
(8λ3 − 3λ2), φ′0

5 = −ξ′05 =
1

6
λ2 ,

ξ′04 =
1

6
(12λ3 − 5λ2) . (23)

The non-perturbative parameters fX , λ1 and λ2 are determined with QCD sum rules to be

fΣ = (9.4 ± 0.4) × 10−3 GeV2, λ1 = −(2.5 ± 0.1) × 10−2 GeV2,

λ2 = (4.4 ± 0.1) × 10−2 GeV2, λ3 = (2.0 ± 0.1) × 10−2 GeV2. (24)

for Σ and

fΞ = (9.9 ± 0.4) × 10−3 GeV2, λ1 = −(2.8 ± 0.1) × 10−2 GeV2,

λ2 = (5.2 ± 0.2) × 10−2 GeV2, λ3 = (1.7 ± 0.1) × 10−2 GeV2. (25)

for Ξ.
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