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Abstract

We calculate the complete next-to-leading-order (NLO) QCD corrections (including SUSY QCD

corrections) to the inclusive total cross sections of the associated production processes pp → A0γ +

X in the minimal supersymmetric standard model (MSSM) at the CERN Large Hadron Collider

(LHC). Our results show that the enhancement of the total cross sections from the NLO QCD

corrections can reach 25% ∼ 15% for 200 GeV< mA < 500 GeV and tan β = 50. The scale

dependence of the total cross section is improved by the NLO corrections in general. We also show

the Monte Carlo simulation results for the τ+τ− + γ signature including the complete NLO QCD

effects, and find an observable signature above the standard model (SM) background for a normal

luminosity of 100 fb−1 at the LHC.
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I. INTRODUCTION

Electroweak symmetry breaking (EWSB) plays a key role in the current research of ele-

mentary particles. However, the experimental effort to validate the Higgs mechanism on the

CERN Large Hadron Collider (LHC) with a center of mass energy
√
s = 14 TeV and a lumi-

nosity of 100 fb−1 per year [1], is a great challenge. In the standard model (SM) of particle

physics, there is only one Higgs particle, which is expected to be lurking somewhere close

to the experimental lower bound of 114.4 GeV set by LEP2 [2]. In the minimal supersym-

metric standard model (MSSM), two complex Higgs doublets are introduced to eliminate

gauge anomaly [3], resulting in two CP-even (h0, H0) and one CP-odd (A0) neutral Higgs

bosons, as well as a pair of charged Higgs bosons. The Higgs sector of the MSSM, at leading

order, is characterized by two parameters: one is mA the mass of the pseudo-scalar Higgs

boson, and the other tanβ the ratio of up- and down-Higgs doublet vacuum expectation

value (VEV). Particularly, current experiments hint a scenario with large tanβ & 45 and

thus large couplings between the pseudo-scalar Higgs and down-type quarks [4].

At the LHC neutral Higgs bosons are mainly produced via gluon-gluon fusion channel

gg → φ [5–14]. The weak boson fusion channel qq → qqV ∗V ∗ → qqh0/qqH0 [15–17] as

well as the associated production channel with weak bosons [18–20] also have significant

contributions. Other production channels also have been studied, such as Higgs boson pair

production [21–24] and associated production with top quark pair [25–28]. Nevertheless, the

identification of the Higgs signature is difficult due to large QCD backgrounds against various

Higgs particle decay modes. Recently, the Higgs boson and photon associated production

channel has aroused interest [29]. For neutral Higgs boson and photon associated production,

the otherwise dominating gluon fusion channel is forbidden via C-parity conservation, so

quark-antiquark annihilation becomes dominant. In the case of CP-odd Higgs A0 produced

with a photon in a large tanβ MSSM scenario, bottom quark annihilation bb̄ → A0γ is of

particular importance due to the large Yukawa coupling enhanced by the large tanβ. That

compensates for the relatively small parton density of the bottom quark and the suppression

from the QED vertex. Besides, associated production arising from weak boson fusion has

also been studied in Ref. [30].

Since the bottom quark initial state contribution to A0γ associated production is sensitive

to the bottom quark Yukawa coupling, the measurement of this channel at the LHC can
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give detailed information of the Higgs coupling to the bottom quark. To provide a precise

prediction of this associated production channel, we calculate the NLO QCD corrections to

the total cross section and the kinematic distributions. In addition to effects from virtual

or real gluons, loop effects from massive supersymmetry particles (the SUSY QCD effects),

such as the sbottoms and the gluino, are also considered. Dimensional regularization scheme

(DREG) (with naive γ5 [31]) is adopted to regularize both ultraviolet (UV) and infrared

(IR) divergences, which is equivalent to conventional supersymmetry-preserving dimensional

reduction scheme (DRED) at the NLO level [32, 33]. For simplicity, we neglect the bottom

quark mass except for in the Yukawa coupling. According to the simplified Aivazis-Collins-

Olness-Tung scheme [34–36], such approximation is justified if the bottom quark appears as

an initial parton.

The paper is organized as follows. In Sec. II, brief results for leading-order (LO) calcula-

tions are presented. In Sec. III, we present detailed calculations of NLO QCD corrections.

In Sec. IV, we discuss a Monte Carlo simulation of the Higgs signature from the decay mode

A0 → τ+τ−. In Sec. V, we provide numerical results for the total cross section and the

differential cross sections with varying model parameters. Monte Carlo simulation results

are also shown there.

II. LEADING-ORDER CROSS SECTION FOR NEUTRAL HIGGS AND PHO-

TON ASSOCIATED PRODUCTION

The LO cross section for pp → γA0 in the MSSM has been studied in Ref. [29]. At

tree level the only partonic subprocess is b(p1)b̄(p2) → γ(p3)A
0(p4), and the corresponding

two Feynman diagrams are shown in Fig. 1. The gluon-gluon fusion channel gg → γA0 is

forbidden by C-parity conservation [37–39]. In the tree level result we keep a finite bottom

quark mass denoted as mb. The cross section can be written as

dσ̂LO =
1

2Φ
dPS(2)|MB|2, (1)

where dPS(2) is the 2-body final-state phase space and 1/2Φ is the flux factor. The explicit

expression for the differential cross section after averaging over spins and colors can be

written as

dσ̂

dt̂
=

αemQ
2
bλ

2
φ

4Nc(1 − 4rb)

{ F φ
1 (ŝ)

(t̂−m2
b)(û−m2

b)
+ F φ

2 (ŝ)
[ 1

(t̂−m2
b)

2
+

1

(û−m2
b)

2

]}

, (2)
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with

F φ
1 (ŝ) = (1 − rφ)

2 + 2rφ(1 − 2rb), F φ
2 (ŝ) = −2rbrφ, (3)

where Qb = −1/3 is the electric charge quantum number of the bottom quark, Nc the

number of quark color, rb = m2
b/ŝ,rφ = m2

A/ŝ, and λφ = −imb

v
tanβ is the Yukawa coupling

in MSSM which is proportional to the bottom quark mass. Here v = 2mW/g is the SM

Higgs field VEV. In addition, the Mandelstam variables for 2 → 2 scattering process are

introduced

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p1 − p4)
2. (4)

The hadronic cross section for pp→ γA0 at the LO is obtained straightforwardly by convo-

luting the parton level cross section with the parton distribution function (PDF),

σB =

∫

dx1dx2

[

Gb/p(x1, µF )Gb̄/p(x2, µF ) + (x1 ↔ x2)
]

σ̂B, (5)

where µF is the factorization scale.

III. NLO QCD CALCULATIONS

The NLO QCD correction to γA0 associated production consists of two parts. The virtual

corrections account for virtual gluons as well as virtual supersymmetric particles such as the

gluino g̃ and the sbottoms b̃1,2 in the loop diagrams. The real corrections result from the

radiation of a real gluon or a massless bottom (anti-)quark. For the NLO calculations

we follow the convention to work in D = 4 − 2ǫ dimensions and adopt the dimensional

regularization approach (DREG) to regulate both the ultroviolet (UV) and the infrared

(IR) divergences. As a good approximation, we take the bottom (anti-)quark mass to be

zero except for in the Yukawa coupling.

A. Virtual corrections

The one-loop virtual corrections involve both the SM QCD contribution (8 diagrams as

shown in Fig.2) and the SUSY QCD contribution (another 8 diagrams as shown in Fig.3).

Either part is UV divergent. For the gluon loops we adopt MS renormalization scheme to

absorb those infinities, while for the SUSY particle loops we use the on-shell renormalization

scheme instead.
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The virtual correction is given by interfering the one-loop amplitude with the Born am-

plitude

dσ̂V =
1

2ŝ
dPS(2)2Re(MV · MB), (6)

where dPS(2) is the 2-body final-state phase space and the flux factor is reduced to 1/2ŝ for

massless (anti-)quark. In order to absorb all UV divergences, we introduce the renormal-

ized bottom quark wavefunction for both the left-handed and the right-handed components

ψbL,R and the renormalized mass mb, which are related to the bare mass mb0 and the bare

wavefunction ψb0 by

mb0 = mb + δmb,

ψb0 = (1 + δZbL)1/2ψbL + (1 + δZbR)1/2ψbR, (7)

with ψbL,R = (1 ∓ γ5)ψb/2. By calculating the self-energy diagrams of the bottom quark

propagator (shown in Fig.4), we obtain explicit expressions for the counter-terms which are

in accordance with the results in Ref. [40, 41],

(δmb

mb

)

SM
= −αs

4π
CFC(ǫ)

3

ǫUV

,

(δZbL)SM = (δZbR)SM =
αs

4π
CFC(ǫ)

{

− 3

ǫUV

+
3

ǫIR

}

,

(δmb

mb

)

SUSY
= −αs

4π
CF

∑

i=1,2

{

B1(0, m
2
g̃, m

2
b̃i
) − mg̃

mb

sin 2θb̃(−1)iB0(0, m
2
g̃, m

2
b̃i
)
}

, (8)

(δZbL)SUSY =
αs

2π
CF

∑

i=1,2

(Rb̃
i1)

2B1(0, m
2
g̃, m

2
b̃i
),

(δZbR)SUSY =
αs

2π
CF

∑

i=1,2

(Rb̃
i2)

2B1(0, m
2
g̃, m

2
b̃i
),

where CF = 4/3, C(ǫ) = Γ(1−ǫ)
Γ(1−2ǫ)

(
4πµ2

R

ŝ
)ǫ and B0,1 are the two-point integrals [42] , as listed

explicitly below

B0(0, m
2
1, m

2
2) = C(ǫ)

{ 1

ǫUV

− m2
1 ln

m2
1

ŝ
−m2

2 ln
m2

2

ŝ

m2
1 −m2

2

+ 1
}

,

B1(0, m
2
1, m

2
2) = C(ǫ)

{

− 1

2ǫUV
+

2m4
1 ln

m2
1

ŝ
− 3m4

1 + 4m2
1m

2
2 −m4

2 + 2m2
2(m

2
2 − 2m2

1) ln
m2

2

ŝ

4(m2
1 −m2

2)
2

}

,

(9)

where mb̃1,2
are the sbottom masses, mg̃ is the gluino mass, and Rb̃ is a 2×2 rotation matrix
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which transforms the gauge eigenstates into the mass eigenstates,





b̃1

b̃2



 = Rb̃





b̃L

b̃R



 , Rb̃ =





cos θb̃ sin θb̃

− sin θb̃ cos θb̃



 , (10)

with 0 ≤ θb̃ ≤ π by convention. Furthermore, the sbottom mass eigenvalues are solved by

diagonalizing M2
b̃
,





m2
b̃1

0

0 m2
b̃2



 = Rb̃M2
b̃
(Rb̃)†, M2

b̃
=





m2
b̃L

abmb

abmb m2
b̃R



 , (11)

with

m2
b̃L

= M2
Q̃

+m2
b +m2

Z cos 2βCbL,

m2
b̃R

= M2
D̃

+m2
b −m2

Z cos 2βCbR,

ab = Ab − µ tanβ. (12)

Here CbL = −1/2 + sin2 θW/3, CbR = sin2 θW/3, and M2
b̃

is the sbottom mass matrix. M2
Q̃,D̃

and Ab are soft SUSY-breaking parameters, and µ is the Higgsino mass parameter. Since

the Yukawa coupling is proportional to the bottom quark mass, the renormalized vertex

is obtained by expressing the bare mass mb0 in terms of the renormalized mass mb plus a

counter term δmb,

−imb0

v
tanβ = −i

[

1 +
(δmb

mb

)

SM
+

(δmb

mb

)

SUSY

]mb

v
tanβ. (13)

All the counter-term diagrams are shown in Fig.5.

With the one-loop counter-terms we write the renormalized virtual amplitude as

MV = Munren
SM + Munren

SUSY + Mcon. (14)

The details of the calculation include the traditional Passarino-Veltman reduction procedure,

in which Feynman amplitudes are reduced to master scalar integrals [43]. Here we list the

analytic results for all the divergent scalar integrals (only the real part is kept) involved in
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the calculation,

B0(t̂, 0, 0) =C(ǫ)
[ 1

ǫUV

+ 2 − ln
(−t̂
ŝ

)]

,

B0(û, 0, 0) =C(ǫ)
[ 1

ǫUV

+ 2 − ln
(−û
ŝ

)]

,

B0(m
2
A, 0, 0) =C(ǫ)

[ 1

ǫUV

+ 2 − ln rφ

]

,

C0(0, 0, t̂, 0, 0, 0) =C(ǫ)
( 1

−t̂

)[

− 1

ǫ2IR

+
ln(−t̂/ŝ)
ǫIR

− 1

2
ln2

(−t̂
ŝ

)

− π2

6

]

,

C0(0, 0, û, 0, 0, 0) =C(ǫ)
( 1

−û
)[

− 1

ǫ2IR

+
ln(−û/ŝ)
ǫIR

− 1

2
ln2

(−û
ŝ

)

− π2

6

]

,

C0(0, m
2
A, ŝ, 0, 0, 0) =C(ǫ)

( 1

1 − rφ

)[ ln rφ

ǫIR

− ln2 rφ

2

]

,

C0(0, m
2
A, t̂, 0, 0, 0) =C(ǫ)

( 1

m2
A − t̂

)[ 1

ǫIR
ln

( −t̂
m2

A

)

− 1

2
ln rφ ln

( −t̂
m2

A

)

− 1

2
ln

(−t̂
ŝ

)

ln
( −t̂
m2

A

)

− π2

2

]

,

C0(0, m
2
A, û, 0, 0, 0) =C(ǫ)

( 1

m2
A − û

)[ 1

ǫIR
ln

(−û
m2

A

)

− 1

2
ln rφ ln

(−û
m2

A

)

(15)

− 1

2
ln

(−û
ŝ

)

ln
(−û
m2

A

)

− π2

2

]

,

D0(0, m
2
A, 0, 0, t̂, ŝ, 0, 0, 0, 0) =C(ǫ)

( 1

−t̂

)[

− 2

ǫ2IR

+
2

ǫIR
ln

( −t̂
m2

A

)

+ ln r2
φ

+ 2
(

Li2

( ŝ−m2
A

ŝ

)

− Li2

( ŝ−m2
A

t̂

))

− π2
]

,

D0(0, m
2
A, 0, 0, û, ŝ, 0, 0, 0, 0) =C(ǫ)

( 1

−û
)[

− 2

ǫ2IR

+
2

ǫIR

ln
(−û
m2

A

)

+ ln r2
φ

+ 2
(

Li2

( ŝ−m2
A

ŝ

)

− Li2

( ŝ−m2
A

û

))

− π2
]

,

We then find that the renormalized amplitude MV is UV finite, but still contains IR poles,

which is given by

MV =
αs

2π
C(ǫ)

{AV
2

ǫ2IR

+
AV

1

ǫIR

}

MB, (16)

with

AV
2 = −CF , AV

1 = −3

2
CF , (17)

which demonstrates that the IR divergent part is factorized and consists of both soft and

collinear singularities. The former is canceled when we combine the virtual corrections with

the real corrections, while the latter can be canceled by adopting the mass factorization

procedure.
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B. Real gluon emission

The Feynman diagrams for the radiation of a real gluon b(p1)b̄(p2) → γ(p3)A
0(p4)g(p5)

are shown in Fig.6. The partonic cross section can be written as

dσ̂R =
1

2ŝ
dPS(3)|MB|2, (18)

The 3-body phase space integration for real gluon emission contains soft and collinear

singularities. We adopt the two cutoff phase space slicing method [44] to isolate all the IR

singularities, which introduces two small cutoffs δs and δc to divide the phase space into

three parts.

First, the soft cutoff δs separates the phase space into the soft region E5 ≤ δs
√
ŝ/2 and

the hard region otherwise in the partonic center of mass (CM) frame. Thus the partonic

cross section can be written as a sum of the contributions from both regions,

σ̂R = σ̂S + σ̂H . (19)

Furthermore, the hard piece can be divided into two sub-regions by introducing a collinear

cutoff δc. Within the hard collinear region (p1+p5)
2 ≤ δcŝ or (p2+p5)

2 ≤ δcŝ all the collinear

divergences are isolated, leaving the hard non-collinear region free of any IR singularities.

Similarly we have for the partonic cross section

σ̂H = σ̂HC + σ̂HC . (20)

Below we proceed to discuss the details of calculation in each region of the phase space.

1. Hard non-collinear region

For the hard non-collinear region where no IR singularity is present, the phase space

integration can be calculated numerically. For the 3-body phase space a convenient param-

eterization with 4 non-trivial parameters is given below,

dPS(3) =
ŝ

32(2π)4
dX1dX2d cos θdϕ. (21)

Here −1 ≤ cos θ ≤ 1 and 0 ≤ ϕ ≤ 2π represent the solid angle in the CM frame into

which the final-state photon is scattered. Besides, X1,2 are dimensionless variables which
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determine the final state energy in the partonic CM frame through

E3 =

√
ŝ

2
(1 −X2), E4 =

√
ŝ

2
(X1 +X2), E5 =

√
ŝ

2
(1 −X1). (22)

The integration region for them is inside the unit square in the parameter plane and are

subject to kinematic constraints X1 +X2 ≤ 1 + rφ and X1X2 ≥ rφ.

2. Soft region

In the limit of vanishing gluon energy (the eikonal approximation), the squared matrix

element for real gluon emission can be factorized into the Born piece multiplied by an eikonal

factor Φeik

|MR(bb̄→ γA0 + g)|2 soft−→ (4παsµ
2ǫ
R )|MB|2Φeik, (23)

where the eikonal factor can be written explicitly

Φeik = CF

{ −p2
1

(p1 · p5)2
+

−p2
2

(p2 · p5)2
+

2(p1 · p2)

(p1 · p5)(p2 · p5)

}

= CF
ŝ

(p1 · p5)(p2 · p5)
. (24)

Meanwhile the 3-body phase space is factorized into the following form

dPS(3)(bb̄ → γA0 + g)
soft−→ dPS(2)(bb̄ → γA0)dS, (25)

with dS the soft gluon phase space to be integrated

dS =
1

π
(
4

ŝ
)−ǫ

∫ δs

√
ŝ/2

0

dE5E
1−2ǫ
5

∫ π

0

sin1−2ǫ ϕ1dϕ1

∫ π

0

sin−2ǫ ϕ2dϕ2. (26)

After performing the integrations we arrive at a form where IR singularities are explicit

dσ̂S = dσ̂B αs

2π
C(ǫ)

(AS
2

ǫ2
+
AS

1

ǫ
+ AS

0

)

, (27)

with

AS
2 = 2CF , AS

1 = −4CF ln δs, AS
0 = 4CF ln2 δs. (28)

3. Hard collinear region

In the hard collinear region, the factorization theorem [45, 46] states that the squared

amplitude can be factorized into the squared Born amplitude multiplied by the unregulated
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Altarelli-Parisi splitting function as long as the matrix element is calculated under the

collinear limit of kinematic configuration.

|MR(bb̄→ γA0 + g)|2 coll.−→ (4παsµ
2ǫ
R )|MB(b′b̄ → γA0; ŝ′ = zŝ)|2−2Pb′b(z, ǫ)

z(p1 − p5)2
. (29)

Moreover, the phase space can also be factorized in the collinear limit,

dPS(3)(bb̄ → γA0 + g)
coll.−→ dPS(2)(b′b̄→ γA0)

(4π)ǫ

16π2Γ(1 − ǫ)
dzdt15

[

− (1 − z)t15
]−ǫ

, (30)

with t15 = (p1 − p5)
2. After convoluting with the PDFs we obtain an expression for the

inclusive cross section where collinear singularities are explicit in terms of 1/ǫ poles [44]

dσHC
b−splitting = dσ̂B(bb̄ → γA0)

[

Gb/p

(x1

z

)

Gb̄/p(x2) + (x1 ↔ x2)
]

× αs

2π
C(ǫ)

( 1

−ǫ
)

δ−ǫ
c Pbb(z, ǫ)

dz

z

(1 − z

z

)−ǫ

dx1dx2. (31)

A similar term which gives exactly the same contribution is also present to account for

initial-state anti-quark splitting. So the complete collinear piece is

dσHC =
[

Gb/p

(x1

z

)

Gb̄/p(x2) +Gb̄/p

(x1

z

)

Gb/p(x2) + (x1 ↔ x2)
]

dσ̂B(bb̄→ γA0)

× αs

2π
C(ǫ)

( 1

−ǫ
)

δ−ǫ
c Pbb(z, ǫ)

dz

z

(1 − z

z

)−ǫ

dx1dx2, (32)

where the unregulated Altarelli-Parisi splitting functions are written explicitly as

Pbb(z, ǫ) = Pb̄b̄(z, ǫ) = CF

(1 + z2

1 − z
− ǫ(1 − z)

)

. (33)

where Gb(b̄)/p(x) is temporarily the bare PDF. Due to the non-soft constraint we have x1 ≤
z ≤ 1 − δs.

C. Massless bottom (anti-)quark emission

At O(αs) of the perturbative expansion bg (or b̄g) initial subprocesses should be taken

into consideration, with the relevant Feynman diagrams shown in Fig.7.

The treatment is much the same as to bb̄ annihilation except for some differences. First,

the radiation of a massless (anti-)quark contains no soft divergence. Hence there is no

need to introduce a soft cutoff, and the 3-body phase space is divided into a collinear

region and a non-collinear region, for the latter numerical calculation is straightforward.
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There is also collinear singularity arising from collinear emission of massless (anti-)quark.

The factorization treatment in the previous subsection applies if we introduce the collinear

cutoff δc to separate the collinear region and isolate the collinear poles. Combining the

non-collinear piece and collinear piece we obtain the cross section

dσadd. =
∑

α=b,b̄

dσ̂C(gα→ γA0 + α)
[

Gg/p(x1)Gα/p(x2) + (x1 ↔ x2)
]

dx1dx2

+dσ̂B(bb̄ → γA0)
αs

2π
C(ǫ)

(

− 1

ǫ

)

δ−ǫ
c

[

Pbg(z, ǫ)Gg/p

(x1

z

)

Gb̄/p(x2)+Pb̄g(z, ǫ)Gg/p

(x1

z

)

Gb/p(x2)

+ (x1 ↔ x2)
]

× dz

z

(1 − z

z

)−ǫ

dx1dx2, (34)

where the unregulated Altarelli-Parisi splitting functions are written explicitly as

Pbg(z, ǫ) = Pb̄g(z, ǫ) =
3

8
CF

(

z2 + (1 − z)2 − 2z(1 − z)ǫ
)

. (35)

Further collinear singularity can still arise in the configuration in which the photon is emitted

in parallel with the additional final-state quark. By comparison, such singularity does not

exist for a final-state gluon at next-to-leading order. A criterion for isolated photon has

been suggested in Refs. [47], which defines an IR-safe cross section decoupled with hadronic

fragmentation and at the same time allows for complete cancelation of soft gluon divergence.

For the case of only one final-state parton such criterion is equivalent to the kinematic cut

pj
T <

1 − cos ∆Rjγ

1 − cos ∆R0

pγ
T , for ∆Rjγ < ∆R0, (36)

where j stands for either the final-state (anti-)quark or the final-state gluon, and ∆Rjγ is

the cone distance in the rapidity-azimuthal angle plane between the parton and the photon.

Throughout our calculation we choose the cone-size parameter ∆R0 = 0.4.

D. Mass factorization

Since the real correction and the virtual correction combined are incomplete to cancel

all the divergences, the procedure of mass factorization is necessary. Generally, the scale-

dependent PDF Gα/β(x, µF ) under MS scheme can be written following Ref. [44]

Gα/p(x, µF ) = Gα/p(x) +
∑

β

(

− 1

ǫ

)αs

2π
C(ǫ)

(µ2
F

ŝ

)ǫ
∫ 1

x

dz

z
Pαβ(z)Gβ/p

(x

z

)

. (37)
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The Altarelli-Parisi splitting function in the above formula is independent of ǫ which is

defined by

Pαβ(y, ǫ) = Pαβ(y) + ǫP ′
αβ(y). (38)

Thus a collinear counter-term of O(αs) is obtained from the LO piece and will be used

to cancel the collinear divergence. If we combine the counter-term with the hard collinear

pieces, from both bb̄ channel and bg (or b̄g) channel, we will find the remaining collinear

piece in the following form,

dσC = dσ̂B αs

2π
C(ǫ)

{

G̃b/p(x1, µF )Gb̄/p(x2, µF ) +Gb/p(x1, µF )G̃b̄/p(x2, µF )

+
∑

α=b,b̄

[ASC
1 (α → αg)

ǫ
+ ASC

0 (α→ αg)
]

Gb/p(x1, µF )Gb̄/p(x2, µF ) + (x1 ↔ x2)
}

dx1dx2.

(39)

The summed terms with ASC
1,0 are a result of an overlap of both soft and collinear phase

space regions. One can explicitly write

ASC
1 (b→ bg) = ASC

1 (b̄ → b̄g) = CF

(

2 ln δs +
3

2

)

,

ASC
0 (b→ bg) = ASC

0 (b̄ → b̄g) = CF

(

2 ln δs +
3

2

)

ln
ŝ

µ2
F

, (40)

and the tilded G functions

G̃α/p(x, µF ) =
∑

β

∫ 1−δsδαβ

x

dy

y
P̃αβ(y)Gβ/p

(x

y
, µF

)

, (41)

with

P̃αβ(y) = Pαβ(y) ln
(

δc
1 − y

y

ŝ

µ2
F

)

− P ′
αβ(y). (42)

Now we can confirm that all the divergences have been canceled, since

2AV
2 + AS

2 = 0,

2AV
1 + AS

1 +
∑

α=b,b̄

ASC
1 (α→ αg) = 0. (43)

Putting together all pieces, we find a finite result of the NLO QCD total cross section for

pp→ γA0 +X

σNLO =

∫

{

dx1dx2

[

Gb/p(x1, µF )Gb̄/p(x2, µF ) + (x1 ↔ x2)
]

(σ̂B + σ̂V + σ̂S + σ̂HC) + σ̂C

}

+
∑

α=b,b̄

∫

dx1dx2

[

Gα/p(x1, µF )Gg/p(x2, µF ) + (x1 ↔ x2)
]

σ̂C(αg → γA0 + α). (44)

12



Kinematic cuts

pγ
T > 30 GeV, pτ

T > 20 GeV

|ηγ,τ | < 2.5

∆Rγτ > 0.7, ∆Rττ > 0.7

0.9mA < Mττ < 1.1mA

∆φττ < 2.9

TABLE I: Kinematic cuts imposed in the Monte Carlo simulation

We see that the total cross section depends on two undetermined scales: the renormalization

scale µR and the factorization scale µF .

IV. MONTE CARLO SIMULATION

At the LHC, the leptonic decay mode A0 → τ+τ− will be the most promising signature

in the search of A0. For a moderate Higgs mass, the branch ratio ΓA0→τ+τ− is around

10%, but the QCD background is much smaller compared with that in the decay mode

A0 → bb̄. Therefore we also conduct a Monte Carlo simulation study of the τ+τ− + γ

signature against the dominant irreducible SM background, namely the off-shell production

of gauge bosons qq̄ → γZ∗/γγ∗ → γτ+τ−. For the calculation of the background we use the

package CompHep v4.5.1 [48].

We impose the transverse momentum cuts pγ
T > 30 GeV, pτ

T > 20 GeV, and the pseudo-

rapidity cuts |ηγ,τ | < 2.5 for the photon and the tau leptons. We require the distance

∆Rγτ > 0.7, ∆Rττ > 0.7 to ensure well-separated final states. To reconstruct the on-shell

Higgs boson A0, we also demand that the tau pair invariant mass is within the window

[0.9mA, 1.1mA]. Besides, an additional cut on the azimuthal angles ∆φττ < 2.9 is also

imposed on the tau lepton pair, which is very effective at suppressing the false signature

arising from a high-pT photon radiated from one of the tau leptons. After all the above

kinematic cuts are applied, the SM background cross section can be reduced by 3 orders of

magnitude. All these cuts, summarized in Tab. I, are in accord with Ref. [29] in order to

compare our results with theirs.
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V. NUMERICAL RESULTS

This section is arranged as follows. First, we present the numerical results for the com-

plete NLO QCD corrected cross sections to A0γ associated production. Then we present

simulation results of the τ+τ− + γ signature under various kinematic cuts, for both the

integrated cross section and differential cross sections. It is worth to mention that in our

results H0 −A0 degeneracy is not assumed. For large mA and large tan β, such degeneracy

doubles the cross section.

A. NLO total cross section calculations

In this section, we present the results of the inclusive total cross section for pp→ γA0+X

at the LHC with total colliding energy
√
s = 14 TeV. Throughout our calculations CTEQ6L1

parton structure functions are used for LO cross sections and CTEQ6M used for the NLO

ones. We impose the photon transverse momentum cut pγ
T > 30 GeV and pseudo-rapidity

cut |ηγ| < 2.5. We choose the following SM input parameters [49]

mt = 172.4 GeV, GF = 1.16637×10−5 GeV−2, mW = 80.398 GeV, mZ = 91.1876 GeV,

αs(mZ) = 0.1176, mpole
b = 4.68 GeV, mb(m

pole
b ) = 4.20 GeV, αem(mW ) = 1/128.

(45)

Both the strong coupling αs and the running bottom quark mass [50] are evolved up to two

loops in QCD

mb(µR) = U6(µR, mt)U5(mt, m
pole
b )mb(m

pole
b ), (46)

where the evolution factor Uf is given by

Uf (µ2, µ1) =
(αs(µ2)

αs(µ1)

)d(f)[

1 +
αs(µ1) − αs(µ2)

4π
J (f)

]

, (47)

d(f) =
12

33 − 2f
, J (f) = −8982 − 504f + 40f 2

3(33 − 2f)2
, (48)

and f denotes the number of active quark flavors.

In the large tan β scenario, perturbative calculation is improved by resuming the tanβ-

enhanced threshold SUSY QCD corrections [50]. It is equivalent to make the following
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replacement for the tree-level bottom quark running mass

mb(µR) → mb(µR)

1 + ∆b(µSUSY )
, ∆b(µSUSY ) =

αs(µSUSY )

2π
CFmg̃µI(mb̃1

, mb̃2
, mg̃) tanβ,

(49)

where the auxiliary function is defined by

I(a, b, c) = − 1

(a2 − b2)(b2 − c2)(c2 − a2)

(

a2b2 ln
a2

b2
+ b2c2 ln

b2

c2
+ c2a2 ln

c2

a2

)

, (50)

To avoid double-counting, an additional finite counter-term for the bottom quark mass

should be introduced
δm̃b

mb
= ∆b

(

1 +
1

tan2 β

)

. (51)

For the SUSY QCD contribution the package SPheno v2.2.2 is used to calculate all the

parameters in the MSSM [51]. We choose the minimal supergravity scenario (mSUGRA) in

which various MSSM parameters are constrained by only five free input parameters at the

grand unification scale: m1/2, m0, A0, tan β and the sign of µ. The first three parameters

m1/2, m0, A0 are, respectively, the universal gaugino mass, the universal scalar mass, and

the trilinear soft breaking parameter of the superpotential [53]. We fix m1/2 = 200 GeV,

A0 = 0 while tan β and the sign of µ are left as free parameters. The desired value of mA is

obtained by tuning m0. Unless specified, the factorization scale µF and the renormalization

scale µR are always set equal at µF = µR = µ0 = mA/2. Besides, a third scale, the SUSY

scale µSUSY which comes into effect by threshold SUSY QCD resummation to the bottom

quark Yukawa coupling, is chosen to be µSUSY = 2 TeV.

In Fig.8, the NLO total cross section is plotted against δs and δc over a wide range of

variation at the SUSY benchmark point SPS 4 [52]. For the NLO corrections, the real/hard

correction depends on δs and δc , the virtual and soft gluon pieces combined depends only

on δs, and the hard collinear part depends only on δc. However, when all pieces are added

together, the dependence on δs and δc is canceled out as long as sufficiently small values of

δs and δc are chosen. From Fig. 9, in which the SPS 4 benchmark point is also chosen, we

can see that the complete NLO QCD corrections improve the scale dependence as compared

to the LO results for mA/4 < µ0 < mA. In addition, the SUSY QCD correction is found

to further reduce the scale uncertainty even though it is much smaller than the SM QCD

correction.

In Fig.10 and Fig.11, we plot the total cross sections with scale uncertainties for the

inclusive pp → γA0 + X production as functions of the Higgs boson mass mA. A positive
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MSSM soft breaking parameter µ, which is favored by the measurement of (g−2)µ [54], is of

particular interest. However, in the µ > 0 scenario the mass of A0 can not be smaller than

200 GeV. Assuming tan β = 50, the total cross section decreases rapidly as the Higgs boson

becomes heavier, from 60 ∼ 70 fb for relatively light Higgs boson mass mA = 300 GeV to a

mere 15 fb for much heavier Higgs boson mass mA = 500 GeV. For the case of tanβ = 10 the

total cross section is an order smaller. The NLO corrections efficiently reduce the total scale

dependence of the cross sections in the light Higgs boson mass region but not the heavy mass

region. This is because that the factorization and renormalization scale dependence cancels

exactly in the heavy mass region at the LO. And we have checked that the factorization and

renormalization scale dependence is indeed improved seperately. Also in Fig.12 and Fig.13,

K-factor as a function of the Higgs boson mass mA is plotted to show how much the NLO

QCD corrections can modify the LO prediction. Taking the case of tanβ = 50 for example,

QCD corrections from the pure SM contributions typically increase the total cross section by

around 22 ∼ 16% for 300 GeV≤ mA ≤ 500 GeV. The SUSY QCD corrections can suppress

the cross section by as much as 12% for light Higgs mass mA = 200 GeV. Nevertheless, the

suppression drops to less than 2% in magnitude for heavy Higgs mass mA = 500 GeV. The

scale uncertainties of the NLO total cross sections range from 10% to 20% of the LO total

cross sections with the varying of mA and tan β as can be seen from Fig.12 and Fig.13.

B. Simulation results

In Tab.II, we present the results of the integrated signal cross section including the LO

results, the NLO results without the SUSY QCD corrections, and the complete NLO results.

For the mSUGRA input parameters, we fix m1/2 = 200 GeV, A0 = 0, tan β = 50 and µ > 0,

and tune m0 to obtain Higgs mass mA = 200 GeV, 300 GeV, 500 GeV. For the heavier Higgs

mass cases, we choose transverse momentum cut, pγ
T > 40 GeV, 50 GeV for mA = 300 GeV,

500 GeV, respectively. Other cuts are the same as what has been mentioned in Sec. IV.

Moreover, an integrated luminosity of 100 fb−1 and a τ -pair detection efficiency ǫττ = 0.2

are assumed to evaluate the signal significance S = N(S)/
√

N(B).

For the case of mA = 200 GeV in which a relatively large signal cross section and a high

significance can be obtained, we investigate the NLO QCD effects more closely by studying

various differential cross sections. Fig.14 shows the invariant mass distribution dσ/dMττ of
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Background LO NLO (no SUSY) NLO

mA [GeV] σB [fb] σS [fb] S σS [fb] S σS [fb] S

200 3.44 8.38 20.2 10.8 26.0 9.84 23.7

300 1.12 1.91 8.05 2.39 10.0 2.30 9.71

500 0.270 0.287 2.47 0.354 3.05 0.349 3.00

TABLE II: Signal cross section σS, background cross section σB and significance S for the associated

production pp → A0γ → τ+τ−γ at the LHC. We set the mSUGRA input parameters m1/2 =

200 GeV, A0 = 0, tan β = 50 and µ > 0.

the tau lepton pair. With the central region significantly enhanced by the NLO corrections,

the mass peak for A0 is clearly seen above the background. Fig.15 shows the photon trans-

verse momentum distribution dσ/dpγ
T . The NLO QCD effects can enhance the LO results by

as much as 13%, depending on the specific value of pγ
T . Nevertheless, no significant distortion

of the curve is found. In Fig.16, we present the photon pseudo-rapidity distribution dσ/dηγ

together with the background. The NLO effects lead to moderate enhancement of the dis-

tribution, but do not change the shape of the curve either. Analysis of these differential

cross sections shows that the NLO QCD corrections generally enhance the signature.

VI. CONCLUSIONS

In conclusion, we have investigated the complete NLO QCD corrections to the inclusive

total cross sections of A0γ associated production at the LHC in the MSSM. Our results

show that the NLO corrections can enhance the total cross sections by 25% ∼ 15% for

Higgs mass 200 GeV < mA < 500 GeV and tan β = 50. The SUSY QCD correction is

negative and significant for light Higgs mass mA = 200 GeV, but is negligible for heavy Higgs

mass mA = 500 GeV. The NLO corrections generally reduce the dependence of the total

cross sections on the renormalization/factorization scale. Assuming a normal luminosity of

100 fb−1, we simulated the τ+τ− + γ signature including the complete NLO QCD effects

at the LHC, and found an observable signature above the SM background with a high

signal significance in some regions of the MSSM parameter space allowed by the current

experiments. Thus it can be expected that the LHC has the potential to discover a CP-
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odd Higgs boson with a mass of 200 GeV∼ 300 GeV via the photon associated production

channel for large tan β.
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FIG. 1: Tree level Feynman diagrams for bb̄ → γA0
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FIG. 3: The loop diagrams related to virtual gluino and sbottoms: propagator, vertex and box

diagram corrections
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FIG. 4: Self-energy diagrams for the bottom quark
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FIG. 5: Couter-term diagrams: wavefunction, mass and vertex renormalization
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FIG. 8: Inclusive total cross sections for pp → A0γ + X at the LHC as a function of δs in the

phase space slicing treatment. Non-collinear real correction, collinear correction, soft and virtual

corrections are also shown separately. The collinear cutoff is chosen to be δc = δs/50.
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FIG. 9: Dependence of inclusive total cross section for pp → A0γ + X at the LHC on the factor-

ization scale and the renormalization scale assuming µR = µF .
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FIG. 10: The inclusive total cross sections for pp → A0γ + X at the LHC as a function of mA0,

with tan β = 10. The bands are obtained by varying the renormalization and factorization scale

between µR(= µF ) = µ0/2 and µR(= µF ) = 2µ0 .

24



FIG. 11: The inclusive total cross sections for pp → A0γ + X at the LHC as a function of mA0,

with tan β = 50. The bands are obtained by varying the renormalization and factorization scale

between µR(= µF ) = µ0/2 and µR(= µF ) = 2µ0.
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FIG. 12: K-factors for pp → A0γ +X at the LHC with tan β = 10. The band is obtained by varing

the scale in the NLO calculations between µR(= µF ) = µ0/2 and µR(= µF ) = 2µ0.
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FIG. 13: K-factors for pp → A0γ +X at the LHC with tan β = 50. The band is obtained by varing

the scale in the NLO calculations between µR(= µF ) = µ0/2 and µR(= µF ) = 2µ0.
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FIG. 14: Final state ττ invariant mass distribution for pp → A0γ + X → τ+τ−γ + X at the LHC

compared with the background.
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