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I. INTRODUCTION

The study of low transverse momentum (pT ) production of electroweak gauge and Higgs bosons plays an important

role in many studies within and beyond the Standard Model (SM). The measurement of the W -boson mass at hadron

colliders requires an understanding of W production at low pT [1]. The search for a Higgs boson decaying into two

W bosons requires a jet veto to remove the large tt̄ background [2]. This cut effectively restricts the Higgs boson

to the low-pT region. In the kinematic limit of low transverse momentum, large logarithms of the form ln(M/pT ),

where M denotes the mass of γ∗,W,Z, h, spoil the perturbative expansion based on the strong coupling constant

αS . The logarithms must be resummed to all orders to obtain an accurate prediction. This resummation has been

extensively studied in the literature [3–18]. The standard approach utilizes a Fourier transform from momentum space

to impact-parameter space to decouple emissions of multiple gluons while maintaining momentum conservation [4].

This introduces a Landau pole arising from evaluating the strong coupling αs(1/b2⊥) for large impact parameters,

b⊥ →∞. The Landau pole must be dealt with for any transverse momentum, even for pT � ΛQCD. The resummed

exponent in b⊥-space also does not vanish when pT becomes large, which potentially introduces numerical instabilities
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in the matching to fixed-order QCD at high transverse momenta. An alternative approach which addresses these

limitations is worth pursuing.

In a previous paper we performed an analysis of transverse-momentum resummation for the example of Higgs-

boson [19] production using the Soft-Collinear Effective Theory (SCET) [20–22]. We derived a factorization theorem

for the differential distributions of the Higgs boson. The resummation of large logarithms in this approach is performed

using renormalization-group (RG) evolution in the effective theory. We introduced several new functions which encode

the emission of soft and collinear gluons within the effective theory, which we labeled impact-parameter beam functions

(iBFs) and inverse soft functions (iSFs). Our SCET formulation has several advantages over the standard approach.

The matching from full QCD onto SCETpT
at the hard scale M followed by running to lower scales is done in

momentum-space, not in impact-parameter space as in the standard method. This has the effect of stopping the RG

evolution at the scale µT ∼ pT , the natural scale of SCETpT
describing the dynamics of soft and collinear pT emissions.

The factorization theorem can be written entirely in momentum space which is equivalent to the statement that the

integral over b⊥ can be performed analytically without running into the Landau pole. As a result, for perturbative

values of pT , the transverse momentum distribution is predicted entirely in terms of perturbative functions and the

standard initial-state PDFs. Only for non-perturbative values of pT , one obtains a new non-perturbative function in

SCETpT
which is field theoretically well defined and has a computable anomalous dimension. This is in contrast to

the standard approach where a prescription is introduced to avoid the Landau pole even for perturbative values of

pT . Since an analytic integration over impact parameters is possible, we avoid instabilities that occur in the standard

approach in the matching of the resummed exponent to the fixed order result needed in the region of high pT .

Our goal in this manuscript is to extend our previous work in several ways. We formulate the factorization theorem

for low pT production in SCETpT
to account for electroweak gauge boson production in addition to Higgs production.

We present one-loop expressions for all iBFs and iSFs needed to study resummation to the next-to-leading logarithmic

(NLL) order of accuracy. The two-loop results for the iBFs and the iSF are required for a complete resummation to

next-to-next-to-leading logarithmic (NNLL) accuracy. We compare the SCET formulation to the standard Collins-

Soper-Sterman (CSS) [7] approach to transverse-momentum resummation. We present numerical results for the

Higgs and Z-boson pT distributions at NLL. We compare the effective theory predictions for Z production with the

experimental measurements at the Tevatron [23, 24], and find very good agreement with the data. This demonstrates

that our SCET-based approach provides a promising alternate way of studying transverse momentum distributions at

hadron colliders. We outline future directions for the study of transverse momentum resummation within the effective

field theory framework.

Our paper is organized as follows. In Section II we pedagogically review the factorization theorem derived in our

previous work [19] and present its extension to electroweak gauge boson production. The details of this extension are

presented in appendix A. All analytic results for the matching coefficients, iBFs and iSFs required for phenomenology

to NLL and partial NNLL accuracy are presented in Section III. The structure of the RG running in the effective

theory, which resums large logarithms of the form ln (M/pT ), is discussed in Section IV. Simple analytic expressions

for the resummed cross sections valid through NLL are shown in Section V. We discuss the relationship between

the various quantities appearing in the SCET approach with those appearing in the CSS formulation in section VI,

and show the consistency of the methods through NLL. We discuss what further work must be done to establish

the relationship to higher orders. Numerical results for Higgs production and Z boson production are shown in
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Section VII, and the agreement with the Tevatron data for Z production is demonstrated. Finally, we conclude in

Section VIII.

II. REVIEW OF THE FACTORIZATION THEOREM

We begin by summarizing the content and derivation of our previously-studied factorization theorem [19], and

present its extension to the case of electroweak gauge boson production. The details of this extension are presented

in appendix A. The derivation and result of our factorization analysis are shown schematically below:

d2σ

dp2
T dY

∼
∫
PS |MQCD|2 (1)

↓ (match QCD to SCETpT
)

∼
∫
PS |C ⊗ 〈OSCET 〉|2

↓ (SCET soft-collinear decoupling)

∼ H ⊗Bn ⊗Bn̄ ⊗ S

↓ (zero-bin and soft subtraction equivalence)

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1

↓ (match SCETpT
to SCETΛQCD

)

∼ H ⊗
[
In ⊗ In̄ ⊗ S−1

]︸ ︷︷ ︸
G

⊗fi ⊗ fj .

• In the first stage of the analysis, full QCD is matched onto an effective field theory which contains fields with

the following momentum scalings:

pn ∼M(η2, 1, η), pn̄ ∼M(1, η2, η), ps ∼M(η, η, η), η ∼ pT
M
,

corresponding to the n-collinear, n̄-collinear, and soft modes respectively. M denotes the mass of either an

electroweak gauge boson or the Higgs. We consider only the leading operators in the η expansion, which encode

the most singular emissions coming from soft and collinear particles. The relevant operators for Higgs and

electroweak gauge boson production are respectively

O(ω1, ω2) = gµνh T{Tr
[
Sn(gBµn⊥)ω1S

†
nSn̄(gBνn̄⊥)ω2S

†
n̄

]
},

OKiµ (ω1, ω2) ≡ (ξ̄iW )n̄,ω2T [Sn̄ΓKiµ S†n](W †ξi)n,ω1 , (2)

where the ΓKiµ denotes the Dirac structure, the index K runs over the vector and axial-vector Dirac structures,

and the index i runs over the quark flavors. The Bµn⊥ and Bνn̄⊥ fields denote collinear-gluon field strengths

[25] dressed with collinear Wilson lines in the n and n̄ directions respectively, ξi denotes a collinear quark field

of flavor i, and W denotes a collinear Wilson line. The ω1,2 are label momenta that give the large light-cone

components of the collinear fields.

• Using the soft-collinear decoupling property of SCETpT , the matrix element in SCETpT is decoupled into the

n and n̄ collinear iBFs, Bn and Bn̄ respectively, and a soft function as seen in the fifth line of Eq. (1).
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• The Bn and Bn̄ iBFs are defined with a zero-bin subtraction [26]. Using the equivalence between zero-bin

and soft subtractions, explicitly shown at one-loop in our previous work [19] and studied elsewhere in the

literature [27–29], we can write BnBn̄S → B̃nB̃n̄S
−1 where the iBFs B̃n,n̄ are defined without the soft zero-bin

subtraction and S−1 is the iSF.

• In the last step, for pT � ΛQCD, the iBFs are matched onto standard PDFs via the schematic matching equation

B̃n,n̄ = In,n̄ ⊗ f. (3)

The matching coefficients In,n̄ are grouped together with the iSF to form a Transverse Momentum Function

(TMF) G as shown in the last line of Eq. (1). The TMF encodes the physics of the soft and collinear emissions

from initial-state partons in the effective theory. For pT ∼ ΛQCD, the OPE in ΛQCD/pT breaks down so that

the perturbative matching in Eq.(3) is no longer valid. However, in this case one can view Eq. (3) simply as

an equation that defines new non-perturbative functions In,n̄. Thus, for pT ∼ ΛQCD, G appears as a new

non-pertubative TMF with a well-defined field-theoretic definition and computable anomalous dimension and

can be modeled and extracted from data.

The above derivation relies on the cancellation of Glauber mode contributions, as in the standard approach [7], to

the final observable which measures the pT of the final-state color-neutral particle. An explicit demonstration of

this cancellation using an effective field theory language remains to be shown. For Higgs production, our previous

work [19] showed that the differential distribution in transverse momentum and rapidity of the Higgs is given by

d2σh
dp2

T dY
=

π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′1
x′1

∫ 1

x2

dx′2
x′2

× Hh(x1, x2, µQ;µT )Gijh (x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x′1, µT )fj/P (x′2, µT ), (4)

where the we have introduced Gijh , theTMF for Higgs boson production, which is given by

Gijh (x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g⊥ασg
⊥
βω

× Iαβn;gi(
x1

x′1
, t+n , b⊥, µT ) Iσωn̄;gj(

x2

x′2
, t−n̄ , b⊥, µT )

× S−1
gg (x1Q− eY

√
p2
T +m2

h −
t−n̄
x2Q

, x2Q− e−Y
√

p2
T +m2

h −
t+n
x1Q

, b⊥, µT ).

(5)

Detailed definitions of the various objects appearing in the above equation are given in sections III C and III D. The

integrations over impact parameter b⊥ can be explicitly performed to produce an expression written completely in

momentum space [19]. Similarly, the integrations over the residual light-cone momentum components t+n , t
−
n̄ can be

performed. For clarity, the explicit expression that results after performing the indicated integrations is shown in

Section V.

In this paper, we also give a detailed derivation of electroweak gauge boson transverse momentum and rapidity

distributions in appendix A. The final result is given by

d2σ

dp2
T dY

=
π2

N2
c

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

x1

dx′1
x′1

∫ 1

x2

dx′2
x′2

× Hq
Z(x1x2Q

2, µQ;µT ) Gqrs(x1, x2, x
′
1, x
′
2, pT , Y, µT )fr(x′1, µT )fs(x′2, µT ),

(6)
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where the TMF function Gqrs

Gqrs(x1, x2, x
′
1, x
′
2, pT , Y, µT ) =

∫
d2b⊥
(2π)2

J0

[
b⊥pT

] ∫
dt+n dt

−
n̄ In;qr(

x1

x′1
, t+n , b⊥, µT ) In̄;q̄s(

x2

x′2
, t−n̄ , b⊥, µT )

× S−1
qq (x1Q− eY

√
p2
T +M2

Z −
t−n̄
x2Q

, x2Q− e−Y
√

p2
T +M2

Z −
t+n
x1Q

, b⊥, µT ),

(7)

and detailed definitions of the various objects can be found in appendix A. One can straightforwardly generalize these

results to distributions that are differential in the final state leptons.

We briefly address the appropriate choices for the scales µQ and µT that appear in these equations, as this issue

arises later when detailed numerical results are presented. These scales should be chosen to minimize logarithms that

appear in the expressions for the hard function H and the TMF. A detailed study of this issue was given in our

previous work [19]; we summarize the results of this analysis here. The scale µQ which appears in the hard function

should be chosen as µQ ∼ x1x2Q ∼ MZ . The scale µT appearing in the TMF should be chosen to be µT ∼ pT .

We note that the TMF is independent of the quantities t+n , t−n̄ and b⊥ which are integrated over. The TMF is only

sensitive to the transverse momentum and rapidity constraint on the final state Higgs or electroweak gauge boson

making µT ∼ pT the natural scale choice.

III. FIXED-ORDER RESULTS

In the following sections we derive fixed-order results for the various components of the factorization theorems in

Eqs. (4) and (6). We provide mostly outlines of the necessary perturbative calculations, as details of the derivations

were already presented in our previous work [19] for the case of Higgs production.

A. Matching Coefficients

We begin with the matching coefficients that arise when matching the full QCD current onto operators in SCETpT
.

The vector-boson current in full QCD is

JZ;µ =
∑
i

(
JV iZ;µ + JAiZ;µ

)
, (8)

where JV iZ;µ and JAiZ;µ are vector and axial-vector currents for the i-th quark flavor

JV iZ;µ = giV q̄iγµqi, JAiZ;µ = giAqiγµγ5qi, (9)

and giV and giA are the vector and axial vector couplings of the i-th quark to the vector boson being studied. We have

explicitly used the Z current in these equations, but the results hold identically for γ∗ and W bosons as well. These

currents are matched onto effective operators in SCETpT
as

JKjZ;µ =
∫
dω1

∫
dω2 C

K;ji(ω1, ω2, µ)OKiµ (ω1, ω2, µ), (10)



7

where the index K takes on the values K = {V,A} and the indices i, j run over the quark flavors1. CK;ji is the

Wilson coefficient of this matching. The effective operators OKiµ (ω1, ω2, µ) are given by

OKiµ (ω1, ω2, µ)(x) ≡ (ξ̄iW )n̄,ω2T [S†n̄ΓKiµ Sn](W †ξi)n,ω1 , (11)

with the Dirac structures ΓKµ written as

ΓV iµ = giV γ
⊥
µ , ΓAiµ = giAγ

⊥
µ γ5. (12)

Sn,n̄ denote soft Wilson lines:

Sn(x) = P exp
[
ig

∫ 0

−∞
n ·As(x+ sn)

]
, Sn̄(x) = P exp

[
ig

∫ 0

−∞
n̄ ·As(x+ sn̄)

]
.

(13)

Note that in the Dirac structures ΓKqµ in Eq.(12) only the perpendicular components of the index µ contribute due

to the equations of motion of the collinear fields in SCETpT
: n̄/ξn = 0, n/ξn̄ = 0. At tree level, the Wilson coefficient

arising from matching the current onto the SCETpT
operator is just unity:

CV ;ji(0)(ω1, ω2, µ) = CA;ji(0)(ω1, ω2, µ) = δij . (14)

The result of the one-loop matching is given by

CV ;ji(1)(ω1, ω2, µ) = CA;ji(1)(ω1, ω2, µ)

= δij
αsCF

4π

[
− ln2

( µ2

−ω1ω2 − iε

)
− 3 ln

( µ2

−ω1ω2 − iε

)
− 8 +

π2

6

]
.

(15)

The expression for this Wilson coefficient up to order α2
s can be found in Refs. [31–33]. The hard Wilson coefficient

Hq
Z(ω1, ω2, µQ;µT ) = Hq

Z(ω1ω2, µQ;µT ) that appears in the factorization theorem in Eq.(6) is given by Eqs.(A20),

(A21), and (A27). We refer the reader to [19] for a similar analysis for the hard coefficient Hh(x1x2Q
2, µQ;µT ) that

appears in the factorization theorem of Eq.(4) for Higgs production.

B. Quark iBF

In this section we give the results for the one-loop calculations of the quark iBFs that appear in the factorization

theorem for electroweak gauge boson production. The special case of the quark iBFs with the transverse coordinate

b⊥ = 0 was computed at one loop in [34]. Our computation closely follows the techniques we established in our

previous work [19]. We compute the n-collinear and the n̄-collinear quark iBFs by inserting a complete set of states

1 There is also a pure gluon SCETpT operator that should appear on the RHS of Eq.(10). However, the contribution of this operator
vanishes [30] for Drell-Yan processes and has thus been left out.
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FIG. 1: Example diagrams for the real emission of a single parton contributing to the next-to-leading order quark iBF. The
purple cross denotes the collinear Wilson lines associated with the χn field. We note that the momentum p1 is incoming on
the left-hand side of the cut and outgoing on the right.

|Xn〉 and |Xn̄〉 respectively as

B̃qn(x, t, b⊥, µ) =
1

2x n̄ · p1

∫
db−

4π
e

it
2Qx b

−∑
Xn

〈p1|ξ̄nqWn(b−, b⊥)|Xn〉〈Xn|
n̄/

2
δ(n̄ · P − x n̄ · p1)W †nξnq(0)|p1〉,

B̃q̄n̄(x, t, b⊥, µ) =
1

2xn · p2

∫
db+

4π
e

it
2Qx b

+ ∑
Xn̄

〈p2|Trspin

[ n/
2

(W †ξq)n̄(y)|Xn̄〉〈Xn̄|δ(−ω − P̄n̄)(ξ̄qW )n̄(0)
]
|p2〉,

(16)

and then computing the product of matrix elements. The tree level and and virtual corrections are obtained by a

perturbative calculation with the choice of the vaccum state |Xn〉 = |0〉. The virtual corrections are all scaleless and

vanish in pure dimensional regularization. The real emission contributions correspond to choosing final states |Xn〉
to contain one or more partons. Example diagrams for the real emission of a single parton are shown in Fig. 1. The

matching of the iBFs onto the PDFs is given by

B̃qn(x, t, b⊥, µ) =
∫ 1

x

dz

z

{
In;qq′(

x

z
, t, b⊥, µ) fq′(z, µ) + In;qg(

x

z
, t, b⊥, µ) fg(z, µ)

}
(17)

with an analogous equation for the n̄-collinear iBF. The PDFs are defined in the usual fashion as

fq(z, µ) =
1
2

∑
initial pols.

〈p1|ξ̄nqWn(0)
n̄/

2
δ(n̄ · P − z n̄ · p1)W †nξnq(0)|p1〉,

fg(z, µ) = −z n̄ · p1

d− 2

∑
initial pols.

〈p1|
[
BAα1n⊥(b−, b⊥)δ(P̄ − zn̄ · p1)BA1n⊥α(0)

]
|p1〉. (18)

In the rest of this section we give results for the n-collinear iBF. Analogous results hold for the n̄-collinear iBF. At

tree level the n-collinear iBF is given by

B̃q(0)
n (x, t, b⊥, µ) = δ(t)δ(1− x). (19)

At the next order, the emission of a single parton into the final state from the iBF has two contributions:

B̃qR(1)
n (x, t, b⊥, µ) = B̃qqR(1)

n (x, t, b⊥, µ) + B̃qgR(1)
n (x, t, b⊥, µ), (20)

where B̃qqR(1)
n and B̃

qgR(1)
n correspond to the first and second diagrams in Fig. 1 respectively. The contribution of a

single gluon emission by an initial state quark to the n-collinear quark iBF is given by the first diagram of Fig. 1. All

other diagrams do not contribute if a physical polarization sum is used for the final-state gluon. At the level of the
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integrand, the result for this diagram is

B̃qqR(1)
n (x, t, b⊥, µ) =

g2CF
2xQ

∫
ddk

(2π)d−1
θ(k0)δ(k2)δ[Q(1− x)− k−]δ[

t

xQ
− k+]ei~k·~b⊥

1
(k − p1)4

×
[
− gµν +

kµn̄ν + kν n̄µ
n̄ · k

]
Tr
[
p1/ γ

µ(k/ − p1/ )
n̄/

2
(p1/ − k/ )γν

]
, (21)

where CF = 4/3 and we have introduced Q = n̄ · p1. This can be computed in pure dimensional regularization to give

B̃qqR(1)
n (x, t, b⊥, µ) =

αsCF
2π

eεγE

Γ(1− ε) 0F1

(
1− ε;−b

2
⊥t(1− x)

4x

)
× 1

µ2

[µ2

t

]1+ε
[

(1− ε)xε(1− x)1−ε +
2x1+ε

(1− x)1+ε

]
. (22)

We now expand this expression in ε and use the matching condition of Eq. (17). In dimensional regularization, the

only contribution to the PDF is at leading-order, as higher-order corrections are scaleless. Since f(x) = δ(1− x), we

have

In;qq(x, t, b⊥, µ) =
[
B̃qqn (x, t, b⊥, µ)

]
finite part in dim. reg.

. (23)

We have also performed a calculation where collinear divergences are regulated by introducing an off-shellness for the

initial quark, and have obtained identical results for the matching coefficients. We find the following expression for

the matching coefficient:

I(1)
n;qq(x, t, b⊥, µ) =

αsCF
2π

{
δ(t)

[
− π2

6
δ(1− x)− 1 + x2

1− x
lnx+ (1− x)

]

+ δ(t)
[ ln(1− x)

1− x

]
+

(1 + x2) +
2
µ2

[ ln(t/µ2)
t/µ2

]
+
δ(1− x)

+
1
µ2

[µ2

t

]
+

1 + x2

(1− x)+
0F1

(
1;−b

2
⊥t(1− x)

4x

)}
.

(24)

Another contribution to the quark iBF comes from setting the final state |Xn〉 to a single quark, as shown in the

rightmost diagram of Fig. 1. This contribution matches to the gluon PDF, and generates the qg → V g partonic

channel that contributes to electroweak gauge boson production. The integrand level expression for this diagram is

given by

B̃qgR(1)
n (x, t, b⊥, µ) = − g2

2Qx

∫
ddk

(2π)d−1
θ(k0)δ(k2)δ[

t

xQ
− k+]δ[Q(1− x)− k−]ei~k·~b⊥

1
(p1 − k)4

×
[
− gµν +

p1µn̄ν + p1ν n̄µ
Q

]
Tr
[
k/ γµ(p1/ − k/ )

n̄/

2
(k/ − p1/ )γν

]
. (25)

In dimensional regularization this becomes

B̃qgR(1)
n (x, t, b⊥, µ) =

αs
4π

eεγE

Γ(1− ε) 0F1(1− ε;−b
2
⊥t(1− x)

4x
)

× 1
µ2

[µ2

t

]1+ε[
2x2+ε(1− x)−ε − 2x1+ε(1− x)−ε + (1− ε)xε(1− x)−ε

]
.

(26)
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FIG. 2: Example diagrams contributing to the next-to-leading order gluon iBF. The purple cross denotes the collinear Wilson
lines associated with the Bn⊥ field. We note that the momentum p1 is incoming on the left-hand side of the cut and outgoing
on the right.

Expanding this result in the limit that ε→ 0 and keeping only the finite remainder, we derive the matching coefficient

I(1)
n;qg(x, t, b⊥, µ) =

αs
4π

{
δ(t)

[ {
(1− x)2 + x2

}
ln

1− x
x

+ 1
]

+
1
µ2

[µ2

t

]
+

{
(1− x)2 + x2

}
0F1

(
1;−b

2
⊥t(1− x)

4x

)}
. (27)

C. Gluon iBF

We now consider the calculation of the gluon iBF. Although parts of this computation were already presented in

Ref. [19], we include them here for notational consistency and completeness. Note that in the following we use slightly

different definitions for the iBFs compared to that in [19]. The n-collinear gluon iBF is given by

B̃g;αβn (x, t, b⊥, µ) = −
∫
db−

4π
e

i
2

tb−
xQ

∑
initial pols.

∑
Xn

〈p1|
[
gBA1n⊥β(b−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA1n⊥α(0)
]
|p1〉,

(28)

where on the right-hand side we use the Fourier transform conjugate variable t/(xQ) compared to t/Q used in [19].

The contributing diagrams are shown in Fig. 2. In dimensional regularization and with a physical polarization sum

used for the gluons, these are the only contributions. The matching equation for the gluon iBF onto the PDFs is

given by

B̃gn;αβ(x, t, b⊥, µ) =
∫ 1

x

dz

z

{
Iggn;αβ(

x

z
, t, b⊥, µ) fg(z) + Igqn;αβ(

x

z
, t, b⊥, µ) fq(z)

}
. (29)

The tree-level expression for the iBF is given by

B̃(0)αβ
n (x, t, b⊥, µ) = g2gαβ⊥ δ(t)δ(1− x). (30)

The virtual corrections to the iBF are scaleless and vanish in pure dimensional regularization. At the next order

beyond tree-level, the real emission of a single parton from the iBF has two types of contributions:

B̃
gR(1)
n;αβ (x, t, b⊥, µ) = B̃

ggR(1)
n;αβ (x, t, b⊥, µ) + B̃

gqR(1)
n;αβ (x, t, b⊥, µ), (31)
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where B̃ggR(1)
n;αβ and B̃gqR(1)

n;αβ correspond to the emission of a real gluon and a real quark in the final state respectively.

We begin by considering the contribution arising from single-gluon emission into the final state, which corresponds to

the leftmost diagram in Fig. 2. The result can be expanded in terms of two form factors,

B̃ggn;αβ(x, t, b⊥, µ) = Fg;ε1 (x, t, b⊥, µ)gαβ⊥ + Fg;ε2 (x, t, b⊥, µ)

[
gαβ⊥ + (d− 2)

~bα⊥
~bβ⊥
b2⊥

]
,

where F1,2 are given by

Fgg;ε1 = g2αsCA
π

eεγE

Γ(1− ε)
1
µ2

[
µ2

t

]1+ε

x1+ε(1− x)−ε0F1

(
1− ε;−b

2
⊥t(1− x)

4x

)
×
{

1− x+
1− x
x2

+
1

1− x

}
,

Fgg;ε2 = g2αsCA
4π

eεγE

Γ(3− ε)

[
µ2

t

]ε (1− x)2−ε

x2 0F1

(
3− ε;−b

2
⊥t(1− x)

4x

)
. (32)

The quantity F2 is finite, and we can immediately set ε to zero. F1 must be expanded in distributions. We do so and

drop the pole terms, as explained in the section on the quark iBF. For the gluon iBF we utilize the matching equation

B̃g;αβn (x, t, b⊥, µ) =
∫ 1

x

dz

z
Iαβng;i(

x

z
, t, b⊥, µ)fi(z, µ), (33)

which leads to the result

Iαβn;gg(x, t, b⊥, µ) = Fgg1 (x, t, b⊥, µ)gαβ⊥ + Fgg2 (x, t, b⊥, µ)

[
gαβ⊥ + (d− 2)

~bα⊥
~bβ⊥
b2⊥

]
, (34)

with

Fgg1 = g2CA
αs
π

{
−π

2

12
δ(t) δ(1− x) + δ(1− x)

1
µ2

[
µ2

t
ln
(
t

µ2

)]
+

+ δ(t) x

[(
1− x+

1− x
x2

)
ln(1− x) +

[
ln(1− x)

1− x

]
+

]

+
1
µ2

[
µ2

t

]
+

x

[
1− x+

1− x
x2

+
1

[1− x]+

]
0F1

(
1;−b

2
⊥t(1− x)

4x

)
− δ(t) x lnx

[
1− x+

1− x
x2

+
1

[1− x]+

]}
,

Fgg2 = g2CA
αs
8π

(1− x)2

x2
b2⊥ 0F1

(
3;−b

2
⊥t(1− x)

4x

)
. (35)

There is another contribution to the gluon iBF coming from radiating a quark into the final state, which comes

from the rightmost diagram of Fig. 2. This matches onto the quark PDF, and generates the matching coefficient

In;gq. As with B̃ggn;αβ , this can be expanded in two form factors, leading to the generic form

B̃gqn;αβ(x, t, b⊥, µ) = Fgq1 (x, t, b⊥, µ)g⊥αβ + Fgq2 (x, t, b⊥, µ)
[
g⊥αβ + (d− 2)

~b⊥α
~b⊥β
~b2

]
. (36)

After performing the integrations and expanding in ε as in the previous contributions, and utilizing the matching in

Eq. (33), we find the following expressions for the two form factors:

Fgq1 = g2αsCF
2π

{
1
µ2

[µ2

t

]
+

(1− x)2 + 1
x

0F1(1;−b
2
⊥t(1− x)

4x
)

− δ(t)
[

(1− x)2 + 1
x

ln
1− x
x
− 2

1− x
x

]}
,

Fgq2 (x, t, b⊥, µ) = g2αsCF
2π

(1− x)2b2⊥
4x2 0F1(3;−b

2
⊥t(1− x)

4x
). (37)
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D. Inverse Soft Functions

We now discuss the computation of the inverse soft functions that appear in the factorization theorem for both

Higgs and electroweak gauge boson production. They serve to remove an overcounting of soft emissions that occur

when the iBFs are inserted into the factorization theorem, and are needed to correctly match the fixed-order cross

section. The relevant iSF for gauge boson production is

S−1
qq (ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
e

i
2 ω̃1b

+
e

i
2 ω̃2b

−
S−1
qq (b+, b−, b⊥, µ), (38)

where Sqq(b, µ) is a vacuum matrix element of soft Wilson lines given by

Sqq(b, µ) =
∑
Xs

Tr〈0|T̄ [S†nSn̄](z)|Xs〉〈Xs| T [S†n̄Sn](0)|0〉. (39)

We have inserted a complete set of final states |Xs〉. The relevant formulae for the iSF in Higgs production are

S−1
gg (ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2S−1

gg (b+, b−, b⊥),

Sgg(b, µ) =
∑
Xs

〈0|T̄
[
Tr
(
Sn̄T

DS†n̄SnT
CS†n

)
(b)
]
|Xs〉〈Xs|T

[
Tr
(
SnT

CS†nSn̄T
DS†n̄

)
(0)
]
|0〉.

(40)

The tree level result for the quark iSF is given by

S−1(0)
qq (

tmaxn̄ − t−n̄
x2Q

,
tmaxn − t+n
x1Q

, b⊥, µ) = Nc x1x2 Q
2δ(tmaxn̄ − t−n̄ )δ(tmaxn − t+n ),

(41)

where we have used the same arguments in the iSF that appear in the factorization theorem so that

tmaxn̄ ≡ x1x2Q
2 − x2(M2 − u), tmaxn̄ ≡ x1x2Q

2 − x1(M2 − t). (42)

u and t are the hadronic Mandelstam invariants that appear in the factorization theorem derived in appendix A. The

result for the gluon iSF at tree level can be obtained via a simple scaling of the quark result:

S−1(0)
gg =

N2
C − 1
4NC

S−1(0)
qq . (43)

As with the iBFs, the contributions from the higher-order virtual corrections with |Xs〉 = |0〉 are scaleless, and

vanish in dimensional regularization. The only contributions come from real-emission diagrams. Examples are shown

in Fig. 3 for both vector boson and Higgs production. For gauge boson production, the contribution of real gluon

emission to the iSF takes the integrand level form

S−1R(1)
qq (

tmaxn̄ − t−n̄
x2Q

,
tmaxn − t+n
x1Q

, b⊥, µ) = 4g2NcCF

∫
ddk

(2π)d−1

δ(k2)θ(k0)ei~k⊥·~b⊥

k+k−

× δ
[ tmaxn̄ − t−n̄

x2Q
− k−

]
δ
[ tmaxn − t+n

x1Q
− k+

]
. (44)
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FIG. 3: Example diagrams contributing to the next-to-leading order iSFs for both electroweak gauge boson production (left)
and Higgs production (right). The lines at each vertex schematically denote the soft Wilson lines associated appearing in the
definition of the iSFs.

Evaluating this in dimensional regularization and dropping the pole terms yields

S−1R(1)
qq = −Nc

αsCF
π

Q̂2

{
−π

2

12
δ(tmaxn̄ − t−n̄ )δ(tmaxn − t+n ) +

1
2
δ(tmaxn̄ − t−n̄ )δ(tmaxn − t+n )ln2 Q̂

2

µ2

+ δ(tmaxn̄ − t−n̄ )
1
Q̂2

[
Q̂2

tmaxn − t+n

]
+

ln
Q̂2

µ2
+ δ(tmaxn − t+n )

1
Q̂2

[
Q̂2

tmaxn̄ − t−n̄

]
+

ln
Q̂2

µ2

+ δ(tmaxn̄ − t−n̄ )
1
Q̂2

[
Q̂2

tmaxn − t+n
ln
tmaxn − t+n

Q̂2

]
+

+ δ(tmaxn − t+n )
1
Q̂2

[
Q̂2

tmaxn̄ − t−n̄
ln
tmaxn̄ − t−n̄

Q̂2

]
+

+
1
Q̂4

[
Q̂2

tmaxn − t+n

]
+

[
Q̂2

tmaxn̄ − t−n̄

]
+

0F1

(
1;−b

2
⊥(tmaxn − t+n )(tmaxn̄ − t−n̄ )

4Q̂2

)}
. (45)

We have used Q̂2 = x1x2Q
2 to simplify the notation. The result for the iSF in Higgs production at this order can be

obtained via the scaling

S−1R(1)
gg =

(N2
C − 1)CA

4NC CF
S−1R(1)
qq . (46)

IV. RUNNING

In the section we briefly summarize the structure of the running of the various objects that appear in the factorization

theorems for the transverse momentum and rapidity distributions. For a more detailed discussion of the running

structure see Ref. [19] where the case of Higgs production was studied in great detail. The overall structure of

factorization is similar for both Drell-Yan and Higgs production and is schematically characterized by a hard function

H, a transverse momentum function (TMF) G, and the standard initial state PDFs. The TMF G is a convolution

over two iBFs and an iSF. It is only the specific forms of the hard and transverse momentum functions and the the

type of parton PDFs that dominate that differ in Drell-Yan and the Higgs production processes. In this section we

summarize the running structure for the case of the Z-boson distribution function.

The evolution equations for Hq
Z(Q̂2, µ) are diagonal in flavor (for a more detailed discussion see [30, 34, 35]), and

one can write

µ
d

dµ
Hq
Z = γHq

Z
Hq
Z , (47)
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where the anomalous dimension γHq
Z

has the form

γHq
Z

= ΓqH [αs] ln
Q̂2

µ2
+ γqH [αs]. (48)

The first term proportional to ln Q̂2

µ2 is known as the cusp anomalous dimension and the second term is the non-cusp

piece. The quantities ΓH [αs] and γH [αs] have perturbative expansions in αs of the form

ΓqH [αs] =
αs
4π

ΓHq0 +
[αs

4π

]2
ΓHq1 + · · · , γqH [αs] =

αs
4π
γHq0 +

[αs
4π

]2
γHq1 + · · · (49)

The matching from QCD onto SCETpT
is the same as for the study of threshold resummation in SCET, and the results

for the anomalous dimensions can be obtained from previous studies [31, 36]. For resummation to NLL accuracy, the

following coefficients of the expansion are needed:

ΓHq0 = 8CF , γHq0 = −12CF ,

ΓHq1 = 8CF

[(
67
9
− π2

3

)
CA −

10
9
NF

]
. (50)

The solution to the evolution of the hard function between the scales µQ ∼ Q̂ and µT ∼ pT and takes the form

Hq
Z(Q̂2, µQ;µT ) = UHq

Z
(Q̂2, µQ, µT )Hq

Z(Q̂2, µQ), (51)

where UHq
Z

(Q̂2, µQ, µT ) denotes the evolution factor and sums the logarithms of Q̂2/p2
T .

The TMF function Gqrs that appears in the factorization theorem as seen in Eq.(7) is evaluated at the scale µT ∼ pT .

The PDFs are evolved via standard DGLAP equations up to the scale µT ∼ pT , summing up the remaining logarithms

of ΛQCD/pT . For the running between µQ ∼ Q̂ ∼M and µT ∼ pT , one can also consider running of the iBFs and the

iSF individually above the µT ∼ pT scale. It was shown in [19] that the combined convolution running of the iBFs

and the iSF cancels the running of the hard function as required by the scale invariance of the cross-section. The

running of the iBF can be written as

µ
d

dµ
Bq(x, t, b⊥, µ) =

∫
dt′γBq (t− t′, µ)Bq(x, t′, b⊥, µ), (52)

where at one loop, the anomalous dimension is given by

γB(1)
q (t, µ) =

αs(µ)CF
π

[
− 2
µ2

[µ2

t

]
+

+
3
2
δ(t)

]
, (53)

which is the same as what was found for the iBF with b⊥ = 0 in [34]. The anomalous dimension of the iSF S−1
qq is

determined by the equation

µ
d

dµ
S−1
qq (

tn̄
Q
,
tn
Q
, b⊥, µ) =

1
Q2

∫
dt′n

∫
dt′n̄γS−1

qq
(
tn̄
Q
− t′n̄
Q
,
tn
Q
− t′n
Q
,µ)S−1

qq (
t′n̄
Q
,
t′n
Q
, b⊥, µ),

(54)

and at one loop is given by

γ
(1)

S−1
qq

(
tn̄
Q
,
tn
Q
,µ) =

2αsCF
π

Q2

[
δ(tn̄)

1
Q2

[Q2

tn

]
+

+ δ(tn)
1
Q2

[Q2

tn̄

]
+

+ δ(tn)δ(tn̄) ln
Q2

µ2

]
.

(55)
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V. ANALYTIC EXPRESSIONS FOR RESUMMED CROSS SECTIONS

Using the fixed-order expressions and renormalization-group evolution of the hard function derived in the previous

sections, we can derive the explicit expressions for the differential cross sections which resum large logarithms for low

transverse momenta. We begin by considering the case of Higgs boson production. The relevant factorization formula

is shown in Eq. (4). The running of the hard function Hh was described in Section IV. For the transverse momentum

function defined in Eq. (5), we must plug in the perturbative expansions for the relevant iBFs and iSF. These were

derived in Section III. We note that if tree-level expressions are used for both beam functions and the soft function,

then the phase-space constraints force pT = 0. Therefore, the NLO expressions for one of these functions must be

used.

We derive here the O(αs) expressions for the differential cross sections, which correspond to the leading-order result

for the pT spectrum. Upon plugging in the expressions for the iBFs and the iSF, the integrals over b⊥, t+n , t−n̄ , x1,

and x2 can be performed. The differential cross section can be written in the general form

d2σh,Z
dp2
T dY

=
∑
i,j

∫
dx1dx2 fi/P (x1)fj/P (x2) Q̂2

d2σijh,Z

dû dt̂
, (56)

where the subscripts h, Z refer to the Higgs and Z boson production respectively. We have introduced the usual

partonic Mandelstam invariants Q̂, t̂, and û. There are three relevant partonic channels that contribute to Higgs

production: gg → gh, qg → qh, and qq̄ → gh. The partonic differential cross section for the gg initial state can be

written as follows:

d2σggh
dû dt̂

=
π2

192v2

(αs
π

)3
{
− Q̂

2

t̂û
Uh(Q̂2, µQ, µT ) +

Q̂2

t̂û

[
1 +

t̂

Q̂2
+

t̂2

Q̂4

]2

Uh(m2
h − û, µQ, µT )

+
Q̂2

t̂û

[
1 +

û

Q̂2
+
û2

Q̂4

]2

Uh(m2
h − t̂, µQ, µT ) +

2t̂2 + 2û2 + 3t̂û+ 6Q̂2m2
h

Q̂6

}
× δ(Q̂2 + t̂+ û−m2

h). (57)

The four terms appearing in this result have a clear origin. The first term arises from S−1
gg , while the second and third

come from the NLO expressions for the iBFs. The last term results from matching the expressions to the fixed-order

QCD result. In the limit that the pT of the Higgs becomes large, and therefore that µT approaches µQ, the evolution

factors Uh → 1, and the regular fixed-order QCD result is obtained. Of the remaining channels, the qg initial state

has only a contribution from the NLO iBF, while the qq̄ has no contribution from soft or collinear emissions at this

order and comes entirely from matching to the fixed-order QCD result. The explicit expressions are

d2σqgh
dû dt̂

= − π2

864v2

(αs
π

)3 1
û

{
1 +

t̂2

Q̂4

}
Uh(m2

h − û, µQ, µT )δ(Q̂2 + t̂+ û−m2
h),

d2σqq̄h
dû dt̂

=
π2

324v2

(αs
π

)3 1
Q̂2

{
û2

Q̂4
+

t̂2

Q̂4

}
δ(Q̂2 + t̂+ û−m2

h). (58)

For vector boson production, we for simplicity explicitly write the result only for on-shell Z-boson production

with the leptonic phase space integrated over. Results for W and γ∗ production can be obtained through simple

modifications of this formula, as can the results when the leptons are treated differentially. In this case, two partonic

channels contribute, qq̄ and qg. The result for the cross section can be written exactly as for the Higgs in Eq. (56).
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The partonic channels can be written as follows:

d2σqq̄Z
dû dt̂

=
2π
9
αS

[
(gqV )2 + (gqA)2

]
4π

Br
(
Z → l+l−

){
− 2
t̂û
UHq

Z
(Q̂2, µQ, µT )

+
1
Q̂4

[
t̂

û
+ 2

Q̂2

û
+ 2

Q̂4

t̂û

]
UHq

Z
(M2

Z − û, µQ, µT ) +
1
Q̂4

[
û

t̂
+ 2

Q̂2

t̂
+ 2

Q̂4

t̂û

]
UHq

Z
(M2

Z − t̂, µQ, µT )

}
× δ(Q̂2 + t̂+ û−M2

Z),

d2σqgZ
dû dt̂

= − π

12
αS

[
(gqV )2 + (gqA)2

]
4π

Br
(
Z → l+l−

){ 1
Q̂2û

[
1 + 2

t̂

Q̂2
+ 2

t̂2

Q̂4

]
UHq

Z
(M2

Z − û, µQ, µT )

+
1
Q̂4

[
t̂

Q̂2
+ 2

û

Q̂2

]}
δ(Q̂2 + t̂+ û−M2

Z), (59)

with the vector and axial couplings as defined in Eq. (9). The remaining partonic channel σgqZ can be obtained from

σqgZ by the interchange of the û and t̂ variables. At the order to which we are working, the explicit form of the

evolution factor UHq
Z

(ξ, µQ, µT ) appearing in Eq. (59) is given by:

UHq
Z

(ξ, µQ, µT ) = |exp
{

2S(µQ, µT )− aΓ(µQ, µT )ln(−ξ/µ2
Q)− aγ(µQ, µT )

}
|2,

S(µQ, µT ) = − ΓCq0

16β2
0

{
(1− r + r ln r)
r αS(µQ)

+
β1

2β0
ln2r +

(
ΓCq1

4ΓCq0

− β1

β0

)
(1− r + ln r)

}
,

aΓ(µQ, µT ) =
ΓCq0

8β0
ln r, aγ(µQ, µT ) =

γCq0

8β0
ln r, (60)

where ΓCq0,1 ≡ ΓHq0,1/2, γ
Cq
0 ≡ γHq0 /2, and r = αS(µT )/αS(µQ) and β0,1 are the coefficients of the QCD beta function in

the normalization where β0 = (11− 2NF /3)/4. The expressions for ΓHq0,1 and γHq0 were given in Eq. (50). This form

of UQq
Z

can be obtained from the results in Ref. [31].

VI. COMPARISON WITH THE COLLINS-SOPER-STERMAN APPROACH

We now compare with the standard CSS approach to transverse momentum resummation, and demonstrate that the

logarithms resumed are equivalent through next-to-leading logarithmic accuracy (NLL), i.e., through next-to-leading

order in the resummed exponent. We outline what further calculations are needed to extend this result to higher

orders. Besides showing the agreement between the two approaches up to the currently studied order in SCET, we

highlight what future calculations are needed to further compare the two frameworks.

We begin by comparing the exponents that implement the resummation of large logarithms of the scales M and

pT . The CSS approach writes the transverse momentum distribution as

d2σ

dpT dY
= σ0

∫
d2b⊥
(2π)2

e−i~pT ·~b⊥
∑
a,b

[
Ca ⊗ fa/P

]
(xA, b0/b⊥)

[
Cb ⊗ fb/P

]
(xB , b0/b⊥)

× exp

{∫ Q̂2

b20/b
2
⊥

dµ2

µ2

[
ln
Q̂2

µ2
A(αs(µ)) +B(αs(µ))

]}
, (61)

where we have neglected the remainder term Y which also appears for the purpose of this discussion. The coefficients

A, B, and Ca have perturbative expansions in the strong coupling constant:

A =
∑
n=1

(
αs(µ)
π

)
A(n), B =

∑
n=1

(
αs(µ)
π

)
B(n), Ca =

∑
n=0

(
αs(µ)
π

)
C(n)
a . (62)
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The results for these coefficients are well-known in the literature [7].

The exponentiation of low pT logarithms in our approach is accomplished via the RG evolution of the hard function

H from µQ ∼ M to µT ∼ pT . As noted before in Section III A, the matching coefficient here is the same as that for

inclusive production of vector bosons or the Higgs. Therefore, we can take the solution for the hard-function evolution

from the literature [31]:

H(Q̂2, µQ, µT ) = H(Q̂2, µQ)

× exp

{∫ µ2
Q

µ2
T

dµ2

µ2

[
ln
Q̂2

µ2
ΓH(αs(µ)) + γH [αs(µ)]

]}
, (63)

where we have set Q̂2 = x1x2Q
2. The expressions for the cusp anomalous dimension ΓH and γV for the cases of

Higgs and electroweak gauge boson production are given in Refs. [31, 36]. They have perturbative expansions, as

do the A, B, and Ca coefficients of the CSS approach. A detailed study of the anomalous dimensions in SCET

and in the standard QCD approach was previously studied in the context of threshold resummation [31]. The cusp

anomalous dimension is equivalent to the A factor appearing in the exponent to all orders in perturbation theory,

ΓH [αs(µ)] = A(αs(µ)). The leading terms in the anomalous dimensions that controls the single logarithm are the

same: γV (1) = B(1). At the two-loop level, this is no longer true; the effective theory organizes terms differently

than the standard approach, and contributions from the matching coefficients H(Q̂2, µQ) and Gij : γV (2) = B(2)+

contributions from H(Q̂2, µQ), Gij . This has been observed in previous analyses comparing SCET evolution to the

QCD literature [18, 31]. A two-loop computation of Gij is required to further check the relation between the CSS and

effective theory approaches; this calculation is an important goal for future work. By design, both approaches fully

reproduce the low-pT limit of fixed-order result upon expansion in αS . A check of the NLO pT spectrum would also

require a two-loop computation of Gqrs.
However, note that in the SCET approach, the low scale endpoint of the RG evolution of the Sudakov factor is at

µT ∼ pT . This differs from the standard approach where the corresponding endpoint is at µ ∼ 1/b⊥ where b⊥ is the

impact parameter that is integrated over from zero to infinity. The limit of b⊥ →∞ gives rise to a Landau pole that

must be dealt with by introducing an external prescription for any value of pT . The SCET approach avoids this issue

as the RG evolution is done entirely in momentum space.

A well-known aspect of the CSS approach is its treatment of the limit pT → 0, M → ∞. It predicts that in this

limit dσ/dp2
T goes like a power [4] of ΛQCD/Q̂ and is thus sensitive to non-perturbative input. In the effective field

theory approach this corresponds to the region where the TMF is no longer perturbative. The leading 1/p2
T term

coming from perturbative soft and collinear gluons is strongly Sudakov-suppressed by the evolution due to the cusp

anomalous dimension in this limit. The remaining contribution then comes from the non-perturbative region in the

effective theory whose analysis remains to be done.

A. Expansion of resummed formula to higher order

To demonstrate explicitly that our formalism correctly obtains the large logarithms of the CSS approach at higher

orders, we expand the resummed Z-boson differential cross section of Eq. (59) to O(α2
s). Our derivation closely follows

the approach of Ref. [37]. We begin by inserting the partonic cross section of Eq. (59) into the hadronic convolution
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of Eq. (56). The resulting expression has the schematic form

d2σZ
dp2
T dY

=
∫
dx1dx2 F (x1, x2) δ

(
x1x2s+ x1(t−M2

Z) + x2(u−m2
Z) +M2

Z

)
, (64)

where s, t, and u are the usual hadronic Mandelstam variables, defined for completeness in Appendix A. The function

F (x1, x2) denotes the contributions from the matrix elements and parton distribution functions. The delta function

comes from the partonic differential cross section, and allows one of the integrals over partonic momentum fractions

to be immediately performed. It is convenient to divide the integration in Eq. (64) into two regions: one where the

pseudorapidity of the parton recoiling against the Z to give it a transverse momentum is greater than the Z rapidity

Y , and one where it is less than Y . Doing so, and using the delta function to perform the x2 integration in the first

region and the x1 integration in the second piece, leads to the expression

d2σZ
dp2
T dY

=
∫ 1

√
τ+eY

dx1
F (x1, x

∗
2)

x1s+ u−M2
Z

+
∫ 1

√
τ+e−Y

dx2
F (x∗1, x2)

x2s+ t−M2
Z

, (65)

where

x∗1 =
x2(M2

Z − u)−M2
Z

x2s+ t−M2
Z

,

x∗2 =
x1(M2

Z − t)−M2
Z

x1s+ u−M2
Z

,

√
τ+ =

√
p2
T +M2

Z

s
+

√
p2
T

s
. (66)

To proceed, we now simplify the partonic cross section by expanding around the pT → 0 limit and keeping only the

1/p2
T terms. For simplicity we focus henceforth only on the qq̄ partonic channel; the qg channel proceeds identically.

In the first region of the integration, the partonic Mandelstam variables simplify in the pT → 0 limit as follows:

t̂→M2
Z

(
1− x1

xA

)
, û→ 0, ŝ→M2

Z

x1

xA
, (67)

where we have introduced the notation

xA =
MZ√
s
eY , xB =

MZ√
s
e−Y . (68)

The function F appearing in the integrand takes the following form in the first region after this simplification:

Fqq̄(x1, x
∗
2)→ fq/P (x1)fq̄/P (x∗2)× 1

p2
T

[
1 +

(
xA
x1

)2
]
, (69)

where for simplicity of presentation we have suppressed the overall constants which appear. A similar simplification

and structure are obtained in the other part of the integration.

We reduce this further by simplifying the remaining integrals over the xi, following the procedure outlined in

Ref. [37]. To facilitate comparison with results in the literature we introduce the standard notation for the convolution

of two functions,

(f ⊗ g) (z) =
∫ 1

0

dxdy f(x)g(y)δ(z − xy), (70)

and remind the reader of the leading-order DGLAP kernel

Pqq(x) = CF

[
1 + x2

1− x

]
+

. (71)
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We also introduce the following combinations of coupling constants to match the notation in Ref. [38], with which we

eventually compare:

e2
qq̄ =

1
16cos2θW

[
1 + (1− 4|eq|sin2θW )2

]
. (72)

For simplicity we continue to focus on the qq̄ partonic channel. After straightforward manipulations we arrive at our

result for the differential distribution:

d2σZ,qq̄
dp2
T dY

=
4π2

3
α

sin2θW
e2
qq̄

αs(µT )
2π

1
s p2

T

{
2CF fq/P (xA, µT )fq̄/P (xB , µT ) ln

M2
Z

p2
T

− 3CF fq/P (xA, µT )fq̄/P (xB , µT ) + fq/P (xA, µT )
(
Pqq ⊗ fq̄/P

)
(xB)

+ fq̄/P (xB , µT )
(
Pqq ⊗ fq/P

)
(xA)

} ∣∣∣exp

{
CF
4
αs
π

[
−ln2

µ2
Q

µ2
T

+ 3 ln
µ2
Q

µ2
T

]} ∣∣∣2.
(73)

We have explicitly denoted the scales which appear in the overall coupling constant and in the PDFs. We note that

the solution for the evolution factor UHq
Z

can be obtained from Ref. [31]; to the order in αS we are working, the

different momentum scales which appear in the evolution factors in the partonic cross section do not matter, and a

simple overall exponential factor is obtained in the differential cross section.

To compare the structure of logarithms with those obtained in the CSS approach, we first use renormalization-group

arguments to evolve all coupling constants which appear to an arbitrary renormalization scale µR, and similarly use

DGLAP to evolve all PDFs to the factorization scale µF . We organize our result following the notation of Ref. [38]

into a joint expansion in αs and ln(MZ/pT ):

d2σZ,qq̄
dp2
T dY

=
4π2

3
α

sin2θW
e2
qq̄

1
s p2

T

∑
m,n

(
αs(µR)

2π

)n
nDm lnm

M2
Z

p2
T

. (74)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching scale µQ, as suggested

recently [39]). Only terms through O(α2
s) are kept. We introduce the explicit forms for the first few coefficients appear-

ing in the CSS expansion of Eq. (62): A(1) = 2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA,

fq̄/P (xB , µF ) = fB , we find the following results for the first few coefficients:

1D1 = A(1)fAfB ,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1
2

[
A(1)

]2
fAfB ,

2D2 = −3
2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[

3
2
A(1)B(1) − β0A

(1)

]
fAfB ,

2D1 =
{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A −
1
2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B

−fB (Pqq ⊗ Pqq ⊗ f)A + β0 fB (Pqq ⊗ f)A
}

+ [A↔ B] . (75)

The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of Ref. [38] that appear in both

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms at the next-to-leading-
logarithmic order; our explicit check makes it clear that this claim is incorrect.
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the fixed-order expansion and the CSS formalism. Differences occur in 2D1; the 2C1 formalism of the usual approach

contains two additional terms depending on the quantities A(2) and C(1). This is not surprising, as our result has

been computed only to next-to-leading logarithmic accuracy. These terms in the expansion are of next-to-next-to-

leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader that resummation to a given order gives

the following towers of logarithms [10]:

leading logarithmic : αnsL
2n−1,

next-to-leading logarithmic : αnsL
2n−2,

next-to-next-to-leading logarithmic : αnsL
2n−3. (76)

The full result at next-to-next-leading logarithmic accuracy along with the complete result for 2D1 requires the next

higher order calculation of the TMF. However, some of the next-to-next-to-leading order logarithmic terms can be

already seen to appear in the partial result for 2D1 above. Since our factorization formula focuses on the partonic cross

section, we obtain two distinct large logarithms: explicit logarithms lnµ2
Q/µ

2
T coming from the resummed exponent,

and kinematic ones of the form lnM2
Z/p

2
T coming from the hadronic convolution. This organization is different than

in the CSS approach, but all required terms are correctly obtained.

It was recently suggested in the literature to utilize an imaginary matching scale for µQ, which has the effect of

resumming factors of π2 which arise from the time-like momentum transfer [36, 39]. This was shown to improve the

convergence of the perturbative expansion for inclusive Higgs production [36, 39], and has also been utilized in the

literature to study Drell-Yan [35]. Doing so here adds the following additional term at the single-logarithmic order:

2D1 → 2D1 + CF π
2fAfB . (77)

This factor is part of the contribution to the coefficient C(1) in the CSS approach.

VII. NUMERICAL RESULTS

We present here numerical predictions utilizing the factorization and resummation formulae we have derived. We

show results for Higgs production at a 7 TeV LHC, and for Z production at the Tevatron. Our numerical results are

based on the resummed partonic cross sections presented in Eq. (59). For the Z we compare with the Run 1 data from

both CDF and D0 to demonstrate the consistency of our calculation with experimental results. Our results are model

independent and free of Landau pole prescriptions required in the standard approach. For perturbative values of pT ,

the transverse momentum distribution is given entirely in terms of field-theoretically derived perturbative functions

and the standard initial state PDFs. For non-perturbative values of pT , the TMF function G is non-perturbative, but

field-theoretically well-defined, and can be modeled and extracted from data. In this section, we restrict our results

only to perturbative values of pT leaving the non-perturbative region for future work.

Before describing the parameter values assumed in our study, we comment on the order of our resummation. The

hard matching coefficient H, the cusp and non-cusp anomalous dimensions ΓH and γH respectively, and the TMF G
all have perturbative expansions that must be calculated to sufficiently high order to achieve resummation of certain

classes of logarithms. We note that since generating a finite pT requires the emission of at least one parton, the

contribution of the TMF to the transverse momentum spectrum begins only at 1-loop. All quantities required to
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achieve next-to-leading logarithmic accuracy (NLL) are known, and have been detailed in previous sections of this

paper. To achieve NNLL precision, the 2-loop result for G is needed.

FIG. 4: Numerical predictions for the transverse momentum spectrum for Higgs boson production at the LHC for central
rapidity. Shown are the fixed-order result and those obtained after implementing the resummation formula of Eq. (6) through
LL and NLL. The bands arise from the scale variation shown in the text.

We start by discussing some general features of our numerical results. We show fixed-order results at leading order

in perturbation theory, and results at both LL and NLL matched to the fixed-order results at O(αs), as shown in

Section V. In the standard nomenclature these would be called LL+LO and NLL+LO. We use MSTW 2008 parton

distribution functions [41]. For LL and LO predictions we use leading order PDFs with 1-loop running of the strong

coupling constant, while for our NLL results we use NLO PDFs with 2-loop running for αs. Our results depend

on the two matching scales µT and µQ. The dependence of the cross section on these arbitrary scales occurs at

one order beyond the order in αs to which we have calculated; it would vanish completely if we could compute the

cross section to all orders in perturbation theory. The variation of these scales therefore provides some indication of

missing higher-order effects, and is conventionally used as an estimate of the theoretical uncertainty. We must choose

both a central value for these scales and a range of variation to obtain an uncertainty estimate. As our central scale

choices we set µ2
T = p2

T and µ2
Q = −M2. These are chosen to minimize logarithms that appear in the perturbative

expansions of the hard function and the TMF, as discussed in Section II. We vary µ2
T , µ2

Q independently around these
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FIG. 5: Numerical predictions for the transverse momentum spectrum for Z boson production at Tevatron Run 1, compared
with data form both CDF and D0. Shown is the resummation prediction of Eq. (5) at NLL. The bands arise from the scale
variation shown in the text, while the result for the central scale choice is shown by the solid line. The lower limit of the plot
is pT= 1.75 GeV.

choices by a factor of 2. Two unconventional aspects of these choices require comment. Following Ref. [39], we utilize

an imaginary matching scale for µQ, which has the effect of resumming factors of π2 which arise from the time-like

momentum transfer appearing in H. This was shown to improve the convergence of the perturbative expansion for

inclusive Higgs production [36, 39], and has also been utilized in the literature to study Drell-Yan [35]. We also find

better agreement with data (see Fig. 5) for an imaginary µQ compared to a real µQ which can be attributed to the

effect of resumming factors of π2 with the former choice. We also choose to vary our scales around a reduced range to

avoid evaluating αs(µT ) at a non-perturbative scale when the transverse momentum becomes small. An framework for

incorporating the non-perturbative region of transverse momentum into the SCET formalism was given in Ref. [42].

In this approach the scale µT freezes at a value near ΛQCD as the pT approaches zero.

In Fig. 4 we show the predictions for the Higgs pT spectrum at the LHC, using both the fixed-order expression and

the resummed results at LL and NLL accuracies. The general features of this plot are clear: large logarithms of the

form ln (m2
h/p

2
T ) spoil the fixed-order perturbative expansion at low pT . The Sudakov suppression coming from the

renormalization-group evolution of the hard function H tames this behavior. The central value of the prediction is
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absolutely stable upon proceeding from LL to NLL; only a reduction of the scale variation is observed. At intermediate

and high momenta, the matching onto the fixed-order expression is smooth. The sensitivity to scale choices that can

lead to negative results [15] in the standard approach, does not occur in this effective field theory approach. This

allows the matching scale µQ to be varied throughout a range sufficient to use it as an estimator of the theoretical

uncertainty. An additional error also arises from imprecise knowledge of parton distribution functions. We postpone

a numerical analysis of this issue until a detailed study of boson pT distributions at both the Tevatron and LHC

incorporating the non-perturbative region is performed.

One aspect of transverse resummation in SCET that requires further study is the treatment of the non-perturbative

region pT ∼ ΛQCD. In our analysis, the transverse momentum function G becomes non-perturbative, and must be

modeled. The onset of this region can be seen in the plot by the large scale variation at low pT , which is caused

by evaluating αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator matrix

elements and a well-defined running, it is reasonable to extract this function using available data. In our plot for the

Higgs pT distribution we simply stop our plot at a lower value of pT = 3 GeV. The study of the non-perturbative

region of pT was recently begun in Ref. [42].

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1, and compare to data from

CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75 GeV. The agreement with the data is excellent

over the entire range. The low pT version of this data can eventually be used to constrain the non-perturbative TMF

that appears in SCET, as is done in the CSS approach [43].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions using the Soft-Collinear

Effective Theory(SCET) to account for both electroweak and Higgs boson production at low pT in hadronic collisions.

We have derived a factorization theorem for the transverse momentum distribution for the production of electroweak

gauge boson production, and have provided all necessary analytic expressions to perform resummation of low-pT

distributions for any color-neutral particles to next-to-leading-logarithmic accuracy. Our effective field theory approach

is free of the Landau pole that appears in the standard approach even for perturbative values of pT . We thus

have a numerically stable matching to the fixed-order QCD result, leading to a smooth transition from the low-

pT resummation region to the intermediate and high pT region without the need for a matching prescription. For

perturbative values of pT , our approach predicts the transverse momentum distribution entirely in terms of field-

theoretically derived perturbative functions and standard initial state PDFs. For non-perturbative values of pT , an

additional non-perturbative Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for Higgs and Z-boson produc-

tion, and for Z boson production have shown an initial numerical comparison with Tevatron data. The agreement

with data is excellent over the kinematic range currently covered by our factorization formula, indicating that SCET

will provide a useful framework for the analysis and interpretation of hadron collider distributions.

Our analysis reveals several directions for future work. Precision predictions at next-to-next-to-leading logarithmic

accuracy require two-loop computations of the iBFs and iSFs that appear in our factorization theorems. This com-

putation is within current technical capabilities. The region of non-perturbative pT requires further study through a
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modeling of the non-perturbative TMF followed by its extraction from data.

In summary, the SCET approach to transverse momentum resummation offers a compelling alternative to the usual

method. Several explicit checks have been performed: (1) a comparison with the leading fixed order cross-section, (2)

the cancellation of the scale dependence between the various components in the factorization theorem as determined

by their RG evolution structure, and (3) an explicit check of the logarithms at next-to-leading logarithmic order.

Furthermore, we find good agreement with data. We look forward to the further development of our results.
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Appendix A: Factorization of electroweak gauge boson differential distributions

In this appendix we describe the steps in the derivation of the factorization formula for the transverse momentum

and rapidity distributions for electroweak gauge boson production. These steps closely follow the derivation of the

analogous factorization formula for Higgs production derived in [19]. For simplicity in notation we focus here on the

case of single-boson production. With straightforward modifications, one can obtain analogous factorization formulae

for neutral-current γ∗ + Z production as well as the case where the final state leptonic decay products of the vector

boson are treated differentially. It is convenient to work with the hadronic Mandelstam variables u, t which are related

to pT and Y as

u = (p2 − q)2 = M2
Z −Q

√
p2
T +M2

Ze
Y ,

t = (p1 − q)2 = M2
Z −Q

√
p2
T +M2

Ze
−Y ,

(A1)

where qµ and MZ denote the vector-boson momentum and mass respectively and3

du dt = Q2dp2
T dY. (A2)

After matching the vector-boson production current onto SCETpT
current as explained in section III A, the differ-

ential cross-section in the hadronic Mandelstam variables takes the form

d2σ

du dt
=

1
2Q2

[1
4

] ∫ d4q

(2π)4
(2π)θ(q0) δ(q2 −M2

Z)Lµν(q)
∫
dω1

∫
dω2

∫
dω′1

∫
dω′2

×
∑

qq′ijKL

∑
Xn,Xn̄,Xs

(2π)4δ(4)(p1 + p2 − q − PXn − PXn̄ − PXs)δ
[
u− (p2 − q)2

]
δ
[
t− (p1 − q)2

]
× CK;iq(ω1, ω2)C∗L;jq′(ω′1, ω

′
2)〈p1p2|OLq

′†
ν (ω′1, ω

′
2)(0)|Xn, Xn̄, Xs〉

× 〈Xn, Xn̄, Xs|OKqµ (ω1, ω2)(0)|p1p2〉,

(A3)

3 Note that Q = n̄ · p1 = n · p2 denotes the hadronic center of mass energy, and is not related to qµ which is the vector-boson momentum
and satisfies q2 = M2

Z .
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where the indices run over

K,L = {V,A}, q, q′, i, j = {u, d, s, · · · }, (A4)

where V and A label the vector and axial-vector Dirac structure. The indices q, q′, i, j run over the massless quarks

that appear in the initial protons. The contribution from a pure gluon SCETpT
operator that would produce gg → V

with V = γ∗, Z,W vanishes for Drell-Yan processes, so that the sum over i, j does not include the gluon. The

overall factor of 1
4 comes from averaging over the initial hadron spins, the final state |X〉 has been broken up into the

n-collinear, n̄-collinear, and soft states so that |X〉 = |XnXn̄Xs〉, and the SCET operators have the form

OKqµ (ω1, ω2) ≡ (ξ̄qW )n̄,ω2S
†
n̄ΓKqµ Sn(W †ξq)n,ω1 , OLq

′†
ν (ω′1, ω

′
2) ≡ (ξ̄q′W )n,ω′1S

†
nΓLq

′†
ν Sn̄(W †ξq′)n̄,ω′2 ,

(A5)

where the Dirac structures ΓKqµ are given by

ΓV qµ = gqV γ
⊥
µ , ΓAqµ = gqAγ

⊥
µ γ5. (A6)

gqV and gqA denote the vector and axial-vector couplings of the q-th quark to the vector boson respectively. The tensor

Lµν denotes the product of the leptonic currents arising from the vector-boson decay. For simplicity of notation, we

will present out formulae integrated over the leptonic phase space, so that we can use effective polarization vectors

and set

Lµν(q) =
∑
pols.

εµ(q)ε∗ν(q) = −gµν +
qµqν

M2
Z

. (A7)

By the equations of motion for massless quarks, the contribution of the qµqν term in the above polarization sum

vanishes when contracted with the quark bilinear currents. This allows us to effectively set LµνV (q)→ −gµν which is

used in the rest of this analysis. Next we use the soft-collinear decoupling [20, 21] property of the leading order SCETpT

Lagrangian to decouple the matrix elements into n-collinear, n̄-collinear, and soft objects so that the differential cross-

section becomes

d2σ

du dt
=
−gµν

8Q2

∫
d4q

(2π)3
θ(q0) δ(q2 −M2

Z)δ
[
u− (p2 − q)2

]
δ
[
t− (p1 − q)2

] ∫
dω2

∫
dω′1

∫
dω′2

×
∑

qq′ijKL

∑
Xn,Xn̄,Xs

(2π)4δ(4)(p1 + p2 − q − PXn − PXn̄ − PXs)

× CK;iq(ω1, ω2)C∗L;jq′(ω′1, ω
′
2)(ΓKqµ )ωσ(ΓLq

′†
ν )αβ〈p1|(ξ̄q′W )αan,ω′1(0)|Xn〉〈p2|(W †ξq′)βbn̄,ω′2(0)|Xn̄〉

× 〈Xn|(W †ξq)σdn,ω1
(0)|p1〉〈Xn̄|(ξ̄qW )ωen̄,ω2

(0)|p2〉〈0|(S†n)ac(Sn̄)cb|Xs〉〈Xs|(S†n̄)ef (Sn)fd|0〉.

(A8)

We perform a series of steps that allow us perform the sum over the states Xn, Xn̄, Xs while consistently maintaining

the final state restriction on the gauge-boson momentum. We begin by inserting the identity operator

1 =
∫
d4pn

∫
d4pn̄

∫
d4psδ

(4)(pn − PXn)δ(4)(pn̄ − PXn̄)δ(4)(ps − PXs), (A9)

and decompose the momenta into label and residual parts so that

P−Xn
= P̃−Xn

+K−Xn
, P+

Xn̄
= P̃+

Xn̄
+K+

Xn̄
, (A10)
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where P̃−Xn
, P̃+

Xn̄
∼MZ and K−Xn

,K+
Xn̄
�MZ . We write the remaining momentum components as

P+,⊥
Xn

= K−,⊥Xn
, P−,⊥Xn̄

= K−,⊥Xn̄
, PXs = KXs (A11)

and similarly write

p−n = p̃−n + k−n , p+
n̄ = p̃+

n̄ + k+
n̄ ,

p+,⊥
n = k+,⊥

n , p−,⊥n̄ = k−,⊥n̄ pµs = kµs , (A12)

where again p̃−n , p̃
+
n̄ ∼MZ and k−n , k

+
n̄ �MZ . The delta functions in Eq. (A9) can be broken up into Kronecker deltas

over label momenta and residual delta functions which we can write using the integral representation as

1 =
∑
p̃−n ,p̃

+
n̄

δp̃−n ,P̃−Xn

δp̃+
n̄ ,P̃

+
Xn̄

∫
d4knd

4kn̄d
4ks δ

(4)(kn −KXn
)δ(4)(kn̄ −KXn̄

)δ(4)(ks −KXs
)

=
∑
p̃−n ,p̃

+
n̄

δp̃−n ,P̃−Xn

δp̃+
n̄ ,P̃

+
Xn̄

∫
d4knd

4kn̄d
4ks

∫
d4x

(2π)4

∫
d4y

(2π)4

∫
d4z

(2π)4
ei(kn−KXn )·xei(kn̄−KXn̄ )·yei(ks−KXs )·z.

(A13)

Similarly, the momentum of the vector boson can be divided into label and residual components so that

n · q = n · q̃ + n · k, n̄ · q = n̄ · q̃ + n̄ · k, ~q⊥ = ~k⊥,

(A14)

where the n · q, n̄ · q ∼MZ and n · k, n̄ · k, k⊥ �MZ . The phase space integral over qµ can now we written as∫
d4q δ(q2 −M2

Z) =
∑
q̃+,q̃−

∫
d2k⊥

∫
dk+dk−

2
δ(q̃+q̃− + q̃+k− + q̃−k+ + k+k− − ~k2

⊥ −M2
Z).

(A15)

The four-momentum conserving delta function appearing in the differential cross-section can be written as a product

of Kronecker delta functions over label momenta and delta functions over residual momenta as

δ(4)(p1 + p2 − q − PXn
− PXn̄

− PXs
) = δω1,q̃−δω2,q̃+δ(2)(K⊥Xs

+K⊥Xn
+K⊥Xn̄

+ k⊥)

× δ(K+
Xn

+K+
Xn̄

+K+
Xs

+ k+)δ(K−Xn
+K−Xn̄

+K−Xs
+ k−)

= δω1,q̃−δω2,q̃+δ(2)(k⊥s + k⊥n + k⊥n̄ + k⊥)

× δ(k+
n + k+

n̄ + k+
s + k+)δ(k−n + k−n̄ + k−s + k−),

(A16)

where we used the residual delta functions in the first line of Eq.(A13) to obtain the second equality above. Using
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Eqs. (A13), (A15), and (A16) the cross-section can be brought into the form

d2σ

du dt
=
−πgµν

4Q2N2
c

∑
qq′ijKL

∑
q̃+,q̃−

∫
d2k⊥

∫
dk+dk−

2
δ(q̃+q̃− + q̃+k− + q̃−k+ + k+k− −M2

Z)

×
∫
dω1

∫
dω2 C

K;iq(ω1, ω2)C∗L;jq′(ω1, ω2)
∫
d4knd

4kn̄d
4ks

∫
d4x

(2π)4

∫
d4y

(2π)4

∫
d4z

(2π)4

× eikn·xeikn̄·yeiks·zδω1,q̃−δω2,q̃+ δ(2)(k⊥s + k⊥n + k⊥n̄ + k⊥)

× δ(k+
n + k+

n̄ + k+
s + k+)δ(k−n + k−n̄ + k−s + k−)

× δ
[
u−M2

Z +Q n̄ · q
]
δ
[
t−M2

Z +Q n · q
]

× δqq′δqq′(ΓKqµ )ωσ(ΓLq
′†

ν )αβ〈p1|(ξ̄q′W )αan (x)(W †ξq)σan,ω1
(0)|p1〉〈p2|(W †ξq′)βbn̄ (y)(ξ̄qW )ωbn̄,ω2

(0)|p2〉

× Tr 〈0|T̄ [(S†n)ac(Sn̄)cb(z)]T [(S†n̄)ef (Sn)fd]|0〉, (A17)

where we have simplified the color structure using the identities

〈p1|(ξ̄q′W )αan (x)|Xn〉〈Xn|(W †ξq)σdn,ω1
(0)|p1〉 =

δqq
′
δad

Nc
〈p1|(ξ̄jW )αfn (x)|Xn〉〈Xn|(W †ξi)σfn,ω1

(0)|p1〉

〈p2|(W †ξq′)βbn̄ (y)|Xn̄〉〈Xn̄|(ξ̄qW )ωen̄,ω2
(0)|p2〉 =

δqq
′
δbe

Nc
〈p2|(W †ξj)βfn̄ (y)|Xn̄〉〈Xn̄|(ξ̄iW )ωfn̄,ω2

(0)|p2〉.

(A18)

Next we apply a spin Fierz identity which allows us to bring the cross-section into the form

d2σ

du dt
=

∑
qijKL

πFKL;q

4Q2N2
c

∑
q̃+,q̃−

∫
d2k⊥

∫
dk+dk−

2
δ(q̃+q̃− + q̃+k− + q̃−k+ + k+k− −M2

Z)

×
∫
dω1

∫
dω2 H

KL;ijq
Z (ω1, ω2, µQ;µT )

∫
d4knd

4kn̄d
4ks

∫
d4x

(2π)4

∫
d4y

(2π)4

∫
d4z

(2π)4

× eikn·xeikn̄·yeiks·zδω1,q̃−δω2,q̃+δ(2)(k⊥s + k⊥n + k⊥n̄ + k⊥)δ(k+
n + k+

n̄ + k+
s + k+)

× δ(k−n + k−n̄ + k−s + k−)δ
[
u−M2

Z +Q n̄ · q
]
δ
[
t−M2

Z +Q n · q
]

× Jqn(ω1, x, µT )Jqn̄(ω2, y, µT )Sqq(z, µT ), (A19)

where we have defined the hard function

HKL;ijq
Z (ω1, ω2, µ) = CK;iq(ω1, ω2, µ)C∗L;jq(ω1, ω2, µ), (A20)

and HKL;ijq
Z (ω1, ω2, µQ;µT ) denotes the RG-evolved hard function from the scale µQ ∼MZ to µT ∼ pT . The quantity

FKL;i comes form the contraction of the leptonic tensor with the Dirac structure of the hadronic tensor, and is given

by

FKL;q = −gµν
Tr [n/ΓKqµ n̄/ΓLq†ν ]

16
(A21)

The jet and soft functions are given by

Jqn(ω, x, µT ) =
∑

initial pols.

〈p1|(ξ̄qW )n(x)
n̄/

2
δ(P̄n − ω)(W †ξq)n(0)|p1〉,

J q̄n̄(ω2, y, µT ) =
∑

initial pols.

〈p2|Trspin

[ n/
2

(W †ξq)n̄(y)δ(−ω − P̄n̄)(ξ̄qW )n̄(0)
]
|p2〉,

Sqq(z, µT ) = Tr〈0|T̄ [S†nSn̄](z) T [S†n̄Sn](0)|0〉. (A22)
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Next we perform the integrals over x+ and y− components in Eq. (A19) by defining the Fourier transformed jet

functions as ∫
dx+

4π
e

i
2k
−
n x

+
Jqn(ω1, x

+, x−, x⊥, µ) = Jqn(ω1, k
−
n , x

−, x⊥, µ),∫
dy−

4π
e

i
2k

+
n̄ y
−
Jqn(ω2, y

+, y−, y⊥, µ) = J q̄n̄(ω2, y
+, k+

n̄ , y⊥, µ),

(A23)

combining the label and residual momenta as∫
dω1dk

−
n →

∫
dω1,

∫
dω2dk

+
n̄ →

∫
dω2,

(A24)

and absorbing the residual momenta k−n , k
+
n̄ into ω1, ω2 respectively to get

d2σ

du dt
=

∑
qijKL

πFKL;q

4Q2N2
c

∫
dq+dq−

2

∫
d2k⊥ δ(q+q− − ~k2

⊥ −M2
Z)
∫
dω1

∫
dω2 H

KL;ijq
Z (ω1, ω2, µQ;µT )

×
∫
dx−d2x⊥

(2π)3

∫
dy+d2y⊥

(2π)3

1
2

∫
dz+dz−d2z⊥

(2π)4

∫
db+db−

2(2π)2

∫
d2b⊥
(2π)2

1
2

∫
dk+
n d

2k⊥n

× 1
2

∫
dk−n̄ d

2k⊥n̄
1
2

∫
dk+
s dk

−
s d

2k⊥s e
−i~kn⊥·(~x⊥−~b⊥)e−i

~kn̄⊥·(~y⊥−~b⊥)e−i
~ks⊥·(~z⊥−~b⊥)

× e
i
2k

+
n (x−−b−)e

i
2k
−
n̄ (y+−b+)e

i
2k
−
s (z+−b+)e

i
2k

+
s (z−−b−)e

i
2 (ω1−q−)b+e

i
2 (ω2−q+)b−ei

~b⊥·~k⊥

× δ
[
u−M2

Z +Q q−
]
δ
[
t−M2

Z +Q q+
]
Jqn(ω1, x

−, x⊥, µT )J q̄n̄(ω2, y
+, y⊥, µT )Sqq(z, µT ).

(A25)

Performing the integrals over the momenta k+
n , k

−
n̄ , k

⊥
n,n̄ and kµs and the x, y, z coordinates, we get

d2σ

du dt
=
∑
qij

π

4Q2N2
c

∫
dq+dq−

2

∫
d2k⊥ δ(q+q− − ~k2

⊥ −M2
Z)δ
[
u−M2

Z +Q q−
]
δ
[
t−M2

Z +Q q+
]

×
∫
dω1

∫
dω2 H

ijq
Z (ω1, ω2, µQ;µT )

∫
db+db−

2(2π)2

∫
d2b⊥
(2π)2

e
i
2 (ω1−q−)b+e

i
2 (ω2−q+)b−ei

~b⊥·~k⊥

× Jqn(ω1, b
−, b⊥, µT )J q̄n̄(ω2, b

+, b⊥, µT )Sqq(b+, b−, b⊥, µT ), (A26)

where from brevity we have defined

Hq
Z(ω1, ω2, µQ;µT ) ≡

∑
KLij

FKL;qHKL;ijq
Z (ω1, ω2, µQ;µT ). (A27)

This expression can be brought into the form

d2σ

du dt
=
∑
q

π

4Q2N2
c

∫
dq+dq−

∫
d2k⊥

∫
d2b⊥
(2π)2

ei
~b⊥·~k⊥δ

[
u−M2

Z +Q q−
]
δ
[
t−M2

Z +Q q+
]

× δ(q+q− − ~k2
⊥ −M2

Z)
∫
dω1

∫
dω2 (4ω1ω2)Hq

Z(ω1, ω2, µQ;µT )

×
∫
dk+
n dk

−
n̄B

q
n(ω1, k

+
n , b⊥, µT )Bq̄n̄(ω2, k

−
n̄ , b⊥, µT )Sqq(ω1 − q− − k−n̄ , ω2 − q+ − k+

n , b⊥, µT ),

(A28)
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where we have made use of the Fourier transformed functions defined as

Bqn(ω1, k
+
n , b⊥, µ) =

1
2ω1

∫
db−

4π
e

i
2k

+
n b
−
Jqn(ω1, b

−, b⊥, µ),

Bq̄n̄(ω2, k
−
n̄ , b⊥, µ) =

1
2ω2

∫
db+

4π
e

i
2k
−
n̄ b

+
J q̄n̄(ω2, b

+, b⊥, µ),

Sqq(ω̃1, ω̃2, b⊥, µ) =
∫
db+db−

16π2
e

i
2 ω̃1b

+
e

i
2 ω̃2b

−
Sqq(b+, b−, b⊥, µ). (A29)

The Bq,q̄n,n̄ functions are referred to as the purely collinear impact-parameter Beam Functions (iBFs) and are defined

with a zero-bin subtraction to avoid double counting soft emissions already encoded in the soft function Sqq. It was

shown in [19] that convolution over the purely collinear iBFs and the soft function can be written as

d2σ

du dt
=
∑
q

π

4Q2N2
c

∫
dq+dq−

∫
d2k⊥

∫
d2b⊥
(2π)2

ei
~b⊥·~k⊥δ

[
u−M2

Z +Q q−
]
δ
[
t−M2

Z +Q q+
]

× δ(q+q− − ~k2
⊥ −M2

Z)
∫
dω1

∫
dω2 (4ω1ω2)Hq

Z(ω1, ω2, µQ;µT )

×
∫
dk+
n dk

−
n̄ B̃

q
n(ω1, k

+
n , b⊥)B̃q̄n̄(ω2, k

−
n̄ , b⊥)S−1

qq (ω1 − q− − k−n̄ , ω2 − q+ − k+
n , b⊥),

(A30)

where B̃q,q̄n,n̄ are the ‘naive’ iBFs or simply the iBFs defined without a soft zero-bin subtraction, and S−1
qq is the inverse

Soft Function (iSF). Next we rewrite the cross section in terms the variables x1, x2, t
+
n , t
−
n̄ defined as

x1 =
ω1

Q
, x2 =

ω2

Q
, t+n = x1Qk

+
n , t−n̄ = x2Qk

−
n̄ , (A31)

to get

d2σ

du dt
=

π

N2
c

∫
dq+dq−

∫
d2k⊥

∫
d2b⊥
(2π)2

ei
~b⊥·~k⊥ δ

[
u−M2

Z +Q q−
]
δ
[
t−M2

Z +Q q+
]

× δ(q+q− − ~k2
⊥ −M2

Z)
∫ 1

0

dx1

∫ 1

0

dx2

∑
q

Hq
Z(x1x2Q

2, µQ;µT )

×
∫
dt+n dt

−
n̄ B̃

q
n(x1, t

+
n , b⊥)B̃q̄n̄(x2, t

−
n̄ , b⊥)S−1

qq (x1Q− q− −
t−n̄
x2Q

, x2Q− q+ − t+n
x1Q

, b⊥),

(A32)

where we used the fact that Hq
Z(ω1, ω2, µQ;µT ) = Hq

Z(ω1ω2, µQ;µT ). In the next step, the iBFs are matched onto

the PDFs as

B̃qn,n̄(x, t, b⊥, µ) =
∫ 1

x

dz

z
In,n̄;qr(

x

z
, t, µ) fr(z, µ), (A33)

so that the differential cross-section becomes

d2σ

du dt
=

π2

Q2N2
c

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

x1

dx′1
x′1

∫ 1

x2

dx′2
x′2

×
∑
q

Hq
Z(x1x2Q

2, µ) Gqrs(x1, x2, x
′
1, x
′
2, u, t, µT )fr(x′1, µT )fs(x′2, µT ),

(A34)
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with a sum over repeated indices understood. The function Gqrs is given by

Gqrs(x1, x2, x
′
1, x
′
2, u, t, µT ) =

∫
d2b⊥
(2π)2

J0

[
b⊥

√
(M2

Z − u)(M2
Z − t)

Q2
−M2

Z

]

×
∫
dt+n dt

−
n̄ In;qr(

x1

x′1
, t+n , b⊥, µT ) In̄;q̄s(

x2

x′2
, t−n̄ , b⊥, µT )

× S−1
qq (x1Q−

(M2
Z − u)
Q

− t−n̄
x2Q

, x2Q−
M2
Z − t
Q

− t+n
x1Q

, b⊥).

(A35)

Using Eqs.(A1) and (A2) we can obtain the differential cross-section in terms of the pT and Y variables

d2σ

dp2
T dY

=
π2

N2
c

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

x1

dx′1
x′1

∫ 1

x2

dx′2
x′2

×
∑
q

Hq
Z(x1x2Q

2, µQ;µT ) Gqrs(x1, x2, x
′
1, x
′
2, pT , Y, µT )fr(x′1, µT )fs(x′2, µT ),

(A36)

where

Gqrs(x1, x2, x
′
1, x
′
2, pT , Y, µT ) =

∫
d2b⊥
(2π)2

J0

[
b⊥pT

] ∫
dt+n dt

−
n̄ In;qr(

x1

x′1
, t+n , b⊥, µT ) In̄;q̄s(

x2

x′2
, t−n̄ , b⊥, µT )

× S−1
qq (x1Q− eY

√
p2
T +M2

Z −
t−n̄
x2Q

, x2Q− e−Y
√

p2
T +M2

Z −
t+n
x1Q

, b⊥, µT ).

(A37)
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