This is the accepted manuscript made available via CHORUS. The article has been published as:

Tenth-order QED contribution to lepton anomalous magnetic moment: Fourth-order vertices containing sixthorder vacuum-polarization subdiagrams
Tatsumi Aoyama, Masashi Hayakawa, Toichiro Kinoshita, and Makiko Nio
Phys. Rev. D 83, 053002 — Published 7 March 2011
DOI: 10.1103/PhysRevD.83.053002

Tenth-Order QED Contribution to Lepton Anomalous Magnetic Moment - Fourth-Order Vertices Containing Sixth-Order Vacuum-Polarization Subdiagrams

Tatsumi Aoyama, ${ }^{1,2}$ Masashi Hayakawa, ${ }^{2,3}$ Toichiro Kinoshita, ${ }^{2,4}$ and Makiko Nio ${ }^{2}$
${ }^{1}$ Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),
Nagoya University, Nagoya, 464-8602, Japan
${ }^{2}$ Theoretical Physics Laboratory, Nishina Center, RIKEN, Wako, Japan 351-0198
${ }^{3}$ Department of Physics, Nagoya University, Nagoya, Japan 464-8602
${ }^{4}$ Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York, 14853, U.S.A

Abstract

This paper reports the tenth-order contributions to the $g-2$ of the electron a_{e} and those of the muon a_{μ} from the gauge-invariant Set $\mathrm{II}(\mathrm{c})$, which consists of 36 Feynman diagrams, and Set II(d), which consists of 180 Feynman diagrams. Both sets are obtained by insertion of sixth-order vacuum-polarization diagrams in the fourth-order anomalous magnetic moment. The mass-independent contributions from Set II(c) and Set II(d) are -0.116 $489(32)(\alpha / \pi)^{5}$ and $-0.24300(29)(\alpha / \pi)^{5}$, respectively. The leading contributions to a_{μ}, which involve electron loops only, are $-3.88827(90)(\alpha / \pi)^{5}$ and $0.4972(65)(\alpha / \pi)^{5}$ for Set II(c) and Set II(d), respectively. The total contributions of the electron, muon, and tau-lepton loops to a_{e} are $-0.116874(32)(\alpha / \pi)^{5}$ for the Set II(c), and $-0.24310(29)(\alpha / \pi)^{5}$ for the Set $\mathrm{II}(\mathrm{d})$, respectively. The contributions of electron, muon, and tau-lepton loop to a_{μ} are $-5.5594(11)(\alpha / \pi)^{5}$ for the Set II(c) and $0.2465(65)(\alpha / \pi)^{5}$ for the Set II(d), respectively.

PACS numbers: 13.40.Em,14.60.Cd,12.20.Ds,06.20.Jr

I. INTRODUCTION

The anomalous magnetic moment $g-2$ of the electron has played the central role in testing the validity of quantum electrodynamics (QED) as well as the standard model. The latest measurement of $a_{e} \equiv(g-2) / 2$ by the Harvard group has reached the precision of 0.24×10^{-9} [1, 2]:

$$
\begin{equation*}
a_{e}(\mathrm{HV} 08)=1159652180.73(0.28) \times 10^{-12} \quad[0.24 \mathrm{ppb}] \tag{1}
\end{equation*}
$$

At present the best prediction of theory consists of QED corrections of up to the eighth order [3-5], and hadronic corrections [6-12] and electro-weak corrections [13-15] scaled down from their contributions to the muon $g-2$. To compare the theoretical prediction with the experiment (1), we also need the value of the fine structure constant α determined by a method independent of $g-2$. The best value of such an α has been obtained recently from the measurement of h / m_{Rb}, the ratio of the Planck constant and the mass of Rb atom, combined with the very precisely known Rydberg constant and $m_{\mathrm{Rb}} / m_{e}[16]$:

$$
\begin{equation*}
\alpha^{-1}(\mathrm{Rb} 10)=137.035999037(91) \quad[0.66 \mathrm{ppb}] \tag{2}
\end{equation*}
$$

With this α the theoretical prediction of a_{e} becomes

$$
\begin{equation*}
a_{e}(\text { theory })=1159652181.13(0.11)(0.37)(0.77) \times 10^{-12} \tag{3}
\end{equation*}
$$

where the first, second, and third uncertainties come from the calculated eighth-order QED term, the tenth-order estimate, and the fine structure constant (2), respectively. The theory (3) is thus in good agreement with the experiment (1):

$$
\begin{equation*}
a_{e}(\text { HV08 })-a_{e}(\text { theory })=-0.40(0.88) \times 10^{-12} \tag{4}
\end{equation*}
$$

proving that QED (standard model) is in good shape even at this very high precision.
An alternative test of QED is to compare the α of (2) with the value of α determined from the experiment and theory of $g-2$:

$$
\begin{equation*}
\alpha^{-1}\left(a_{e} 08\right)=137.035999085(12)(37)(33) \quad[0.37 \mathrm{ppb}], \tag{5}
\end{equation*}
$$

where the first, second, and third uncertainties come from the eighth-order QED term, the tenth-order estimate, and the measurement of a_{e} (HV08), respectively. Although the
uncertainty of $\alpha^{-1}\left(a_{e} 08\right)$ in (5) is a factor 2 smaller than $\alpha^{-1}(\mathrm{Rb} 10)$, it is not a firm factor since it depends on the estimate of the tenth-order term, which is only a crude guess [17]. In anticipating of this challenge we launched a systematic program several years ago to evaluate the complete tenth-order term [18-20].

The tenth-order QED contribution to the anomalous magnetic moment of an electron can be written as

$$
\begin{equation*}
a_{e}^{(10)}=\left(\frac{\alpha}{\pi}\right)^{5}\left[A_{1}^{(10)}+A_{2}^{(10)}\left(m_{e} / m_{\mu}\right)+A_{2}^{(10)}\left(m_{e} / m_{\tau}\right)+A_{3}^{(10)}\left(m_{e} / m_{\mu}, m_{e} / m_{\tau}\right)\right] \tag{6}
\end{equation*}
$$

where the electron-muon mass ratio m_{e} / m_{μ} is $4.83633171(12) \times 10^{-3}$ and the electron-tau mass ratio m_{e} / m_{τ} is $2.87564(47) \times 10^{-4}[17]$. The contribution to the mass-independent term $A_{1}^{(10)}$ coming from 12672 Feynman diagrams may be classified into six gauge-invariant sets, further divided into 32 gauge-invariant subsets depending on the nature of closed lepton loop subdiagrams. Thus far, results of numerical evaluation of 24 gauge-invariant subsets, which consist of 2785 vertex diagrams, have been published [5, 21-24]. The result of 105 vertex diagrams of Set $I(i)$ has been recently submitted for publication [25]. Five of the subsets had also been calculated analytically [26, 27]. Our calculation is in good agreement with these analytic results.

In this article we report the evaluation of contributions of two gauge-invariant subsets, Set $\mathrm{II}(\mathrm{c})$ and Set $\mathrm{II}(\mathrm{d})$, which consist of fourth-order vertex diagrams containing vacuumpolarization subdiagrams of sixth order. The effect of insertion of a gauge-invariant set of closed lepton loops in an internal photon line of momentum q is expressed by the renormalized vacuum-polarization tensor of the form

$$
\begin{equation*}
\Pi^{\mu \nu}(q)=\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi\left(q^{2}\right) \tag{7}
\end{equation*}
$$

where the scalar vacuum-polarization function $\Pi\left(q^{2}\right)$ vanishes at $q^{2}=0$ on carrying out the charge renormalization.

The Set II(c) consists of 36 Feynman diagrams. A typical diagram of this set is shown on the left-hand side of Fig. 1. It is obtained by insertion of proper sixth-order vacuumpolarization diagrams containing two closed lepton loops (see Fig. 2) in the fourth-order anomalous magnetic moment $M_{4 a}$ or $M_{4 b}$ represented by Fig. 3. These diagrams can be represented by 4 independent integrals taking account of various symmetry properties.

The Set II(d) consists of 180 Feynman diagrams. A typical diagram of this set is shown

FIG. 1: Typical diagrams of the tenth-order Set $\operatorname{II}(\mathrm{c})$ and $\operatorname{Set} \mathrm{II}(\mathrm{d})$.

FIG. 2: Sixth-order vacuum-polarization diagrams consisting of two fermion loops.
on the right-hand side of Fig. 1. It is obtained by insertion of proper sixth-order vacuumpolarization diagrams consisting of one closed lepton loop in the fourth-order anomalous magnetic moment. These diagrams can be represented by 16 independent integrals taking account of various symmetry properties.

Evaluation of the contribution of the Set $\mathrm{II}(\mathrm{c})$ to the mass-independent term $A_{1}^{(10)}$ is straightforward since an exact spectral function $\Pi^{(4,2)}$ for the diagrams of Fig. 2 is known for the diagrams whose two lepton loops have the same mass [28]. However, evaluation of the mass-dependent term $A_{2}^{(10)}$ requires $\Pi^{(4,2)}$ as a function of m_{e} / m_{μ} or m_{e} / m_{τ}, which is not available at present. In order to cover both cases, we follow an alternative approach [29] in which we construct a Feynman-parametric integral of the sixth-order vacuum-polarization

FIG. 3: Self-energy-like diagrams of fourth order.

FIG. 4: Sixth-order vacuum-polarization diagrams consisting of a single fermion loop.
function $\Pi^{(4,2)}$ and insert it in the virtual photon lines of the Feynman-parametric integral of the forth-order anomalous magnetic moment M_{4}.

For the Set $\operatorname{II}(\mathrm{d})$ an exact vacuum-polarization function $\Pi^{(6)}$ (see Fig. 4) is not known, although the Padé approximant is known to provide a good approximation [30-32]. We follow here primarily the approach [29] which utilizes the vacuum-polarization function $\Pi^{(6)}$ itself, instead of its spectral function. The calculation utilizing the Padé approximant of the spectral function is also carried out to provide an independent check.

Parametric representations of several vacuum-polarization functions are presented in Sec. II, where explicit definitions of functions are given. As an illustration of our approach, insertion of vacuum-polarization function in M_{2} is presented in Sec. III. Insertion of $\Pi^{(2)}$, $\Pi^{(4)}, \Pi^{(4,2)}$ and $\Pi^{(6)}$ in M_{4} is described in Sec. IV. Although most results of Sec. II and Sec. III are concerned with quantities of low orders, they are needed in carrying out the renormalization of the tenth-order terms. In cases where the spectral function is available, we present alternative ways which provide a consistency check of the numerical work. Application of these methods to Set $\mathrm{II}(\mathrm{c})$ and $\operatorname{Set} \mathrm{II}(\mathrm{d})$ is described in Sec. V and Sec. VI. Summary and concluding remarks are presented in Sec. VII. For simplicity the factor $(\alpha / \pi)^{5}$ is omitted in Secs. II - VI.

FIG. 5: Fourth-order vacuum-polarization diagrams consisting of one lepton loop.

II. PARAMETRIC REPRESENTATION OF VACUUM-POLARIZATION FUNCTION

As is shown in Ref. [29] the second-order vacuum-polarization function can be written in the form

$$
\begin{equation*}
\Pi^{(2)}(x)=\int(d z) \frac{D_{0}}{U^{2}} \ln \left(\frac{V_{0}}{V}\right), \tag{8}
\end{equation*}
$$

with

$$
\begin{gather*}
(d z)=d z_{1} d z_{2} \delta\left(1-z_{12}\right), \quad U=z_{12}, \quad V_{0}=z_{12} m_{1}^{2}, \quad V=V_{0}-x G, \quad x=q^{2}, \\
G=z_{1} A_{1}, \quad A_{1}=z_{2} / U, \quad D_{0}=2 A_{1}\left(1-A_{1}\right), \tag{9}
\end{gather*}
$$

where z_{1} and z_{2} are Feynman parameters of leptons forming the loop, $z_{12}=z_{1}+z_{2}$, and m_{1} is the rest mass of the lepton.

As a preparation for constructing $\Pi^{(4,2)}$ let us first construct the parametric integral of the fourth-order vacuum-polarization function $\Pi^{(4)}$. It has contributions from one diagram $P_{4 a}$ and two diagrams $P_{4 b}$ of Fig. 5.

The contribution of $P_{4 a}$, renormalized at $q=0$ but with subvertex divergences not yet removed, can be written as [29]

$$
\begin{equation*}
\Pi^{(4 a)}(x)=\int(d z)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{D_{1}}{U^{3}} \ln \left(\frac{V_{0}}{V}\right)\right] \tag{10}
\end{equation*}
$$

where $z_{1}, z_{2}, z_{3}, z_{4}$ are Feynman parameters for the electron lines and z_{a} is that of the photon
line and

$$
\begin{align*}
(d z) & =d z_{1} d z_{2} d z_{3} d z_{4} d z_{a} \delta\left(1-z_{1234 a}\right), \quad z_{i} \geq 0 \\
B_{11} & =z_{23 a}, \quad B_{12}=z_{a}, \quad B_{22}=z_{14 a}, \quad U=z_{14} B_{11}+z_{23} B_{12} \\
A_{1} & =\left(z_{3} B_{12}+z_{4} B_{11}\right) / U, \quad A_{2}=\left(z_{3} B_{22}+z_{4} B_{12}\right) / U \\
A_{3} & =A_{2}-1, \quad A_{4}=A_{1}-1 \\
V_{0} & =z_{1234} m_{1}^{2}+\lambda^{2} z_{a}, \quad G=z_{1} A_{1}+z_{2} A_{2}, \quad V=V_{0}-x G, \quad x=q^{2} \\
D_{0} & =\left(\left(A_{1}+A_{4}\right)\left(A_{2}+A_{3}\right)-A_{1} A_{4}-A_{2} A_{3}\right) m_{1}^{2} \\
D_{1} & =\left(A_{1} A_{2}+A_{3} A_{4}\right) B_{12}-A_{1} A_{4} B_{22}-A_{2} A_{3} B_{11} \tag{11}
\end{align*}
$$

Here $z_{23 a}=z_{2}+z_{3}+z_{a}$, etc., and λ is the (infinitesimal) photon mass.
This integral contains ultraviolet(UV) divergences arising from the vertex diagrams \{ $2,3, \mathrm{a}\}$ and $\{1,4, \mathrm{a}\}$, which can be removed by the K_{23}-operation and K_{14}-operation [29], respectively. The renormalized function $\Pi_{\text {ren. }}^{(4 a)}$ can be written as

$$
\begin{equation*}
\Pi_{\text {ren. }}^{(4 a)}=\Delta \Pi^{(4 a)}-2 L_{2}^{\mathrm{R}} \Pi^{(2)} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \Pi^{(4 a)}=\left(1-K_{23}-K_{14}\right) \Pi^{(4 a)} . \tag{13}
\end{equation*}
$$

$\Pi^{(2)}$ is the second-order vacuum-polarization function given by Eq. (8), and $L_{2}^{\mathrm{R}} \equiv L_{2}-L_{2}^{\mathrm{UV}}$, where L_{2}^{UV} is the UV-divergent part of the second-order vertex renormalization constant L_{2} defined by the K-operation and L_{2}^{R} is the remainder including an infrared divergent part of L_{2}.

The renormalized vacuum-polarization term coming from $P_{4 b}$ of Fig. 5 may be handled similarly by the K-operation [29]. It leads to

$$
\begin{equation*}
\Pi_{r e n .}^{(4 b)}=\Delta \Pi^{(4 b)}-2 B_{2}^{\mathrm{R}} \Pi^{(2)} \tag{14}
\end{equation*}
$$

where $B_{2}^{\mathrm{R}}=B_{2}-B_{2}^{\mathrm{UV}}[29]$ and

$$
\begin{equation*}
\Delta \Pi^{(4 b)}(x)=\int(d z)\left(1-K_{2}\right)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{x C_{0}}{U^{2} V}+\frac{D_{1}}{U^{3}} \ln \left(\frac{V_{0}}{V}\right)\right] \tag{15}
\end{equation*}
$$

with

$$
\begin{align*}
B_{11} & =z_{2 a}, \quad B_{12}=z_{a}, \quad B_{22}=z_{134 a}, \quad U=z_{134} B_{11}+z_{2} B_{12} \\
A_{1} & =z_{4} B_{11} / U, \quad A_{2}=z_{4} B_{12} / U, A_{3}=A_{1}, \quad A_{4}=A_{1}-1 \\
G & =z_{13} A_{1}+z_{2} A_{2}, \quad V=V_{0}-x G, \quad x=q^{2} \\
D_{0} & =\left(4 A_{1}-A_{2}\right) A_{4} m_{1}^{2}, \quad C_{0}=-A_{1}^{2} A_{2} A_{4}, \quad D_{1}=A_{1}\left(A_{1}+3 A_{4}\right) B_{12} \tag{16}
\end{align*}
$$

V_{0} and $(d z)$ have the same form as in (11).
The function $\Pi^{(4,2)}$ is obtained readily from $\Pi^{(4)}$ by insertion of the spectral representation of the vacuum-polarization loop

$$
\begin{equation*}
\frac{\Pi\left(q^{2}\right)}{q^{2}}=\int_{0}^{1} d t \frac{\rho(t)}{-q^{2}+4 m_{2}^{2} /\left(1-t^{2}\right)} \tag{17}
\end{equation*}
$$

in the virtual photon line of $\Pi^{(4)}$ carrying momentum q. This equation can be regarded as a superposition of vector particles of mass $4 m_{2}^{2} /\left(1-t^{2}\right)$, where m_{2} is the mass of the inserted loop particle. The net effect is expressed as the replacement

$$
\begin{equation*}
\frac{1}{q^{2}} \longrightarrow \int_{0}^{1} d t \frac{\rho(t)}{q^{2}-4 m_{2}^{2} /\left(1-t^{2}\right)} \tag{18}
\end{equation*}
$$

For the second-order electron loop the spectral function is given by [29]

$$
\begin{equation*}
\rho^{(2)}(t)=\frac{t^{2}\left(1-t^{2} / 3\right)}{1-t^{2}} \tag{19}
\end{equation*}
$$

From (10) and (18) we obtain

$$
\begin{equation*}
\Delta \Pi^{(4 a, 2)}(x)=\int_{0}^{1} d t \rho^{(2)}(t) \int(d z)\left(1-K_{23}-K_{14}\right)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{D_{1}}{U^{3}} \ln \left(\frac{V_{0}}{V}\right)\right] \tag{20}
\end{equation*}
$$

where $x=q^{2}$, and D_{0} and D_{1} are given in Eq. (11). V_{0} and V have the form

$$
\begin{equation*}
V=V_{0}-x G, \quad x=q^{2}, \quad V_{0}=z_{1234} m_{1}^{2}+z_{a} \frac{4 m_{2}^{2}}{1-t^{2}} \tag{21}
\end{equation*}
$$

Similarly, from (15) and (18), we obtain

$$
\begin{equation*}
\Delta \Pi^{(4 b, 2)}(x)=\int_{0}^{1} d t \rho^{(2)}(t) \int(d z)\left(1-K_{2}\right)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{x C_{0}}{U^{2} V}+\frac{D_{1}}{U^{3}} \ln \left(\frac{V_{0}}{V}\right)\right] \tag{22}
\end{equation*}
$$

where D_{0}, C_{0} and D_{1} are given in Eq. (16), and V and V_{0} are given by (21).

In the same manner as in (10) and (15) the sixth-order vacuum-polarization function $\Pi^{(6)}\left(q^{2}\right)$ can be written in the general form [29]

$$
\begin{align*}
\Delta \Pi^{(6)}(x) & =\int(d z)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V^{2}}-\frac{1}{V_{0}^{2}}\right)+\frac{x\left(B_{0}+x C_{0}\right)}{U^{2} V^{2}}\right. \\
& \left.+\frac{D_{1}}{U^{3}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{x B_{1}}{U^{3} V}+\frac{D_{2}}{U^{4}} \ln \left(\frac{V_{0}}{V}\right)\right] \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
V_{0}=z_{123456} m_{1}^{2}, \tag{24}
\end{equation*}
$$

and D_{0} is m_{1}^{4} times D_{0}, and B_{0} and D_{1} are m_{1}^{2} times B_{0} and D_{1}, given in Ref. [33]. For simplicity K-operation is not shown explicitly. For the sixth-order vacuum-polarization diagrams $P_{6 C}$ and $P_{6 D}$ of Fig. 4, which contain 4th-order lepton self-energy subdiagrams, the K-operation subtracts only UV-divergent parts $\delta m_{4 a}^{\mathrm{UV}}$ and $\delta m_{4 b}^{\mathrm{UV}}$, which are different from the full mass-renormalization terms $\delta m_{4 a}$ and $\delta m_{4 b}$. This causes no problem for the renormalization of vacuum-polarization function which has no infrared divergence. However, the fully renormalized formula is simpler if the residual mass-renormalization term $\delta m_{4 a}^{\mathrm{R}}(\equiv$ $\left.\delta m_{4 a}-\delta m_{4 a}^{\mathrm{UV}}\right)$ and $\delta m_{4 b}^{\mathrm{R}}\left(\equiv \delta m_{4 b}-\delta m_{4 b}^{\mathrm{UV}}\right)$ are also subtracted. This subtraction is performed by the R-subtraction method introduced in Ref. [19]. We shall therefore include the R subtraction operation in Eq. (23) whenever it is needed.

III. INSERTION OF VACUUM-POLARIZATION FUNCTION INTO THE SECOND-ORDER ANOMALY

Before discussing insertion of vacuum-polarization (VP) diagram in M_{4}, let us consider insertion in M_{2}. The Feynman parametric representation of the second-order magnetic moment can be written in the form [29]

$$
\begin{equation*}
M_{2}=\int \frac{(d y)}{U_{y}^{2}} \frac{F_{0}}{V_{y}}, \tag{25}
\end{equation*}
$$

where y_{1} and y_{a} are Feynman parameters of the electron line and the photon line, respectively,

$$
\begin{align*}
(d y) & =d y_{1} d y_{a} \delta\left(1-y_{1 a}\right), \quad y_{1 a}=y_{1}+y_{a} \\
U_{y} & =y_{1 a} B_{11}, \quad B_{11}=1, \quad A_{1}=y_{a} / U_{y}, \quad V_{y}=y_{1}-y_{1} A_{1}, \quad F_{0}=y_{1} A_{1}\left(1-A_{1}\right) \tag{26}
\end{align*}
$$

and the rest mass of the open electron line (or, open lepton line) is chosen to be 1 . The insertion of the vacuum-polarization function Π into the photon line a can be written as

$$
\begin{equation*}
M_{2, P}=\int_{0}^{1} d t \rho(t) \int \frac{(d y)}{U_{y}^{2}} \frac{F_{0}}{V_{y}+4 m_{1}^{2} y_{a}\left(1-t^{2}\right)^{-1}} \tag{27}
\end{equation*}
$$

following Eq. (18). Comparing (27) with (17), we can write

$$
\begin{align*}
M_{2, P} & =\int \frac{(d y)}{U_{y}^{2}} \frac{F_{0}}{y_{a}} \int_{0}^{1} d t \frac{\rho(t)}{V_{y} / y_{a}+4 m_{1}^{2}\left(1-t^{2}\right)^{-1}} \\
& =\left.\int \frac{(d y)}{U_{y}^{2}} \frac{F_{0}}{y_{a}} \frac{\Pi\left(q^{2}\right)}{q^{2}}\right|_{q^{2}=-V_{y} / y_{a}} \\
& =-\int \frac{(d y)}{U_{y}^{2}} \frac{F_{0}}{V_{y}} \Pi\left(-V_{y} / y_{a}\right) . \tag{28}
\end{align*}
$$

This gives us a simple and transparent recipe for insertion of the vacuum-polarization function in the photon line a of M_{2} :

$$
\begin{equation*}
\frac{1}{V_{y}} \longrightarrow-\frac{1}{V_{y}} \Pi\left(-V_{y} / y_{a}\right) \tag{29}
\end{equation*}
$$

This is identical with Eq. (5.8) on page 285 of Ref. [29] noting that

$$
\begin{equation*}
V_{0}=z_{12} m_{1}^{2}, \quad V=V_{0}-\left.x G\right|_{x=-V_{y} / y_{a}}, \quad W=\frac{V}{V-V_{0}} \tag{30}
\end{equation*}
$$

Note that this derivation requires only the analytic property expressed by the spectral representation. No actual knowledge of the spectral function is required.

Making use of Eq. (29) and the form of $\Pi^{(2)}(x)$ given by Eq. (8), $M_{2, P_{2}}$ can be readily written in the form

$$
\begin{equation*}
M_{2, P_{2}}=-\int_{0}^{1} d y(1-y) \int(d z) \frac{D_{0}}{U^{2}} \ln \left(\frac{V_{0}}{V}\right), \quad x=-\frac{V_{y}}{y_{a}}=-\frac{y^{2}}{1-y}, \tag{31}
\end{equation*}
$$

where $y=y_{1}, y_{a}=1-y_{1}$, and $V=V_{0}-x G$.
In the case $P=P_{4}$, we obtain from Eq. (15)

$$
\begin{equation*}
M_{2, P_{4}}=-\int_{0}^{1} d y(1-y) \int(d z)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{x C_{0}}{U^{2} V}+\frac{D_{1}}{U^{3}} \ln \left(\frac{V_{0}}{V}\right)\right]_{x=-y^{2} /(1-y)} \tag{32}
\end{equation*}
$$

where $V_{0}=z_{1234} m_{1}^{2}$ and $V=V_{0}-x G$. K-operation (and R-subtraction) are not shown explicitly for simplicity. This corresponds to Eq. (5.20) in page 288 of Ref. [29] noting that

$$
\begin{equation*}
V_{0}=z_{12} m_{1}^{2}, \quad V=V_{0}-\left.x G\right|_{x=-V_{y} / y_{a}}, \quad W=\frac{V}{V-V_{0}} \tag{33}
\end{equation*}
$$

Similarly, for insertion of $P=P_{6}$, we have the general structure

$$
\begin{align*}
M_{2, P_{6}} & =\int_{0}^{1} d y(1-y) \int(d z)\left[\frac{D_{0}}{U^{2}}\left(\frac{1}{V^{2}}-\frac{1}{V_{0}^{2}}\right)+\frac{x B_{0}+x^{2} C_{0}}{U^{2} V^{2}}\right. \\
& \left.+\frac{D_{1}}{U^{3}}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)+\frac{x B_{1}}{U^{3} V}+\frac{D_{2}}{U^{4}} \ln \left(\frac{V_{0}}{V}\right)\right]_{x=-y^{2} /(1-y)}, \tag{34}
\end{align*}
$$

where V_{0} is given in Eq. (24). This equation, with $m_{1}^{2}=1$, corresponds to Eq. (5.32) on page 293 of Ref. [29] except that it includes R-subtractions besides K-operations for some diagrams.

IV. INSERTION OF VACUUM-POLARIZATION FUNCTION INTO A FOURTHORDER MAGNETIC MOMENT

The fourth-order magnetic moment M_{4}, which consists of two parts $M_{4 a}$ and $M_{4 b}$, has the form [29]

$$
\begin{equation*}
M_{4}=\int(d y)\left[\frac{E_{0}+\tilde{C}_{0}}{U_{y}^{2} V_{y}}+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}^{2}}+\frac{N_{1}+Z_{1}}{U_{y}^{3} V_{y}}\right], \tag{35}
\end{equation*}
$$

where $(d y)=d y_{1} d y_{2} d y_{3} d y_{a} d y_{b} \delta\left(1-y_{123 a b}\right), y_{1}, y_{2}, y_{3}$ are Feynman parameters of lepton lines, y_{a}, y_{b} are Feynman parameters of photon lines, and

$$
\begin{equation*}
V_{y}=y_{123}+\lambda^{2} y_{a b}-G, \quad G=y_{1} A_{1}+y_{2} A_{2}+y_{3} A_{3}, \quad \text { etc. } \tag{36}
\end{equation*}
$$

$E_{0}, \tilde{C}_{0}, N_{0}, Z_{0}, N_{1}, Z_{1}$ are functions of Feynman parameters defined for $M_{4 a}$ and $M_{4 b}$, respectively. Their explicit definitions are given in pages 266 and 267 of Ref. [29]. The tilde on \tilde{C}_{0} is introduced here to avoid confusion with C_{0} introduced in the definition of Π. When a VP function is inserted into the photon line a by using its spectral function representation, the denominator V_{y} is replaced by $V_{y}+y_{a} R(z)$. In the case of the second-order VP function P_{2}, where z_{1}, z_{2} are Feynman parameters of two fermions forming the vacuum-polarization loop, we have $R(z)=m_{1}^{2} z_{12} /\left(z_{1} z_{2}\right)$.

For terms of Eq. (35) proportional to $1 / V_{y}$, we can apply the substitution rule (29) directly. For the term proportional to $1 / V_{y}^{2}$ we may rewrite the denominator using the
formula

$$
\begin{align*}
\int(d z) \frac{\rho(z)}{\left(V_{y}+y_{a} R(z)\right)^{2}} & =-\frac{\partial}{\partial V_{y}} \int(d z) \frac{\rho(z)}{V_{y}+y_{a} R(z)} \\
& =\frac{\partial}{\partial V_{y}} \frac{\Pi\left(-V_{y} / y_{a}\right)}{V_{y}} \\
& =-\frac{1}{V_{y}^{2}} \Pi\left(-V_{y} / y_{a}\right)+\frac{1}{V_{y}} \frac{\partial \Pi\left(-V_{y} / y_{a}\right)}{\partial V_{y}} . \tag{37}
\end{align*}
$$

This leads to the structure of the form

$$
\begin{align*}
M_{4, P}= & \int(d y)\left[\left(\frac{E_{0}+\tilde{C}_{0}}{U_{y}^{2} V_{y}}+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}^{2}}+\frac{N_{1}+Z_{1}}{U_{y}^{3} V_{y}}\right)\left(-\Pi\left(-V_{y} / y_{a}\right)\right)\right. \\
& \left.+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}} \frac{\partial \Pi\left(-V_{y} / y_{a}\right)}{\partial V_{y}}\right] . \tag{38}
\end{align*}
$$

For $P=P_{2}$ we have

$$
\begin{align*}
& M_{4, P_{2}}=-\sum_{a, b} \int(d y) \int(d z) \frac{D_{0}}{U^{2}} \\
& {\left[\left(\frac{E_{0}+\tilde{C}_{0}}{U_{y}^{2} V_{y}}+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}^{2}}+\frac{N_{1}+Z_{1}}{U_{y}^{3} V_{y}}\right) \ln \left(\frac{V_{0}}{V}\right)+\frac{1}{y_{a}} \frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}} \frac{G}{V}\right],} \tag{39}
\end{align*}
$$

which follows from Eq. (8) and

$$
\begin{equation*}
\frac{\partial \Pi^{(2)}\left(-V_{y} / y_{a}\right)}{\partial V_{y}}=-\frac{1}{y_{a}} \int(d z) \frac{D_{0}}{U^{2}} \frac{G}{V}, \tag{40}
\end{equation*}
$$

where V_{0} and V are given by Eq. (33), and $\sum_{a, b}$ means the sum of insertions of P_{2} in photon lines a and b. Note that the structure of M_{4} is largely kept intact by the insertion of Π.

For $P=P_{4}$, where P_{4} represents $P_{4 a}$ or $P_{4 b}, \Pi^{(4)}\left(-V_{y} / y_{a}\right)$ is given by Eq. (15) and its derivative can be written in the form

$$
\begin{equation*}
\frac{\partial \Pi^{(4)}\left(-V_{y} / y_{a}\right)}{\partial V_{y}}=-\frac{1}{y_{a}} \int(d z)\left[\frac{D_{0}}{U^{2}} \frac{G}{V^{2}}+\frac{C_{0}}{U^{2}}\left(\frac{1}{V}+\frac{x G}{V^{2}}\right)+\frac{D_{1}}{U^{3}} \frac{G}{V}\right] \tag{41}
\end{equation*}
$$

where, for $P_{4 b}, V=V_{0}-x G, V_{0}=z_{1234} m_{1}^{2}, G=z_{13} A_{1}+z_{2} A_{2}, x=-V_{y} / y_{a}$. Similarly for $P=P_{4 a}$. Substituting Eqs. (15) and (41) in Eq. (38), we obtain $M_{4 a\left(P_{4 b}\right)}$, etc. To avoid overcrowding the K-operation is not shown explicitly.

A formula for $P=P_{4}\left(P_{2}\right)$, where P_{4} represents $P_{4 a}$ or $P_{4 b}$, can be readily obtained combining Eqs. $(20),(22),(38)$, and (41):

$$
\begin{align*}
M_{4, P_{4}\left(P_{2}\right)} & =\int_{0}^{1} d t \rho^{(2)}(t) \int(d y)\left[\left(\frac{E_{0}+\tilde{C}_{0}}{U_{y}^{2} V_{y}}+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}^{2}}+\frac{N_{1}+Z_{1}}{U_{y}^{3} V_{y}}\right)\left(-\Pi^{(4)}\left(-V_{y} / y_{a}\right)\right)\right. \\
& \left.+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}}\left(\frac{\partial \Pi^{(4)}\left(-V_{y} / y_{a}\right)}{\partial V_{y}}\right)\right] \tag{42}
\end{align*}
$$

where V and V_{0} are defined by Eq. (21).
In the case $P=P_{6}$, where P_{6} represents one of $P_{6 A}, \ldots, P_{6 H}$, we obtain a formula of the form

$$
\begin{align*}
M_{4, P_{6}} & =\sum_{a, b} \int(d y)\left[\left(\frac{E_{0}+\tilde{C}_{0}}{U_{y}^{2} V_{y}}+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}^{2}}+\frac{N_{1}+Z_{1}}{U_{y}^{3} V_{y}}\right)\left(-\Pi^{(6)}\left(-V_{y} / y_{a}\right)\right)\right. \\
& \left.+\frac{N_{0}+Z_{0}}{U_{y}^{2} V_{y}}\left(\frac{\partial \Pi^{(6)}\left(-V_{y} / y_{a}\right)}{\partial V_{y}}\right)\right] \tag{43}
\end{align*}
$$

where $\Pi^{(6)}\left(-V_{y} / y_{a}\right)$ is given by Eq. (23) and its derivative can be written in the form

$$
\begin{align*}
\frac{\partial \Pi^{(6)}\left(-V_{y} / y_{a}\right)}{\partial V_{y}} & =-\frac{1}{y_{a}} \int(d z)\left[\frac{2 D_{0}}{U^{2}} \frac{G}{V^{3}}+\frac{B_{0}}{U^{2}}\left(\frac{1}{V^{2}}+\frac{2 G x}{V^{3}}\right)+\frac{C_{0}}{U^{2}}\left(\frac{2 x}{V^{2}}+\frac{2 G x^{2}}{V^{3}}\right)\right. \\
& \left.+\frac{D_{1}}{U^{3}} \frac{G}{V^{2}}+\frac{B_{1}}{U^{3}}\left(\frac{1}{V}+\frac{G x}{V^{2}}\right)+\frac{D_{2}}{U^{4}} \frac{G}{V}\right]_{x=-V_{y} / y_{a}} . \tag{44}
\end{align*}
$$

As usual the K-operation and R-subtraction are assumed implicitly. The K-operation removes UV-divergent parts of divergent subdiagrams from $M_{4, P_{6 \alpha}}, \alpha=A, B, \ldots, H$, etc. Diagrams $P_{6 c}$ and $P_{6 d}$ contain fourth-order self-energy subdiagram so that they require R-subtraction in addition to K-operation. The resulting finite quantities are denoted as $\Delta M_{4, P_{6 \alpha}}$, etc. In order to obtain the standard result renormalized on the mass-shell, further subtraction of UV-finite remainder must be carried out by the residual renormalization.

V. SET II(C)

For the Set $\mathrm{II}(\mathrm{c})$ it is convenient to treat the renormalization of UV divergences arising from two photons forming $M_{4 a}$ and $M_{4 b}$ and the renormalization of the vacuum-polarization function separately. The first step can be written as

$$
\begin{equation*}
A_{1}^{(10)\left(l_{1} l_{2} l_{3}\right)}[\text { Set II }(\mathrm{c})]=\sum_{i=a, b} \Delta M_{4 i, P_{4\left(P_{2}\right)}}^{\left(l_{1} l_{2} l_{3}\right)}-\Delta B_{2} M_{2, P_{4\left(P_{2}\right)}^{\left(l_{1} l_{2} l_{3}\right)}}^{\left.()_{2}\right)} B_{2, P_{4\left(P_{2}\right)}}^{\left(l_{1} l_{2} l_{3}\right)} M_{2}, \tag{45}
\end{equation*}
$$

where l_{1}, l_{2}, and l_{3} denote the open lepton line, outer lepton loop, and inner lepton loop, respectively. The superscript l_{1} is suppressed in M_{2} and ΔB_{2} since they are independent of the lepton mass. ΔB_{2} is the finite part of the second-order renormalization constant defined by $\Delta B_{2} \equiv B_{2}^{\mathrm{R}}+L_{2}^{\mathrm{R}}$. (See Eqs. (12) and (14).) The vacuum-polarization function $P_{4\left(P_{2}\right)}$ is fully renormalized whose divergence structure can be readily found by the K-operation.

This leads to the second step:

$$
\begin{align*}
& \Delta M_{4 i, P_{4\left(P_{2}\right)}}^{\left(l_{1} l_{2} l_{3}\right)}=\sum_{\beta=a, b} \Delta M_{4 i, P_{4 \beta\left(P_{2}\right)}^{\left(l_{1} l_{2} l_{3}\right)}}^{\left(l_{1}\right)}-2 \Delta B_{2, P_{2}}^{\left(l_{2} l_{3}\right)} \Delta M_{4 i, P_{2}}^{\left(l_{1} l_{2}\right)}, \quad \text { for } i=a, b, \tag{46}\\
& M_{2, P_{4\left(P_{2}\right)}}^{\left(l_{1} l_{2} l_{3}\right)}=\sum_{\beta=a, b} M_{2, P_{4 \beta\left(P_{2}\right)}^{\left(l_{1} l_{2} l_{3}\right)}}^{\left(l_{2}\right)} 2 \Delta B_{2, P_{2}}^{\left(l_{2} l_{3}\right)} M_{2, P_{2}}^{\left(l_{1} l_{2}\right)}, \tag{47}\\
& \Delta B_{2, P_{4\left(P_{2}\right)}}^{\left(l_{1} l_{2} l_{3}\right)}=\sum_{\beta=a, b} \Delta B_{\left.2, P_{4 \beta\left(P_{2}\right)}^{\left(l_{2}\right.} l_{2} l_{3}\right)}^{\left(l_{2}\right)}-2 \Delta B_{2, P_{2}}^{\left(l_{2} l_{3}\right)} \Delta B_{2, P_{2}}^{\left(l_{1} l_{2}\right)} . \tag{48}
\end{align*}
$$

A. Numerical results: (eee) case

The contribution of Set $\operatorname{II}(\mathrm{c})$ to the electron $g-2$ for the case $\left(l_{1} l_{2} l_{3}\right)=(e e e)$, where e denotes electron, has been evaluated from Eq. (42) by three different methods:
(a) A straightforward extension of the method developed in [29],
(b) Method based on the automatic code generating algorithm GENCODEVP N [25], and
(c) Use of an exact spectral function of $\Pi^{(4,2)}$ given in Ref. [28].

All calculations are carried out by the integration routine VEGAS [34]. Preliminary evaluations of the integral (42) by the methods (a) and (b) gave results consistent with each other within the numerical uncertainty estimated by VEGAS, proving that both programs are bug-free. (Actually, both methods (a) and (b) use only K-operation since R-subtraction is not needed in this case.) We therefore list only the results of method (b) in the first four data lines of Table I. The values of auxiliary functions $\Delta B_{2, P_{4\left(P_{2}\right)}}$ and $M_{2, P_{4\left(P_{2}\right)}}$ are listed in Table II.

Substituting the numerical results of the integrals listed in Tables I and II in (45), we obtain

$$
\begin{equation*}
A_{1}^{(10)}\left[\operatorname{Set} \mathrm{II}(\mathrm{c})^{(e e e)}\right]=-0.116489(32) . \tag{49}
\end{equation*}
$$

We also calculated the contribution of Set $\mathrm{II}(\mathrm{c})$ using the exact spectral function of $\Pi^{(4,2)}$ [28]. In this case $\Delta M_{4 a, P_{4\left(P_{2}\right)}}^{(e e)}, \Delta M_{4 b, P_{4\left(P_{2}\right)}^{(e e)}}^{(e)}, M_{2, P_{4\left(P_{2}\right)}}^{(e e e)}$, and $\Delta B_{2, P_{4\left(P_{2}\right)}^{(e e e)}}^{(i n}$ the right-hand side of Eq. (45) can be directly evaluated using the exact spectral function. The results are listed in the last two lines of Table I and in the fourth lines of Table II. The value obtained using the numbers in Table I and Table II is

$$
\begin{equation*}
A_{1}^{(10)}\left[\text { Set II(c) }{ }^{(e e e)}: \text { spectral function }\right]=-0.116447(34), \tag{50}
\end{equation*}
$$

TABLE I: Contributions of diagrams of Set II(c) to a_{e} for $\left(l_{1} l_{2} l_{3}\right)=(e e e)$. The superscript (eee) is omitted for simplicity. The multiplicity n_{F} is the number of vertex diagrams represented by the integral and is incorporated in the numerical value. The top four lines are obtained by constructing the sixth-order vacuum-polarization function in terms of Feynman parameters. The bottom two lines are obtained by using the exact spectral function of the sixth order. All integrals are evaluated in double precision.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\Delta M_{4 a, P_{4 a\left(P_{2}\right)}}$	6	$0.028927(21)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,50
$\Delta M_{4 a, P_{4 b\left(P_{2}\right)}}$	12	$0.004521(11)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,50
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}}$	6	$-0.110617(16)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,50
$\Delta M_{4 b, P_{4 b\left(P_{2}\right)}}$	12	$-0.020212(9)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,50
$\Delta M_{4 a, P_{4\left(P_{2}\right)}}$	18	$0.028425(28)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,100
$\Delta M_{4 b, P_{4\left(P_{2}\right)}}$	18	$-0.112236(20)$	$1 \times 10^{7}, 1 \times 10^{8}$	50,100

TABLE II: Finite renormalization terms of Set II(c) for the case (eee). All integrals are evaluated in double precision. The quantities in the fourth line are obtained by using the exact spectral function of the sixth order. The multiplicity of the integral is incorporated in the numerical value.

Integral	Value(Error)	Integral	Value(Error)
$\Delta B_{2, P_{2}}$	$0.063399266 \cdots$	$M_{2, P_{2}}$	$0.015687421 \cdots$
$\Delta B_{2, P_{4 a\left(P_{2}\right)}}$	$0.047836(1)$	$M_{2, P_{4 a\left(P_{2}\right)}}$	$0.011403(1)$
$\Delta B_{2, P_{4 b\left(P_{2}\right)}}$	$0.008783(1)$	$M_{2, P_{4 b\left(P_{2}\right)}}$	$0.001717(1)$
$\Delta B_{2, P_{4\left(P_{2}\right)}}$	$0.048577(5)$	$M_{2, P_{4\left(P_{2}\right)}}$	$0.011131(1)$
$\Delta M_{4 a, P_{2}}$	$0.039642(42)$	$\Delta M_{4 b, P_{2}}$	$-0.146343(35)$

which is in good agreement with (49). This shows that GENCODEVP N works correctly for $N=4$.

TABLE III: Contributions of diagrams of Set II(c) containing one electron loop and one muon loop to a_{e}. The superscript (eme) denotes a diagram in which the outer loop is muon loop. The superscript (eem) denotes a diagram in which the inner loop is muon loop. The multiplicity of the diagram n_{F} is included in the numerical results. All integrals are evaluated in double precision.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
	6	0.00001757 (22)	1×10^{7}	50
$\Delta M_{4 a, P_{4 b}\left(P_{2}\right)}^{(e m e)}$	12	0.00001337 (31)	1×10^{7}	50
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}^{(e m e)}}^{\text {(e) }}$	6	-0.00017292 (13)	1×10^{7}	50
$\Delta M_{4 b, P_{4 b\left(P_{2}\right)}^{(e m e)}}^{\text {(e) }}$	12	-0.000 13462 (18)	1×10^{7}	50
$\Delta M_{4 a, P_{4 a\left(P_{2}\right)}^{(e e m)}}$	6	0.00001466 (11)	1×10^{7}	50
$\Delta M_{4 a, P_{4 b}\left(P_{2}\right)}^{(e e m)}$	12	0.00000173 (3)	1×10^{7}	50
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}^{(e e m)}}^{\left(e e q\left(P_{2}\right)\right.}$	6	-0.000 09442 (8)	1×10^{7}	50
$\Delta M_{4 b, P_{4 b\left(P_{2}\right)}^{(e e m)}}^{(0)}$	12	-0.000 00111 (2)	1×10^{7}	50

B. Numerical results: $(e m e)$, (eee), etc.

Diagrams of Set II(c) contain two closed lepton loops, one within the other. We obtain mass-dependent contributions to the electron $g-2$ when one or both loops consist of muon or tau-lepton. The largest mass-dependent contributions come from the integral (45) with superscripts (eme) and then with (eem). Results of numerical integration are listed in Table III. The value obtained using the numbers in Tables III and IV are

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{c})^{(e m e)}\right]=-0.26086(45) \times 10^{-3} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}^{(10)}\left[\operatorname{Set} \mathrm{II}(\mathrm{c})^{(e e m)}\right]=-0.10263(14) \times 10^{-3} \tag{52}
\end{equation*}
$$

Other mass-dependent terms of Set $\mathrm{II}(\mathrm{c})$ are listed in Table V.

C. Muon $g-2:$ (mee)

The leading contribution to the muon $g-2$ comes from the case where both loops consist of electrons, namely, the (mee) case, where m stands for the muon. The value obtained

TABLE IV: Finite renormalization constants needed for the mass-dependent terms (e, m, e) and (e, e, m) of Set $\mathrm{II}(\mathrm{c})$. The finite renormalization constants needed for this term but not listed here can be found in Table II. All integrals are evaluated in double precision. The multiplicity of the integral is incorporated in the numerical value.

Integral	Value(Error)	Integral	Value(Error)
$\overline{\Delta B_{2, P_{4 a\left(P_{2}\right)}^{(e m e)}}^{(\text {eme }}}$	0.773326 (53) $\times 10^{-4}$	$M_{2, P_{4 a}\left(P_{2}\right)}^{(e m e)}$	0.044986 (3) $\times 10^{-4}$
$\Delta B_{2, P_{4 b\left(P_{2}\right)}^{(e m e)}}^{\left(e, a\left(P_{2}\right)\right.}$	$0.603167(106) \times 10^{-4}$	$M_{2, P_{4 b}\left(P_{2}\right)}^{(e m e)}$	$0.033465(6) \times 10^{-4}$
$\Delta B_{2, P_{4 a\left(P_{2}\right)}^{(e e m)}}^{(0)}$	$0.414245(42) \times 10^{-4}$	$M_{2, P_{4 a}\left(P_{2}\right)}^{(e e m)}$	$0.050072(5) \times 10^{-4}$
$\Delta B_{2, P_{4 b}\left(P_{2}\right)}^{\left(e, e m a\left(P_{2}\right)\right.}$	$0.005000(9) \times 10^{-4}$	$M_{2, P_{4 b\left(P_{2}\right)}^{(e m)}}^{(e)}$	$0.000552(1) \times 10^{-4}$
$\Delta M_{4 a, P_{2}}^{(e m)}$	$0.02090(21) \times 10^{-4}$	$\Delta M_{4 b, P_{2}}^{(e m)}$	$-0.20984(12) \times 10^{-4}$
$\Delta B_{2, P_{2}}^{(e m)}$	$0.094050(3) \times 10^{-4}$	$M_{2, P_{2}}^{(e m)}$	$0.00519762(21) \times 10^{-4}$
$\Delta B_{2, P_{2}}^{(m e)}$	1.88569 (24)		

TABLE V: Mass-dependent contributions of diagrams of Set II(c) to the electron $g-2$. All integrals are evaluated in double precision.

$\left(e, l_{2}, l_{3}\right)$	$A_{2}^{(10)\left(e l_{2} l_{3}\right)}$	$\left(e, l_{2}, l_{3}\right)$	$A_{3}^{(10)\left(e l_{2} l_{3}\right)}$
(e, m, m)	$-0.16765(28) \times 10^{-4}$	(e, m, t)	$-0.41001(81) \times 10^{-6}$
(e, t, e)	$-0.28797(58) \times 10^{-5}$	(e, t, m)	$-0.7844(14) \times 10^{-6}$
(e, e, t)	$-0.9889(20) \times 10^{-6}$		
(e, t, t)	$-0.9884(21) \times 10^{-7}$		

using the numbers in Tables VI and VII is

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{c})^{(m e e)}\right]=-3.88827(90) \tag{53}
\end{equation*}
$$

We checked this result using the exact spectral function:

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{c})^{(m e e)}: \text { spectral function }\right]=-3.88765(92) \tag{54}
\end{equation*}
$$

D. Muon $g-2:(m m e)$, (mem) and others

The next-to-leading order contribution arises when the inner and outer loops consist of electron and muon, respectively. We found

$$
\begin{equation*}
A_{2}^{(10)}\left[\operatorname{Set~II}(\mathrm{c})^{(m m e)}\right]=-1.34598(36) \tag{55}
\end{equation*}
$$

TABLE VI: Contributions to the muon $g-2$ from Set II(c) diagrams involving closed electron and/or muon loops. The multiplicity of the diagram n_{F} is included in the numerical results. All integrals are evaluated in double precision.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\Delta M_{4 a, P_{4 a\left(P_{2}\right)}^{(m e e)}}$	6	0.68447 (37)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 40
$\Delta M_{4 a, P_{4 b\left(P_{2}\right)}^{(m e e)}}^{\left(P_{2}\right)}$	12	2.07136 (55)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 50
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}^{(m e e)}}^{\text {(}}$	6	0.02550 (33)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 40
$\Delta M_{4 b, P_{4 b\left(P_{2}\right)}^{(\text {mee }} \text {) }}^{\text {a }}$	12	-4.32077 (51)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 50
$\Delta M_{4 a, P_{4 a\left(P_{2}\right)}^{(m m e)}}$	6	0.30214 (11)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 10
$\Delta M_{4 a, P_{4 b\left(P_{2}\right)}^{(m m e)}}$	12	0.25136 (19)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 10
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}^{(m m e)}}$	6	-0.957 39 (9)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 10
	12	-0.931 56 (15)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 10
$\Delta M_{4 a, P_{4 a\left(P_{2}\right)}^{(m e m)}}$	6	0.04957 (10)	1×10^{8}	50
$\Delta M_{4 a, P_{4 b\left(P_{2}\right)}^{(m e m)}}^{\text {a }}$	12	0.00164 (5)	1×10^{8}	50
$\Delta M_{4 b, P_{4 a\left(P_{2}\right)}^{(m e m)}}^{\text {a }}$	6	-0.141 38 (8)	1×10^{8}	50
$\Delta M_{4 b, P_{4 b\left(P_{2}\right)}^{(m e m)}}^{\left(\begin{array}{ll} (2) \end{array}\right)}$	12	-0.010 38 (4)	1×10^{8}	50

When the inner and outer loops consists of muon and electron, respectively, the contribution is found to be smaller:

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{c})^{(m e m)}\right]=-0.15150 \tag{56}
\end{equation*}
$$

The contributions involving tau-lepton loops are summarized in Table VIII.

VI. SET II(D)

Following the same consideration leading to Eq. (45) of Sec. V we obtain

$$
\begin{equation*}
A_{1}^{(10)}\left[\operatorname{Set} \operatorname{II}(\mathrm{d})^{\left(l_{1} l_{2}\right)}\right]=\sum_{i=a}^{b} \Delta M_{4 i, P_{6}}^{\left(l_{1} l_{2}\right)}-\Delta B_{2} M_{2, P_{6}}^{\left(l_{1} l_{2}\right)}-\Delta B_{2, P_{6}}^{\left(l_{1} l_{2}\right)} M_{2} \tag{57}
\end{equation*}
$$

where l_{2} designates the loop lepton. The vacuum-polarization function P_{6} is fully renormalized whose divergence structure can be readily found by the K-operation. The renormal-

TABLE VII: Finite renormalization terms of Set II(c) for the muon anomaly a_{μ}. All integrals are evaluated in double precision. The multiplicity of the integral is incorporated in the numerical value.

Integral	Value(Error)	Integral	Value(Error)
	0.65571 (11)	$M_{2, P_{4 a\left(P_{2}\right)}^{\text {mee }} \text {) }}^{\text {a }}$	0.597441 (48)
$\Delta B_{2, P_{4 b}\left(\text { P } P_{2}\right)}^{(\text {me }}$	2.27941 (17)	$M_{2, P_{4 b}\left(P_{2}\right)}^{(\text {mee }}$	0.982066 (70)
$\Delta B_{2, P_{4\left(P_{2}\right)}^{(m e e)}}^{\text {(me }}$	2.69512 (64)	$M_{2, P_{4\left(P_{2}\right)}^{(\text {mee })}}$	1.44046 (28)
$\Delta B_{2, P_{4 a\left(P_{2}\right)}^{(m m e)}}$	0.417691 (10)	$M_{2, P_{4 a\left(P_{2}\right)}^{(m m e)}}$	0.121908 (3)
$\Delta B_{2, P_{4 b\left(P_{2}\right)}^{(m m e)}}^{(0)}$	0.404336 (22)	$M_{2, P_{4 b\left(P_{2}\right)}^{(m m e)}}^{\left(m_{4}\right.}$	0.099237 (5)
$\Delta B_{2, P_{4 a\left(P_{2}\right)}^{(\text {mem }} \text {) }}$	0.065066 (6)	$M_{2, P_{4 a\left(P_{2}\right)}^{(m e m)}}^{(}$	0.021016 (2)
$\Delta B_{2, P_{4 b}\left(P_{2}\right)}^{(m e m)}$	0.004533 (3)	$M_{2, P_{4 b\left(P_{2}\right)}^{(m e m)}}^{(m)}$	0.000586 (1)
$\Delta M_{4 a, P_{2}}^{(m e)}$	1.72562 (49)	$\Delta M_{4 b, P_{2}}^{(m e)}$	-2.354 33 (45)
$\Delta B_{2, P_{2}}^{(m,)^{2}}$	1.885732 (16)	$M_{2, P_{2}}^{(m e)}$	1.0942582827 (98)

TABLE VIII: Contributions to the muon $g-2$ from Set II(c) diagrams involving tau-lepton loops. All integrals are evaluated in double precision.

$\left(m, l_{2}, l_{3}\right)$	$A_{2}^{(10)\left(m l_{2} l_{3}\right)}$	$\left(m, l_{2}, l_{3}\right)$	$A_{3}^{(10)\left(m l_{2} l_{3}\right)}$
(m, m, t)	$-0.0043250(49)$	(m, e, t)	$-0.0047341(55)$
(m, t, m)	$-0.010519(13)$	(m, t, e)	$-0.036066(51)$
(m, t, t)	$-0.0015041(19)$		

ization formula for P_{6} takes different forms depending on whether one follows the original K-operation prescription[29] or the K-operation plus R-subtraction method [19]. In the first approach the UV-finite part of fourth-order mass-renormalization term is not subtracted when $P_{6 C}$ and $P_{6 D}$ are constructed. In the second approach we subtract the mass-
renormalization term completely, including the finite part $\Delta \delta m_{4}$, which leads to

$$
\begin{align*}
\Delta M_{4 i, P_{6}}^{\left(l_{1} l_{2}\right)} & =\sum_{\beta=A}^{H} \Delta M_{4 i, P_{6 \beta}}^{\left(l_{1} l_{2}\right)} \\
& -4 \Delta B_{2} \Delta M_{4 i, P_{4}}^{\left(l_{1} l_{2}\right)}-3\left(\Delta B_{2}\right)^{2} \Delta M_{4 i, P_{2}}^{\left(l_{1} l_{2}\right)}-2 \Delta L B_{4} \Delta M_{4 i, P_{2}}^{\left(l_{1} l_{2}\right)}, \quad \text { for } i=a, b \\
M_{2, P_{6}}^{\left(l_{1} l_{2}\right)} & =\sum_{\beta=A}^{H} M_{2, P_{6 \beta}}^{\left(l_{1} l_{2}\right)} \\
& -4 \Delta B_{2} M_{2, P_{4}}^{\left(l_{1} l_{2}\right)}-3\left(\Delta B_{2}\right)^{2} M_{2, P_{2}}^{\left(l_{1} l_{2}\right)}-2 \Delta L B_{4} M_{2, P_{2}}^{\left(l_{1} l_{2}\right)}, \\
\Delta B_{2, P_{6}}^{\left(l_{1} l_{2}\right)} & =\sum_{\beta=A}^{H} \Delta B_{2, P_{6 \beta}}^{\left(l_{1} l_{2}\right)} \\
& -4 \Delta B_{2} \Delta B_{2, P_{4}}^{\left(l_{1} l_{2}\right)}-3\left(\Delta B_{2}\right)^{2} \Delta B_{2, P_{2}}^{\left(l_{1} l_{2}\right)}-2 \Delta L B_{4} \Delta B_{2, P_{2}}^{\left(l_{1} l_{2}\right)} . \tag{58}
\end{align*}
$$

The quantities in the right-hand-side of (58), $\Delta M_{4 i, P_{6 \beta}}, \Delta B_{2, P_{6 \beta}}$, and $M_{2, P_{6 \beta}}$ are defined by the K-operation and R-subtraction. $\Delta L B_{4}$ is the sum of the finite parts of the fourth-order vertex-renormalization constant ΔL_{4} and wave-function renormalization constant ΔB_{4}. See Refs. $[3,4,29]$ for the exact definition. Note that terms like $\Delta M_{4 i, P_{6 \beta}}$ include the multiplicity n_{F} of Feynman diagrams that contribute to them.

A. Numerical results: (ee) case

Preliminary calculations of the (ee) case based on Methods (a) and (b) described in Sec. V A are consistent with each other within the uncertainty estimated by VEGAS. Therefore we list only the results of method (b) in Table IX. From this table and Table X we obtain

$$
\begin{equation*}
A_{1}^{(10)}\left[\operatorname{Set} \mathrm{II}(\mathrm{~d})^{(e e)}\right]=-0.24300(29) \tag{59}
\end{equation*}
$$

The Padé-approximated vacuum-polarization function of the sixth-order with a single fermion loop has been obtained in Ref. [30, 31]. This method gives both imaginary and real parts of the vacuum-polarization function. We use here only its imaginary part to calculate its effect on the anomaly. Numerical results of integration are summarized in Table. XII. Substituting them into Eq. (57), we obtained

$$
\begin{equation*}
A_{1}^{(10)}\left[\text { Set } \mathrm{II}(\mathrm{~d})^{(e e)}: \text { Padé }\right]=-0.24306(45), \tag{60}
\end{equation*}
$$

TABLE IX: Contributions of diagrams of $\operatorname{Set} \mathrm{II}(\mathrm{d})$, (ee) case. n_{F} is the number of Feynman diagrams represented by the integral. The fourth-order mass-renormalization is completed by R subtraction within the numerical programs of $\Delta M_{4 a, P_{6 C}}, \Delta M_{4 a, P_{6 D}}, \Delta M_{4 b, P_{6 C}}$, and $\Delta M_{4 b, P_{6 D}}$. All integrals are evaluated in double precision.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\Delta M_{4 a, P_{6 A}}$	12	$0.112990(116)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 B}}$	6	$0.072919(72)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 C}}$	12	$0.044224(87)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 D}}$	12	$-0.088822(78)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 E}}$	24	$0.444033(113)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 F}}$	12	$-0.156407(67)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 G}}$	6	$0.094162(54)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 a, P_{6 H}}$	6	$0.060989(35)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 A}}$	12	$-0.398926(66)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 B}}$	6	$-0.253369(42)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 C}}$	12	$-0.141941(51)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 D}}$	12	$0.292773(44)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 E}}$	24	$-1.395971(66)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 F}}$	12	$0.570363(40)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 G}}$	6	$-0.232467(32)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100
$\Delta M_{4 b, P_{6 H}}$	6	$-0.223983(22)$	$1 \times 10^{8}, 1 \times 10^{9}$	50,100

which is in good agreement with (59). This provides another support for the validity of GENCODEVP N.

B. Numerical results: mass-dependent terms (em) and (et)

The value of the mass-dependent term (em) obtained using the numbers listed in Table XI is

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(e m)}\right]=-0.9817(42) \times 10^{-4} \tag{61}
\end{equation*}
$$

As a check we evaluated the same quantity using the Padé-approximated vacuumpolarization function of sixth-order. The results are listed in Table XII. From these values

TABLE X: Finite renormalization terms necessary for the cases (ee) and (em) of Set II(d). For simplicity the superscript ($e e$) is omitted. The values $M_{2, P_{6 C}}$ and $M_{2, P_{6 D}}$ are different from those in Table. I of Ref. [35]. The former is constructed with the K-operation and R-subtraction, while the latter is with the K-operation only. All integrals are evaluated in double precision.

Integral	Value(Error)	Integral	Value(Error)
$\Delta M_{4 a, P_{4}}$	0.131298 (8)	$\Delta M_{4 b, P_{4}}$	-0.420 295 (8)
$\Delta M_{4 a, P_{2}}$	0.039642 (42)	$\Delta M_{4 b, P_{2}}$	-0.146 343 (35)
$M_{2, P_{6 A}}$	0.0444467 (22)	$\Delta B_{2, P_{6 A}}$	0.1736091 (96)
$M_{2, P_{6 B}}$	0.0285939 (14)	$\Delta B_{2, P_{6 B}}$	0.1104661 (56)
$M_{2, P_{6 C}}$	0.0177173 (19)	$\Delta B_{2, P_{6 C}}$	0.0621347 (74)
$M_{2, P_{6 D}}$	-0.035 1670 (16)	$\Delta B_{2, P_{6 D}}$	-0.127 6576 (63)
$M_{2, P_{6 E}}$	0.1793332 (21)	$\Delta B_{2, P_{6 E}}$	0.6103858 (84)
$M_{2, P_{6 F}}$	-0.062 0032 (12)	$\Delta B_{2, P_{6 F}}$	-0.247658 3 (54)
$M_{2, P_{6 G}}$	0.0388790 (10)	$\Delta B_{2, P_{6 G}}$	0.1040702 (44)
$M_{2, P_{6 H}}$	0.0236749 (8)	$\Delta B_{2, P_{6 H}}$	0.0970567 (29)
$M_{2, P_{4}}$	$0.052870652 \ldots$	$\Delta B_{2, P_{4}}$	0.1836668 (18)
$M_{2, P_{2}}$	$0.015687421 \cdots$	$\Delta B_{2, P_{2}}$	$0.063399266 \cdots$
$\Delta L B_{4}$	0.027930 (27)	ΔB_{2}	0.75
M_{2}	0.5		
$\Delta M_{4 a, P_{4}}^{(e m)}$	$0.07596(78) \times 10^{-4}$	$\Delta M_{4 b, P_{4}}^{(e m)}$	$-0.75735(41) \times 10^{-4}$
$\Delta M_{4 a, P_{2}}^{(e m)}$	$0.02090(21) \times 10^{-4}$	$\Delta M_{4 b, P_{2}}^{(e m)}$	$-0.20984(12) \times 10^{-4}$
$M_{2, P_{6 A}}^{(e m)}$	$0.159949(32) \times 10^{-5}$	$\Delta B_{2, P_{6,}}^{(e,)^{2}}$	$0.281371(61) \times 10^{-4}$
$M_{2,{ }_{\text {Pb }}}^{(e m)}$	$0.102323(21) \times 10^{-5}$	$\Delta B_{2, P_{B B}}^{(e m)}$	$0.180003(40) \times 10^{-4}$
$M_{2, P_{6 C}}^{\left(e_{6 B}\right.}$	$0.071033(29) \times 10^{-5}$	$\Delta^{(e m)}$	$0.119848(52) \times 10^{-4}$
$M_{2, P_{6 D}(e m)}^{(e)^{(e)}}$	$-0.131368(26) \times 10^{-5}$	$\Delta B_{2,{ }_{\text {Pr }}}^{(e m)}$	$-0.226651(46) \times 10^{-4}$
$M_{2, P_{6 E}}^{(e m)}$	$0.682404(32) \times 10^{-5}$	$\Delta B_{2, P_{6 E}}^{(e m)}$	$1.162709(59) \times 10^{-4}$
$M_{2, P_{6 F}}^{(e m)}$	$-0.211985(19) \times 10^{-5}$	$\Delta B_{2, P_{6 F}}^{(e m)}$	$-0.379345(35) \times 10^{-4}$
$M_{2, P_{6 G}}^{(e m)}$	$0.174650(16) \times 10^{-5}$	$\Delta B_{2, P_{G G}}^{(e m)}$	$0.279935(31) \times 10^{-4}$
$M_{2, P_{6 H}}^{(e m)}$	$0.082748(12) \times 10^{-5}$	$\Delta B_{2, P_{6 H}}^{(e m)}$	$0.147672(22) \times 10^{-4}$
$M_{2, P_{4}}^{(e m)}$	$0.197298(5) \times 10^{-5}$	$\Delta B_{2, P_{4}}^{\left.(e)^{\prime}\right)}$	$0.338738(12) \times 10^{-4}$
$\underline{M_{2, P_{2}}^{(e m)}}$	$0.051974(1) \times 10^{-5}$	$\Delta B_{2, P_{2}}^{\left.(e)^{\prime}\right)}$	$0.094050(3) \times 10^{-4}$

we obtain

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(e m)}: \text { Padé }\right]=-0.99153(61) \times 10^{-4} . \tag{62}
\end{equation*}
$$

We also evaluated the mass-dependent term (et) in Padé approximation:

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(e t)}: \text { Padé }\right]=-0.5427(18) \times 10^{-6} . \tag{63}
\end{equation*}
$$

TABLE XI: Contributions to a_{e} from diagrams of Set II(d) containing a muon loop. The superscript (em) signifies that the diagrams contain muon loop in the electron $g-2 . n_{F}$ is the number of Feynman diagrams represented by the integral. All integrals are evaluated in double precision. The fourth-order mass renormalization is completed within the numerical programs of $\Delta M_{4 a, P_{6 C}}$, $\Delta M_{4 a, P_{6 D}}, \Delta M_{4 b, P_{6 C}}$, and $\Delta M_{4 b, P_{6 D}}$.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\overline{\Delta M_{4 a, P_{6 A}}^{(e m)}}$	12	0.00000624 (13)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 B}}^{(e m)}$	6	0.00000494 (9)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 C}}^{(e m)}$	12	0.00000379 (11)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 D}}^{(e m)}$	12	0.00000523 (10)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 E}}^{(e m)}$	24	0.00002634 (15)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 F}}^{(e m)}$	12	0.00000838 (8)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a,}^{(e m)}{ }_{\text {P }}\left(P_{6 G}\right.$	6	0.00000754 (6)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 a, P_{6 H}}^{(e m)}$	6	0.00000334 (5)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 A}}^{(e m)}$	12	0.00006378 (4)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 B}}^{(e m)}$	6	0.00004016 (2)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 C}}^{(e m)}$	12	0.00002779 (3)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 D}}^{(e m)}$	12	0.00005162 (3)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 E}}^{(e m)}$	24	0.00026081 (4)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 F}}^{(e m)}$	12	0.00008561 (2)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\Delta M_{4 b, P_{6 G}}^{(e m)}$	6	0.00006372 (2)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50
$\underline{\Delta M_{4 b, P_{6 H}}^{(e m)}}$	6	0.00003395 (1)	$1 \times 10^{7}, 1 \times 10^{8}$	50, 50

We have not evaluated this term directly. But it will be of the same order as Eq. (63) and thus negligible numerically.

C. Muon $g-2:(m e)$

The leading contribution to the muon $g-2$ comes from the case ($m e$). The value obtained using the numbers in Tables XIII, X, and XV is

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(m e)}\right]=0.4972(65) . \tag{64}
\end{equation*}
$$

This is in fair agreement with the value obtained using the Padé approximant

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(m e)}: \text { Padé }\right]=0.5048(75) \tag{65}
\end{equation*}
$$

TABLE XII: Contributions of diagrams of Set II(d) whose VP function is P_{6}. Quantities on the right-hand-side of Eq. (58) are calculated from Tables IX, X, XI, XIII, XIV, and XV. The same quantities are also calculated by the Padé approximant method and listed with the subscript Padé below the corresponding integrals. $M_{2, P 6}^{\left(l_{1} l_{2}\right)}$ are actually the anomaly contributions of the eighthorder diagrams of Group I(d). Their values for the (ee) and (me) cases are consistent with Eq. (29) of Ref. [35] and Eq. (34) of Ref. [5], respectively. The (em), (et), and (mt) cases are newly evaluated in this paper. All integrals using the Padé approximant are evaluated in quadruple precision.

Integral	Value(Error)	Integral	Value(Error)
$\Delta M_{4 a, P_{6}}^{(e e)}$	0.11908 (25)	$\Delta M_{4 b, P_{6}}^{(e e)}$	-0.264 51 (41)
$\Delta M_{4 a, P_{6}}^{(e e)}$ Padé	0.11895 (35)	$\Delta M_{4 b, P_{6}}^{(e+e}$ Padé	-0.264 43 (27)
$\Delta B_{2, P_{6}}^{(e e)}$	0.120879 (20)	$M_{2, P_{6}}^{(e e)}$	0.049514 (5)
$\Delta B_{2, P_{6}}^{(e)}$ Padé	0.120862 (39)	$M_{2, P_{6} \text { Padé }}^{(e)^{(e e)}}$	0.049520 (4)
$\Delta M_{4 a, P_{6}}^{(e m)}$	$0.0915(39) \times 10^{-4}$	$\Delta M_{4 b, P_{6}}^{(e m)}$	$-0.8620(16) \times 10^{-4}$
$\Delta M_{4 a, P_{6}}^{(e m)}$ Padé	$0.09196(53) \times 10^{-4}$	$\Delta M_{4 b, P_{6}}^{(\text {em Padé }}$	$-0.87225(31) \times 10^{-4}$
$\Delta B_{2, P_{6}}^{(e,)^{\prime}}$	$0.38536(13) \times 10^{-4}$	$M_{2, P_{6}}^{(e m)}$	$0.024725(7) \times 10^{-4}$
$\Delta B_{2, P_{6}}^{(e m)}$ Padé	$0.385367(72) \times 10^{-4}$	$M_{2, P_{6} \text { Padé }}^{(e m)}$	$0.024727(4) \times 10^{-4}$
$\Delta M_{4 a, P_{6} \text { Padé }}^{(e t)}$	$0.03989(154) \times 10^{-6}$	$\Delta M_{4 b, P_{6} \text { Padé }}^{(e t)}$	$-0.47090(74) \times 10^{-6}$
$\Delta B_{2, P_{6}}^{(e t)}$ Padé	$0.210278(39) \times 10^{-6}$	$M_{2, P_{6}}^{(e t)}$ Padé	$0.008744(1) \times 10^{-6}$
$\Delta M_{4 a, P_{6}}^{(m e)}$	-0.4694 (50)	$\Delta M_{4 b, P_{6}}^{(m e)}$	0.5969 (42)
$\Delta M_{4 a, P_{6}}^{(m e)}$ Padé	-0.4591 (55)	$\Delta M_{4 b, P_{6}}^{(m e)}$ Padé	0.5935 (51)
$\Delta B_{2, P_{6}}^{(m e)}$	-0.394 72 (82)	$M_{\left.2, P_{6}\right)}^{(m e)}$	-0.229 82 (36)
$\Delta B_{2, P_{6}}^{(m e)}$ Padé	-0.39525 (78)	$M_{2, P_{6} \text { Padé }}^{(m e)}$	-0.230 23 (32)
$\Delta M_{4 a, P_{6}}^{(m t)}$	0.001066 (15)	$\Delta M_{4 b, P_{6}}^{(m t)}$	-0.006 953 (10)
$\Delta M_{4 a, P_{6}}^{(m t)}$ Padé	0.001065 (12)	$\Delta M_{4 b, P_{6}}^{(m t)}$ Padé	-0.006 953 (8)
$\Delta B_{2, P_{6}}^{(m)}$	0.0030209 (10)	$M_{2, P_{6}}^{(m t)}$	0.0003677 (2)
$\Delta B_{2, P_{6} \text { Padé }}^{(m t)}$	0.0030214 (6)	$M_{2, P_{6} \text { Padé }}^{(m t)}$	0.0003677 (1)

A crude evaluation of the contribution of tau-lepton loop gives

$$
\begin{equation*}
A_{2}^{(10)}\left[\operatorname{Set} \mathrm{II}(\mathrm{~d})^{(m t)}\right]=-0.007673(18), \tag{66}
\end{equation*}
$$

TABLE XIII: Leading contributions of diagrams of Set II(d) of Fig. 1 to the muon $g-2 . n_{F}$ is the number of Feynman diagrams represented by the integral. All integrals are evaluated in double precision. The fourth-order mass-renormalization is completed within the numerical programs of $\Delta M_{4 a, P_{6 C}}, \Delta M_{4 a, P_{6 D}}, \Delta M_{4 b, P_{6 C}}$, and $\Delta M_{4 b, P_{6 D} \text {. Last two columns list initial sampling and its }}$. iteration, followed by increased sampling and its iteration.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\overline{\Delta M_{4 a, ~}^{\text {P }} \text { (mA }}$	12	10.6935 (20)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 185
$\Delta M_{4 a, P_{6 B}}^{(m e)}$	6	5.6421 (12)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, ~}^{(m e)}{ }_{\text {P }}\left({ }_{\text {c }}\right.$	12	4.3050 (12)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, P_{6 D}}^{(m e)}$	12	-6.097 7 (12)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, P_{6 E}}^{(m e)}$	24	-4.365 9 (18)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, P_{6 F}}^{(m e)}$	12	-6.145 99 (94)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, P_{6 G}}^{(m e)}$	6	-0.397 7 (14)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 a, P_{6 H}}^{(m e)}$	6	5.04876 (52)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 100
$\Delta M_{4 b, P_{6 A}}^{(m e)}$	12	-18.959 1 (16)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 b, P_{6 B}}^{(m e)}$	6	-9.815 33 (96)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 150
$\Delta M_{4 b, P_{6 C}}^{(m e)}$	12	-7.998 86 (93)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 150
$\Delta M_{4 b, P_{6 D}}^{(m e)}$	12	11.24841 (81)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 150
$\Delta M_{4 b, P_{6 E}}^{(m e)}$	24	15.9050 (12)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 170
$\Delta M_{4 b, P_{6 F}}^{(m e)}$	12	7.17772 (74)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 150
$\Delta M_{4 b, P_{6 G}}^{(m e)}$	6	$-0.50122(94)$	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 160
$\Delta M_{4 b, P_{6 H}}^{(m e)}$	6	-8.025 32 (40)	$1 \times 10^{8}, 1 \times 10^{9}, 1 \times 10^{10}$	50, 100, 100

while the same contribution obtained using the Padé approximant is

$$
\begin{equation*}
A_{2}^{(10)}\left[\text { Set II }(\mathrm{d})^{(m t)}: \text { Padé }\right]=-0.007674(15) \tag{67}
\end{equation*}
$$

VII. SUMMARY AND DISCUSSION

The total contribution to a_{e} from the set II(c) is the sum of Eqs. (49), (51), (52), and other terms listed in Table V:

$$
\begin{equation*}
a_{e}^{(10)}[\operatorname{Set} \operatorname{II}(\mathrm{c}): \text { all }]=-0.116874(43)\left(\frac{\alpha}{\pi}\right)^{5} . \tag{68}
\end{equation*}
$$

Contributions of tau-lepton loop listed in Table VIII are less than the uncertainty of Eq. (68).

TABLE XIV: Contribution from diagrams of $\operatorname{Set} \operatorname{II}(\mathrm{d})(m, t)$ of Fig. 1 to the muon $g-2 . n_{F}$ is the number of Feynman diagrams represented by the integral. All integrals are evaluated in double precision. Last two columns list initial sampling and its iteration, followed by increased sampling and its iteration.

Integral	n_{F}	Value (Error) including n_{F}	Sampling per iteration	No. of iterations
$\overline{\Delta M_{4 a, P_{6 A}}^{(m t)}}$	12	0.0017461 (22)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 B}}^{(m t)}$	6	0.0004764 (14)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 C}}^{(m t)^{\prime}}$	12	0.0003239 (18)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 D}}^{(m t)}$	12	-0.001 6053 (17)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 E}}^{(m t)}$	24	0.0031124 (24)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 F}}^{(m t)}$	12	-0.002 0000 (13)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 G}}^{(m t)}$	6	0.0017665 (12)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 a, P_{6 H}}^{(m t)}$	6	0.00039055 (72)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 A}}^{(m t)}$	12	-0.006 54950 (87)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 B}}^{(m t)}$	6	-0.004 55021 (57)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 C}}^{(m t)}$	12	-0.002 29984 (74)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 D}}^{(m t)}$	12	0.00441320 (67)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 E}}^{(m t)}$	24	-0.022 43750 (93)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 F}}^{(m t)}$	12	0.00856626 (53)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\Delta M_{4 b, P_{6 G}}^{(m t)}$	6	-0.005 16407 (46)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100
$\underline{\Delta M_{4 b, P_{6 H}}^{(m t)}}$	6	-0.003 94006 (31)	$1 \times 10^{8}, 1 \times 10^{9}$	50, 100

The total contribution to a_{e} from the Set $\operatorname{II}(\mathrm{d})$ is the sum of Eq. (59) and Eq. (61):

$$
\begin{equation*}
a_{e}^{(10)}[\text { Set II(d):all }]=-0.24310(29)\left(\frac{\alpha}{\pi}\right)^{5} \tag{69}
\end{equation*}
$$

The contribution of the tau-lepton loop is within the error bars of Eq. (69) and is completely negligible at present.

The total contribution of $\operatorname{Set} \mathrm{II}(\mathrm{c})$ to the muon $g-2$ involving electron, muon, and taulepton loops is the sum of Eq. (49), Eq. (53), Eq. (55), and Eq. (56), and values listed in Table. V:

$$
\begin{equation*}
a_{\mu}^{(10)}[\operatorname{Set} \operatorname{II}(\mathrm{c}): \mathrm{all}]=-5.5594(11)\left(\frac{\alpha}{\pi}\right)^{5} \tag{70}
\end{equation*}
$$

The total contribution of Set $\operatorname{II}(\mathrm{d})$ to the muon $g-2$ involving electron, muon, and

TABLE XV: Finite renormalization terms needed for Set II(d) of the muon $g-2$. Both (me) and $(m t)$ cases are listed. $M_{2, P_{6 \beta}}^{(m e)}$ with $\beta=A, B, E, F, G, H$ are consistent with those in Ref. [5]. $M_{2, P_{6 \beta}}$ with $\beta=C, D$ in this table incorporated the R-subtraction [19] and differs from those in Ref. [5].

Integral	Value(Error)	Integral	Value(Error)
$\Delta M_{4 a, P_{4}}^{(m e)}$	2.04784 (23)	$\Delta M_{4 b, P_{4}}^{(m e)}$	-2.486 60 (12)
$\Delta M_{4 a, P_{2}}^{(m e)}$	1.72562 (49)	$\Delta M_{4 b, P_{2}}^{(m,)^{4}}$	-2.354 33 (46)
$M_{2, P_{6 A}}^{(m e)}$	5.67649 (22)	$\Delta B_{2, P_{6 A}}^{(m e)}$	11.50082 (47)
$M_{2, P_{6 B}}^{(m e)}$	3.05813 (13)	$\Delta B_{2, P_{6 B}(m e)}$	6.10183 (27)
$M_{2, P_{6 C}}^{(m e)}$	2.19466 (12)	$\Delta B_{2, P_{6 C}}^{(m e)}$	4.61602 (24)
$M_{2, P_{6 D}}^{(m e)}$	-3.224 25 (10)	$\Delta B_{2, P_{6 D}(\text { me) }}$	-6.701 64 (22)
$M_{2, P_{6 E}}^{(m e)}$	-0.073 76 (17)	$\Delta B_{2,}^{(m e)}$	-4.07672 (36)
$M_{2, P_{6 F}}^{(m e)}$	-4.064 09 (9)	$\Delta B_{2, P_{6 F}}^{(m e)}$	-6.535 49 (20)
$M_{2, P_{6 G}}^{(m e)}$	-0.246 97 (12)	$\Delta B_{2, P_{6 G}}^{(m e)}$	-0.039 85 (28)
$M_{2, P_{6 H}}^{(m e)}$	2.83867 (4)	$\Delta B_{2, P_{6 H}}^{(m e)}$	5.34515 (8)
$M_{2, P_{4}}^{(m e)}$	1.493671581 (8)	$\Delta B_{2, P_{4}}^{(m e)}$	2.439109 (53)
$M_{2, P_{2}}^{(m e)}$	1.0942582827 (98)	$\Delta B_{2, P_{2}}^{(m e)}$	1.885733 (16)
$\Delta M_{4 a, P_{4}}^{(m t)}$	0.0009039 (47)	$\Delta M_{4 b, P_{4}}^{(m t)}$	-0.006 5716 (31)
$\Delta M_{4 a, P_{2}}^{(m t)}$	0.0002478 (15)	$\Delta M_{4 b, P_{2}}^{(m t)}$	-0.001 8888 (10)
$M_{2, P_{6 A}}^{(m t)}$	0.00023971 (1)	$\Delta B_{2,}^{(m t)}{ }_{\text {P/A }}^{(m+t)}$	0.00243662 (13)
$M_{2, P_{6 B}}^{(m t)}$	0.00015339 (1)	$\Delta B_{2,2,}^{(m t)}$	0.00155894 (8)
$M_{2, P_{6 C}}^{(m t)}$	0.00010619 (1)	$\Delta B_{2,2,}^{(m t)}$	0.00100623 (11)
$M_{2, P_{6 D}}^{(m t)}$	-0.000 19675 (1)	$\Delta B_{2, P_{6 D}}^{(m t)}$	-0.001 93479 (9)
$M_{2, P_{6 E}}^{(m t)}$	0.00102135 (1)	$\Delta B_{2,2,}^{(m t)}$	0.00982656 (12)
$M_{2, P_{6 F}}^{(m t)}$	-0.000 31806 (1)	$\Delta B_{2, P_{6 F}}^{(m t)}$	-0.003 32619 (7)
$M_{2, P_{6 G}}^{(m t)}$	0.00026044 (1)	$\Delta B_{2,}^{(m t)}{ }_{\text {PG }}$	0.00225009 (6)
$M_{2, P_{6 H}}^{(m t)}$	0.00012405 (1)	$\Delta B_{2, P_{6 H}}^{(m t)}$	0.00129236 (4)
$M_{2, P_{4}}^{(m t)}$	0.000295508 (21)	$\Delta B_{2, P_{4}}^{(m t)}$	0.00288001 (31)
$M_{2, P_{2}}^{(m t)}$	0.0000780674 (31)	$\Delta B_{2, P_{2}}^{(m t)}$	0.000831107 (75)

tau-lepton loops is the sum of Eq. (59), Eq. (64), and Eq. (66):

$$
\begin{equation*}
a_{\mu}^{(10)}[\operatorname{Set} \mathrm{II}(\mathrm{~d}): \text { all }]=0.2465(65)\left(\frac{\alpha}{\pi}\right)^{5} \tag{71}
\end{equation*}
$$

The sum of the electron-loop contribution to the muon $g-2$ from the diagrams Set $\operatorname{II}(\mathrm{c})$ and Set $\mathrm{II}(\mathrm{d})$ is the sum of Eqs.(53), (55), (56), and (64). We find

$$
\begin{equation*}
A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)\left[\operatorname{Set} \mathrm{II}(\mathrm{c}+\mathrm{d})^{(m e)}\right]=-4.8886(65) \tag{72}
\end{equation*}
$$

which is less than 1% of the leading contribution from the diagrams of Set VI(a) that contain light-by-light-scattering subdiagrams and vacuum-polarization subdiagrams[5, 36]. Hence, the new contribution does not alter the previous estimates:

$$
\begin{align*}
& A_{2}^{(10)}\left(m_{\mu} / m_{e}\right) \text { [estimate : Ref.[5]] }=663(20), \tag{73}\\
& A_{2}^{(10)}\left(m_{\mu} / m_{e}\right) \text { [estimate : Ref.[36]] }=643(20) . \tag{74}
\end{align*}
$$

Acknowledgments

This work is supported in part by the JSPS Grant-in-Aid for Scientific Research (C)19540322 and (C)20540261. T. K.'s work is supported in part by the U. S. National Science Foundation under Grant NSF-PHY-0757868, and the International Exchange Support Grants (FY2010) of RIKEN. T. K. thanks RIKEN for the hospitality extended to him while a part of this work as carried out. Numerical calculations are conducted in part on the RIKEN Super Combined Cluster System (RSCC) and the RIKEN Integrated Cluster of Clusters (RICC) supercomputing systems.
[1] D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).
[2] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, arXiv:1009.4831 [physics.atom-ph].
[3] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 99, 110406 (2007).
[4] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. D 77, 053012 (2008).
[5] T. Kinoshita and M. Nio, Phys. Rev. D 73, 053007 (2006).
[6] B. Krause, Phys. Lett. B390, 392 (1997).
[7] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004).
[8] M. Davier, A. Höcker, B. Malaescu, and Z. Zhang, arXiv:1010.4180 [hep-ph].
[9] T. Teubner, K. Hagiwara, R. Liao, A. D. Martin, and D. Nomura, arXiv:1001.5401 [hep-ph].
[10] J. Bijnens and J. Prades, Mod. Phys. Lett. A22, 767 (2007).
[11] J. Prades, E. de Rafael, and A. Vainshtein, arXiv:0901.0306 [hep-ph].
[12] A. Nyffeler, Phys. Rev. D 79, 073012 (2009).
[13] M. Knecht, S. Peris, M. Perrottet, and E. De Rafael, J. High Energy Phys. 11, 003 (2002).
[14] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003), 73, 119901(E) (2006).
[15] A. Czarnecki, B. Krause, and W. J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).
[16] R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez, and F. Biraben, arXiv:1012.3627 [physics.atom-ph].
[17] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008).
[18] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Nucl. Phys. B740, 138 (2006).
[19] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Nucl. Phys. B796, 184 (2008).
[20] T. Kinoshita and M. Nio, Phys. Rev. D 70, 113001 (2004).
[21] T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, and N. Watanabe, Phys. Rev. D 78, 053005 (2008).
[22] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. D 78, 113006 (2008).
[23] T. Aoyama, K. Asano, M. Hayakawa, T. Kinoshita, M. Nio, and N. Watanabe, Phys. Rev. D 81, 053009 (2010).
[24] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. D 82, 113004 (2010).
[25] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, arXiv:1012.5569 [hep-ph].
[26] S. Laporta, Phys. Lett. B328, 522 (1994).
[27] J.-P. Aguilar, E. de Rafael, and D. Greynat, Phys. Rev. D77, 093010 (2008).
[28] A. H. Hoang, J. H. Kuhn, and T. Teubner, Nucl. Phys. B452, 173 (1995).
[29] T. Kinoshita, in Quantum electrodynamics, edited by T. Kinoshita (World Scientific, Singapore, 1990), pp. 218-321, (Advanced series on directions in high energy physics, 7).
[30] P. A. Baikov and D. J. Broadhurst, arXiv:hep-ph/9504398.
[31] T. Kinoshita and M. Nio, Phys. Rev. D 60, 053008 (1999).
[32] T. Kinoshita and M. Nio, Phys. Rev. Lett. 82, 3240 (1999), erratum-ibid.103:079901,2009.
[33] T. Kinoshita and W. B. Lindquist, Phys. Rev. D 27, 853 (1983).
[34] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
[35] T. Kinoshita and M. Nio, Phys. Rev. D 73, 013003 (2006).
[36] A. Kataev, Phys. Rev. D 74, 073011 (2006).

