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B. R. Ko,20 P. Kodyš,2 P. Križan,23, 16 T. Kuhr,18 T. Kumita,50 A. Kuzmin,1, 36 Y.-J. Kwon,54 S.-H. Kyeong,54

J. S. Lange,5 S.-H. Lee,20 J. Li,9 C. Liu,40 Y. Liu,31 D. Liventsev,15 R. Louvot,22 A. Matyja,32 S. McOnie,43

K. Miyabayashi,28 H. Miyata,34 Y. Miyazaki,27 R. Mizuk,15 G. B. Mohanty,44 M. Nakao,10 H. Nakazawa,29

Z. Natkaniec,32 S. Neubauer,18 S. Nishida,10 O. Nitoh,51 S. Ogawa,46 T. Ohshima,27 S. L. Olsen,41, 9 W. Ostrowicz,32

P. Pakhlov,15 G. Pakhlova,15 H. K. Park,21 R. Pestotnik,16 M. Petrič,16 L. E. Piilonen,52 A. Poluektov,1, 36
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We report a study of the decays B → Ds1(2536)
+D̄(∗), where D̄(∗) is D̄0, D− or D∗−, using a

sample of 657×106 BB̄ pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB
asymmetric-energy e+e− collider. The branching fractions of the decays B+ → Ds1(2536)

+D̄0,
B0 → Ds1(2536)

+D− and B0 → Ds1(2536)
+D∗− multiplied by that of Ds1(2536)

+ → (D∗0K+ +
D∗+K0) are found to be (3.97± 0.85± 0.56) × 10−4, (2.75± 0.62± 0.36) × 10−4 and (5.01± 1.21±
0.70) × 10−4, respectively. The ratio B(Ds1 → D∗0K+)/B(Ds1 → D∗+K0) is measured to be
0.88 ± 0.24 ± 0.08.

PACS numbers: 13.25.Hw, 14.40.Lb, 14.40.Nd

The Ds1(2536)+ is a narrow P-wave resonance for
which the JP = 1+ assignment is strongly favored [1].
Although the Ds1(2536)+ was first observed in 1989 [2],
its properties are still not well measured. In this anal-
ysis we study the production of Ds1(2536)+ in doubly
charmed B meson decays, B → Ds1(2536)+D̄(∗), where
D̄(∗) is either a D̄0, D− or D∗−. The branching frac-
tion measurements of the decays B → Ds1(2536)+D̄(∗)

together with those of B → D(∗)D
(∗)
s(J) decays provide im-

portant information to check the molecular hypothesis for
the D∗

s0(2317) and Ds1(2460) particles [3, 4]. First obser-
vations of the B → Ds1(2536)+D̄(∗) decay modes have
been reported by BaBar [5, 6]. An upper limit on the de-
cay B0 → Ds1(2536)+D∗− was also obtained by Belle [7],
which is consistent with the BaBar measurement.

This analysis is based on 605 fb−1 of data collected at
the Υ(4S) resonance with the Belle detector [9] at the
KEKB asymmetric-energy e+e− collider [10], which cor-
responds to 657 × 106 BB̄ pairs. The Belle detector is a
general-purpose spectrometer with a 1.5 T magnetic field
provided by a superconducting solenoid. A silicon vertex
detector and a 50-layer central drift chamber are used to
measure the momenta of charged particles. Photons are
detected in an electromagnetic calorimeter (ECL) con-
sisting of CsI(Tl) crystals. Particle identification likeli-
hoods LK and Lπ are derived from information provided
by an array of time-of-flight counters, an array of silica

aerogel Cherenkov threshold counters and dE/dx mea-
surements in the central drift chamber. Two inner detec-
tor configurations were used. A 2.0 cm radius beampipe
and a 3-layer silicon vertex detector were used for the
first sample of 152 × 106 BB̄ pairs, while a 1.5 cm ra-
dius beampipe, a 4-layer silicon detector and a small-cell
inner drift chamber were used to record the remaining
505 × 106 BB̄ pairs.

All charged tracks are required to have a distance of
closest approach to the interaction point (IP) in the plane
perpendicular to the beam axis smaller than 2 cm and
smaller than 5 cm along the beam axis. Charged kaon
and pion candidates are required to be positively identi-
fied. The K0

S
candidates are reconstructed in the π+π−

mode with the requirement |Mππ − mK0

S

| < 15 MeV/c2

(3σ), where mK0

S

is the K0
S

mass [1]. Requirements on

the K0
S

vertex displacement from the IP and on the dif-
ference between the vertex and K0

S
flight directions are

applied. No pion identification is required for the pions
from K0

S
candidates. A mass- and vertex-constrained fit

is applied to improve the four-momentum measurements
of K0

S
candidates. Photons are reconstructed in the ECL

from showers that are not associated with charged tracks
with energies larger than 50 MeV. Combinations of two
photons are considered to be π0 candidates if their invari-
ant mass lies within ±15 MeV/c2 (3σ) of the π0 mass [1].
To improve their momentum resolution, all π0 candi-
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dates are fitted with a π0 mass constraint. Continuum
e+e− → qq̄ backgrounds (q = u, d, s, c) are suppressed by
requiring the ratio of the second and zeroth Fox-Wolfram
moments [11] to be smaller than 0.3.

Candidate D0’s are reconstructed using five decay
modes: K−π+, K−π+π+π−, K−π+π0, K0

S
π+π− and

K+K−. The D− is reconstructed via its decay into
K+π−π−. The selected combinations are constrained to
a common vertex and the χ2/n.d.f. of the vertex fit is re-
quired to be smaller than 25. A ±15 MeV/c2 (2σ) mass
window around the D0 mass [1] is used to select D0 can-
didates for the D0 → K−π+π0 mode and ±12 MeV/c2

(≈ 3σ) for the other D decay modes. To reduce the large
combinatorial background in the D0 → K−π+π0 decay
mode, the energy of each photon from π0 is required to
be greater than 100 MeV. For the D̄0’s coming directly
from B decay, only the cleanest modes, K+π−, K0

S
π+π−

and K+K−, are used. A mass- and vertex-constrained
fit is applied for all D candidates. The D∗+ is recon-
structed via its decay to D0π+

slow. To improve the π+
slow

momentum resolution, and thus the D∗+ mass resolu-
tion, the π+

slow is constrained to the D∗+ decay vertex,
which is obtained by fitting the D0 to the IP profile. The
D∗+ candidates with invariant mass within ±2 MeV/c2

(4σ) of the D∗+ [1] mass are selected. The D∗0 is re-
constructed using the D0π0 and D0γ decay modes with
invariant mass windows of ±3 MeV/c2 and ±12 MeV/c2

(2σ), respectively. In both cases a mass-constrained fit
is performed for D∗0 candidates.

The Ds1(2536)+ meson is reconstructed in its domi-
nant decay modes: D∗0K+ and D∗+K0

S
. The invariant

mass of the Ds1(2536)+ candidates is required to be less
than 2.58 GeV/c2. Combinations of Ds1(2536)+ and a
second charm D̄(∗) meson (D̄(∗) = D̄0, D−, D∗−) with
opposite charm flavor are considered as B meson candi-
dates. B candidates are identified using the energy dif-
ference ∆E = EB −Ebeam and beam-energy constrained
mass Mbc =

√

E2
beam − p∗2

B
, where EB and p∗

B
are the B

candidate energy and momentum in the center-of-mass
(CM) system, respectively. We require |∆E| < 0.1 GeV
and Mbc > 5.22 GeV/c2 to preselect B candidates. Af-
ter these selections the average candidate multiplicity per
event is 1.6. A single candidate per event is chosen based
on the smallest χ2 of the D(∗) candidates mass devia-
tions from their nominal values. The ∆E versus Mbc

scatter plot for the candidates with Ds1(2536)+ mass
within ±5 MeV/c2 (3σ) of the nominal value [1] is pre-
sented in Fig. 1 left, for the sum of all studied decay
modes. A signal box is defined as |∆E| < 0.02 GeV and
Mbc > 5.27 GeV/c2 (region “a”). The ∆E − Mbc two-
dimensional sideband is defined as Mbc < 5.26 GeV/c2

or |∆E| > 0.03 GeV (region “b”). The Mbc (∆E) pro-
jection is shown for the events with |∆E| < 0.02 GeV
(Mbc > 5.27 GeV/c2) in Fig. 1 center (right).

A two-dimensional binned likelihood fit is performed
to the ∆E − Mbc distribution and yields 151± 15 signal
events. The signal yield obtained from the ∆E − Mbc

fit contains a contribution from non-resonant B →

D∗KD̄(∗) decays that have the same final state parti-
cles as the signal. Therefore to extract the yields of
each decay mode, we perform an additional binned like-
lihood fit to the Ds1(2536)+ mass distributions for the
events in the ∆E − Mbc signal box (Fig. 2). In total,
there are nine reconstructed decay modes corresponding
to three B meson decay modes, B+ → Ds1(2536)+D̄0,
B0 → Ds1(2536)+D− and B0 → Ds1(2536)+D∗−, and
three Ds1(2536) meson decay modes, Ds1(2536)+ →
D∗0(D0γ)K+, D∗0(D0π0)K+ and D∗+(D0π+)K0

S
. The

latter are related by the known branching ratios R′ =
B(D∗0 → D0π0)/B(D∗0 → D0γ) = 1.74±0.13 and R′′ =
B(Ds1(2536)+ → D∗0K+)/B(Ds1(2536)+ → D∗+K0) =
1.36 ± 0.20 [1]. The shapes of the signal distributions
are taken to be a non-relativistic Breit-Wigner functions
convolved with the Ds1(2536)+ mass resolution func-
tion. The Breit-Wigner mass and width of Ds1(2536)+

are floating parameters common to all modes. The
Ds1(2536)+ mass resolution is parameterized by a double
Gaussian; the resolution parameters and reconstruction
efficiencies are obtained from Monte Carlo (MC) sim-
ulation and are summarized in Table I. The shape of

TABLE I: The products of the total efficiencies and inter-
mediate branching fractions, ǫB, and the Ds1(2536)

+ mass
resolution parameters, where σmain (σtail) is the width of the
narrow (wide) Gaussian component, and ftail is the fraction
of the wide component.

Ds1 mode: D∗0(D0γ)K+ D∗0(D0π0)K+ D∗+KS

ǫB(Ds1D̄
0), 10−4 1.45 1.18 0.74

ǫB(Ds1D
−), 10−4 1.97 1.62 1.00

ǫB(Ds1D
∗−), 10−4 0.93 0.75 0.32

σmain, MeV/c2 1.02 1.01 0.95

σtail, MeV/c2 5.44 3.61 2.43

ftail 0.23 0.34 0.15

the background is parameterized with an ARGUS func-
tion [12] and fixed from a fit to events in the ∆E − Mbc

sideband. This background function includes both the
non-resonant component and the combinatorial back-
ground since their shapes are expected to be similar. All
nine distributions are fitted simultaneously. The ratios
of signal yields in different Ds1(2536)+ decay modes are
fixed using their relative branching fractions, R′ and R′′,
and MC reconstruction efficiencies. The number of signal
events for each of the B decay modes is floated in the fit as
a sum of the signal events in all Ds1(2536)+ decay modes;
the background normalization is free for each distribu-
tion. The results of the fit are presented in Table II. The
significance is calculated from S =

√

−2 ln(L0/Lmax),
where L0 and Lmax are the maximized likelihoods with
the signal yield fixed at zero and left free, respectively.
The Ds1(2536)+ mass is found to be 2534.1±0.6 MeV/c2

and the width is Γ = 0.75±0.23 MeV/c2, consistent with
the current PDG values [1]. To provide a measurement
of the Ds1(2536)+ branching-fractions ratio another fit
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FIG. 1: The scatter plot of ∆E vs. Mbc (left), where (a) is the signal region and (b) is the sideband, and projections on
∆E for events with Mbc > 5.27 GeV/c2 (center) and Mbc for events with |∆E| < 0.02 GeV (right). The Mbc distribution is
parameterized with a single Gaussian for the signal and an ARGUS function [12] for the background. The ∆E is parameterized
with a double Gaussian and a linear polynomial for the signal and background, respectively. The results of the fits are shown
by the superimposed curves.

is performed with a floating R′′ parameter. From the fit
we obtain R′′ = 0.88 ± 0.24, consistent with other mea-
surements [1].

TABLE II: Summary of the fit results: event yields, branching
fractions, and statistical significances.

B decay mode N B, 10−4 S

Ds1(2536)
+(D∗K)D̄0 42.5 ± 8.7 3.97 ± 0.85 7.0σ

Ds1(2536)
+(D∗K)D− 40.2 ± 8.6 2.75 ± 0.62 6.9σ

Ds1(2536)
+(D∗K)D∗− 33.3 ± 7.6 5.01 ± 1.21 6.3σ

The main systematics for the branching fraction mea-
surements is from the tracking efficiency. A 1% system-
atic error is assigned for each track and an additional 3%
error for each low momentum track, which are summed
linearly. For the kaon identification a 1% systematic un-
certainty is assigned for each kaon track. The contribu-
tions of the systematic uncertainties of the K0

S
and γ/π0

reconstruction efficiencies to the overall systematics are
estimated to be 1% and 3%, respectively. The width of
the narrow Gaussian component of the signal mass reso-
lution is increased by 20% to obtain the systematics due
to the poorer resolution in data compared to MC simu-
lation. To obtain the systematics due to the imperfect
background (BG) shape description, we vary the shape of
the function describing the background: the parameters
of the ARGUS function are varied within their errors; we
also fix the shape to the one obtained from the generic
MC simulation, or use a square root function instead of
the ARGUS function. The largest difference in the re-
sults is treated as the systematic uncertainty in the back-
ground shape description. A possible contribution from
inclusive B → Ds1(2536)+X and qq̄ → Ds1(2536)+X
production is checked by examining the Ds1(2536)+ mass

distribution in a BB̄ MC simulation from which the sig-
nal has been removed, and in data in the ∆E − Mbc

sideband; no signal is found in both cases, so an upper
limit on the yield is used as the systematic uncertainty
due to the peaking background. Another systematic un-
certainty is from the errors in the fractions R′ and R′′ of
the D∗0 and Ds1(2536)+ subdecay modes, respectively.
These ratios are varied in the fit within their errors, and
the difference in the fit results are assigned as a system-
atic uncertainty. All the individual systematic errors,
shown in Table III, are summed in quadrature. Since
the total systematic uncertainty is nearly symmetric, the
maximum of the positive and negative errors is taken as
the final systematic uncertainty. The errors in the results
are dominated by statistical uncertainties.

TABLE III: Relative systematic errors for the branching frac-
tions and the ratio of the branching fractions, B(Ds1 →
D∗0K+)/B(Ds1 → D∗+K0), in %.

Source B(Ds1D̄
0) B(Ds1D

−) B(Ds1D
∗−) R′′

Tracking ±9 ±9 ±9 ±3

Particle ID ±3 ±3 ±3 ±1

γ/π0 ±3 ±3 ±3 ±3

KS ±1 ±1 ±1 ±1

MC resolution ±3 ±3 ±3 ±6

BG shape ±4 ±4 ±4 ±3

Peaking BG +0
−3

+0
−3

+0
−3 ±3

B(D(∗)) ±7 ±5 ±7 ±2

R′ ±1 ±1 ±1 ±1

R′′ ±1 ±1 ±1 −

N(BB̄) ±1.5 ±1.5 ±1.5 −

Total ±14 ±13 ±14 ±9

In summary, we report a measurement of the branch-



5

0

10

0

10

0

10

0

10

0

10

0

10

0

10

2.5 2.54
0

10

2.5 2.54

(a)
E

ve
n

ts
/1

 M
eV

/c
2

(b) (c)

(d) (e) (f)

(g) (h) (i)

M(Ds1(2536)), GeV/c2

0

10

2.5 2.54 2.58

FIG. 2: Ds1(2536)
+ mass distributions for: a), b), c) B+ → Ds1(2536)

+D̄0; d), e), f) B0 → Ds1(2536)
+D− and g), h), i)

B0 → Ds1(2536)
+D∗− final states, followed by Ds1(2536)

+ decays to a), d), g) D∗0(D0γ)K+; b), e), h) D∗0(D0π0)K+ and c),
f), i) D∗+(D0π+)K0

S . The points with error bars are the data, while the curves show the fit result.

ing fractions for the decays B → Ds1(2536)+D̄(∗),
where D̄(∗) is D̄0, D− or D∗−. From a simultane-
ous fit to all B and Ds1(2536)+ decay channels we
measure B(B+ → Ds1(2536)+D̄0) × B(Ds1(2536)+ →
(D∗0K+ + D∗+K0)) = (3.97 ± 0.85 ± 0.56) ×
10−4, B(B0 → Ds1(2536)+D−) × B(Ds1(2536)+ →
(D∗0K+ + D∗+K0)) = (2.75 ± 0.62 ± 0.36) × 10−4 and
B(B0 → Ds1(2536)+D∗−)×B(Ds1(2536)+ → (D∗0K+ +
D∗+K0)) = (5.01 ± 1.21 ± 0.70) × 10−4. The ratio
B(Ds1 → D∗0K+)/B(Ds1 → D∗+K0) is measured to
be 0.88±0.24±0.08. The first error is statistical and the
second one is systematic. The obtained results are con-
sistent within errors with the previous measurements [6].

Using the latest measurements of the B → D(∗)D
(∗)
s(J)

branching fractions [1] we calculate the ratios discussed
in [4]:

RD0 =
B(B → DD∗

s0(2317))

B(B → DDs)
= 0.10 ± 0.03,

RD∗0 =
B(B → D∗D∗

s0(2317))

B(B → D∗Ds)
= 0.15 ± 0.06,

RD1 =
B(B → DDs1(2460))

B(B → DD∗

s)
= 0.44 ± 0.11,

RD∗1 =
B(B → D∗Ds1(2460))

B(B → D∗D∗

s)
= 0.58 ± 0.12.

In addition, the same ratios are calculated for B →
D(∗)Ds1(2536)+ decays using combined BaBar [6] and
current results:

RD1′ =
B(B → DDs1(2536))

B(B → DD∗

s)
= 0.049± 0.010,

RD∗1′ =
B(B → D∗Ds1(2536))

B(B → D∗D∗

s)
= 0.044± 0.010.

In these calculations it is assumed that the decay modes
D∗

s0(2317)+ → D+
s π0 and Ds1(2536)+ → (D∗0K+ +

D∗+K0) are dominant.
According to [3, 4], within the factorization model and

in the heavy quark limit, these ratios should be of order
unity for the D∗

s0(2317) and Ds1(2460), whereas for the
Ds1(2536) they can be very small. From the above ra-
tios we can conclude that while the decay pattern of the
Ds1(2536) follows the expectations, the new DsJ states
are either not canonical cs̄ mesons, or this approach does
not work for these particles.
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