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Abstract

We refer to the ground state of a gravitating, charged ideal fluid of fermions
held at a finite chemical potential as an ‘electron star’. In a holographic setting,
electron stars are candidate gravity duals for strongly interacting finite fermion
density systems. We show how electron stars develop an emergent Lifshitz
scaling at low energies. This IR scaling region is a consequence of the two way
interaction between emergent quantum critical bosonic modes and the finite
density of fermions. By integrating from the IR region to an asymptotically
AdS4 spacetime, we compute basic properties of the electron stars, including
their electrical conductivity. We emphasize the challenge of connecting UV and
IR physics in strongly interacting finite density systems.



1 The broader context

A challenge facing contemporary condensed matter theory is the description of a 2+1
dimensional finite density of fermions interacting with a gapless collective bosonic
excitation, such as a spin density wave or emergent gauge field. Such theories arise,
for instance, when a Fermi liquid is tuned across a quantum phase transition. The
low energy dynamics of the system of fermions interacting with the critical bosonic
mode can be characterised as metallic quantum criticality. While in 3+1 dimensions
one can proceed to integrate out the fermions and obtain a stable Gaussian theory
for the boson [1], this approach does not give correct answers in 2+1 dimensions, see
e.g. [2, 3, 4], as it ignores an infinite number of nonlocal marginal couplings in the
effective theory for the boson. One should not integrate out the fermions in this case
but rather flow to a scaling regime involving both the boson and fermion fields. The
resulting low energy theory is strongly interacting, e.g. [4].

One might have hoped to perform a (vector) large N analysis as a perturbative
handle on the theory. It has recently been demonstrated [5, 6, 4] that the vector
large N expansion breaks down for 2+1 dimensional metallic quantum critical sys-
tems. This occurs because a potential IR divergence at high loop order is cured by
a self-energy of order 1/N , leading to extra factors of N in the numerator in certain
Feynman graphs. Partially motivated by these difficulties, in this paper we will use
the holographic correspondence [7, 8, 9, 10] to study a strongly interacting system of
gapless bosons with a finite density of fermions. Before proceeding we should note
that more traditional approaches to this problem have also been proposed [11, 12, 13]
and that our framework does not appear to include ingredients that are likely crucial
for applications to the original systems of interest, such as Fermi lines with cold re-
gions as well as hot spots. We will, however, describe the emergence of a low energy
scaling regime from the interaction of critical bosons with a finite density of fermions.
The essential physics of this process was noted in [14].

In the holographic correspondence a charge density is implemented by a bulk
Maxwell field, dual to the current operator in field theory. The asymptotic boundary
value of the Maxwell field determines the chemical potential of the field theory. This
is a UV input the consequences of which we wish to explore at low energies. In
the simplest bulk setup of Einstein-Maxwell theory, the gravitational solution dual
to the finite chemical potential theory is then determined uniquely to be the planar
AdS-Reissner-Nordstrom black hole. This black hole was therefore a natural starting
point for investigations into strongly interacting finite density systems [15, 16, 17, 18].
Reviews of this and other earlier work can be found in [8, 9, 19].

A conceptually problematic aspect of charged black holes in an applied holography
context is their blackness. One is often interested in temperatures much lower than
the scale set by the charge density. In this extremal black hole limit the horizon
remains present and the actual source of the bulk electrical field remains hidden.
Thus, within a bulk effective field theory approach to holography we don’t have
explicit access to the zero temperature charged degrees of freedom.1 Although the

1While in some supersymmetric theories we might hope to be able to adiabatically continue the
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universality of a black hole description of charge density is appealing, and may yet
have important consequences, it makes it difficult to connect with basic experimental
implications of a finite density that depend on the nature of the charge carriers,
such as a Fermi surface in the case of fermions. A Fermi surface appears not to be
inherent to the gravitational geometry, but depends on the nature of external probes
[21, 22, 23, 24, 25].

It is perhaps fortunate, therefore, that low temperature charged AdS black holes
are found to be unstable towards a range of processes that discharge the black hole
and can lead to spacetimes without black hole horizons. The instabilities include
condensation of charged scalar fields [26], Cooper pairing of charged fermions [27],
emission of D branes [28, 29, 14], backreaction of a bulk fermionic charge density
induced by the local chemical potential [14], confinement [30, 31, 32], and perhaps
the emergence of underlying lattice degrees of freedom [33]. It is not clear at this
stage whether all zero temperature charged AdS black holes with a finite size horizon
are unstable [34]. If they are, this fact may be closely tied up with a version of the
‘weak gravity’ conjecture [35]. The instabilities lead to a new zero temperature bulk
geometry, often without a finite size horizon (e.g. [36, 37]). The charge is then carried
by explicit bulk fields and we can identify the corresponding field theory operators as
responsible for the finite density dynamics.

A fruitful approach taken in previous works in order to explicitly model holo-
graphic charge carriers even in the presence of horizons is to add probe D branes into
the bulk, see e.g. [38, 39, 40, 14]. The limitation of this approach, shared with that
of probe fermions [21, 22, 23, 24], is that it does not capture the two way interaction
between the (putatively fermionic) charge carriers and the quantum critical modes.

In this paper we will expand upon section 7.4 of [14] and describe the electromag-
netic and gravitational backreaction of charged fermions on the holographic spacetime
geometry. In general this is a very difficult problem as the fermions cannot be treated
classically. The coupled fermion-Maxwell-gravity system becomes tractable in a limit
in which the fermions may be treated locally in the bulk as an ideal fluid of zero
temperature charged free fermions. This approach mirrors the standard description
of neutron starts in astrophysics, following the original Oppenheimer-Volkoff-Tolman
papers [41, 42]. The neutron star equations were generalised to an asymptotically
AdS setting in [43]. Given that our fermion fluid is charged, we will refer to our
solutions as electron stars.

In the following section we set up the equations of motion for a charged ideal
fluid in Einstein-Maxwell theory with a negative cosmological constant. Later in
section 4 we derive these equations from an action. We discuss the regime of validity
of the fluid description depending on the Newton and Maxwell couplings as well as
the cosmological constant. In section 3 we characterise the (planar) electron star
solutions to these equations of motion. We show that the IR of the geometry has an
emergent Lifshitz scaling and compute the dynamical scaling exponent z as a function

problem to a weakly coupled regime and ‘count’ the degrees of freedom there [20], this does not help
us with our objective of understanding the strongly interacting finite density dynamics on its own
terms.
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of the parameters of the theory. Integrating out from the IR region to the spacetime
boundary, we numerically obtain the full electron star solutions and compute their
mass and charge. By perturbing the solutions in section 5 we obtain the electrical
conductivity as a function of frequency. We find that the electron star conductivity
exhibits a universal low frequency behaviour previously noted in other solutions with
an IR Lifshitz scaling. Our work presents a framework in which the physics of a
strongly interacting finite fermion density system can be investigated; we enumerate
some of the more pressing open directions in the final discussion section.

2 Equations of motion: background

We are interested in 3+1 dimensional zero temperature configurations of a charged
perfect fluid in a holographic setting. We will introduce an action principle in a
later section, but for the moment will work with equations of motion. The Einstein-
Maxwell equations with a negative cosmological constant and sources are

Rab −
1

2
gabR−

3

L2
gab = κ2

(
1

e2

(
FacFb

c − 1

4
gabFcdF

cd

)
+ Tab

)
, (2.1)

and
∇aF

ba = e2J b . (2.2)

Here the perfect fluid energy momentum tensor and current are

Tab = (ρ+ p)uaub + pgab , Ja = σua . (2.3)

The four velocity u should be normalised so that u2 = −1. The second Bianchi
identity requires that the right hand side of (2.1) be transverse. Similarly (2.2)
requires that the current be conserved. In the above expressions the cosmological
constant scale L, Maxwell coupling e and Newton constant κ2 are constants while the
pressure p, energy density ρ and charge density σ are fields on spacetime that will be
related through the equation of state of the fluid.

For the background we wish to make the following ‘planar star’ ansatz for the
metric and Maxwell field

ds2 = L2

(
−fdt2 + gdr2 +

1

r2

(
dx2 + dy2

))
, A =

eL

κ
hdt . (2.4)

Here f, g, h are functions of the radial coordinate r. The pressure and energy and
charge densities are also functions of r. It is useful to scale out the couplings and
write

p =
1

L2κ2
p̂ , ρ =

1

L2κ2
ρ̂ , σ =

1

eL2κ
σ̂ . (2.5)

The velocity has nonzero component ut = 1/(L
√
f).
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It is straightforward to show that the above Einstein-Maxwell equations are solved
provided that the following four equations are satisfied

p̂′ + (p̂+ ρ̂)
f ′

2f
− h′σ̂√

f
= 0 , (2.6)

1

r

(
f ′

f
+
g′

g
+

4

r

)
+ (p̂+ ρ̂)g = 0 , (2.7)

f ′

rf
− h′2

2f
+ g(3 + p̂)− 1

r2
= 0 , (2.8)

h′′ +
rh′

2
g (p̂+ ρ̂)− g

√
fσ̂ = 0 . (2.9)

These are four equations for six variables and so an additional equation of state must
be specified in order to close the system. One of the equations is second order. While
we could set h′ = F at this point to obtain purely first order equations in terms of the
Maxwell field strength, we are shortly about to include the effects of Thomas-Fermi
screening which introduces an explicit dependence on the Maxwell potential h.

We will focus in this paper on the case in which the ideal fluid is made from zero
temperature charged fermions with massm. Firstly recall that in flat 3+1 dimensional
space with chemical potential µ we would have

ρ =

∫ µ

m

E g(E)dE , σ =

∫ µ

m

g(E)dE , −p = ρ− µσ . (2.10)

The last of these expressions is the usual thermodynamic relation for the grand canon-
ical ensemble. We have taken the charge of the fermion to be one in units where the
Maxwell action is 1

e2
F 2. The density of states is

g(E) = βE
√
E2 −m2 . (2.11)

The constant of proportionality β is order one, the exact value is not important for
us. We will see shortly that it is a rescaled constant β̂ that we wish to dial. Finally,
if µ < m then no states above the vacuum are populated and so ρ = p = σ = 0.

We will work in the approximation in which the fermion physics is determined
by the local chemical potential, which is the tangent frame value of the background
Maxwell field

µloc. = At̂ =
At

L
√
f

=
e

κ

h√
f
. (2.12)

This ‘locally flat space’ approximation will be shown to be self consistent in an in-
teresting regime of parameters shortly. In section 4 we will derive the relation (2.12)
from the same action that implies the ideal fluid-Einstein-Maxwell equations of mo-
tion. Substituting into the flat space formulae (2.10) and scaling the integration
variable leads to the ‘dimensionless’ expressions

ρ̂ = β̂

∫ h√
f

m̂

ε2
√
ε2 − m̂2dε , σ̂ = β̂

∫ h√
f

m̂

ε
√
ε2 − m̂2dε , −p̂ = ρ̂− h√

f
σ̂ .

(2.13)
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Here

β̂ =
e4L2

κ2
β , m̂2 =

κ2

e2
m2 . (2.14)

Again, the energy density and other variables vanish if h√
f
< m̂. The integrals in

(2.13) are easily performed analytically. The local free fermion equation of state
described by (2.13) does not include corrections due to gravitational and electromag-
netic interactions. We will check below that these corrections are negligible in the
regime in which we will work.

The ansatz (2.13) determines three of our six functions, and therefore we have to
check that it is consistent with the four equations (2.6) - (2.9). Indeed this is the case.
The first equation (2.6) is in fact closely related to the first law of thermodynamics
and is satisfied by (2.13). The four equations of motion then reduce to the following
three equations

1

r

(
f ′

f
+
g′

g
+

4

r

)
+
ghσ̂√
f

= 0 , (2.15)

f ′

rf
− h′2

2f
+ g(3 + p̂)− 1

r2
= 0 , (2.16)

h′′ +
gσ̂√
f

(
rhh′

2
− f

)
= 0 . (2.17)

In these expressions p̂ and σ̂ are given by (2.13).
Before solving these equations, we should discuss the values of the two free pa-

rameters β̂ and m̂2. Recall that in the classical gravity regime κ/L� 1. We will see
shortly that the interesting regime we wish to explore in this paper has the ‘scaled’
constant β̂ of order one. In order to achieve this we therefore need e2 ∼ κ/L � 1.
Curiously, this is a fairly natural relationship from the point of view of string the-
ory, as it requires the gravitational (‘closed string’) coupling to be the square of the
Maxwell (‘open string’) coupling. This usually corresponds to the ‘probe brane’ limit;
it is interesting that integrating out fermions charged under a probe brane gauge field
results in an order one local backreaction on the spacetime, in the ‘dimensionless’
sense that we mean it.

In the regime in which β̂ is order one, the dimensionless mass squared is then of
order m̂2 ∼ e2m2L2. The operator dual to the bulk fermion might typically have a
scaling dimension ∆ ∼ mL ∼ eL/κ ∼ 1/e � 1, leading to m̂2 ∼ 1. For the moment
we will therefore take m̂ to be order one (including m̂ = 0).

At this point we can check whether the approximation of using the local flat space
results is valid. One requirement for the flat space treatment is that the density
of fermions is large compared to the curvature scale of the geometry. Thus we can
compute, under the assumption that σ̂ is order one and that e2 ∼ κ/L� 1,

σL3 ∼ L

eκ
∼ 1

e3
� 1 . (2.18)

Therefore the regime of order one backreaction of the fermions together with the clas-
sical gravity limit is compatible with our ‘Thomas-Fermi’ treatment of the fermions.
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Also compatible with our treatment is the fact that mL � 1, implying that the
Compton wavelength of the fermions is much smaller than the curvature scale (in the
massless case one can note that µloc.L� 1).

We can also now check the validity of our ‘mean field’ description of gravitational
and Maxwell interactions. In this description, the interactions are between local
charge and energy densities, but the equation of state determining these densities
does not incorporate these interactions. Following [43] we can estimate the local
effect of interactions through the Boltzmann formula

dσ

dt
∼ σ2vFΩ . (2.19)

Here vF is the order one Fermi velocity and Ω is the gravitational or Maxwell total
cross section. Using the scaling of various quantities given above, we can easily esti-
mate that the dimensionless quantity (σµloc.)

−1dσ/dt ∼ e4 � 1 for both gravitational
and Maxwell interactions. Thus the local effect of interactions is parametrically neg-
ligible. We now proceed to solve the equations of motion (2.15) - (2.17) treating β̂
and m̂ as order one free parameters.

3 Solution to the background equations of motion

3.1 Low energy scaling regime

In the IR region of the geometry, which will be r → ∞ in our coordinates (2.4),
one finds [14] an emergent Lifshitz scaling [44]. In fact the Lifshitz metric is an
exact solution to the equations of motion (2.15) - (2.17). This is perhaps intuitively
reasonable: the effect of having a local charge density given by the local background
chemical potential (2.12) is to screen the electric field. This might be thought of
as a form of Thomas-Fermi screening. Once the electric field has a ‘mass’ it cannot
support an AdS2 extremal near horizon geometry. Instead, massive vector fields are
known to give rise to Lifshitz solutions [44]. The metric and Maxwell functions take
the form

f =
1

r2z
, g =

g∞
r2

, h =
h∞
rz

. (3.1)

Here z is called the dynamical critical exponent and is given in terms of β̂ and m̂
by plugging the above Lifshitz ansatz into the equations of motion. From two of the
equations of motion we find

h2
∞ =

z − 1

z
, g2

∞ =
36(z − 1)z4

((1− m̂2)z − 1)3β̂2
. (3.2)

The remaining equation of motion then gives a complicated relationship between z, m̂
and β̂ which we cannot solve explicitly. The dependence of z on β̂ in plotted in figure
1 below for three values of m̂. Note that the local chemical potential (2.12) is constant
on these backgrounds.
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Figure 1: Dependence of the IR dynamical critical exponent on β̂. From left to right,
the three curves have m̂ = 0, 0.55 and 0.7.

It is possible to extract the asymptotic behaviours analytically. For fixed m̂ at
large β̂ →∞:

z =
1

1− m̂2
+

64/3m̂2/3

(m̂2 − 1)4/3(2m̂4 − 7m̂2 + 6)2/3

1

β̂2/3
+ · · · . (3.3)

In the massless limit the expansion is a little different

z = 1 +
6

β̂
+ · · · , (β̂ →∞ , m̂ = 0) . (3.4)

At fixed m̂ and small β̂ → 0 (this was the limit considered in [14]):

z =
36

(1− m̂2)3/2

1

β̂
− 1 +

3m̂4 log 1+
√

1−m̂2

m̂

2(1− m̂2)3/2
+ · · · . (3.5)

It is immediately seen that these asymptotic results agree with the behaviour exhib-
ited in the above figure. We see that at intermediate values of β̂ the dependence of z
on β̂ interpolates between the limiting behavious without any intermediate features.

To make sense of the above expansions, we should first note that if z → ∞ the
geometry becomes AdS2 × R2. We see that this occurs as m̂ → 1 from below or as
β̂ → 0 at fixed m̂. In these limits the fermion backreaction is being turned off and one
recovers the near horizon geometry of an extremal planar Reissner-Nordstrom-AdS
black hole. In particular it is clear that the above solutions only make sense for

0 ≤ m̂ < 1 . (3.6)

For masses bigger than unity, the Lifshitz background chemical potential is not able
to induce a density of fermions. It is possible that interesting scaling behaviour arises
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in the limit m̂ → 1, but we will not investigate this here. From (3.3) and the above
plot we can see that by dialing β̂ at fixed m̂ we can achieve all z satisfying

z ≥ 1

1− m̂2
≥ 1 . (3.7)

It is also interesting to note that for massless fermions z → 1 as β̂ → ∞, hence
the geometry becomes AdS4. In general, the emergence of an IR Lifshitz scaling
geometry with dynamical critical exponent z tunable using couplings and the mass is
reminiscent of similar results for holographic superconductors [36, 37]. The physical
difference between the two cases is that for the superconductors the bulk Maxwell
field becomes massive due to the Anderson-Higgs mechanism while in the present case
the ‘mass’ is due to screening by the charge density. A different type of screening of
the Maxwell field, due to a dilaton coupling rather than a charge density, was shown
to lead to a Lifshitz IR region in [45, 46].

The IR Lifshitz solution has the dual field theory interpretation of a low energy
scaling regime arising from the interaction of a finite density of fermions with emergent
critical bosonic modes (the metric and Maxwell fields in the IR of the bulk). To
explicitly connect this scaling to the presence of a finite charge density, we need to
integrate out to the UV boundary of the spacetime, where the charge density appears
as a boundary condition. We do this in the following subsections. The presence of such
density-induced emergent quantum criticality is a non trivial and phenomenologically
exciting aspect of our models.

3.2 From the scaling regime to the electron star boundary

The next step is to flow up the holographic renormalisation group flow. We do this
by starting with the Lifshitz IR fixed point of the previous subsection and perturbing
it by an irrelevant deformation. We then follow the flow induced by this deformation
into the UV by (numerically) solving the differential equations of motion (2.15) -
(2.17). Our treatment here is very similar to that of [36, 45]. The main difference
with those works is that the electron star will ‘end’ at some specific radius rs where
the fluid pressure and charge and energy densities all go to zero.

To perturb away from the scaling solution we can write

f =
1

r2z
(1 + f1r

α + · · · ) , g =
g∞
r2

(1 + g1r
α + · · · ) , h =

h∞
rz

(1 + h1r
α + · · · ) .

(3.8)
We are looking for solutions where the perturbation grows towards the UV (r → 0)
and dies off in the IR (r → ∞). By substituting the above expansion into the
equations of motion one easily finds that the three allowed exponents are

α0 = 2 + z , α± =
2 + z

2
±
√

9z3 − 21z2 + 40z − 28− m̂2z(4− 3z)2

2
√

(1− m̂2)z − 1
. (3.9)

As in [36, 45], the ‘universal’ relevant deformation with exponent α0 presumably
generates the finite temperature solution, which we will not consider here. The two
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exponents α± are both real for the range (3.7) of z and m̂ that we have access to. The
exponent α− is negative and therefore this is the mode that we need to follow. The
α− and α+ modes correspond, respectively, to the coupling and expectation value of
an irrelevant operator in the IR theory. At a practical level, the presence of the α0

and α+ modes, which must be set to zero for a regular IR Lifshitz region, is why one
must numerically integrate from the IR outwards towards the boundary rather than
the other way around.

Given the exponent α−, by series expanding the equations of motion one can
determine the coefficients g1, h1, and all higher coefficients, in terms of f1, which is
undetermined. However, f1 can be set to any value by rescaling the coordinates r, t, ~x.
This reflects the physical fact that only ratios of dimensionful quantities are mean-
ingful. We can therefore set f1 to an arbitrary constant value (the sign is important
however) but should make sure to only compute and plot dimensionless quantities.
With the series expansion at hand we can proceed to numerically integrate to smaller
values of r. A typical result is shown in figure 2 below. In the plot we see how the
thermodynamic quantities of the fermion fluid flow from their constant Lifshitz values
at large r to zero at the star radius r = rs. Note that the IR region of the spacetime,
large r, has a finite volume in the radial direction.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r

rs

Σ
`

Ρ
`

p`

Figure 2: From bottom to top, the pressure, energy and charge density distributions
for an electron star with z = 2 and m̂ = 0.36 (corresponding to β̂ ≈ 20). The
boundary of the star is r = rs. Recall that the boundary of spacetime is at r = 0
while r → ∞ is the deep IR. In the IR the thermodynamic quantities tend to their
constant Lifshitz values.

The boundary of the star occurs when the local chemical potential is not large
enough to populate the local Fermi sea. Thus from (2.13)

h(rs)√
f(rs)

= m̂ . (3.10)
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3.3 Matching onto Reissner-Nordstrom and thermodynam-
ics

Outside of the electron star ρ̂ = p̂ = σ̂ = 0 and the solution must become the (planar)
Reissner-Nordstrom-AdS spacetime. This solution has

f =
c2

r2
− M̂r +

r2Q̂2

2
, g =

c2

r4f
, h = µ̂− rQ̂ . (3.11)

The four constants of integration {c, M̂ , Q̂, µ̂}, to be related to boundary field theory
quantities shortly, must be fixed by matching {f, g, h, h′} at r = rs. The perhaps
unfamiliar constant c is necessary because the normalisation of the time coordinate
has been fixed already by our choice of f1 in (3.8) in the star interior. We could choose
f1 such that c = 1, but this will not be necessary so long as we consider dimensionless
quantities.

It is physically instructive, mimicking the standard astrophysical description of
neutron stars, to let {c, M̂ , Q̂} become functions of r and parametrise the solution by
(3.11) throughout the spacetime. It is then a short exercise to show that the functions
M̂(r) and Q̂(r) obey(

rQ̂(r)
)′

= c(r)

∫ ∞
r

√
g(s)

s2
σ̂(s) ds , (3.12)

M̂(r)− rQ̂(r)2

2
= c(r)2

∫ ∞
r

(
ρ̂(s)

s4
+

h′(s)2

2s4f(s)g(s)

)
ds . (3.13)

These identities are valid for any ideal fluid and do not depend on the specific equation
of state (although we do use the zero temperature thermodynamic relation −p̂ =
ρ̂ − σ̂h/

√
f). The above integrals show how the charge Q̂ and energy M̂ − 1

2
rQ̂2

enclosed within a given radius are determined respectively by the charge density of
the ideal fluid and by the sum of the energy density of the fluid and the energy in
the electromagnetic field.

By evaluating the previous expressions at the boundary, r = 0, we obtain formulae
for the charge and energy densities of the dual field theory

Q̂ ≡ Q̂(0) = c

∫ ∞
rs

√
g(s)

s2
σ̂(s) ds , (3.14)

Ê ≡ M̂(0) = c2

∫ ∞
rs

(
ρ̂(s)

s4
+

h′(s)2

2s4f(s)g(s)

)
ds+

rsQ̂
2

2
. (3.15)

These quantities are densities with respect to the two boundary spatial dimensions,
while σ̂ and ρ̂ were densities with respect to the bulk three spatial dimensions. Be-
cause the UV theory is a relativistic conformal field theory in 2+1 dimensions, we
must have that the pressure and energy are related by Ê = 2P̂ . Furthermore, in
the grand canonical ensemble the free energy Ω̂ = −P̂ . It follows from the zero
temperature thermodynamic relation

−P̂ = Ê − µ̂Q̂ , (3.16)
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that we must have

Ê =
2

3
µ̂Q̂ . (3.17)

In these expressions µ̂ is the chemical potential of the dual field theory, see e.g. [8],
not to be confused with the local bulk chemical potential.

The thermodynamic identity (3.17) can be checked numerically. In deriving this
result analytically we were lead to the following useful observation: on our solutions

2rhh′ − 2f − rf ′ = 0 . (3.18)

We can show this in two steps. Firstly we note that (3.18) is true on the Lifshitz
solution (3.1) satisfying (3.2). Secondly, by differentiating the expression in (3.18) and
using the general equations of motion (2.6) - (2.9) together with −p̂ = ρ̂− σ̂h/

√
f we

can show that it remains zero along radial evolution. Now using (3.18) it is possible
to integrate by parts in (3.15) and derive the identity (3.17).

First integrals of the equations of motion like (3.18) are common in gravitational
backgrounds and typically implement the isentropy of the classical gravitational flow.
In our case we are at zero temperature and the entropy is zero. In practice, we
can replace the second order equation (2.17) by the first order relation (3.18). Thus
we have reduced the equations of motion to three first order equations (albeit still
involving a first derivative squared).

To compare the different electron stars at different values of z and m̂, an instructive
variable to consider is the dimensionless ratio of the total energy and charge (densi-
ties). This ratio can also be compared to the value for extremal Reissner-Nordstrom
black holes with no fermionic hair√

27

32

M̂2

cQ̂3
= 1 (extremal Reissner-Nordstrom) . (3.19)

The lower this ratio, the more efficiently the solution is able to carry the charge Q̂.
The ratio is shown in figure 3 for various electron stars as a function of the IR critical
scaling exponent z for different values of the fermion mass m̂.

In figure 3 we see that the mass of an electron star at fixed charge is always
lower than the corresponding extremal black hole with the same charge. The stars
are therefore thermodynamically preferred. This might appear surprising as extremal
black holes are often the lightest charged objets in the theory with a given charge,
being made of ‘pure charge’ in some sense. The situation here is quite analogous to
that of holographic superconductors [47, 48]. Furthermore, we should note that in
an extremal black hole background, the local chemical potential h/

√
f → 1 at the

horizon. This can be seen by substituting the extremality condition (3.19) into the
metric (3.11). For any fixed fermion mass m̂ < 1, this chemical potential becomes
greater than the fermion mass before the horizon is reached, and therefore a fermion
density is induced. The extremal black hole is thus never a solution to the equations
of motion in the range m̂ < 1 that we are considering. Alternatively, one could say
that the extremal black hole is a solution with an unstable vacuum for the fermion
field, in which the fermion states with energies between m and µloc. are not populated.
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Figure 3: Dimensionless ratio of the electron star mass to its charge, normalised such
that the ratio is unity for an extremal black hole. The three curves correspond, from
top to bottom, to masses m̂ = 0.7, m̂ = 0.36 and m̂ = 0.07.

Consistently with previous remarks, we see that the extremal black hole behaviour
emerges as m̂→ 1 or as z →∞.

4 An action for charged ideal fluids

While the equations of motion developed in previous sections are sufficient for many
purposes, an action principle often plays a useful role in the holographic correspon-
dence. In this section we pause in our main development to describe an action that
recovers all of the equations of motion we have used above.

A simple action for neutral ideal fluids coupled to gravity was formulated by Schutz
[49]. We will start instead from an ‘off-shell’ form of the Schutz action, following [50]
and more closely [51], coupled to the Maxwell field along the lines of [52]. Off-shell
refers here to the treatment of a constraint.

For simplicity we begin with the simplest case of ‘non-rotating’ fluids2 at zero
temperature. The generalization to thermal rotating fluids is straightforward, as we
will indicate below. An action functional describing non-rotating charged ideal fluids
at zero temperature, minimally coupled to gravity, is given by

S =

∫
d4x
√
−g (LEins. + LMxwl. + Lfluid) , (4.1)

where

LEins. =
1

2κ2

(
R +

6

L2

)
, LMxwl. = − 1

4e2
FabF

ab , (4.2)

2Because our fluid is charged, by non-rotating we will mean that εabcdub

(
∇cud + 1

2Fcd/µ
)

= 0.
In practice this condition consistently restricts the degrees of freedom of the fluid to a ‘potential
flow’, as will become manifest below.

12



and
Lfluid = −ρ(σ) + σua(∂aφ+ Aa) + λ(uaua + 1) . (4.3)

We will see shortly that ua, ρ and σ are the four velocity, the energy density and
the charge density of the fluid respectively, λ is a Lagrange multiplier, and φ is a
‘Clebsch’ potential variable associated with the fluid velocity. As previously, we have
set the charge of the fermion to be unity and thereby conflated the charge and number
densities. Clearly φ must shift under a gauge transformation in order for the action
to be gauge invariant.

We now proceed to derive the equations of motion from (4.1). The variables with
respect to which we vary the action functional are λ, σ, φ, the covariant velocity ua,
and finally the gauge potential Aa and the metric tensor gab. The variation with
respect to the first three of these variables yields the following equations

δλ : |u| = −1 , (4.4)

δσ : ρ′(σ) = ua(∂aφ+ Aa) , (4.5)

δφ : ∇a(σu
a) = 0 . (4.6)

Equation (4.6) is the continuity equation for the fluid current vector

Ja ≡ σua , (4.7)

while (4.4) is just the statement that the fluid four velocity should be timelike. On
physical grounds we can identify the left hand side of equation (4.5) as the local
chemical potential

µ(σ) ≡ ρ′(σ) , (4.8)

and introduce the fluid pressure p through the thermodynamical equation

p(σ) ≡ −ρ(σ) + σµ(σ) . (4.9)

The previous two formulae are simply useful definitions insofar as the equations of
motion are concerned. We can rewrite (4.5) in the form

µ = ua(∂aφ+ Aa) . (4.10)

Note that the fluid chemical potential µ is gauge invariant.
Next comes the varying of the action with respect to ub. This leads to

δua : σ(∂aφ+ Aa) + 2λua = 0 . (4.11)

Multiplying the previous equation by ua, the Lagrange multiplier λ is determined as

λ =
σµ

2
=

1

2
(ρ+ p) . (4.12)

Thereby we also obtain

ua = −∂aφ+ Aa
µ

. (4.13)
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This is the so-called ‘velocity-potential representation’, which is implemented directly
in ‘on-shell’ variational formulations.

Varying the action with respect to the gauge potential gives the Maxwell equations

∇bF
ab = e2Ja , (4.14)

where the current was defined in (4.7) above. Finally the Einstein equations for the
geometry,

Rab −
1

2
gabR−

3

L2
gab =

κ2

e2

(
FacF

c
b −

1

4
gabFcdF

cd

)
+ κ2 T fluid

ab , (4.15)

are obtained upon varying the action (4.1) with respect to gab. The energy-momentum
tensor of the fluid is given by

T abfluid ≡
2√
−g

δ

δgab

∫
d4x
√
−g Lfluid = gabLfluid − 2u(a[σ(∂b)φ+ Ab)) + λub)] . (4.16)

Using the previous equations of motion, the on-shell energy-momentum is found to
take the standard form for an ideal fluid

T abfluid = (ρ+ p)uaub + pgab . (4.17)

We should check that we have indeed recovered all the equations of the previ-
ous section from the full action (4.1). The Einstein-Maxwell-fluid equations (2.1) –
(2.3) have been obtained explicitly. The equation of state ρ(σ) was defined implic-
itly through equation (2.10), by elimination of µ. We can easily check that (2.10)
furthermore implies µ = ρ′(σ) as required. The ansatz we made in section 2 for the
metric, Maxwell field and fluid velocity corresponds to setting φ = 0 in (4.13) with
the local µ consequently given by (2.12).3 Thus we see that all the equations used in
previous sections correspond to a solution of the equations of motion following from
the action (4.1).

It is now easy to obtain the on-shell form of Lfluid. This is required for instance
to evaluate the free energy of the electron star. Substituting the equations of motion
into the action (4.3) gives

Lon−shell
fluid = p . (4.18)

Thus the on-shell Lagrangian for the ideal fluid is simply its pressure. Evaluated on
our electron star ansatz (2.4), one can then verify using the equations of motion (2.6)
– (2.9) that the full Lagrangian in (4.1) is a total derivative

Lon−shell =
L2

κ2

d

dr

f ′ − 2hh′

2r2
√
fg

. (4.19)

3As usual in holographic setups, we fixed a gauge ambiguity by requiring At to vanish at the
horizon. Adding a nonzero constant ∂tφ in the formula for the gauge invariant local chemical
potential (4.10) would result in a non-Lifshitz invariant IR. A radially dependent φ would take us
outside of our ansatz, introducing radial fluid flow. This choice of requiring µ to tend to a constant
in the IR can presumably be thought of as a choice of fermion vacuum that is regular at the IR
‘horizon’. Thanks to Tom Hartman for discussions of this point.
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The free energy is given by the Euclidean action evaluated on shell. We have just seen
that the bulk action becomes a boundary term. In order to obtain a finite answer
we must add the boundary Gibbons-Hawking term and intrinsic counterterms. We
will not describe this standard process in detail, see e.g. [8]. The solution near the
boundary takes the form (3.11), this is all that is needed to evaluate the action on
shell as there is no contribution from the IR Lifshitz endpoint of the integral. The
upshot is that the free energy density is

Ω̂ = M̂ − µ̂Q̂ , (4.20)

as we assumed in (3.16) above.
We can also use the action (4.1) as a starting point for Lifshitz holography, with

the UV given by (3.1) rather than AdS4. Lifshitz holography requires additional
boundary counterterms. These are most conveniently packaged [53, 54] as a series in

powers of |dφ+ A|2 + e2h2
∞

κ2 , as this combination vanishes on the Lifshitz background
and it becomes apparent that only a finite number of such terms are necessary.

If, following Schutz [49], we wished to obtain the correct equations of motion for
the fluid as well as the geometry from the ‘on-shell’ Lagrangian (4.18), we would firstly
need to bring the equation of state of the fluid ρ = ρ(σ) into the form p = p(µ). This
is achieved through (4.9) which may be viewed as the usual Legendre transformation.
Subsequently we can take the norm of (4.13) to express the pressure in terms of the
Clebsch potential φ and the gauge potential Aa. This leads to the final Schutz form
of the fluid Lagrangian

LSchutz
fluid = p(µ) = p(|dφ+ A|) . (4.21)

This action should be varied with respect to φ,Aa and gab. This form of the action
shows most explicitly that coupling a charged ideal fluid to gravity without rotation
or temperature is equivalent to coupling to a Stückelberg field.

Finally, we should sketch the straightforward generalization of the off-shell action
(4.1) to describe charged rotating and finite temperature ideal fluids coupled to grav-
ity. More details can be found in the papers we referred to above. One first introduces
two pairs of new potential-variables, (α, β) and (s, θ). The first pair will account for
the fluid rotation. In the second pair, s will become the fluid entropy density, while
the variable θ, the so-called ‘thermasy’, will be responsible for the fluid temperature.
Accordingly, in the action (4.1), the fluid Lagrangian is promoted to the following

Lfluid = −ρ(σ, s) + σua(∂aφ+ Aa + θ∂as+ α∂aβ) + λ(uaua + 1) . (4.22)

The equation of state has been enhanced to include an entropy dependence, ρ(σ, s).
The equations (4.4) and (4.6) will remain the same, while equation (4.11) is replaced
with

σ(∂aφ+ Aa + θ∂as+ α∂aβ) + 2λua = 0 . (4.23)

There is a similar modification to equation (4.10). Further, we have the following
equations from varying the action with respect to the new potential variables

ua∂as = 0 ; ua∂aβ = 0 ; ua∂aα = 0 ; ua∂aθ = −T ≡ − 1

σ

∂ρ

∂s
, (4.24)
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in which T denotes the fluid temperature. Similarly to above, the resulting Schutz
form of the action is found to be

LSchutz
fluid = p(µ, s) , (4.25)

where now the chemical potential in terms of the potential-variables and the gauge
field is

µ = |dφ+ α dβ + θ ds+ A| . (4.26)

5 Electrical conductivity

To compute the frequency dependent electrical conductivity at zero momentum, σ(ω),
we need to perturb the backgrounds of the previous sections. We clearly need to
perturb the vector potential Ax, as this is the field dual to the electric current. At zero
momentum, these perturbations source perturbations of the metric component gtx and
the velocity ux. Specifically, if we take the perturbations to have time dependence
e−iωt, so that

Ax =
eL

κ
δAx(r)e

−iωt , gtx = L2 δgtx(r)e
−iωt , ux = L δux(r)e

−iωt , (5.1)

then the linearised Einstein-Maxwell equations about the above backgrounds are
solved if the following three equations are satisfied

σ̂δAx + (p̂+ ρ̂)δux = 0 , (5.2)

δg′tx +
2

r
δgtx + 2h′δAx = 0 , (5.3)

δA′′x +
1

2

(
f ′

f
− g′

g

)
δA′x +

h′

f

(
δg′tx +

2

r
δgtx

)
+ gσ̂δux + ω2 g

f
δAx = 0 . (5.4)

It is immediately clear that we can eliminate δgtx and δux from the above equations
to obtain a single equation for δAx

δA′′x +
1

2

(
f ′

f
− g′

g

)
δA′x +

(
ω2g

f
− gσ̂2

p̂+ ρ̂
− 2h′2

f

)
δAx = 0 . (5.5)

The structure of this equation is similar to that arising in holographic superconductors
[48]. There is a ‘mass’ term due to screening in this case rather than electromagnetic
symmetry breaking. The rightmost term in the equation (5.5) is due to the coupling
between metric and Maxwell fluctuations. It is also a mass-like term and leads to
an infinite DC conductivity because the medium has a net charge density and is
translation invariant [17, 18].

The equation for the perturbation of the fluid velocity (5.2) is just δAx+µδux = 0,
which is again compatible with the irrotational form (4.13) with δµ = δφ = 0. It is
possible that modes with finite momentum k will excite the scalar degree of freedom
of the fluid.
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5.1 The conductivity at low frequencies

In the Lifshitz IR background (3.1) we can solve the equation (5.5) for the δAx
fluctuations analytically in terms of a Hankel function

δA(Lif.)
x = rz/2H

(1)
3/2

(
g1/2
∞
ωrz

z

)
. (5.6)

In deriving this formula we imposed ingoing boundary conditions at the Lifshitz

‘horizon’ (i.e. δAx ∼ e+iωg
1/2
∞ rz/z as r → ∞). We also used the algebraic equations

(3.2) giving g∞, h∞ in terms of z, β̂, m̂ in order to simplify the index of the Hankel
function. Similar Hankel functions were found for fluctuations of a vector field in a
Lifshitz background in e.g. [45, 37, 14]. In fact, the use of Hankel functions here
is overkill, as the previous expression can equivalently be written as an oscillating
exponential multiplying a polynomial

δA(Lif.)
x =

(
1 +

i

ωrz
z

g
1/2
∞

)
eiωr

z g
1/2
∞ /z . (5.7)

We have changed the (unobservable) overall normalisation relative to (5.6).
The solution for the perturbation in the Lifshitz region (5.7) will hold for the full

solution in the ‘near’ region defined by rµ̂ � 1. At zero temperature µ̂ is the only
energy scale in the problem. This condition simply means that we can use the leading
order metric near the horizon. At low frequencies, ω � µ̂, the near region has an
overlap with the ‘far’ region defined by ωrzµ̂z−1 � 1. In the far region, away from the
non-analytic ingoing boundary conditions, we can set ω = 0 in the Maxwell equation
in order to compute to leading order at low frequencies. We will now proceed to
match the near solution (5.7) to the far region and obtain the conductivity to leading
order at low frequencies. This computation is essentially identical to that appearing
in e.g. [55, 37, 45].

The conductivity of the dual field theory is computed at the AdS4 boundary. Near
the AdS4 boundary, r → 0, the Maxwell field perturbation behaves as

δAx = δA(0)
x + rδA(1)

x + · · · . (5.8)

The ‘dimensionless’ conductivity is then given by (e.g. [8])

σ̂ ≡ e2σ = −i c
ω

δA
(1)
x

δA
(0)
x

. (5.9)

The extra factor of c compared to more common expressions is due to the normalisa-
tion of the metric in 3.11. We use the same symbol for the conductivity of the dual
field theory and the charge density in the bulk. Hopefully the context will make it
obvious which we are referring to.

The following flux is independent of the radial position r

F = i
√
f/g

(
δAxδA′x − δAxδA′x

)
. (5.10)
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Constancy of this quantity follows directly from the equation (5.5). Evaluating near
the boundary and using (5.9) gives

F = 2|δA(0)
x |2ωRe σ̂(ω) . (5.11)

Evaluating using the near horizon solution (5.7) gives

F = 2ω . (5.12)

Equating the previous two formulae we see that to obtain the real part of the con-
ductivity it only remains to compute the δA

(0)
x obtained by matching onto (5.7).

Expanding the near solution (5.7) into the matching region ωrzµ̂z−1 � 1 gives

δAx =
i

ωrz
z

g
1/2
∞

. (5.13)

As we noted above, in the far region we can drop the ω dependence in the Maxwell
equation (5.5) because ω � µ̂. It follows that the ω dependence in the previous
formula will remain the same all the way out to the boundary, leading (generically)

to δA
(0)
x ∝ ω−1. Putting all of these facts together then leads to the conclusion that

to leading order at low (but finite) frequencies

Re σ̂(ω) ∝ ω2 . (5.14)

This is precisely the same low frequency behaviour for the conductivity in a dual
geometry with an IR Lifshitz region as that obtained in [37, 45]. The same behaviour
also occurs at extremal black hole horizons [56]. The physics behind the emergence
of the Lifshitz region is apparently distinct in these various cases; this seeming uni-
versality in the electrical conductivity remains to be properly understood.

As well as the real part (5.14), we can anticipate that the imaginary part of the
conductivity will have a pole as ω → 0 corresponding to a delta function at ω = 0
in the real part. Thus in fact Re σ̂(ω) ∝ δ(ω) + ω2. This delta function is due to
the fact that the system is translationally invariant and carries a net charge. When
excited by a time independent electric field, the whole system is accelerated, leading
to a current that cannot be relaxed [17, 18]. We will see the pole in the imaginary
part of the conductivity shortly in our numerics.

Before moving on to compute the full conductivity numerically, we should make a
remark about the result that Re σ̂(ω) ∝ δ(ω)+ω2. Namely, that there are two reasons
why the ω2 conductivity (which will presumably translate into a T 2 low temperature
dependence of the DC conductivity as in [57]) should not be taken overly seriously
as an ‘experimental’ feature of this model. Firstly, in practice, disorder or other
physics will smear out the delta function into a Drude peak. The magnitude of this
peak could easily dominate, e.g. the temperature dependence of the DC conductivity.
Secondly, putting aside the Drude peak, an ω2 or T 2 dependence of the conductivity
is very weak and corresponds to a huge resistivity, going like ω−2 or T−2. It will be
very easy for any other conduction channel to short-circuit this classical contribution.
For instance, one loop processes in the bulk involving charged fermions, analogous
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to those of [58], will likely have a resistivity that goes to zero at low temperatures
or frequencies. The semiclassical expansion will therefore break down at sufficiently
low frequencies at which non-classical conduction becomes favoured. It is clearly of
interest to investigate the one loop physics of our electron star backgrounds.

5.2 The full conductivity

In this subsection we compute the full frequency dependent conductivity. To do this
we must numerically solve the differential equation (5.5). We can integrate out from
the horizon to the boundary and then read off the conductivity using (5.9). The
ingoing solution at the horizon, r →∞, on a general background takes the form

δAx = eiω g
1/2
∞ (rz/z+ rz+α− (g1−f1)/2(z+α−))(1 + #rz+2α− + · · · ) . (5.15)

Here α− < 0 is the exponent of the IR irrelevant mode in (3.9) while g1 and f1 are the
coefficients appearing in (3.8). These are determined, along with # and higher order
terms, by series expanding the equations of motion. From the definition of α− in (3.9)
and the lower bound on z in (3.7) we can show that z + α− > 0 and z + 2α− < 0.
This is why the first power must be kept in the exponent while the second can be
expanded as r →∞.

Starting from the series expansion (5.15), we can numerically integrate the Maxwell
equation (5.5) out to the electron star boundary rs. Outside of the electron star, we
need to solve the equation in the Reissner-Nordstom-AdS background (3.11). This
must also be done numerically, with the value and derivative of the fluctuation δAx
matched across the electron star boundary. Integrating out to the boundary then gives
the conductivity (5.9). We performed these integrations using NDSolve in Mathe-
matica. The resulting real and imaginary parts of the electrical conductivity as a
function of frequency are shown in figure 4 below.
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Figure 4: The zero temperature real and imaginary parts of the electrical conductivity
as a function of frequency. From left to right in each plot: {z = 3, m̂ = 0.7},
{z = 2, m̂ = 0.36} and {z = 1.5, m̂ = 0.15}. The real part also contains a delta
function at ω = 0.
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In the plots of figure 4 we see the expected soft gap σ ∼ ω2 of the (dissipative)
real part of the conductivity at low frequencies anticipated in (5.14) above. The
divergence of the imaginary part indicates the presence of a delta function in the real
part, via for instance the Kramers-Kronig relations. As noted above the divergence
is due to the combination of a net charge density and translation invariance (i.e. no
impurities or lattice). At large frequencies the real part tends to a constant. This
follows from the fact that conductivity is dimensionless in 2+1 dimensions and that
the UV completion of our boundary field theory is a conformal fixed point with no
inherent scale.

The z = 3 plot of figure 4 is already quite similar to the zero temperature limit
of the z =∞ Reissner-Nordstrom case, which is a charged black hole rather than an
electron star. See e.g. [8]. The only qualitative effect of the electron star (i.e. lower
mass fermions and lower IR scaling z) seems to be to smoothen out the transition from
the IR ω2 scaling to the constant high frequency behaviour. The coefficient of the
µ̂ω−1 pole in the imaginary part of the conductivity is proportional to Q̂/µ̂2 ∝ Q̂3/Ê2,
again see e.g. [8]. It is therefore consistent with figure 3 that we see that the pole is
stronger at lower fermion mass. At lower fermion mass, the electron star has a larger
charge at fixed chemical potential.

6 Final comments

One important objective of holographic approaches to condensed matter is to charac-
terise possible (computationally controlled) IR fixed point behaviour that falls outside
of the Landau Fermi liquid paradigm. As with the Fermi liquid itself, this is in the
first instance a question about universal low energy physics, not about the UV physics
(be it electrons in a lattice or some cousin of N = 8 super Yang-Mills theory). This
perspective suggests that in the bulk one should focus on the near horizon region of
the geometry, as argued most explicitly in [59, 60]. However, the role of a finite charge
density is subtle in this regard.4 The charge density itself, or the chemical potential,
is a UV quantity that is specified at the boundary of the bulk geometry. The deep IR
Lifshitz solution, in our case for instance, does not immediately ‘know’ what the value
of this charge density is. In fact, the electric field is zero at the Lifshitz ‘horizon’ and
grows as one moves out towards the boundary of the electron star. Therefore, if we
wish to understand how the emergent IR Lifshitz scaling is related to the fact that we
are considering a system at finite density, we need to connect statements about the
UV and IR physics. In a Fermi liquid, the connection between UV and IR physics
is achieved via the Luttinger theorem [61, 62]. This theorem states that the volume
enclosed by the Fermi surface is determined by the average particle number. When
the low energy effective field theory is Fermi liquid theory, the theorem essentially
reduces to counting charged states in the UV and IR [63]. A pressing open question
in applications of holography to condensed matter systems is to formulate a useful
holographic analogue of this theorem.

4We would like to acknowledge helpful discussions with Diego Hofman on this topic.
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Partially motivated to obtain an arena where an interesting low energy scaling
geometry could be seen to emerge from a finite density system, in this paper we
have constructed zero temperature ‘electron star’ solutions in asymptotically AdS4

spacetime, building on results in [14]. These geometries are solutions to the Einstein-
Maxwell-charged ideal fluid equations of motion. The structure of the solutions is a
‘domain wall’ flow from a ‘near horizon’ Lifshitz geometry to AdS4 at high energies.
The essential physics of the flow is that the Maxwell field becomes screened in the
Lifshitz region by the charged fluid. In several regards our solutions are qualitatively
(and quantitively!) similar to the zero temperature holographic superconductors of
[36, 37] and the extremal dilatonic black holes of [45].

Another motivation of our work was to obtain gravitational duals in which the
full charge density was manifestly ‘fermionic’. The electron star is literally a Fermi
surface that is inhomogeneous in the bulk radial direction. This may or may not be
an important ingredient in formulating a holographic Luttinger-like theorem. There
are various immediate questions to be explored in this regard. One should compute
the momentum dependence of the conductivity to look for Fermi surface related
signatures. Also, upon adding a magnetic field to the system the electron star should
show quantum oscillations already at a classical level, unlike charged black holes for
which quantum oscillations are only present at one loop order and reveal a ‘small’
Fermi surface [25, 64].

There are various directions in which our work could be extended at the level of
generalising the solutions we have presented and studying their physics. Upon adding
interactions the stars will likely have instabilities such as Cooper pairing instabilities
along the lines of [27]. One should explore the effects of changing the equation of
state. There may be circumstances in which clumping instabilities arise. It should be
straightforward to place the system at finite temperature. It is possible that a phase
transition to a black hole solution occurs at some finite temperature, analogously to
the transition in the neutron stars of [43]. A more challenging question is to move
away from the ideal fluid limit. One would like to solve the Dirac equation in an
unspecified background, populate the low lying states up to some chemical potential
and then self-consistently solve the Einstein-Maxwell equations together with this
quantum source.
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