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We analyze the Mass Varying Neutrino (MaVaN) scenario. We consider a minimal

model of massless Dirac fermions coupled to a scalar field, mainly in the framework of

finite temperature quantum field theory. We demonstrate that the mass equation we

find has non-trivial solutions only for special classes of potentials, and only within

certain temperature intervals. We give most of our results for the Ratra-Peebles

Dark Energy (DE) potential. The thermal (temporal) evolution of the model is

analyzed. Following the time arrow, the stable, metastable and unstable phases

are predicted. The model predicts that the present Universe is below its critical

temperature and accelerates. At the critical point the Universe undergoes a first-

order phase transition from the (meta)stable oscillatory regime to the unstable rolling

regime of the DE field. This conclusion agrees with the original idea of quintessence

as a force making the Universe roll towards its true vacuum with zero Λ-term. The

present MaVaN scenario is free from the coincidence problem, since both the DE

density and the neutrino mass are determined by the scale M of the potential.

Choosing M ∼ 10−3 eV to match the present DE density, we can obtain the present

neutrino mass in the range m ∼ 10−2 − 1 eV and consistent estimates for other

parameters of the Universe.

PACS numbers:
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I. INTRODUCTION

Neutrino mass related questions are of great interest for particle physics as well as for

cosmology (for reviews see Ref. [1] and references therein). Current upper limits on the

sum of neutrino masses from cosmological observations are of the order of 1 eV [2–4], while

neutrino oscillations give a lower bound of roughly 0.01 eV [5, 6], making neutrino mass an

established element of particle physics. Furthermore, understanding the origin of neutrino

mass opens a window into understanding physical processes beyond the standard model of

particle physics [7–10].

It is now well established that about seventy four percent of the Universe is comprised

of dark energy (DE) (for reviews see Ref. [11] and citation therein). The present stage of

evolution of the Universe is governed by this dominant DE contribution, and the Universe

experiences an accelerating expansion [12, 13]. The nature of DE is still unknown, and it is

one of the major questions of modern cosmology. There are, broadly speaking, three major

possibilities proposed to explain the DE [11]. Most straightforwardly, and in good agreement

with the current observational data, it can be present just as the cosmological constant [11].

Secondly, the DE can be accommodated in some framework of the modified non-Einsteinian

gravity theories (see, e.g., Refs. [14, 15]). And lastly, following the original proposals [16, 17]

on the DE originating from a scalar field action similar to the inflaton field, there has been

a lot of activity in constructing and analyzing various trial scalar field Lagrangians to model

the DE [13]. Note, that it is even unclear what kind of scalar field potential governs the

inflationary expansion of the Universe [18], and as the result, the effective quantum field

that adequately describes inflation is still under debate [19]. A similar observation can be

drawn from analyzing many potentials proposed for the DE action [13].

On the other hand, several cosmological and astrophysical observations imply that about

twenty two percent of the Universe consists of dark matter (DM) [11], if we admit the general

relativity theory of gravity. Most probably DM is formed through massive weakly interacting

particles (WIMPs), and the nature of these particles is also still unknown. There are several

recent observations performed by PAMELA [20] and GLAST missions which indicate DM

particle annihilations [21]. Recently it was proposed that both these observations could be

used to test baryogenesis [22] which is one of the important problems of the standard particle

physics model.
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Another puzzling question in modern cosmology is the coincidence problem - the density

of DE is comparable to the present energy density of DM. In turn, the latter is comparable

(within the order of magnitude), to the energy density of cosmological neutrinos [1, 2]). Is

there a mechanism explaining this coincidence? A very convincing answer to this question is

given by the mechanism of DM mass generation via various types of DM-DE couplings, rang-

ing from Yukawa to more exotic ones. [23–28] The mass of the DM particle in this approach

is naturally time-dependent, and they were coined Varying Mass Particles (VAMPs). Vari-

ous DE–DM interaction models have been constrained by observations of Supernovae type

Ia [29], the age of the Universe [30–32], Cosmic Microwave Background (CMB) anisotropies

[33, 34], and Large Scale Structure (LSS) formation [35].

Fardon, Nelson and Weiner elaborated on the VAMP mechanism in the context of neu-

trinos. [36]1. In their model the relic neutrinos, i.e., fermionic field(s), interact with a scalar

field via the Yukawa coupling. If the decoupled neutrino field is initially massless, then the

coupling generates a (varying) mass of neutrinos in this DE-neutrinos model. This mass

varying neutrino (MaVaN) scenario is quite compelling, since it connects the origin of neu-

trino mass to the DE, and solves the additional coincidence problem of why the neutrino

mass and DE are of comparable scales [38]. (For more on the coincidence, see, e.g. [39]). To

consider neutrinos as particles which get their mass through the coupling is attractive for

particle physics, as well as for its cosmological consequences. However there are significant

issues that have to be resolved for the sake of viability of the MaVaN scenario. Most notably,

it has been shown [40] that the model of Ref. [36] suffers from a strong instability due to

the negative sound speed squared of the DE-neutrino fluid (see also [41]).

Any DM-DE coupling induces observable changes in large scale structure formation [42].

The main reason for this is due to the presence of additional DM contributions (perturba-

tions) in the equation of motion which determines the dynamics of the scalar field. The

changes in the dynamics are drastic when massive neutrinos are coupled to DE [40]. In

this case the squared sound speed of the DE-neutrino fluid defined as c2s = δP/δρ, (where

δ represents the variation, and P and ρ are pressure and energy density of the DE-neutrino

fluid) is negative. The negative squared sound speed results in an exponential growth of

scalar perturbations. [43–46]

1 The DE-neutrino coupling and the baryogenesis constraints have been also studied also in Ref. [37]
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After the critique in Ref. [40], the issue of stability of the DE-neutrinos fluid has been

addressed by many authors [41, 46–53]. Various physical assumptions were made in those

references in order to avoid the exponential clustering of neutrinos. In particular, to achieve

stability, proposals were put forward to make the DE-DM model more complicated, e.g., by

extending it to a multi-component scalar field, or by promoting its supersymmetry. [49, 51]

We however are not inclined to pursue this line of thought and will explore the simplest

possible “minimal” model. As we will demonstrate, the occurrence of the instability in the

coupled DE-neutrinos model is meaningful, and we will explore the physical implications of

this phenomenon. Note that Wetterich and co-workers [46] have already analyzed various

implications of the instability in the MaVaN model on the dynamics of neutrino clustering.

In this paper we re-address the analysis of the DE-neutrinos coupled model. What is

really new in our results, to the best of our knowledge, apart from a consistent equation

for the equilibrium condition, is the analysis of the thermal (i.e. temporal) evolution of the

MaVaN model and prediction of its stable, metastable and unstable phases. The analysis

of the dynamics in the unstable phase results in, for the first time in the framework of the

MaVaN scenario, a picture of the present-time Universe totally consistent with observations.

Our findings are in line with the original proposal [16, 17] of the DE potential (quintessence)

to model the Universe slowly rolling towards its true vacuum (Λ = 0). As it turns out, the

present Universe, seen as a system of the coupled DE (quintessence) field and fermions

(neutrinos) is below its critical temperature. It is similar to a supercooled liquid which has

not crystallized yet: its high temperature (meta)stable phase became unstable, but the new

low-temperature stable phase (Λ = 0) is still to be reached. The Afshordi-Zaldarriaga-Kohri

instability corresponding to c2S < 0 is just telling us this.

The rest of the paper is organized as follows: In Section II we give the outlook of the

model and formalism applied and derive the basic equations for the coupled model. In

Section III we present the qualitative analysis of the equation which yields the fermionic

(neutrino) mass. Section IV contains analysis of the coupled model with the Ratra-Peebles

DE potential at equilibrium. The dynamics of the model applied to the whole Universe is

studied in Section V. The results are summarized in the concluding Section VI.
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II. MODEL AND FORMALISM. BASIC EQUATIONS

A. Outlook

In this paper we focus on the case when the scalar field potential U(ϕ) does not have

a non-trivial minimum, and the generation of the fermion mass is due to the breaking of

chiral symmetry in the Dirac sector of the Lagrangian. A non-trivial solution of the fermionic

mass equation is a result of the interplay between the scalar and fermionic contributions.

We consider the most natural and intuitively plausible Yukawa coupling between the Dirac

and the scalar fields.

The key assumption is that the fermionic mass generation can be obtained from mini-

mization of the thermodynamic potential. That is, the coupled system of the scalar bosonic

and fermionic fields is at equilibrium, at least at some temperatures. This will be analyzed

below more specifically. We assume the cosmological evolution, governed by the scale factor

a(t) to be slow enough that the coupled system is at equilibrium at a given temperature

T (a). Then the methods of thermal quantum field theory [54, 55] can be applied.

This problem is rather well studied with quantum field theory and statistical physics

in different contexts [54–56]. The major conceptual difficulty in applying quantum field-

theoretical methods for the dark-energy scalar field is the lack of “well-behaved” potentials

interesting for cosmological applications. For instance, a class of the very popular inverse

power law slow-rolling quintessence potentials [13] are singular at the origin. Consequently,

the field theory should be understood as a sort of effective theory, and we plan to address

this issue more deeply in our future work.

As far as the fermionic sector of the theory is concerned, one needs to distinguish two

different cases pertinent for neutrino applications:

(i) an equal number of fermions and antifermions, i.e., zero chemical potential µ = 0;

(ii) a surplus of particles over antiparticles, and small non-zero chemical potential.

For the bounds on the neutrino chemical potential, see Refs. [1, 57]. If experiments

confirm neutrinoless double beta decay, i.e., that neutrinos are Majorana fermions, then

the lepton number is not conserved [8], and one cannot introduce a (non-zero) chemical

potential. Then case (i) above is applicable, proviso that the Majorana fields are utilized

instead of the Dirac ones. For the case (i) with Dirac fermions the ground state corresponds
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to a complete annihilation of fermion-antifermion pairs, i.e. the fermions completely vanish

in the zero-temperature limit.

Assumption of the fermion-antifermion asymmetry and (conserving) particle surplus, i.e.,

of a non-zero chemical potential, results in the fermionic contributions which survive the zero-

temperature limit. However the smallness of the zero-temperature contribution renders this

issue rather academic. Indeed, for the neutrinos we are interested in this study, by assuming

the maximal particle surplus n◦ ∼ 115 cm−3, one gets the Fermi momentum kF ∼ 3·10−4 eV.

For m ∼ 10−2 eV, one obtains µ(T = 0) = εF =
√

k2
F +m2 = m+O(10−4 eV). This results

in a non-trivial vacuum with the particle surplus frozen within an extremely narrow Fermi

shell m ≤ ε ≤ εF . Thus, trying to grasp the essential physics in this study from possibly

the simplest “minimal model”, we assume the fermions to be described by a Dirac spinor

field with zero chemical potential.

In this work we will use the standard methods of general relativity and finite-temperature

quantum field theory extended for fields living in a spatially flat Universe with the

Friedmann-Lemâıtre-Robertson–Walker (FLRW) metric where the line element is ds2 =

dt2−a2(t)dx2. Here t is the physical time and a(t) is the scale factor, which can be obtained

from the Friedmann equations [9, 10]

H2(t) =

(

ȧ

a

)2

=
8πG

3
ρtot , (1)

Ḣ(t) +H2(t) =
ä

a
= −4πG

3
(ρtot + 3Ptot) . (2)

Eqs. (1)-(2) also lead to the continuity equation

ρ̇tot +
3ȧ

a
(ρtot + Ptot) = 0 . (3)

Here the dot represents the physical time derivative and ρtot and Ptot are the total energy

density and pressure of the Universe. In accordance with the (standard) ΛCDM model, the

Universe is assumed to consist of (1) DE, (2) cold DM (CDM) made of weakly interacting

massive particles, presumably MDM > 1 ∼ 10 GeV, (3) photons, and (4) baryons. The

DM and baryon density parameters today are ΩDM = ρDM(tnow)/ρcr ≈ 0.22 and Ωb =

ρb(tnow)/ρcr ≈ 0.04. Here ρcr = 3H2
0/(8πG) = 8.1h2 × 10−47 GeV4 is the critical density

today, tnow defines the current time, H0 = 2.1h×10−42 GeV is the present Hubble parameter,

G is the Newton constant, and h ≈ 0.72 is the Hubble parameter in units of 100 km/sec/Mpc.
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The photon contribution to the energy density today can be neglected. The flatness of the

Universe leads to the relative energy density of the DE-neutrino coupled fluid Ωϕν ≈ 0.74.

To ensure the accelerated expansion of the Universe today, the r.h.s. of Eq. (2) must be

positive at t = tnow.

In this paper we will not assume the existence of the cosmological constant Λ, as the

ΛCDM model suggests. Instead we accept the hypothesis of the dynamical dark energy

described by a scalar field. This is a bold assumption and a highly debatable issue. We

vindicate our approach a posteriori by the consistent picture we arrive at the end. For a

review and/or alternative approaches, see, e.g., Refs. [13, 58, 59]. The massless neutrinos

are described by the conventional Dirac Lagrangian. The resulting model is given by the

coupled Dirac and scalar fields. The grand thermodynamic potential of the coupled model

can be derived from the euclidian functional integral representation of the grand partition

function. The dynamics of the coupled model is governed by the Friedmann equations.

Throughout the paper we use natural units where ~ = c = kB = 1.

B. Bosonic Scalar Field

The bosonic scalar field Hamiltonian in the FLRW metric reads as [9, 60]

HB =

∫

a3d3x
[1

2
ϕ̇2 +

1

2a2
(∇ϕ)2 + U(ϕ)

]

, (4)

where the comoving volume V =
∫

d3x, while the physical volume Vphys = a3(t)V . Since

this field does not carry a conserved charge (number), the chemical potential µ = 0. The

grand partition function in the functional integral representation:

ZB ≡ Tr e−βĤ =

∫

Dϕ e−SE
B (5)

with the bosonic euclidian action

SE
B =

∫ β

0

dτ

∫

a(t)3d3x
[1

2
(∂τϕ)2 +

1

2a2
(∇ϕ)2 + U(ϕ)

]

, (6)

where ϕ = ϕ(x, τ).

It is instructive to find the partition function of the free scalar field U(ϕ) = 1
2
M2

b ϕ
2

following the methods explained by Kapusta and Gale [54] for the case of the Minkowski

metric. Rescaling of the field

ϕ̃ = a3/2ϕ (7)
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changes the partition function (5) by a thermodynamically irrelevant prefactor. The func-

tional integration over ϕ̃ of the Gaussian action gives

logZB = −V
∫

d3k

(2π)3

[

β
√

M2
b + k2/a2 + log

(

1 − e−β
√

M2
b
+k2/a2

)]

. (8)

Then the density (with respect to the physical volume) of the thermodynamic potential is

given by

ΩB ≡ − 1

βa3V
logZB = −PB

=

∫

d3k

(2π)3

[

ε+
1

β
log

(

1 − e−βε
)]

, (9)

where ε =
√

M2
b + k2 and PB is the pressure due to the bosonic field.

C. Free Dirac Spinor Field

The Dirac Hamiltonian in the FLRW metric is [60]

HD =

∫

a3d3x ψ̄
(

− ı

a
γ · ∇ +m

)

ψ . (10)

The grand partition function is given by the following Grassmann functional integral:

ZD ≡ Tr e−β(Ĥ−µQ̂) =

∫

Dψ̄Dψ e−SE
D (11)

where the conserved charge (lepton number) operator Q̂ =
∫

a3d3xψ†ψ and the euclidian

action

SE
D =

∫ β

0

dτ

∫

a(t)3d3x ψ̄(x, τ)
(

γo ∂

∂τ
− ı

a
γ · ∇ +m− µγo

)

ψ(x, τ). (12)

By rescaling the Grassmann fields (7) and using the standard techniques [54], we get the

thermodynamic potential density (pressure) as a function of the chemical potential and

temperature:

ΩD ≡ − 1

βa3V
logZD = −PD

= −2

∫

d3k

(2π)3

[

ε+
1

β
log

(

1 + e−βε−
)

+
1

β
log

(

1 + e−βε+
)]

, (13)

where

ε(k) =
√
m2 + k2 , (14)



9

and ε± = ε(k) ± µ. The first term on the r.h.s. of Eq. (13) corresponds to the vacuum

contribution to the thermodynamic potential (pressure):

−Ω0 = P0 = 2

∫

d3k

(2π)3
ε(k) (15)

Introducing the notation for the Fermi distribution function

nF (x) ≡ 1

eβx + 1
, (16)

Eq. (13) can be brought to the following form:

−ΩD = PD = P0 +
1

3π2

∫ ∞

0

k4dk

ε(k)

[

nF (ε−) + nF (ε+)
]

(17)

D. Coupled Model: Scalar Field and Dirac Massless Fermions

Let us consider a scalar bosonic field interacting via a Yukawa coupling with massless

Dirac fermions. The euclidian action of the model in the FLRW metric reads:

S = SE
B + SE

D

∣

∣

m=0
+ g

∫ β

0

dτ

∫

a3d3x ϕψ̄ψ (18)

The path integral for the partition function of the coupled model is:

Z =

∫

DϕDψ̄Dψ e−S (19)

The Grassmann fields can be formally integrated out resulting in

Z =

∫

Dϕ e−S(ϕ) =

∫

Dϕ exp
[

− SE
B + log DetD̂(ϕ)

]

, (20)

where the Dirac operator

D̂(ϕ) = γo ∂

∂τ
− ı

a
γ · ∇ + gϕ(x, τ) − µγo (21)

The thermodynamic potential Ω of the model (18) at tree level can be found by evaluating

the path integral (20) in the saddle-point approximation. Assuming the existence of a

constant (x, τ)-independent field φc which minimizes the action S(ϕ), the term log DetD̂

can be evaluated exactly, and fermionic contribution to the thermodynamic potential is

given by Eqs. (13) or (17) with the fermionic mass

m = gφc . (22)
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The bosonic contribution to the partition function in this approximation is simply Z ∝
exp[−βa3V U(φc)] . The thermodynamic potential density is given then by

Ω(φc) = U(φc) + ΩD(φc) . (23)

Self-consistency of the employed saddle-point approximation naturally coincides with the

condition of minimum of the thermodynamic potential at equilibrium (at fixed temperature

and chemical potential):
∂Ω(ϕ)

∂ϕ

∣

∣

∣

ϕ=φc

= 0 , (24)

and
∂2Ω(ϕ)

∂ϕ2

∣

∣

∣

ϕ=φc

> 0 , (25)

Note that a non-trivial solution φc of Eq. (24) (if it exists) is called the classical field: it

is the average of the bosonic field, i.e., φc = 〈ϕ〉. Eqs. (22,23,24) can be brought to the

equivalent form:

U ′(φc) + gρs = 0 , (26)

where the scalar fermionic density (a.k.a. the chiral density) ρs is given by the following

expression:

ρs ≡
〈N̂〉
V

=
∂ΩD

∂m
= ρ0 +

m

π2

∫ ∞

0

k2dk

ε(k)

[

nF (ε−) + nF (ε+)
]

, (27)

and N̂ =
∫

d3xψ̄ψ. Here ρ0 stands for the vacuum contribution to the chiral condensate:

ρ0 ≡
∂Ω0

∂m
= −m

π2

∫ ∞

0

k2dk

ε(k)
. (28)

Note that even if the time, i.e., a(t), does not enter explicitly in the equations for the

thermodynamic quantities of the coupled, fermionic or bosonic models (9,13,23,26,27), and

they look like their counterparts in a flat static Universe, such parameters as, e.g., the

temperature and chemical potential in those equations are time-dependent, i.e., T = T (a)

and µ = µ(a). The particular form of the dependencies T (a) and µ(a) must be determined

from the Friedmann continuity equation (3) which relates the energy density ρ(T ) and

pressure P (T ) to the evolution of a(t)[9, 10]. In addition, the fermionic mass m ∝ φc in the

coupled model is also time varying, since the time enters into φc (26) via T, µ, and all three

functions m(a), T (a) and µ(a) are governed by the Friedmann equations (1,2,3).

The present theory works consistently for the physical quantities (bosonic or fermionic)

measured with respect to their vacuum contributions. So, in the rest of the paper we
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will employ the thermodynamic quantities with subtracted vacuum contributions, keeping

however, the same notations, e.g.:

ΩD 7→ ΩD − Ω0 , PD 7→ PD − P0 , ρs 7→ ρs − ρ0 . (29)

Then, according to Volovik [61], the pressure and energy of the pure and equilibrium vacuum

is exactly zero. (The renormalization of the vacuum terms is, of course a very subtle issue.

There are alternative approaches to this problem known from the literature. See, e.g.,

[62, 63].)

III. ANALYSIS OF THE MASS (GAP) EQUATION: GENERAL PROPERTIES

In cases interesting for cosmological applications, the scalar field potential U(ϕ) does not

have a non-trivial minimum, and the generation of the fermion mass (i.e. a solution of (24)

0 < φc < ∞) is due to the interplay between the scalar and fermionic contributions to the

total thermodynamic potential (23).

From now on we adapt our equations for the case of equal number of fermions and

antifermions and µ = 0, as discussed in Sec. IIA. Keeping in mind the neutrinos, we assume

an extra flavor index of fermions with the number of flavors s. (For neutrinos s = 3.) We

also assume the flavor degeneracy of the fermionic sector.

Before proceeding further, we need to make some important observations regarding the

behavior of the coupled model in two limiting cases. Assuming that a non-trivial solution

of (24) with finite m exists, the fermionic contribution to the thermodynamic potential

(pressure) (17) can be written as:

−ΩD = PD =
2s

3π2β4
Ip(βm) , µ = 0 , (30)

where the integral defined as

Ip(κ) ≡
∫ ∞

κ

(z2 − κ2)3/2

ez + 1
dz (31)

can be evaluated analytically in two cases:

Ip(κ) =











7π4

120
− π2

8
κ2 + O(κ4) , κ < 1

3κ2K2(κ) + O(e−2κ) , κ & 1

(32)
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where Kν(x) is the modified Bessel function of the second kind.

In the (classical) low-temperature regime

βm ≡ m

T
≫ 1 (33)

the above equation results in

−ΩD = PD =
2sm2

π2β2
K2(βm) + O(e−2βm) . (34)

To leading order

−ΩD = PD ≈
√

2s

π3/2
T (Tm)3/2e−m/T . (35)

The chiral condensate density (27)

ρs =
2sm

π2β2

∫ ∞

βm

(z2 − (βm)2)
1
2

ez + 1
dz , µ = 0 (36)

can be also evaluated in the low-temperature limit as

ρs =
2sm2

π2β
K1(βm) + O(e−2βm) , (37)

which gives to leading order

ρs ≈
√

2s

π3/2
(Tm)3/2e−m/T . (38)

In this limit the fermions enter the regime of a classical ideal gas. Indeed, the fermionic

particle (antiparticle) density

n+ = n− =
s

π2β3

∫ ∞

βm

z(z2 − (βm)2)
1
2

ez + 1
dz (39)

in the low-temperature limit yields

n± =
sm2

π2β
K2(βm) + O(e−2βm) , (40)

and to leading order:

n± ≈ s√
2π3/2

(Tm)3/2e−m/T . (41)

We see from Eqs. (34,40) that up to terms O(e−2βm), the fermions satisfy the ideal gas

equation of state

PD ≈ (n+ + n−)T , (42)
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and the chiral density is equal to the total particle density n.

ρs ≈ n ≡ n+ + n− . (43)

In the (ultra-relativistic) high-temperature regime

m

T
≪ 1 (44)

one obtains

−ΩD = PD ≈ 7π2
s

180
T 4 − s

12
(mT )2 . (45)

To leading order the chiral condensate is

ρs ≈
s

6
mT 2 , (46)

while the particle density is

n± ≈ 3sζ(3)

2π2
T 3 . (47)

Now we can make some general observations of the fermionic mass generation in the

coupled model:

(i) It is obvious from the sign of ρs (cf. 27,36) that non-trivial solutions of (26) are

impossible for a monotonically increasing potential U(ϕ). That rules out some popular

potentials, e.g., U ∝ log(1 + ϕ/M) [13, 36] for this Yukawa-coupling driven scenario of the

mass generation.

(ii) The monotonously decreasing slow-rolling DE potentials ([16, 17] and for reviews,

see [11, 13]), e.g., U ∝ ϕ−α or U ∝ exp[−Aϕγ ], do have a window of parameters wherein

non-trivial solutions of (26) exist. As we can see from (38), for those decreasing potentials

the mass equation (26) always has a trivial solution m = gφc = ∞ for the minimum of

the thermodynamic potential (23). 2 This solution corresponds to a “doomsday” vacuum

state [61], when the Universe reached its true ground state with zero dark energy density

and completely frozen out fermions. A non-trivial solution of (26), corresponding to another

minimum of the potential (23), is totally due to the fermionic contribution. Since the latter

freezes out in the limit T → 0, it is clear qualitatively that such a solution 0 < m <∞ can

exist only above a certain temperature. For a more quantitative account of these phenomena

2 Recall that the grand thermodynamical potential is equal to the free energy for the case µ = 0.
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we need to assume some specific form of the DE potential. This will be done in the following

section.

(iii) To explain the differences between the present study and earlier related work on

mass varying fermions (see [23, 24, 36, 40] and more references there), some clarifications

are warranted. It is usually assumed in the literature that the low-temperature regime

formulas are applicable, and according to (43) ρs = n. The approximation for (26) then can

be written as ∂U/∂m+ n = 0. The latter is interpreted as a result of minimization of some

effective potential Ueff = U + nm with fixed n, which always has a non-trivial minimum

0 < m <∞ for the class of decreasing potentials U , see, e.g., [23, 24]. It turns out that such

an approximation changes the picture qualitatively.

In what follows, we explore in detail the predictions of the consistent mass equation (26)

on the mass varying scenario for the coupled model with a specific DE potential ansatz.

IV. COUPLED MODEL WITH THE RATRA-PEEBLES QUINTESSENCE

POTENTIAL

A. Mass Equation and Critical Temperature

Now we analyze in detail our coupled model for a particular choice of U(ϕ), the so-called

Ratra-Peebles quintessence potential [16] :

U(ϕ) =
Mα+4

ϕα
, (48)

where α > 0. It is convenient to introduce the dimensionless parameters

∆ ≡ M

T
, κ ≡ gϕ

T
, ΩR ≡ Ω

M4
. (49)

Then the mass equation (26) can be written as:

απ2

2s
gα∆α+4 = Iα(κ) , (50)

where we introduced

Iα(κ) ≡ κα+2

∫ ∞

κ

√
z2 − κ2

ez + 1
dz . (51)

According to the relation Eq. (22) between the fermionic mass m and the classical field, we

get m = Tκc, where κc is the solution of Eq. (50) corresponding to the minimum of the
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thermodynamic potential which reads now as (cf. Eq. (31)):

ΩR = gα
(∆

κ

)α

− 2

3π2

1

∆4
Ip(κ) . (52)

The dimensionless Yukawa coupling constant g ∼ 1. To reduce the number of model pa-

rameters we can set g = 1. This is equivalent to the simultaneous rescaling gϕ 7→ ϕ̃ and

Mg
α

α+4 7→ M̃ . 3 For simplicity, we also restrict the number of flavors s = 1.

We define the mass of the scalar field as:

m2
φ =

∂2U(ϕ)

∂ϕ2

∣

∣

∣

ϕ=φc

. (53)

In terms of the dimensionless parameters it reads

mφ

M
=

√

α(α + 1)
(∆

κc

)
α+2

2

(54)

It is important to realize that the integral Iα(κ) on the r.h.s. of the mass equation is

bounded. The quantitative parameters of the function Iα(κ) depend on α, but its shape

is always similar to the curve shown in Fig. 1 for α = 1. So, there exists a maximal ∆crit

(critical temperature Tcrit) such that for ∆ > ∆crit (T < Tcrit) only a trivial solution m = ∞
exists, and the stable vacuum has zero energy and pressure.

The mass equation Eq. (50) is solved numerically for various values of its parameters, and

the characteristic results are shown in Fig. 1. The numerical results can be complemented

by an approximate analytical treatment of the problem. The latter turns out to be quite

accurate and greatly helps in gaining intuitive understanding of the results.

It is easy to evaluate Iα(κ) to leading order:

Iα(κ) ≈











π2

12
κα+2 , κ < 1

κα+3K1(κ) , κ & 1

(55)

For the critical point where I ′
α(κcrit) = 0, we obtain:

κcrit ≈ ν , ν ≡ α +
5

2
; (56)

Iα(κcrit) ≈
√

π

2
ννe−ν . (57)

The most important conclusion we draw from Fig. 1 is that there are three phases in the

model’s phase diagram. We analyze each of them in the following subsections.

3 One can check this scaling also holds for the dynamics of the model, considered in Section V. In particular,

the neutrino masses do not depend on the value of g. To avoid cluttering of notations we will drop tildes

in the rescaled parameters.
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FIG. 1: (Color online) Left: Graphical solutions of the mass equation (50) for different values

of ∆ ≡ M/T (α = 1). Right: dimensionless density of the thermodynamic potential (52). The

thermodynamically stable solutions of Eq. (50) indicated by the large dots correspond to the minima

of the potential. The arrows indicate the unstable solutions of the mass equation, corresponding

to the maxima of the potential.

1. Stable (massive) phase: ∆ < ∆◦ (T◦ < T < ∞)

In this range of parameters the equation (50) has two nontrivial solutions. The root

κc < κ◦ indicated with a large dot in Fig. 1 (case a) gives the fermionic mass and corresponds

to a global minimum of the potential. So it is a thermodynamically stable state. In this

phase Ω(κc) < 0, so the pressure is positive P > 0. Another non-trivial root of (50)

corresponds to a thermodynamically unstable state (maximum of Ω indicated with an arrow

in Fig. 1). There is a trivial third root of the mass equation κ = ∞. At these temperatures

it corresponds to the metastable vacuum state Ω = 0.

In the high-temperature region of this phase where ∆ ≪ 1 the fermionic mass is small

(see Fig. 2):
m

M
≈

(√
6α
M

T

)
2

α+2 ∝ T− 2
α+2 (58)

The fermionic contribution to the thermodynamic potential is dominant, and it behaves to
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leading order as the potential of the ultra-relativistic fermion gas (cf. Eq. (45)):

Ω = −P = −7π2

180
T 4 + O(T

2α
α+2 ) . (59)

One can check that the subleading term in the above expression combines the DE potential

contribution and the first fermionic mass correction, which are both of the same order.
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FIG. 2: (Color online) Masses of the fermionic and scalar fields (m and mφ resp.) as functions of

∆ ≡ M/T , α = 1. At ∆ > ∆crit (T < Tcrit) the stable phase corresponds to m = ∞ and mφ = 0

It is important to stress that in this coupled model with the slow-rolling potential Eq. (48),

the mass generation does not follow a conventional Landau thermal phase transition scenario.

There is no critical temperature below which the chiral symmetry is spontaneously broken

and the mass is generated. Instead the mass grows smoothly as κc ∝ ∆
α+4
α+2 , albeit starting

from the “point” T = ∞. From physical grounds we expect the applicability of the model

to have the upper temperature bound:

T . TRD , (60)

where TRD is roughly the temperature of the boundary between inflation and the radiation-

dominated era. The high-temperature result (59) shows that the stable massive phase of

the present model can indeed be extended up to those temperatures.

The scalar field and fermionic masses demonstrate opposite temperature dependencies.

The scalar field is “heavy” at high temperatures:

mφ ≈
√

α+ 1

6
T , ∆ ≪ 1 , (61)
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however its mass decreases together with the temperature. In contrary, the fermionic mass

m monotonously increases with decreasing temperature. The exact numerical results for the

two masses are shown in Fig. 2

2. Metastable (massive) phase: ∆◦ < ∆ < ∆crit (Tcrit < T < T◦)

Upon increasing ∆ we reach a certain value ∆◦ corresponding to a critical temperature T◦

when the thermodynamic potential has two degenerate minima Ω(κ◦) = P (κ◦) = Ω(∞) = 0.

This is shown in Fig. 1 (case b). After this point, when the temperature decreases further in

the range ∆◦ < ∆ < ∆crit (here ∆crit stands for the maximal value of ∆ when a non-trivial

solution of the gap equation (50) exists, see Fig. 1), the two minima of the thermodynamic

potential exchange their roles. The root κc now becomes a metastable state with Ω(κc) > 0,

i.e., with the negative pressure P (κc) < 0, while the stable state of the system corresponds

to the true stable vacuum of the Universe [61] Ω(∞) = P (∞) = 0. See Fig. 1 (case c).

The system’s state in the local minimum Ω(κc) is analogous to a metastable supercooled

liquid. We disregard the exponentially small probability of tunneling of the fermions from

the metastable state Ω(κc) into the vacuum state Ω(∞) = 0[18]. Accordingly, the fermionic

mass in this phase is determined by the root κc of (50).

In the metastable phase κc & 1, so by using Eqs. (52,32,50) we obtain the potential:

ΩR ≈
(∆

κc

)α{

1 − α

κc

− 3α

2κ2
c

}

. (62)

From the above result we can find the metastability point Ω(κ◦) = 0 as

κ◦ ≈
α

2

(

1 +

√

1 +
6

α

)

(63)

Expanding Iα(κ) near its maximum and using Eqs. (55,56,57) along with the gap equation

Eq. (50), we obtain the following equation:

(κc − κcrit)
2

2ν
≈ 1 −

( ∆

∆crit

)α+4

. (64)

On finds from the above equation, e.g., how the mass approaches its critical value:

mcrit −m ∝
( T

Tcrit

− 1
)1/2

, (65)

or the ratios of temperatures and masses at the metastable and critical points. These latter

parameters are given in Table I.
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TABLE I: Masses, critical temperatures and potentials for various values of α. All the parameters

used in this table are defined in the text.

α Tcrit
T◦

∆crit
m◦

mcrit

mcrit
M

mcrit
φ

M
Tcrit
M

Ωcrit
M4

ρcrit

M4 w(Tcrit)

1 0.90 0.91 0.558 3.86 0.187 1.10 0.15 0.84 -0.18

2 0.95 1.04 0.70 4.35 0.130 0.97 0.02 0.25 -0.09

4 0.98 1.44 0.81 4.52 0.048 0.70 6 · 10−4 0.02 -0.03

10 0.99 3.00 0.91 4.16 2 · 10−3 0.33 7 · 10−8 9 · 10−6 -0.008

3. Critical point: ∆ = ∆crit (T = Tcrit) and phase transition

The critical point of the model corresponds to the case when the two roots of the mass

equation Eq. (50) merge, and the minimum of the potential disappears. One can check that

instead of the minimum this is an inflection point of the the potential, i.e., Ω′′
R(κcrit) = 0.

This situation is shown in Fig. 1 (case d). At this point the system is in the unstable state

with the fermionic mass
mcrit

Tcrit

= κcrit ≈ ν . (66)

In particular, this implies that the fermions are non-relativistic at the critical temperature.

From Eqs. (57,50) we find the critical parameter (see Table I for its numerical values)

∆crit ≈
(

√
2

απ3/2
ννe−ν

)
1

α+4

, (67)

which allows us to evaluate the critical temperature

Tcrit =
M

∆crit
. (68)

We can also find the potential at Tcrit:

Ωcrit ≈
5

2ν

(∆crit

ν

)α

M4 (69)

Thus, from the viewpoint of equilibrium thermodynamics at T = Tcrit the model must

undergo a first-order (discontinuous) phase transition and reach its third thermodynamically

stable (at T < Tcrit) phase corresponding to the vacuum Ω(κ = ∞) = P (κ = ∞) = 0. During
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this transition the fermionic mass given at the critical point by Eq. (66) and the scalar field

mass

mcrit
φ ≈

√

α(α + 1)
(∆crit

ν

)
α+2

2

M (70)

both jump to their values in the vacuum state m = ∞ and mφ = 0. See Fig. 2.

However, the above arguments are based on the minimization of the thermodynamic

potential (i.e. maximization of entropy) at equilibrium. To address the question of how

such a system behaves as the Universe evolves towards the new equilibrium vacuum state,

we need to analyze the dynamics of this phase transition. More qualitatively, we need to

study how the particle at the point κcrit at the critical temperature (see Fig. 1) rolls down

towards its equilibrium at infinity. This issue will be addressed in Section V.

B. Equation of State

We define the equation of state in the standard form:

P = wρ , (71)

where the total pressure in this model is obtained from Eq. (52), while the total energy

density (ρ) and its dimensionless counterpart (ρR) are determined by the following equation:

ρR ≡ ρ

M4
=

(∆

κ

)α

+
2

π2

1

∆4
Iε(κ) . (72)

Here we define the integral

Iε(κ) ≡
∫ ∞

κ

z2
√
z2 − κ2

ez + 1
dz , (73)

which can be evaluated in two limits of our interest:

Iε(κ) =











7π4

120
− π2

24
κ2 + O(κ4) , κ < 1

3κ2K2(κ) + κ3K1(κ) + O(e−2κ) , κ & 1

(74)

In the high-temperature region of the stable massive phase where ∆ ≪ 1, the fermionic

contribution is dominant, and the energy density to leading order is that of the ultra-

relativistic fermion gas (cf. Eq. (59))

ρ =
7π2

60
T 4 + O(T

2α
α+2 ) . (75)
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Thus, in this regime the model follows approximately the equation of state of a relativistic

gas with w ≈ 1
3
.

In the region κc & 1 which includes the metastable phase and the critical point, we obtain

by using Eqs. (72,74,50,62):

ρ ≈
(∆

κc

)α{

1 + α +
3α

κc
+

9α

2κ2
c

}

, (76)

and

w ≈ −
1 − α

κc
− 3α

2κ2
c

1 + α+ 3α
κc

+ 9α
2κ2

c

(77)

The last equation follows very closely the results of the exact numerical calculations shown

in Fig. 3. At the critical point we evaluate
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FIG. 3: (Color online) w ≡ P/ρ for several values of α. At ∆ > ∆crit(α), i.e., T < Tcrit(α) the

equilibrium value w = −1 exactly.

ρcrit ≈
(∆crit

ν

)α{

1 + α+
3α

ν

}

M4 , (78)

and making a rough estimate, we get a lower bound:

w ≈ −5

2

1

ν(1 + α + 3α
ν

)
≥ −1

4
, ∀ α ≥ 1 . (79)

Thus for any power law α ≥ 1, the parameter w of this model at equilibrium cannot cross

the bound w < −1
3
, necessary for accelerating expansion of the Universe ä > 0. 4

4 The relation (79) w(Tcrit) & − 1

4
holds for the model which contains only the DE-neutrino coupled fluid.

In a more realistic model for the Universe, baryons and DM also contribute to the total energy density,

and as a consequence w(Tcrit) increases, see Sec. V.
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At T < Tcrit we obtain the equilibrium value of w in the stable vacuum state from

Eqs. (52,72):

w = lim
κ→∞

P (κ)

ρ(κ)
= −1 . (80)

So the true vacuum in this model corresponds to the Universe with a cosmological constant

in the limit Λ → 0.

C. Speed of Sound

We define the sound velocity as

c2s =
dP
dt
dρ
dt

=
dP
d∆
dρ
d∆

, (81)

where to obtain the second expression we used the fact that the time enters our formulas

only through the temperature T (a(t)), so

d

dt
=
d∆

dt

d

d∆
. (82)

Let us first consider the temperatures T ≥ Tcrit, i.e., ∆ ≤ ∆crit. Then

dρ

d∆
=

∂ρ

∂∆
+
∂ρ

∂κ
· dκ
d∆

∣

∣

∣

κ=κc

, (83)

where κ is related to ∆ through the gap equation (50):

dκ

d∆

∣

∣

∣

κ=κc

≡ κ̇c =
α+ 4

∆

Iα(κc)

I ′
α(κc)

=
α + 4

∆

(d log Iα(κc)

dκ

)−1

. (84)

Note that for the pressure the following relation

dP

d∆
=
∂P

∂∆
(85)

holds, since
∂P

∂κ

∣

∣

∣

κ=κc

= 0 (86)

is just another form of the gap equation (24). Thus

c2s =
∂P
∂∆

∂ρ
∂∆

+ ∂ρ
∂κ
κ̇c

∣

∣

∣

∣

∣

κ=κc

. (87)
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In the high-temperature regime ∆ ≪ 1 (κc ≪ 1), it is even easier to use the explicit

asymptotic expansions for P (∆) and ρ(∆) in the definition (81) instead of the above formula

(87). A straightforward calculation gives the result

c2s ≈
1

3
− b∆

2(α+4)
α+2 , b > 0 , (88)

consistent with the earlier observation that for ∆ ≪ 1 the model behaves as an ultra-

relativistic Fermi gas.

In the case κc & 1 we find

κ̇c ≈
α + 4

∆

κc

ν − κc
, (89)

and

c2s ≈
ν − κc

α(α + 4)(1 + 4
αν

)
. (90)

Everywhere at T > Tcrit, including the stable and metastable massive phases c2s > 0, so the

model is stable with respect to the density fluctuations. The sound velocity vanishes in the

limit T → T+
crit as

cs ∝
√
ν − κc → 0 . (91)

Qualitatively, the vanishing speed of sound is due to divergent κ̇c (84,89) at the critical

point.

The above analytical results are in excellent agreement with the numerical calculations

of c2s from the formula (87) shown in Fig. 4. At the temperatures T < Tcrit there is no gap
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FIG. 4: (Color online) The square of the sound velocity for several values of α. At ∆ > ∆crit(α),

i.e., T < Tcrit(α) the equilibrium value c2
s = −1 exactly.
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equation relating κ and ∆, so the sound velocity is easily calculated to yield the value in

the equilibrium vacuum state:

c2s = lim
κ→∞

∂P
∂∆
∂ρ
∂∆

= −1 . (92)

That what is expected for a barotropic perfect liquid with a constant w, where c2s = w.

V. DYNAMICS OF THE COUPLED MODEL AND OBSERVABLE UNIVERSE

A. Scales and Observable Universe

In order to make a connection between the above model results and the observable Uni-

verse, we need to first conclude where we are now with respect to the critical temperatures

T◦ and Tcrit. As one can see from Table I for α ∼ 1, the model has T◦ ∼ Tcrit ∼ M . We

identify the current equilibrium temperature of the Universe with the cosmic background

radiation temperature T = 2.275 K = 2.4 · 10−4 eV. Then we see right away that we cannot

be above the critical temperature of the coupled model, since:

(i) assumption T > Tcrit leads to M . 10−4 eV, which in turn implies too small densities

ρ ∼M4 ∼ 10−16 eV4, i.e, four orders of magnitude less than the observable density;

(ii) At T > Tcrit the equation of state has w > −1
4

(see Fig. 3), which is not even enough to

get a positive acceleration ä > 0, while the observable value w ≈ −1. [13]

So, the first qualitative conclusion is that we are currently below the critical temperature.

The Universe has already passed the stable and metastable phases and is now unstable, i.e.

it is in the transition toward the stable “doomsday” vacuum m = ∞ and Ω = 0.

Since at the temperature of metastability P◦ = 0, the transition occurs somewhere be-

tween the beginning of the matter-dominated era (TMD ≈ 16500 K ≈ 1.42 eV) and now,

i.e., 1.4 eV & Tcrit > Tnow ∼ 2.4 · 10−4 eV. Because of Eq.(68) this inequality gives us the

possible range of the model’s single parameter M :

2.4 · 10−4 eV < M . 1.4 eV. (93)

As we will show in the following, other consistency checks of the model bring the upper

bound of M much lower.
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B. Universe Before the Phase Transition

In order to apply the results of the coupled model for the calculation of the parameters

of the observable Universe, we need to incorporate the matter (we will just add up the dark

and conventional baryonic matter together) and the radiation. Assuming a spatially flat

Universe, the total energy density is critical, so

ρtot = ργ,now/a
4 + ρM,now/a

3 + ρϕν(∆) = ρcr =
3H2

8πG
, (94)

where from now on we denote ρϕν the energy density of the coupled model given by Eq. (72).

To relate our model’s parameters to the standard cosmological notations, we assume that

the temperature is evolving as that of the blackbody radiation, i.e., T = Tnow/a. Then

∆ ≡ M

T
=

Ma

Tnow
=

M

Tnow(1 + z)
. (95)

We know that

ργ =
π2

15
T 4 , (96)

and we set the current density of the coupled scalar field to the observable value of the dark

energy, i.e., 3/4 of the critical density:

ρϕν,now =
3

4
· 3H2

0

8πG
≈ 31 · (10−3 eV)4 , (97)

and

ρM,now ≈ 1

4
· 3H2

0

8πG
. (98)

The equations above allow us to plot the relative energy densities

Ω# ≡ ρ#/ρtot (99)

as functions of redshift (or temperature) up to the critical point, see Fig. 5. 5 In the

high-temperature limit, the matter term is sub-leading and

ρtot ≈ ργ + ρϕν ≈ π2

15

(

1 +
7

4

)

T 4 . (100)

5 We apologize for some abuse of notations, but using the same Greek letter for the grand thermodynamic

potential and relative densities seems to be standard now. Since these quantities are mainly discussed in

different sections of the paper, we hope the reader will not be confused.
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FIG. 5: (Color online) Relative energy densities plotted up to the current redshift (temperature,

upper axis): Ωϕν – coupled DE and neutrino contribution; Ωγ – radiation; ΩM – combined baryonic

and dark matters. Parameter M = 2.39 · 10−3 eV (α = 0.01), chosen to fit the current densities,

determines the critical point of the phase transition zcr ≈ 3.67. The crossover redshift z∗ ≈ 0.83

corresponds to the point where the Universe starts its accelerating expansion.

In this limit, then

Ωϕν =
7

11
≈ 0.636 , Ωγ =

4

11
≈ 0.363 , (101)

which agrees well with the numerical results displayed in Fig. 5. At the critical point the

matter strongly dominates and ρM/ργ,ϕν & 102.

The equation of state parameter of the entire Universe, wtot, is given by Ptot = wtotρtot.

Since the matter contribution PM = 0, then Ptot = Pγ + Pϕν , where Pγ = 1
3
ργ and the

pressure of the coupled model Pϕν is obtained from Eq. (52). The numerical results of wtot

are given in Fig. 6.

To analyze the dynamics of the coupled model we need, in principle, to go beyond the

saddle-point approximation applied in the previous sections and solve the equation of motion:

ϕ̈+ 3Hϕ̇+
∂Ω

∂ϕ
= 0 . (102)

Above the transition point (T > Tcrit) the dynamics is quite simple. Let us analyze pertur-

bations to the saddle-point solution of (24):

ϕ(t) ≡ φc + ψ(t) . (103)



27

 

w

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

z+1

1010 108 106 104 102 100

T (eV)

106 104 102 100 10-2

zcr z*

FIG. 6: (Color online) Equation of state parameter wtot = Ptot/ρtot for M = 2.39 · 10−3 eV

(α = 0.01) plotted up to the current redshift (temperature, upper axis).

Taylor-expanding the thermodynamic potential of the coupled model

∂Ω

∂ϕ
= ω2ψ +

1

2
Ω′′′(φc)ψ

2 + ... (104)

with ω2 ≡ Ω′′(φc), we obtain from (102) the equation of a damped harmonic oscillator to

the leading order:

ψ̈ + 3Hψ̇ + ω2ψ = 0 . (105)

So, the quintessence field ϕ(t) oscillates around its saddle-point value φc with ψ(t) ∝
eıωt− 3

2
Ht. The damping is very small, since as one can check

ω ≫ 3

2
H . (106)

The violation of the above condition and breaking down of the oscillating regime occurs in

the vicinity of the critical point, which is the inflection point of the potential (ω = 0). This

is the well-known phenomenon of the critical slowing down near phase transition. Retaining

the first non-vanishing term in (104), the equation of motion in the vicinity of the critical

point reads:

ψ̈ + 3Hψ̇ +
1

2
Ω′′′(φc)ψ

2 = 0 . (107)

Neglecting the small damping term in this equation, its solution can be found analytically

via a hypergeometric function. Since the explicit form of this solution is not very interesting
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at this point, we just emphasize the qualitative conclusion of the analysis: the fluctuation

ψ(t) oscillates near the classical field φc in the stable (metastable) phase at T > Tcrit, and

it enters the run-away (power-law) regime when T → T+
crit.[64]

C. Late-Time Acceleration of the Universe. Towards the End of Times

The equilibrium methods are not applicable below the phase transition, and we study

the dynamics of the model from the equation of motion (102) together with the Friedmann

equations (1,2,3). Solution of the Dirac equations yields ρs ∝ a−3 for the chiral density [66],

so the equation of motion (102) at a ≤ acrit reads:

ϕ̈+ 3Hϕ̇ = −∂U
∂ϕ

− ρs,crit

(acrit

a

)3

. (108)

From the results of the previous section we evaluate the chiral density at the critical point:

ρs,crit ≈ α
(∆crit

ν

)α+1

M3 . (109)

The system of the integro-differential equations (108,1,2,3) was solved numerically. All the

quantities entering those equations are defined in the previous subsection, except that one

needs to include the extra term 1
2
ϕ̇2 in the computation of both ρtot and Ptot. However

the numerical results show that in the regimes of the parameters we are interested, the

kinetic term can be safely neglected. Since the critical point of the model lies in the matter-

dominated regime (cf. Fig. 5), we start with the Hubble parameter H = 2/3t (a ∝ t2/3).

At the latest times (z . 1) the Hubble parameter was determined self-consistently from the

numerical solution of the Friedmann equations.

We find numerically that the quintessence field ϕ(t) from the critical point to the present

time oscillates quickly (with the period τ ∼ 10−27 Gyr) around the smooth (“mean value”)

solution ϕ̄(t), where the “mean” ϕ̄ nullifies the r.h.s. of the equation of motion (108).

Relating the mean values with the physically relevant observable quantities, we can easily

obtain the key results analytically. (They are checked against direct numerical calculations

and found to be accurate within 5 % at most). Thus we get

ϕ̄ = ϕcrit ·
(1 + zcrit

1 + z

)
3

α+1
, (110)

ρϕ̄ = ρϕ,crit ·
( 1 + z

1 + zcrit

)
3α

α+1
, (111)
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where ϕcrit ≈ ν
∆crit

M and ρϕ,crit ≈ (∆crit

ν
)αM4. Having a free model parameter M , we’ll set

it by matching the current density of the scalar field ρϕ,now to the observable value of the

DE density (97), so

M =
(

ναρϕ,now

)
α+1
α+4 ∆−α

critT
− 3α

α+4
now . (112)

The exponent of the quintessence potential α is now the only parameter which can be varied.

We define the time-dependent mass via the solution of the motion equation as m(t) = ϕ̄(t),

thus obtaining an estimate for the present-time neutrino mass. Results for various α are

given in Table II. There we also calculate the critical points parameterized by the redshifts

zcrit and the crossover points z∗. The latter is defined as the redshift at which the Universe

starts its late-time acceleration, i.e., where wtot = −1
3
. For the present time we find

TABLE II: Model’s parameters and observables for various α. All the entries in this table are

defined in the text.

α M (eV) mnow (eV) zcrit z∗

2 9.75 · 10−2 167 392 4.9

1 1.69 · 10−2 44.6 76.6 2.3

1/2 6.33 · 10−3 17.0 27.7 1.5

10−1 2.81 · 10−3 2.82 8.73 0.93

10−2 2.39 · 10−3 0.27 3.67 0.83

10−3 2.36 · 10−3 0.027 1.60 0.82

wnow
tot ≈ −3

4
. (113)

As we infer from the data of Table II, the range of exponents α ≪ 1 corresponds to more

realistic predictions for the neutrino mass [1, 7, 8] and for the crossover redshift z∗ [65].

For α = 0.01 we plot the evolution of the relative energy densities, the equation of state

parameter, and the neutrino mass in Figs. 5,6,7.

We consider the quite artificial case of small quintessence exponent α as an ansatz crossing

over smoothly from physically plausible potentials with, say, α = 1 or 2 to the logarithmic
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FIG. 7: Neutrino mass m for M = 2.39 · 10−3 eV (α = 0.01) plotted up to the current redshift

(temperature, upper axis).

potential

U(ϕ) = M4
(

1 + α log
M

ϕ

)

. (114)

The latter often appears in various contexts [13, 36].6

VI. CONCLUSIONS

In this paper we analyzed the MaVaN scenario in a framework of a simple “minimal”

model with only one species of the (initially) massless Dirac fermions coupled to the scalar

quintessence field. By using the methods of thermal quantum field theory we derived for

the first time (in the context of the MaVaN or, even more broadly, the VAMP models) a

consistent equation for fermionic mass generation in the coupled model.

We demonstrated that the mass equation has non-trivial solutions only for special classes

of potentials and only within certain temperature intervals. It appears that these results

have not been reported in the literature on VAMPs before now.

6 The numerical results for small parameter α, as e.g. α = 0.01 taken for the plots, are virtually in-

distinguishable for the cases of the Ratra-Peebles (48) or logarithmic (114) potentials. However the

Ratra-Peebles potential at more “natural” α = 1, 2 allows to probe the coupled fermionic-quintessence

models in the search of heavy DM particle candidates.
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We gave most of the results for the particular choice of a trial DE potential – the Ratra-

Peebles quintessence potential. This potential has all the necessary properties we needed for

our task: it is simple, it satisfies the criteria we found for non-trivial solutions of the mass

equation to exist, and it has only one dimensionfull parameter- the energy scale M to tune.

Also, at small values of the exponent α it effectively crosses over to the case of a logarithmic

potential. We have checked that other potentials, e.g., exponential, lead to a qualitatively

similar picture, but they have at least one more energy scale to handle, which we consider

as an unnecessary complication at this point.

We analyzed the thermal (i.e. temporal) evolution of the model, following the time

arrow. Contrary to what one might expect from analogies with other contexts, like, e.g.,

condensed matter, the model does not generate the mass via a conventional spontaneous

symmetry breaking below a certain temperature. Instead it has a non-trivial solution for

the fermionic mass evolving “smoothly” from zero at the “point” T = ∞. The scalar field

is infinitely heavy at the same point. More realistically, we assumed the model is applicable

starting at the temperatures somewhere in the beginning of the radiation-dominated era.

We found that the DE contribution in this regime is subleading, and the model behaves as

an ultra-relativistic Fermi gas at those temperatures.

This regime corresponds to a stable phase of the model given by a global minimum of the

thermodynamic potential Ω(ϕ). The temperature/time dependent minimum 〈ϕ〉 generates

the varying fermionic mass m ∝ 〈ϕ〉.
With increase in time, as the temperature decreases, the model reaches the point of

metastability where its pressure (P ) vanishes. From our estimates of the model’s scales,

we showed that this happens during the matter-dominated era of the Universe. At this

point the system’s ground state becomes doubly degenerate, and the potential Ω = 0 at the

non-trivial (finite) minimum 〈ϕ〉 as well as at the trivial vacuum ϕ = ∞.

Further on, at lower temperatures the system stays in the metastable (supercooled) state

until it reaches the critical point where the local minimum of the thermodynamic potential

disappears and it becomes an inflexion point. At this critical temperature the model un-

dergoes a first-order (discontinuous) phase transition. At the critical point the equilibrium

values of the fermionic and the scalar field masses discontinuously jump to the ‘doomsday”

vacuum state values m = ∞ and mφ = 0, respectively. The square of the sound velocity and

equation of state parameter w have the equilibrium values corresponding to the de Sitter
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Universe with a cosmological constant, i.e. c2s = w = −1. It is worth pointing out that

c2s > 0 in both the stable and metastable phases, and the sound velocity vanishes reaching

the critical temperature from above.

Since the equilibrium approach is not applicable below the critical temperature, we find

parameters of the model from direct numerical solution of the equation of motion and the

Friedmann equations. The single scale M of the quintessence potential is chosen to match

the present DE density, then other parameters of the Universe are determined. We obtain a

consistent picture: the phase transition has occurred rather recently at zcrit . 5 during the

matter-dominated era, and the Universe is now being driven towards the stable vacuum with

zero Λ-term. The expansion of the Universe accelerates starting from z∗ ≈ 0.83. Setting

α = 0.01 for M ≈ 2.4 · 10−3 eV, we end up with the neutrino mass m ≈ 0.27 eV.

The present results allow us to propose a completely new viewpoint not only on the

MaVaN, but on the quintessence scenario for the Universe as well. The common concerns

about the slow-rolling mechanism for the DE relaxation toward the Λ = 0 vacuum are related

to the question of what is the mechanism to set the initial value of the scalar field ϕ where

it evolves (rolls down) from. Our results demonstrate that up to recent times (i.e. above the

critical temperature) the quintessence field was locked around its average (classical) value

〈ϕ〉. Its value is determined by the scale M and the temperature. The average 〈ϕ〉 gives

the fermionic mass at the same time. The scalar field is rigid (i.e. massive), although it

softens (i.e., its mass decreases) as the system approaches the critical temperature. Above

the critical temperature the scalar field can only oscillate around its equilibrium value 〈ϕ〉.
At the critical point the minimum of the thermodynamic potential becomes the inflexion

point, the scalar field looses its rigidity (mass). Then the field can only roll down towards

the new stable ground state Ω = 0 at ϕ = ∞. So physically, the critical point corresponds

to the transition of the Universe from the stable oscillatory to the unstable rolling regime.

A more sophisticated numerical study of the kinetics after the critical point is warranted

in order to address such issues as the detailed description of the crossover between different

regimes, and the clustering of neutrinos. These and some other questions are relegated to

our future work.
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