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We present results from a new code for binary black hole evolutions using the moving-puncture approach,
implementing finite differences in generalised coordinates, and allowing the spacetime to be covered with mul-
tiple communicating non-singular coordinate patches. Here we consider a regular Cartesian near zone, with
adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates
allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally dis-
connected from the measurement. For the well-studied test-case of the inspiral of an equal-mass non-spinning
binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical ac-
curacies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger.
The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated
to r → ∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these
modes (to (`,m) = (6, 6)) match perturbative calculations to within 0.01%, providing a strong confirmation
that the remnant settles to a Kerr black hole with irreducible mass Mirr = 0.884355 ± 20 × 10−6 and spin
Sf/M

2
f = 0.686923± 10× 10−6.

PACS numbers: 04.25.dg, 04.30.Db, 04.30.Tv, 04.30.Nk

I. INTRODUCTION

The numerical solution of Einstein’s equations has made
great progress in recent years. Orbits and mergers of binary
systems of black holes and neutron stars are now routinely
published by a number of research groups, using independent
codes and methodologies [1–4]. A number of important astro-
physical phenomena associated with binary black hole merg-
ers have been studied in some detail. In particular, the recoil
of the merger remnant has been studied for a number of differ-
ent initial data models [5–12], and its final mass and spin has
been mapped out for fairly generic merger models involving
spinning and unequal mass black holes [13–18]. Since these
quantities are determined by the last few quasi-circular orbits
before merger, they can be calculated to good approximation
with fairly short evolutions, and with minimal influence of an
artificial outer boundary.

Of particular topical relevance, however, is the construc-
tion of long waveforms which can be used for gravitational-
wave analysis of the binary [19], and also to construct a fam-
ily of templates [20–23], so to inform and improve gravita-
tional wave detection algorithms. Here the requirements are
particularly challenging for numerical simulations, requiring
waveforms which are accurate in phase and amplitude over
multiple cycles to allow for an unambiguous matching to post-
Newtonian waveforms at large separation. Some recent stud-
ies have shown very promising results in this direction for par-
ticular binary black hole models [24–32]. However, they have
also highlighted the problems associated with producing long
waveforms of sufficient accuracy.

First of all, for binaries with a larger separation, system-
atic errors associated with gravitational waveform extraction
at a finite radius become more pronounced. Typically a num-
ber of extraction radii are used, and the results extrapolated to
infinite radius (assuming such a consistent extrapolation ex-

ists given potential issues of gauge). In order to have some
confidence in the results, the outermost “extraction sphere”
needs to be at a large radius, say on the order of 150− 200M
(whereM is the mass of the system and sets the fiducial length
scale). Even at this radius, the amplitude of the extrapolated
waveform differs significantly from the measured waveform.
Unfortunately, extracting at larger radii comes at a computa-
tional expense. One of the standard methods in use today is
finite differencing in conjunction with “mesh refinement”, in
which the numerical resolution is chosen based on the length
scale of the problem. A minimum number of discrete data
points are required to resolve a feature of a given size accu-
rately, which sets a limit on the minimum resolution which
should be applied in a region. Thus, even with mesh refine-
ment there is a limit on the coarseness of the grid which can be
allowed in the wave-zone. For a Cartesian grid, the number of
computational points scales as r3, so that requiring a sufficient
resolution to 200M already comes at significant expense, and
increasing this distance further becomes impractical.

An additional difficulty arises from the requirement that the
outer boundary have minimal influence on the interior evo-
lution, since it is (in all current binary black hole codes) an
artificial boundary. This places an additional requirement on
the size of the computational grids, so that even outside the
wave-zone region where the physics is accurately resolved, it
is conventional to place several even coarser grids. This is
done in the knowledge that the physical variables can not be
resolved in these regions, but the grids are helpful as a numer-
ical buffer between the outer boundary and interior domain.
Again, adding these outer zones comes at a computational ex-
pense. The boundaries with under-resolved regions also lead
to unphysical reflections which can contaminate the solution.
The problem of increasing the grid size can be significantly re-
duced if, rather than a Cartesian coordinate system, one uses a
discretisation which has a radial coordinate. Then, for a fixed
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angular resolution, the number of points on the discrete grid
increases simply as a linear function of r, rather than the r3 of
the Cartesian case. This has two advantages. The gravitational
wave-zone has spherical topology and therefore, a numerical
approximation would be most efficiently represented by em-
ploying a spherical grid. A further computational motivation
comes from the fact that non-synchronous mesh-refinement
(such as the Berger-Oliger algorithm) can greatly complicate
the parallelisation of an evolution scheme, and thus having
many levels of refinement clearly has an impact on the effi-
ciency of large scale simulations. This will become partic-
ularly relevant for the coming generations of peta-scale ma-
chines which strongly emphasise parallel execution (possi-
bly over several thousand cores) over single processor perfor-
mance.

The use of spherical-polar coordinates has largely been
avoided in 3-dimensional general relativity due to potential
problems associated with the coordinate singularity at the
poles. Additionally, even if regularisation were simple, the
inhomogeneous areal distribution of latitude-longitude grid
points over the sphere make spherical-polar coordinates sub-
optimal. A number of alternative coordinate systems have
been proposed and implemented for studies of black holes in
3D. The Pittsburgh null code avoids the problem of regulari-
sation at the poles by implementing a 2D stereographic patch
system [33]. Cornell/Caltech have developed a multipatch
system which has been used for long binary black hole evolu-
tions [4, 34] 1. This code, using spectral spatial differentiation,
uses an intricate patch layout in order to reduce the overall dis-
cretisation error. The boundary treatment between patches is
based on the transfer of characteristic variables. A similar ap-
proach was implemented by the LSU group, for the case of
finite differences with penalty boundary conditions [38], and
used to successfully evolve single perturbed black holes with
a fixed background [39] and have recently been attempted for
binary black hole systems [40].

In this paper we describe a binary black hole evolution
code based on adapted radial coordinates in the wave zone,
for generic evolution systems. In particular, we demonstrate
stable and accurate binary black hole evolutions using BSS-
NOK in conjunction with this coordinate system. The grids in
the wave zone follow a prescription which was first used by
Thornburg [41], in which six regular patches cover the sphere,
and data at the boundaries of the patches are filled by interpo-
lation. Such a patch system has also been successfully ap-
plied to characteristic evolutions [42, 43]. In this work, the
six patch wave zone is coupled to an interior Cartesian code,
which covers the domain in which the bodies move, and op-
tionally allows for mesh refinement around each of the indi-
vidual bodies. The resulting code has the advantages of mak-
ing use of established techniques for moving puncture evo-
lutions on Cartesian grids, while having excellent efficiency
(and consequently accuracy) in the wave zone due to the use
of adapted radially-oriented grids.

1 Multi-domain spectral methods have previously been applied to the prob-
lem of generating initial data for binaries in [35–37].

In the following sections we detail the coordinate structures
which we use. We then describe our Einstein evolution code,
which is largely based on conventional techniques common to
Cartesian puncture evolutions. Finally we perform evolutions
of a binary black hole system in order to validate the code
against known results, as well as demonstrate the ability to
extract accurate waves at a large radius with comparatively
low computational cost.

II. SPACETIME DISCRETISATION

This section describes the implementation of a generic code
infrastructure for evolving spacetimes which are covered by
multiple overlapping grid patches. A key feature of our ap-
proach is its flexibility. It is not restricted to any particu-
lar formulation of the Einstein equations; the mechanism for
passing data between patches (interpolation) is also formula-
tion independent (though characteristic [44] or penalty-patch
boundaries [40, 45, 46] are also an option); the size, place-
ment and local coordinates of individual patches are com-
pletely adaptable, provided that there is sufficient overlap be-
tween neighbours to transfer boundary data. Further, each
patch is a locally Cartesian grid with the ability to perform
mesh-refinement to better resolve localised steep gradients, if
necessary. The particular application demonstrated in this pa-
per is to provide a more efficient covering of the wave-zone of
an isolated binary black hole inspiral.

At the same time, we would like to take advantage of the
fact that black hole evolutions via the “moving puncture” ap-
proach are well established as a simple and effective method
for stably evolving black hole spacetimes [2, 3]. By this
method, gauge conditions are applied to prevent the spacetime
from reaching the curvature singularity, so that an artificial
boundary is not required within the horizons [47]. The usual
approach is to discretise using Cartesian grids which cover
the black holes with an appropriate resolution, without special
treatment or boundary conditions for the black hole interiors,
relying rather on the causal structure of the evolution system
to prevent error modes from emerging [48]. The Cartesian
grids are extended to cover the wave zone (at reduced reso-
lution for the sake of efficiency), extending to a cubical grid
outer boundary where an artificial condition is applied.

A principal difficulty faced by this method is that the dis-
cretisation is not well suited to model radial waves at large
radii. In order to resolve the wave profile, a certain minimum
radial resolution is required and must be maintained as the
wave propagates to large radii. The angular resolution, how-
ever, can remain fixed – if a wave is resolved at a certain an-
gular resolution as small radii, then it is unlikely to develop
significant angular features as it propagates to large distances
from the isolated source. Cartesian grids with fixed spacing,
however, resolve spheres with an angular resolution which
scales according to r2. Thus, to maintain a given required ra-
dial resolution, the angular directions become extremely over-
resolved at large radii, and this comes at a large computational
cost. Namely, for a Cartesian grid to extend in size or increase
it’s resolution by a factor n, the cost in memory and number of
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computations per timestep increase by n3, while for a radial
grid with fixed angular resolution, the increase is linear, n 2.

For the near-zone, in the neighbourhood of the orbits of the
individual bodies, the geometrical situation is not as straight-
forward, since there is no clearly defined radial propagation
direction between the bodies. If the local geometry is rea-
sonably well known (for instance, the location of horizon
surfaces), adapted coordinates can also be considered in this
regime. The technical requirements of such coordinate sys-
tems can, however, be high. Since the bodies are moving,
the grids must move with them, or dynamical gauges chosen
such that the bodies remain in place relative to the numeri-
cal coordinates. Potential problems arise from the coordinate
singularity if the grids are extended to r = 0, as is the case
with the standard puncture approach. Thus, in the near-zone,
Cartesian coordinates can provide significant simplification to
the overall infrastructure requirements, while the previously
mentioned drawbacks of Cartesian coordinates are less preva-
lent, as it is useful to have homogeneous resolution in each
direction in situations where there is no obvious symmetry.

The evolution code which we have constructed for the pur-
pose of modelling waveforms from an isolated system is based
on a hybrid approach, involving a Cartesian mesh-refined re-
gion covering the near zone in which the bodies orbit, and a
set of adapted radial grids which efficiently cover the wave
zone. The overall structure is illustrated in Fig. 1 (top), which
shows an equatorial slice of the numerical grid. Computations
on each local patch are carried out in a globally Cartesian co-
ordinate system. In the particular implementation considered
here, the grids overlap by some distance so that data at the
boundaries between each local coordinate patch can be com-
municated by interpolation from neighbouring patches. The
resulting code is both efficient, but also simple in structure
and able to take advantage of well established methods for
evolving moving puncture black holes. If suitable interpola-
tion methods are used, then such a system can also be used
for solutions with discontinuities and shocks as are present in
hydrodynamics.

The code has been implemented within the Cactus frame-
work [49, 50] via extensions to the Carpet driver [51–53],
which handles parallelisation via domain decomposition of
grids over processors, as well as providing the required inter-
polation operators for boundary communication and analysis
tools.

A. Coordinate systems

The configuration displayed in Fig. 1 consists of seven local
coordinate patches: an interior Cartesian grid, and six outer
patches corresponding to the faces of the interior cube. Each
patch consists of a uniformly spaced (in local coordinates)
grid which can be refined (though in practise we will only use

2 Note that the Courant limit introduces an additional factor of n in each case
due to the requirement of a reduced timestep with increasing resolution.

this feature for the interior grid). The outer patches have a lo-
cal coordinate system (ρ, σ,R) corresponding to the “inflated
cube” coordinates which have previously been used in relativ-
ity for single black hole evolutions [41], and are displayed in
the lower plot of Fig. 1. The local angular coordinates (ρ, σ)
range over (−π/4,+π/4)×(−π/4,+π/4) and can be related
to global angular coordinates (µ, ν, φ) which are given by

µ ≡ rotation angle about the x-axis = arctan(y/z), (1a)
ν ≡ rotation angle about the y-axis = arctan(x/z), (1b)
φ ≡ rotation angle about the z-axis = arctan(y/x). (1c)

For example, on the +z patch, the mapping between the local
(ρ, σ,R) and Cartesian (x, y, z) coordinates is given by:

ρ ≡ ν = arctan(x/z), (2a)
σ ≡ µ = arctan(y/z), (2b)

R = f(r), (2c)

with appropriate rotations for each of the other cube faces,
and where r =

√
x2 + y2 + z2. As emphasised by Thorn-

burg [41], in addition to avoiding pathologies associated with
the axis of standard spherical polar coordinates, this choice of
local coordinates has a number of advantages. In particular,
the angular coordinates on neighbouring patches align so that
interpolation is only 1-dimensional, in a line parallel to the
face of the patch. This potentially improves the efficiency of
the interpolation operation as well as the accuracy. The co-
ordinates also cover the sphere more uniformly than, say, a
stereographic 2-patch system.

The local radial coordinate, R, is determined as a function
of the global coordinate radius, r. We can use this degree of
coordinate freedom to increase the physical (global) extent of
the wave-zone grids, at the cost of some spatial resolution. In
practise, we use a function of the form

f(r) = A(r − r0) +B
√

1 + (r − r0)2/ε, (3a)

with

R = f(r)− f(0). (3b)

in order to transition between two almost constant resolutions
(determined by the parameters A and B) over a region whose
width is determined by ε, centred at r0.

The effect of the radial transformation is illustrated in
Fig. 2. The coordinate R is a nearly constant rescaling of
r at small and large radii. The change in the scale factor is
largely confined to a transition region. Note that since we ap-
ply the same global derivative operators (described below) to
analysis tools as are used for the the evolution, it is possible to
do analysis (e.g., measure waveforms, horizon finding) within
regions where the radial coordinate is non-uniform. The re-
gions of near-constant resolution are, however, useful in order
to make comparisons of measurements at different radii with-
out the additional complication of varying numerical error due
to the underlying grid spacing.

Data on each patch are evaluated at grid-points which are
placed at uniformly spaced points of a Cartesian grid. Thus,
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FIG. 1. A schematic view of the z = 0 slice of the grid setup that is
used. The upper plot shows the central Cartesian grid surrounded by
six “inflated-cube” patches (the four equatorial patches are shown,
shaded). The boundaries of the nominal grids owned by each patch
are indicated by thick lines. The lower plot shows an r = constant
surface of the exterior patches, indicating their local coordinate lines.

local derivatives can be calculated via standard finite differ-
ence techniques. These are then transformed to a common
underlying Cartesian coordinate system by applying an appro-
priate Jacobian which relates the local to global coordinates.
That is, the global (Cartesian) coordinates, xi, are related to
the local coordinates, ai, by

xi = xi(aj), i, j = 0, 1, 2. (4)

and derivatives, ∂/∂ai, of fields are determined using finite
differences in the regularly spaced ai coordinates, which are

r/M

R
/M

σ

r0

d
R
/d
r

ρ

dR/dr

FIG. 2. The local radial coordinate, R (solid line), can be stretched
as a function of the global coordinate, r, in order to increase the ef-
fective size of the grid. The function specified by Eqs. (3) transitions
between two almost constant radial resolutions over a distance ε cen-
tred at r0.

then transformed using

∂

∂xi
=
(
∂aj
∂xj

)
∂

∂aj
, (5a)

∂2

∂xi∂xj
=
(

∂2ak
∂xi∂xj

)
∂2

∂a2
k

+
(
∂ak
∂xi

∂al
∂xj

)
∂2

∂ak∂al
, (5b)

in order to determine their values in the global frame. We store
and evaluate tensor components and their evolution equations
in the common global frame, so that there is no need to apply
transformations when relating data across patch boundaries.
In addition to the obvious simplification of the inter-patch
boundary treatment, this has a number of other advantages,
particularly when it comes to analysis tools (surface finding,
gravitational wave measurements, visualisation) which may
reference data on multiple patches. Since the data is repre-
sented in the common global basis, these tools do not need to
know anything about the local grid structures or coordinates.

B. Inter-patch interpolation

Data is communicated between patches by interpolating
onto overlapping points. Each patch, p, is responsible for de-
termining the numerical solution for a region of the space-
time. The boundaries of these patches can overlap neighbour-
ing patches, q, (and in fact must do so for the case of the in-
terpolating boundaries considered here), creating regions of
the spacetime which are covered by multiple patches. We de-
fine three sets of points on a patch. The nominal regions, Np,
contain the points where the numerical solution is to be de-
termined. The nominal regions of the patches do not overlap,⋂
pNp = ∅, so that if data is required at any point in the space-

time, it can be obtained without ambiguity by referencing the
single patch in whose nominal region it resides. A patch, p,
is bounded by a layer of ghost points, Gp, which overlap the
nominal zones of neighbouring patches, q, Gp ∩

⋃
qNq = Gp,

and are filled by interpolation. (These points are conceptually
similar to the inter-processor ghost-zones used by domain de-
composition parallelisation algorithms in order to divide grids
over processors.) The size of these regions is determined by
the width of the finite difference stencil to be used in finite
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p

q

FIG. 3. Schematic of interpolating patch boundaries in 1-dimension,
assuming 4-point finite difference and interpolation stencils. Points
in the nominal zones, Np,q , are indicated by filled circles, points
in ghost zones, Gp,q , by open squares, and points in overlap zones,
Op,q , by closed squares. The vertical dotted line demarcates the
boundary between nominal zones on each patch. Ghost points on
patch p are evaluated by centred interpolation operations from points
in Sq on the overlapping patch (arrows) and vice versa.

differencing the evolution equations on the nominal grid. Fi-
nally, an additional layer of overlap points, Oq , is required:
i) to ensure that the set of stencil points, Sq ⊂ Oq ∪ Nq ,
used to interpolated to the ghost zone does not itself originate
from the ghost zone of the interpolating patch, Sq ∩ Gq = ∅,
Oq ∩

⋃
pNp = Oq; and ii) to compensate for any differ-

ence in the grid spacing between the local coordinates on the
two patches. An illustration of the scheme in 1-dimension the
scheme is provided in Fig. 3.

Note that points in
⋃
q Oq ⊂

⋃
pNp are not interpolated,

but rather are evolved in the same way as nominal grid points
within

⋃
pNp. That is, in these regions points on each grid

are evolved independently, and is in principle multi-valued.
However, since the union of set of nominal points on each
patch

⋃
pNp uniquely and unambiguously covers the entire

simulation domain, i.e.
⋂
pNp = ∅, and since the overlap

regions are a subset of the nominal grid, if data is required at
a point within these overlap zones, there is exactly one patch
owing this point on its nominal grid, and it will be returned
uniquely from this patch. The differences between evolved
field values evaluated in these overlap points converge away
with the finite difference order of the evolution scheme.

The use of additional overlap points makes this inter-patch
interpolation algorithm somewhat simpler than the one imple-
mented by Thornburg in [41]. That algorithm required inter-
patch boundary conditions to be applied in a specific order
to ensure that all interpolation stencils are evaluated without
using undefined grid points, and requires off-centring interpo-
lation stencils under certain circumstances, which is not nec-
essary when overlap points are added. It also relies on the
particular property of the inflated-cube coordinates which en-
sured that the ghost-zones could be filled using 1-dimensional
interpolation in a direction orthogonal to the boundary. This
property would be non-trivial (and often impossible) to gener-
alise to match arbitrary patch boundaries, such as that between
the Cartesian and radially oriented grids of Fig. 1.

Another significant difference between Thornburg’s ap-
proach and the approach presented here is that former stores
tensor components in the patch-local frame, while we store
them in the global coordinate frame. Evaluating components
in the patch-local frame requires a basis transformation while
interpolating. This is further complicated in the case of non-
tensorial quantities (such as the Γ̃i of the BSSNOK formula-

tion) which have quite complicated basis transformation rules
involving spatial derivatives. Instead, we store tensor compo-
nents in the global coordinate frame, which requires no basis
transformation during inter-patch interpolations.

The number of ghost points in Gp can be reduced using fi-
nite difference stencils which become lop-sided towards the
boundaries of the patch, and may provide an important opti-
misation since interpolation between grids can be expensive,
particularly if processor communication is involved. How-
ever, this tends to be at the cost of increased numerical error
in the finite difference operations towards the grid boundaries.
We have generally found it preferable to use centred stencils
throughout the nominal,Np, and overlap, Op, zones and have
applied certain optimisations to the interpolation operators as
described below. Another optimisation can be achieved by us-
ing lower order interpolation so that it is possible to reduce the
number of overlapping points in Op.

The interpolation scheme for evaluating data in ghost zones
is based on Lagrange polynomials using data from the over-
lapping patch. In 1-dimension, the Lagrange interpolation
polynomial can be written as

Lx[φ](x) =
N∑
i

bi(x)φi , (6a)

where the coefficients are

bi(x) =
∏
k 6=i

(x− xk)
(xi − xk)

. (6b)

In these expressions, x ∈ Gp is the coordinate of the interpola-
tion point and φi ∈ Sq ⊂ Nq∪Oq are the values at grid-points
in the interpolation molecule surrounding x. The number of
grid-points in the interpolation molecule, N , determines the
interpolation order, and interpolation of n-th order accuracy
is given by N = n+ 1 stencil points in the molecule.

For interpolation in d-dimensions, the interpolation polyno-
mial can be constructed as a tensor product of 1-dimensional
Lagrange interpolation polynomials along coordinate direc-
tions, x = (x1, ..., xd):

L[φ](x) = Lx1 [φ](x1)⊗ . . .⊗ Lxd [φ](xd)

=

(
N∑
i

bi(x1)φi ,

)
· · ·
 N∑

j

cj(xd)φj

 . (7)

Therefore, for d-dimensional interpolation of order n, one has
to determine Nd neighbouring stencil points and associated
interpolation coefficients, Eq. (6b), for each point in the ghost-
zone of a given patch. Most generally, full 3-dimensional in-
terpolation is required, though in particular cases coordinates
between two patches can be constructed such that they align
locally so that only 1-dimensional interpolation is needed.
This is, for instance, the case for the overlap region between
the inflated-cube spherical patches used here (see Fig. 1). We
have optimised the current code to automatically take advan-
tage of this.

In order to interpolate to a point for which the coordinates
api given in the basis of patch p are given, we need to know
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the patch owning the nominal region containing this point. For
this we first convert api to the global coordinate basis xi, then
determine which patch q owns the corresponding nominal re-
gion Nq , and then convert xi to the local coordinate bases
this patch aqi . By construction, patch q has sufficient overlap
points to evaluate the interpolation stencil there:

xi := local-to-globalp(a
p
i ) , (8a)

q := owning-patch(xi) , (8b)

aqi := global-to-localq(x
i) . (8c)

The three operations “local-to-global”, “owning-patch”, and
“global-to-local” depend on the patch system and their local
coordinate systems.

We can then find the points of patch q that are closest to
the interpolation point aqi in the local coordinates this patch.
In order to find these points, we exploit the uniformity of the
grid in local coordinates. The grid indices of the stencil points
in a given direction are determined via

i ∈
{

floor(j + k)
∣∣∣∣ j =

x− x0

∆x
, k = −n

2
, · · · , n

2

}
, (9)

where x0 is the origin of the local grid, n is the interpolation
order, and “floor” denotes rounding downwards to the nearest
integer.

There remains to be determined the refinement level which
contains the region surrounding the interpolation point, as
well as the processor that owns this part of the grid. For
this purpose, an efficient tree-search algorithm has been im-
plemented. In this algorithm, the individual patches and re-
finement levels are defined as “super-regions”, i.e., bounding
boxes that delineate the global grid extent before processor de-
composition. Each of these super-regions is recursively split
into smaller regions. The leaves of the resulting tree struc-
ture represent the individual local components of the proces-
sor decomposition. Locating a grid point in this tree structure
requires O(log n) operations on n processors, whereas a lin-
ear search (that would be necessary without a tree structure)
would require O(n) operations.

While the corresponding tree structure is generic, the ac-
tual algorithm used in Carpet splits the domain into a kd
tree of depth d in d = 3 dimensions. That is, the domain is
first split into k sub-domains in the x direction, each of these
sub-domains is then independently split into several in the y
direction, and each of these is then split in the z direction.
This leads to cuboid sub-domains for each processor, where
the sub-domains do not overlap, and where each sub-domain
can have a different shape. Carpet balances the load so that
each processor receives approximately the same number of
grid points, while keeping the sub-domains’ shapes as close
to a cube as possible.

Our implementation pre-calculates and stores most of the
above information when the grid structure is set up, saving a
significant amount of time during interpolation. In particular,
the following are stored:

• For each ghost-point, the source patch (where the inter-
polation is performed), and the local coordinates on this
patch;

• For each ghost-point, the interpolation stencil coeffi-
cients (6b);

• For each processor, the communication schedule speci-
fying which interpolation points need to be sent to what
other processor.

When the grid structure changes, for example, when a mesh-
refinement grid is moved or resized, these quantities have to
be recalculated.

Altogether, the inter-patch interpolation therefore consists
of applying processor-local interpolation stencils, sending the
results to other processors, receiving results from other pro-
cessors, and storing these results in the local ghost-points.
These are all operations requiring no look-up in complex data
structures, and which consequently execute very efficiently on
modern hardware.

C. Finite differencing

Spatial derivatives are computed using standard finite dif-
ference stencils, which have currently been implemented up to
8th-order [46]. The stencils are centred, except for the terms
corresponding to an advection by the shift vector, of the form
βi∂iu (see Sec. III, below). These derivatives are calculated
using an “upwind” stencil which is shifted by one point in the
direction of the shift, and of the same order. We find that these
upwind stencils provide a significant increase in the numeri-
cal accuracy of the puncture motion at a given resolution (see
Appendix A). The particular stencils which we use can be
generated via a recursion algorithm, as outlined in [54].

On each patch we allow the local grids to be refined in order
to increase the accuracy of computations in localised regions.
For the application of the evolution of an isolated binary con-
sidered here, we only refine the central Cartesian grid in the
neighbourhood the bodies. This is done using standard 2 : 1
Berger-Oliger mesh refinement techniques via the Carpet
infrastructure [51–53]. The time step for the outer patches is
taken to be the same as the coarse grid step of the interior
patch, so that no time-interpolation is required at inter-patch
boundaries.

Time integration is carried out using standard method-of-
lines integrators. We find that for the time resolution we
are using, a 4th-order Runge-Kutta (RK4) method provides
a good compromise between sufficient accuracy and a low
memory footprint. We set the time resolution of the outer
grids according to the timestep of the coarsest Cartesian grid,
which is limited by the Courant condition at the specified spa-
tial resolution. By placing the Cartesian-spherical boundary
at a small radius (and thus extending to finer Cartesian grids)
we attain a high time resolution in the wave zone, potentially
important for determining higher harmonics.

D. Surface integration and harmonic decomposition

A number of quantities of physical interest are measured by
projecting them onto closed surfaces surrounding the source.
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In particular, gravitational wave measurements rely on com-
putations on constant coordinate spheres S2, parameterized by
local spherical-polar coordinates (θ, φ) with constant coordi-
nate radius r. In principle, it would be possible to construct
coordinates on these 2-dimensional spheres which correspond
to the underlying grid coordinates of the evolution, for in-
stance as portrayed in the lower figure of Fig. 1. In this case,
data can be mapped directly onto the spheres. More generally,
however, interpolation can be used to obtain data at points on
the measurement spheres, according to the procedure outlined
in Sec. II B, above.

For the purpose of analysis, it is often convenient to de-
compose the data on S2 in terms of (spin-weighted) spherical
harmonic modes,

A`m =
∫
dΩ
√−gA(Ω)sȲ`m(Ω) , (10)

where g is the determinant of the surface metric and Ω angular
coordinates. In standard spherical-polar coordinates (θ, φ),

√−g = sin2 θ . (11)

The integral, Eq. (10), is solved numerically as follows. In
the spherical polar case, we can take advantage of an highly
accurate Gauss quadrature scheme which is exact for poly-
nomials of order up to Nθ/2 − 1, where Nθ is the number
of gridpoints along the θ-direction. On a staggered grid, i.e.
θj = (j + 1/2)π/Nθ, j = 0, ..., Nθ − 1, the scheme can be
written as ∫

dΩf(Ω) =
Nθ∑
i

Nφ∑
j

fijwj +O(Nθ) , (12)

where Nθ and Nφ are the number of angular gridpoints and
wj are weight functions [55, 56],

wj =
2π
Nφ

4
Nθ

Nθ/2−1∑
l=0

1
2l + 1

sin ([2l + 1]θj) ,

Nθ even . (13)

In our implementation, the weight functions are pre-calculated
for fast surface integration.

III. EVOLUTION SYSTEM

We evolve the spacetime using a variant of the “BSSNOK”
evolution system [57–60] and a specific set of gauges [61, 62],
which have been shown to be effective at treating the coordi-
nate singularities of Bowen-York initial data. We examine the
well-posedness and characteristic propagation speeds of our
system in [63, 64], where we prove (and also demonstrate nu-
merically) that constraint violations introduced by this singu-
larity treatment cannot escape the horizon.

The 4-geometry of a spacelike slice Σ (with timelike nor-
mal, nα) is determined by its intrinsic 3-metric, γab and ex-
trinsic curvature, Kab, as well as a scalar lapse function, α,

and shift vector, βa which determine the coordinate propaga-
tion. The standard BSSNOK system defines modified vari-
ables by performing a conformal transformation on the 3-
metric,

φ :=
1
12

ln det γab, γ̃ab := e−4φγab, (14)

subject to the constraint

det γ̃ab = 1, (15)

and by removing the trace of Kab,

K := trKij = gijKij , (16)

Ãij := e−4φ(Kij − 1
3
γijK), (17)

with the constraint

Ã := γ̃ijÃij = 0. (18)

Additionally, three new variables are introduced, defined in
terms of the Christoffel symbols of γ̃ab by

Γ̃a := γ̃ijΓ̃aij . (19)

In principle the Γ̃a can be determined from the γ̃ab, on a slice
however their introduction is key to establishing a strongly hy-
perbolic (and thus stable) evolution system. In practise, only
the constraint Eq. (18) is enforced during evolution [65], while
Eq. (15) and Eq. (19) are simply monitored as indicators of
numerical error. Thus, the traditional BSSNOK prescription
evolves the variables

φ, γ̃ab, K, Ãab, Γ̃a, (20)

according to evolution equations which have been written
down a number of times (see [66, 67] reviews).

In the context of puncture evolutions, it has been noted that
alternative scalings of the conformal factor may exhibit better
numerical behaviour in the neighbourhood of the puncture as
compared with φ. In particular, a variable of the form

φ̂κ := (det γab)−1/κ, (21)

has been suggested [3, 68]. In [3], it is noted that certain sin-
gular terms in the evolution equations for Bowen-York initial
data can be corrected using χ := φ̂3. Alternatively, [68] notes
that W := φ̂6 has the additional benefit of ensuring γ remains
positive, a property which needs to be explicitly enforced with
χ.
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In terms of φ̂κ, the BSSNOK evolution equations become:

∂tφ̂κ =
2
κ
φ̂καK + βi∂iφ̂κ − 2

κ
φ̂κ∂iβ

i, (22a)

∂tγ̃ab =− 2αÃab + βi∂iγ̃ab + 2γ̃i(a∂b)βi (22b)

− 2
3
γ̃ab∂iβ

i,

∂tK =−DiD
iα+ α(AijAij +

1
3
K2) + βi∂iK, (22c)

∂tÃab =(φ̂κ)κ/3(−DaDbα+ αRab)TF + βi∂iÃab (22d)

+ 2Ãi(a∂b)βi − 2
3
Aab∂iβ

i,

∂tΓ̃a =γ̃ij∂iβjβa +
1
3
γ̃ai∂i∂jβ

j − Γ̃i∂iβa (22e)

+
2
3

Γ̃a∂iβi − 2Ãai∂iα

+ 2α(Γ̃aijÃ
ij − κ

2
Ãai

∂iφ̂κ

φ̂κ
− 2

3
γ̃ai∂iK),

where Da is the covariant derivative determined by γ̃ab, and
“TF” indicates that the trace-free part of the bracketed term is
used.

We have implemented the traditional φ form of the BSS-
NOK evolution equations, as well as the χ and W variants
implicit in the evolution system, Eqs. (22). All three evolu-
tion systems produce stable evolutions of binary black holes,
though the χ variant requires some special treatment if, due to
numerical error particularly in the neighbourhood of the punc-
tures, φ̂3 ≤ 0 [69]. Generally we find that the advection of the
puncture (and thus the phase accuracy of the simulation) ex-
hibits lower numerical error when using the χ and W variants
(see Appendix C). Convergence properties of physical vari-
ables (such as measured gravitational waves, or constraints
measured outside of the horizons), however, are not affected
by the choice of conformal variable.

The Einstein equations are completed by a set of four con-
straints which must be satisfied on each spacelike slice:

H ≡ R(3) +K2 −KijK
ij = 0, (23a)

Ma ≡ Di(Kai − γaiK) = 0. (23b)

Again, we do not actively enforce these equations, but rather
monitor their magnitude in order to determine whether our
numerical solution is deviating from a solution to the Einstein
equations.

The gauge quantities, α and βa, are evolved using the
prescriptions that have been commonly applied to BSSNOK
black hole, and particularly puncture, evolutions. For the
lapse, we evolve according to the “1 + log” condition [70],

∂tα− βi∂iα = −2αK, (24)

while the shift is evolved using the hyperbolic “Γ̃-driver”
equation [61],

∂tβ
a − βi∂iβa =

3
4
αBa , (25a)

∂tB
a − βj∂jBi = ∂tΓ̃a − βi∂iΓ̃a − ηBa , (25b)

where η is a parameter which acts as a (mass dependent)
damping coefficient, and is typically set to values on the or-
der of unity for the simulations carried out here. The advec-
tive terms in these equations were not present in the original
definitions of [61], where co-moving coordinates were used,
but have been added following the experience of more recent
studies using moving punctures [2, 62].

A. Wave extraction

The Newman-Penrose formalism [71] provides a conve-
nient representation for a number of radiation related quanti-
ties as spin-weighted scalars. In particular, the curvature com-
ponent

ψ4 ≡ −Cαβγδnαm̄βnγm̄δ, (26)

is defined as a particular component of the Weyl curvature,
Cαβγδ , projected onto a given null frame, {l,n,m, m̄}.

The identification of the Weyl scalar ψ4 with the gravita-
tional radiation content of the spacetime is a result of the peel-
ing theorem [71–73], which states that in an appropriate frame
and for sufficiently smooth and asymptotically flat initial data
near spatial infinity, the ψ4 component of the curvature has the
slowest fall-off with radius, O(1/r).

The most straight-forward way of evaluating ψ4 in numeri-
cal (Cauchy) simulations is to define an orthonormal basis in
the three space (r̂, θ̂, φ̂), centered on the Cartesian grid cen-
ter and oriented with poles along ẑ. The normal to the slice
defines a time-like vector t̂, from which we construct the null
frame

l =
1√
2

(t̂− r̂), n =
1√
2

(t̂+ r̂), m =
1√
2

(θ̂ − iφ̂) .

(27)
Note that in order to make the vectors {l,n,m, m̄} null,
(r̂, θ̂, φ̂) have to be orthonormal relative to the spacetime met-
ric. In practice, we fix r̂ and then apply a Gram-Schmidt or-
thonormalization procedure to determine θ̂ and φ̂) 3. It is then
possible to calculate ψ4 via a reformulation of (26) in terms
of the geometrical variables on the slice [75] via the electric
and magnetic parts of the Weyl tensor,

ψ4 = Cijm̄
im̄j , (28)

where

Cij ≡ Eij − iBij = Rij −KKij +Ki
kKkj − iεikl∇lKjk .

(29)

3 Alternative frame constructions have also been used, such as orthonormal-
ising relative to one of the angular basis vectors [74], or omitting the or-
thonormalisation altogether [4]. We have generally found these modifica-
tions do not lead to significantly different measurements
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The remaining Weyl scalars can be similarly obtained and
read

ψ3 =
1√
2
Cijm̄

iejr , (30a)

ψ2 =
1
2
Cije

i
re
j
r , (30b)

ψ1 = − 1√
2
Cijm

iejr , (30c)

ψ0 = Cijm
imj , (30d)

where (ejr) ≡ r̂ is the unit radial vector.
In relating ψ4 to the gravitational radiation, one is limited

by the fact that the measurements have been taken at a finite
radius from the source. Local coordinate and frame effects
can complicate the interpretation of ψ4. These problems can
largely be alleviated by taking measurements at several radii
and performing polynomial extrapolations to r → ∞. Pro-
cedures for doing so have been studied in [76, 77]. In [77]
we have shown that if a sufficiently large outermost extrap-
olation radius is used, the variation in this procedure is of
the order ∆A = 0.03% and ∆φ = 0.003 rad in amplitude
and phase respectively, and is consistent throught the evolu-
tion, including inspiral, merger and ringdown. The extrap-
olation error is larger than the numerical error determined
in Sec. IV C 2, below, even if it is performed using data at
r = 1000M distant from the source, highlighting the need
for measurements at large radii. For the “extrapolated” data
plotted in this paper, we have performed polynomial extrap-
olations as detailed in [77], using the six outermost measure-
ments at r = {280M, 300M, 400M, 500M, 600M, 1000M}.

In a companion paper [78], we use the same dataset to cal-
culate ψ4 directly at J + using characteristic extraction [79,
80]. Here the traditional approach (which is gauge dependent
and has a finite-radius cut-off error) presented here is replaced
by a characteristic formulation of the Einstein equations in or-
der to determine the fields out to future null infinity. In this
paper, we restrict ourselves to a discussion of the numerical
error inherent in the evolution procedure via the multi-patch
code, and will report in more detail on systematic measure-
ment errors due to finite radius effects and the characteristic
extraction procedure elsewhere [78, 81].

IV. CODE VERIFICATION

A. Initial data

To demonstrate the efficacy of the infrastructure described
in the previous sections, we have carried out an evolution of
the by now well-studied case of the late-inspiral and merger of
a pair of non-spinning equal-mass black holes (see, for exam-
ple, [82] for an extensive discussion of numerical results in-
volving this model). The particular numerical evolution which
we have carried out starts from an initial separation d/M =
11.0 and goes through approximately 8 orbits (a physical time
of around 1360M ), merger and ring-down. The masses of
the punctures are set to m = 0.4872 and are initial placed on

the x-axis with momenta p = (±0.0903,∓0.000728, 0), giv-
ing the initial slice an ADM mass MADM = 0.99051968 ±
2 × 10−8. These initial data parameters were determined us-
ing a post-Newtonian evolution from large initial separation,
following the procedure outlined in [83], with the conserva-
tive part of the Hamiltonian accurate to 3PN, and radiation-
reaction to 3.5PN, and determines orbits with a measured ec-
centricity of e = 0.004± 0.0005.

B. Grid setup

The binary black hole evolution was carried out on a 7-
patch grid structure, as described in Sec. II, incorporating a
Cartesian mesh-refined region which covers the near-zone,
and six radially oriented patches covering the wave-zone.

The inner boundary of the radial grids was placed at rt =
35.2M relative to the centre of the Cartesian grid. As a gen-
eral rule, this boundary should be made as small as possible
to improve efficiency in terms of memory usage. However
other factors may make it preferable to move it further out. In
particular, since we do not perform time interpolation at grid
boundaries, the time step dt of the coarsest Cartesian grid de-
termines the timestep of the radial grids, and thus the wave
zone. Updates of the radial grids tend to be expensive, as they
are large, so that if dt is too small, computation time may be
spent over-resolving (in time) the wave zone. Particularly if
the principle interest is in the lower order wave modes, it may
be optimal to add an additional Cartesian mesh-refinement
grid with a coarser time-step, and thus move rt outwards.

The outer boundary for the spherical grids was chosen
based on the expected time duration of the measurement and
radius of the furthest detector, in order to remove any influ-
ence of the artificial outer boundary condition. In particular,
given that the evolution takes a time Tm for the entire inspiral,
merger and ringdown, and gravitational wave measurements
taken at a finite radius rd, we would like to ensure that a dis-
turbance travelling at the speed of light from the outer bound-
ary does not reach the measurement radius (see Fig. 4). For
the BSSN evolution system, the physical modes travel at the
speed of light, c = 1, in normal coordinates [63, 64], which
are well-approximated in the wave zone where α ' 1 and
βr ' 0. The 1 + log slicing condition, Eq. (24) propagates
at a speed of

√
2α, however this is a gauge mode and empir-

ically we find it to have negligible effect on measurements.
The speed of propagation of numerical error from the bound-
ary may also be larger than that of the physical modes, but
does not affect the propagation of physically meaningful (i.e.
continuum) quantities if the numerical scheme is consistent
and convergent. Thus, taking note of the v ' c = 1 propa-
gation speed of physical error modes from the boundary, we
place the outer boundary at

rb > Tm + 2rd. (31)

For the particular evolution considered here, Tm ' 1350M ,
and our outermost measurements are taken at rd = 1000M .
We have placed the outer boundary of the evolution domain at
rb = 3600M .
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FIG. 4. Schematic of the causal propagation of information during
the evolution. The gravitational wave source is located in the vicin-
ity of r = 0, with waves propagating outward at the speed of light
c = 1, and are measured at radius rd for a time of interest which
would include the inspiral, merger and ringdown of a binary system.
The unphysical outer boundary of the grid is located at rb, which is
chosen to be sufficiently far removed that the future Cauchy horizon
of the domain of dependence of the initial slice does not reach rb
until the measurement is complete.

The near-zone grids incorporate 5 levels of 2:1 mesh re-
finement, covering regions centred around each of the black
holes. For the highest resolution we have considered here, the
finest grid (covering the black hole horizon) has a grid spacing
of dx = 0.02M . The wave-zone grids have an inner radial
resolution which is commensurate with the coarse Cartesian
grid resolution, dr = 0.64M in this case. This resolution is
maintained essentially constant to the outermost measurement
radius (r = 1000M ), at which point we apply a gradual de-
crease in resolution (as described in Sec. II A) over a distance
of r = 500M . From r = 1500M to the outer boundary, we
maintain a resolution of dx = 2.56M , sufficient to resolve
the inspiral frequencies of the dominant (`,m) = (2, 2) mode
of the gravitational wave signal. The transition between the
resolutions is performed over a distance of 500M between
r = 1000M and r = 1500M . The angular coordinates have
31 points (30 cells) in ν and φ on each of the 6 patches. The
time-step of the wave-zone grids is dt = 0.144, and we take
wave measurements at each iteration.

We have carried out evolutions at three resolutions in order
to estimate the convergence of our numerical methods. The
grid described above is labelled h0.64. The lower resolutions,
labelled h0.80 and h0.96 have each of the specified grid spac-
ings scaled by 0.80/0.64 and 0.96/0.64, respectively.

C. Results

The binary black hole initial data described in Sec. IV A
evolves for about 8 orbits (' 1350M ) before merger. Various
(`,m) modes of ψ4 are plotted in Fig. 5. We find that for the
grids we have used, the modes to (`,m) = (4, 4) mode are

quite well resolved throughout the evolution. The (6, 6) mode
is also measurable, and shows a clear signal, particularly dur-
ing ringdown. The (8, 8) mode is dominated by noise for most
of the inspiral, though during the merger and ringdown phase,
a clear signal is present and the amplitude and frequency can
be estimated. Tests with an analytical solution confirm that the
angular resolutions which we have used are at best marginal
for resolving this mode.

In the following sections, we report results regarding the
convergence and accuracy of these measurements, as well
as determine the parameters of the merger remnant. By
analysing the ring-down behaviour of the waves we conclude
that the remnant is indeed a Kerr black hole (see Sec. IV C 4,
below).

1. Numerical convergence

We can establish the consistency of our discretisation by
showing that it does indeed converge to a unique solution in
the continuum limit. Ideally, an exact solution can be used
to test this. However, since there are no exact solutions which
adequately model the physical scenario which we wish to con-
sider (inspiralling black hole binaries), an alternative is to
evaluate numerical solutions at several (at least three) differ-
ent resolutions and establish that the differences decrease as
resolution is increased. For an implementation in which all of
the discrete operations are carried out with the same order of
accuracy, the convergence test should yield a clear exponent
corresponding to that order.

The evolution code incorporates a number of discrete op-
erations, which for various practical reasons, are carried out
to different orders of accuracy. These are listed in Table I.
The primary operation which is carried out over the bulk of
the grid is the computation of finite difference derivative op-
erations in order to evaluate the right-hand side of the evolu-
tion equations (22a)–(22e). For the tests carried out in this
paper, 8th-order stencils are used for this operation, includ-
ing the upwinded advection terms. It is common to apply a
small amount of artificial dissipation in order to smooth high-
frequency effects. This is done at one higher order (9th) than
the interior finite differencing, with stencils constructed from
10th derivatives. This maintains the correct continuum limit.4

Various boundary operations (inter-patch boundary communi-
cation, mesh-refinement boundaries) are carried out at lower
order. This is done largely for efficiency reasons, as the com-
munication involved in boundary interpolation can be time-
consuming if the stencil widths are large. Intuitively, the nu-
merical error associated with these operations may have re-
duced influence in any case, as they are applied only at 2D
interfaces. In practise this does seem to be the case, for in-
stance, as experiments with 4th and 5th order interpolation
operators between patches show similar accuracy in the final

4 In our experiments, we have noted that dissipation at this high order has a
negligible impact on the solution, and could effectively be omitted. How-
ever, we continue to include it in the work presented here.
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FIG. 5. The dominant spherical harmonic modes of ψ4 for ` = 2, 4, 6, 8, measured at r = 200M from the coordinate centre. The plots on the
right show amplitude and frequency evolution during the late inspiral, merger and ringdown..

solution. Similarly, operations involving different time-levels
are at lower order, again for efficiency reasons. The time reso-
lution of our evolutions tends to be high enough that one might
expect a small error coefficient of the RK4 integrator. The
lowest order operation which we use is the 2nd-order time in-
terpolation at mesh-refinement boundaries. Applying higher
order here would require keeping more time levels in mem-
ory (currently we store three). Our results are consistent with
previous studies using mesh-refinement for black hole evolu-
tion which suggest that the influence of the low order time-
interpolation boundary conditions is negligible for the time
resolutions which we apply (see, for example, [69]).

For test cases involving a single non-spinning black hole,
in fact we find 8th-order convergence in the Hamiltonian con-
straints. This is likely due to the relatively constant values
(except for some gauge evolution) maintained by the evolu-
tion variables during the evolution, which minimises error due
to time-integration or propagation across boundaries.

A more relevant situation is that of a binary black hole in-
spiral, which we have tested using the parameters described
above in Sec. IV A. For this model, we have measured the
gravitational waveform, ψ4, integrated over spheres at radii
from r = 100M to r = 1000M , at the three resolutions
h0.96, h0.80 and h0.64. Results for the (`,m) = (2, 2) mode
are shown in Fig. 6. The evolution lasts for about 1350M

Numerical method Order
Grid interior finite differencing 8
Inter-patch interpolation 5
Kreiss-Oliger dissipation 9
Time integration (RK4) 4
Mesh-refinement:

Spatial prolongation 5
Spatial restriction n/a
Time interpolation 2

Analysis tools:
Interpolation 4
Finite differencing 8
Surface integration Nθ/2− 1

TABLE I. Table of convergence order of various numerical aspects of
the evolution code. Spatial restriction is carried out by a direct copy.
The surface integration is exact for polynomials up to degreeNθ/2−
1, whereNθ is the number of grid-points along the θ-direction on the
sphere.

before merger, and the plots encompass the inspiral, merger
(at t = 0M on this time axis), and ringdown. The figure
plots the error in phase ∆φ and relative amplitude ∆A for the
(2, 2) mode extracted at r = 100M and r = 1000M , respec-
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tively, between medium h0.80 and low h0.96 resolutions and
high h0.64 and medium h0.80 resolutions in the wave-zone.
The latter error is scaled such that the curves will overlap in
the case of a 4th-order convergent solution. At both radii, we
find that during the inspiral phase, the rescaled error of the
higher resolutions lies below that of the lower resolution, sug-
gesting better than 4th-order convergence (in fact, closer to
8th-order over significant portions of the plot). At later times,
around the peak of the waveform, the curves are more closely
aligned, indicating 4th-order convergence. The plot suggests
that during the very dynamical late stages of the inspiral, the
lower order boundary conditions and/or the time integration,
play a more important role relative to the early inspiral phase
of the evolution, where the convergence order is closer to that
of the interior finite differencing. The results are, however,
convergent over the entire evolution (including merger and
ringdown). As we will see in the next section, the accuracy is
excellent for these resolutions so that the rate of convergence
is not a particular issue.

We have verified convergence for a number of different
modes of the ψ4 waveform at different radii. For instance,
Fig. 7 shows similar results for the (`,m) = (6, 6) mode,
which is some two orders of magnitude smaller in peak am-
plitude than the (`,m) = (2, 2) mode (see Fig. 5). During
the early inspiral, it is difficult to evaluate a convergence or-
der due to high frequency noise which is large relative to the
waveform amplitude. However, a measurable signal is clear
in the last orbit, merger and ringdown phase, and converges at
a clear 3rd order.

2. Accuracy

We estimate the numerical phase and amplitude error by
means of a Richardson expansion at a given resolution ∆,

u∆(t, x) = u(t, x) + ∆e1(t, x) + ∆2e2(t, x) + · · · , (32)

where u(t, x) is the solution of the original differential equa-
tion, and the ei(t, x) are error terms at different orders in ∆.
Assuming convergence at a fixed order, n, we can expect some
of these error functions to vanish. Using solutions, u, obtained
at two resolutions, ∆1 and ∆2, the Richardson expansion im-
plies

u∆1 − u∆2 = en(∆n
1 −∆n

2 ) +O(∆n+1)

= en∆n
2 (Cn − 1) +O(∆n+1)

∼ ε∆2(Cn − 1) , (33)

where ε∆2 is the estimated solution error on the higher reso-
lution grid, and where

Cn :=
(

∆1

∆2

)n
. (34)

We thus obtain an estimate for the solution error that is at
least accurate to order n+ 1,

ε∆2 ∼
1

Cn − 1
(u∆1 − u∆2) , (35)

which we use as an estimate of the numerical error in our so-
lutions.

During the inspiral phase (which for this purpose we regard
as being the period t ≤ −100M ), we have found roughly 8th-
order convergence in the amplitude and phase, as described
above. The remaining relative error for the (`,m) = (2, 2)
mode can be estimated as

max
t∈[−1350,−100]

err(A)inspiral = 0.090% , (36a)

max
t∈[−1350,−100]

err(φ)inspiral = 0.010% . (36b)

where err(A) := ∆A/A and err(φ) := ∆φ/φ, i.e., the rate
of loss of phase with φ. During merger and ring-down (t >
−100M ), we observe 4th-order convergence in the amplitude,
while maintaining 8th-order convergence in the phase. This
results in the estimate

max
t∈(−100,150]

err(A)merger = 0.153% , (37a)

max
t∈(−100,150]

err(φ)merger = 0.003% . (37b)

The time evolution of the numerical error in phase and ampli-
tude is shown in Fig. 8.

We note that these errors are of comparable order to the er-
rors inherent in the extrapolation [77]. Moreover, as is pointed
out in [78], the error between extrapolated waveforms and
those determined at future null infinity, J +, by characteristic
extraction, is an order of magnitude larger than the numeri-
cal error determined here. This highlights the importance of
reducing systematic errors inherent in finite radius measure-
ments of ψ4.

3. Properties of the merger remnant

The merger remnant can be measured with high accuracy,
using either the isolated horizon formalism [84, 85], or ge-
ometrical measures of the apparent horizon [86, 87]. Some
results are reported in Table II, along with estimated nu-
merical errors. The results agree well with previous high-
accuracy measurements, such as those obtained by spectral
evolution [4, 82], with the spin and irreducible mass agree-
ing within three decimal and four decimal places, respectively.
While this is larger than the reported errors, we note that we
have evolved a different initial data set than [4]. As reported
in Sec. IV A our evolution has somewhat more eccentricity,
and the level of agreement can be used to judge the influence
of small amounts of eccentricity on the result.

By comparing the properties of the merger remnant with
the integrated radiated energy, Erad, and angular momentum,
Jrad, determined from the gravitational waveforms, we find
the residuals

|Mf + Erad −MADM| = 4.1× 10−5, (38a)

|Sf + Jrad − JADM| = 1.0× 10−3. (38b)

Here we have used the extrapolations of the gravitational
waveforms to r →∞ based on the 6 outermost measurement
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FIG. 6. Convergence in amplitude (top) and phase (bottom) of the (`,m) = (2, 2) mode of ψ4 for detectors at r = 100M and r = 1000M .
The higher resolution difference, h0.80 − h0.64, is scaled for 4th-order convergence.

FIG. 7. Convergence in amplitude (top) and phase (bottom) of the
(`,m) = (6, 6) mode of ψ4 for detector at r = 100M during the
late through merger. The higher resolution difference, h0.80− h0.64,
is scaled for 3rd-order convergence.

FIG. 8. Absolute numerical error in the amplitude (top) and phase
(bottom) accumulated over the course of the evolution for the high-
est resolution run, determined according to Eq. (35) for the point-
wise differences in amplitude and phase between medium and high
resolution runs. For the phase we assume the measured 8th-order
convergence over the entire evolution, while for the amplitude we
use 8th-order before t ≤ −100, and 4th-order thereafter (see text).

Total ADM mass, MADM 0.99051968± 20× 10−9

Total ADM angular momentum, JADM 0.99330000± 10× 10−17

Irreducible mass, Mirr 0.884355± 20× 10−6

Spin, Sf/M2
f 0.686923± 10× 10−6

Christodoulou mass, Mf 0.951764± 20× 10−6

Angular momentum, Sf 0.622252± 10× 10−6

Radiated energy, Erad 0.038715± 2× 10−6

Radiated angular momentum, Jrad 0.370007± 68× 10−6

TABLE II. Properties of the merger remnant as measured on the ap-
parent horizon (Mirr, Sf/M2

f ) and from the gravitational radiation
(Erad, Jrad). Ranges indicate the estimated numerical error. For the
error in JADM, we have simply quoted machine precision (it is an
analytical expression of the input momenta on the conformally flat
initial slice).

radii. A more detailed discussion of this procedure is given
in [77]. The results can be further improved through taking
measurements at J +, as outlined in [78, 81].

4. Quasi-normal modes of the merger remnant

In Fig. 5, we have shown the late-time behaviour of the
amplitude and frequency for the dominant spherical harmonic
modes of ψ4, to (`,m) = (8, 8). We note that during ring-
down, the frequencies settle to a constant value. If the final
black hole is a Kerr black hole, these frequencies are given by
the quasi-normal modes of a Kerr black hole with given spin
a.

As reported in the previous section, our evolution leads to
a merger remnant with a = 0.686923 ± 1 × 10−5 (see Ta-
ble II), as measured on the horizon. The real part of the pro-
grade quasi-normal mode (QNM) frequencies for modes up to
(`,m) = (7, 7), can be found tabulated in [88]. For example,
Mω22 = 0.526891 for the (`,m) = (2, 2) mode, given a final
black hole of the measured mass Mf and spin Sf .

At this point it is worth noting that the QNM determined
from perturbations of a Kerr black hole are most naturally
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expressed in terms of a basis of spin-weighted spheroidal
harmonics. By contrast, our waveforms have been decom-
posed relative to a basis of spin-weighted spherical harmon-
ics, which are easily calculated via Legendre functions. In or-
der to make an appropriate comparison between these modes
with the perturbative results we need to apply a transformation
to the wave-modes. We have

ψ̂`
′m′

4 =
∑
`,m

ψ`,m4 〈`,m|`′,m′〉 , (39)

where a dash denotes labelling of the spheroidal harmonic
modes, and 〈`,m|`′,m′〉 is the overlap defined by

〈`,m|`′,m′〉 =
∫

Ω

dΩ−2S̄`′m′(c`′m′)−2Y`m . (40)

The spheroidal harmonics parameter c`′m′ = aω`′m′ depends
on the spin a of the black hole and the corresponding prograde
or retrograde QNM frequency ω`′m′ of the (`′m′) spheroidal
harmonic mode5. If c = 0 (as is the case for non-spinning
black holes), the spheroidal harmonics reduce to the spheri-
cal harmonics. The spin-weighted spheroidal harmonics used
here have been implemented following Leaver [89] and are
reviewed in [90].

The frequencies measured during the ringdown are plotted
in Fig. 9 for the modes (`,m) = (2, 2),(4, 4) and (6, 6). We
have plotted data for the r = 1000M measurement, as well as
the value obtained by extrapolating the waveforms extracted at
the outermost 6 measurement spheres to r →∞, and find that
in fact the extrapolation has little effect on the frequency of the
lower order modes at these distances from the source. We note
that there is a modulation of the ringdown frequency, particu-
larly apparent in the (2, 2) mode. This is a result of mode mix-
ing, which stems from the use of the spherical harmonic basis
for the ψ4 measurements. By transforming the r = 1000M
result to spheroidal harmonics, this modulation visible in the
t < 40M signal is largely removed (dashed line).

As the amplitude of the wave declines exponentially to the
level of numerical error, the frequencies become difficult to
measure accurately. We estimate the ringdown frequency for
each mode by performing a least-squares fit of a horizon-
tal line through the measured spheroidal harmonic frequency
over the range t ∈ [40, 80]M (dotted line) with the standard
deviation of the fit as a gauge of the error (grey region). These
constant lines represent the estimated frequency of the asso-
ciated QNM modes, and are tabulated as ωNR in Table III.
They agree to high precision with the prograde QNM frequen-
cies, ωlit., determined Kerr black holes by perturbative meth-
ods [88]. We conclude that the merger remnant is compatible
with a Kerr black hole within the given error estimates.

V. DISCUSSION

The results of this paper provide a demonstration of the use-
fulness of adapted coordinates in numerical relativity simula-

5 We restrict attention to the N = 0 harmonic only.

(`,m) Mfω
lit. Mfω

NR |Mfω
NR −Mfω

lit.|
(2, 2) 0.526891 0.5267± 0.0011 1.9× 10−4

(4, 4) 1.131263 1.1312± 0.0028 6.3× 10−5

(6, 6) 1.707630 1.7074± 0.0662 2.3× 10−4

TABLE III. Prograde N = 0 QNM frequencies for different modes
and spin a = 0.6869 as determined by perturbative methods [88],
ωlit., and as measured during ringdown in the numerical relativity
simulation, ωNR.

FIG. 9. The ringdown frequencies for the dominant ψ4 modes to
` = 6 of the merger remnant. From top to bottom, the plots show the
frequencies of the (`,m) = (2, 2), (4, 4) and (6, 6) modes respec-
tively, over a timescale from the (2, 2) waveform peak to 100M later,
at which point the waveform amplitude is too small to measure an ac-
curate frequency. The ψ4 data measured at r = 1000M is plotted,
in addition to the value extrapolated to r → ∞, and the transfor-
mation to spheroidal harmonics. The expected quasi-normal mode
frequency is plotted as a dotted line, as well as a fit to the spheroidal
harmonic data over the range t ∈ [40M, 80M ], with error-bars de-
termined by the standard deviation of the fit.

tions. The precision of the calculations have allowed us to
obtain convergent modes to ` = 6, through merger and ring-
down, with accurate predictions of the quasi-normal ringdown
frequencies of the remnant.

Our implementation of non-singular radially adapted coor-
dinates for the wave zone is based on the use of multiple grid
patches with interpolating boundaries, coupled to a BSSNOK
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evolution code. Thornburg [41] first demonstrated that such a
setup could lead to stable evolutions in the case of a spinning
black hole in Kerr-Schild coordinates. We have demonstrated
that the approach is also effective and robust for dynamical
puncture evolutions, and in particular the problem of binary
black holes.

The implementation described here has a number of advan-
tages, principle among them being its flexibility. While we
have presented results for a particular grid structure adapted
to radially propagating waves, there are no principle prob-
lems with restructuring the grids to cover any required do-
main, for instance adapted to excision boundaries or toroidal
fields. Since data is stored in the underlying Cartesian ba-
sis, and passed by interpolation across boundaries, the coordi-
nates used on each patch are largely independent of the others,
and there is no need for numerical grid generating schemes.
While we have used the BSSNOK formalism to evolve the
Einstein equations, in principle any stable strongly hyperbolic
system can be substituted. The BSSNOK system has, how-
ever, proven particularly useful for evolving black holes via
the puncture approach, which itself has proven to be a very
flexible methodology. We have demonstrated results for the
most well-studied test case, non-spinning equal-mass black
holes, the same techniques can be applied to different mass
ratios and spinning black holes, simply by changing the physi-
cal input parameters. (The appendices include some examples
of spinning black hole evolutions.)

Finally, we emphasise again the accuracies which can be at-
tained by this approach. Our finite difference results show nu-
merical error estimates which are on par with those achieved
using spectral spatial discretisation [4]. The adapted radial co-
ordinate allows us to take measurements at radii much larger
than have been used before, as well as obtain accurate mea-
surements of higher ` modes during merger, which have an
amplitude more than two orders of magnitude smaller than
the dominant (`,m) = (2, 2) mode. One of the aspects which
makes this possible is the fact that we are able to extend our
grids to a distance such that the measurements are included in
the future domain of dependence of the initial data (causally
disconnected outer boundaries), and the waves are reasonably
well resolved over this entire domain so that internal reflec-
tions are minimised. Furher, we note that our results are con-
sistent with other puncture-method calculation in that the re-
sults are convergent and can be consistently extrapolated to
r → ∞ throughout the entire evolution, including late in-
spiral and ringdown [77], where other approaches have had
difficulties.

The absence of artificial boundaries, as well as dissipative
regions in the wave zone, removes an important source of po-
tential error in solving the Einstein equations as an initial-
boundary value problem. The remaining errors can be cate-
gorised in three forms. First, numerical error due to the dis-
cretisation. This can be reduced through the use of higher or-
der methods for the operations performed in various parts of
the code, and fortunately is also easy to quantify by perform-
ing tests at multiple resolutions. We note that for finite dif-
ferences, the largest improvement in accuracy occurs in going
from 2nd to 4th-order for the interior computations, and be-

yond that there are diminishing returns [91]. While it does
not yet seem to be a limiting factor, except possibly during
the merger, the RK4 time-stepping will at some level of res-
olution be a determining factor in the accuracy regardless of
the spatial order (and this is also the case for current imple-
mentations of spectral methods). The second source of error
is a physical error, inherent in the choice of initial data param-
eters for the binary evolution. At the separations which are
practical for numerical relativity (say d < 20M ), the phys-
ical model is expected to have shed all of its eccentricity.
We have used post-Newtonian orbital parameters to attempt
to place our black holes in low eccentricity trajectories, and
this is quite effective. Alternative approaches, involving iter-
atively correcting the initial data parameters until a tolerable
eccentricity has been reached, are able to reduce the eccen-
tricity still further [92]. This technique can in principle also
be adapted to the moving puncture approach. The final source
of error arises in the measurement of ψ4, which is done at a
finite radius, and then extrapolated to r → ∞ by some pro-
cedure. We have attempted to minimise this error by placing
detectors at large radii, well into the region where the pertur-
bations are linear, and have shown that the extrapolations are
consistent with measurements at larger radii, as well as with
each other in the r → ∞ limit [77]. However, there remain
ambiguities particularly in gauge-dependent quantities such as
the choice of surface on which measurements are taken, and
the definition of time and radial distance to be used in the ex-
trapolation. In a companion paper [78], we have demonstrated
that these ambiguities can be removed entirely by the proce-
dure of characteristic extraction, whereby evolution data on a
world-tube is used as an inner boundary condition for a fully
relativistic characteristic evolution, extending to null infinity,
J +. The results suggest that systematic errors inherent in
finite radius measurements of ψ4 are more than an order of
magnitude larger than the numerical errors reported here.
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FIG. 10. Trajectories of the two inspiralling punctures for a spinning
configuration a1 = −a2 = 0.8, with upwinded advection terms
(solid lines) and without (dashed lines). In the case where no up-
winding has been used, the black holes do not inspiral, due to the
accumulation of numerical error.

Appendix A: The influence of upwinded advection stencils

It has long been recognised that for BSSNOK evolutions
employing a shift vector, βa, the overall accuracy can be im-
proved by “upwinding” the finite difference stencils for ad-
vective terms of the form βi∂iu [61]. The upwind derivatives
employ stencils which are off-centred by some number of grid
points in the direction of βa. The drawback of the method is
that in order to maintain the same order of accuracy in the
derivatives, the stencil must have the same width as a centred
stencil, but since it is offset in either a positive or negative di-
rection, it effectively requires an additional number of points
to be available to the derivative operator equal to the size of
the offset. For parallel codes which physically decompose the
grid over processors and communicate ghost-zone boundaries,
this means that a larger number of points must be communi-
cated and can impact the overall efficiency. Further, a larger
number of points must be translated at inter-patch and refine-
ment level boundaries.

The original observation that upwinding is helpful was
made with a code that used 2nd-order spatial finite differences.
In that case, the centred stencils are small (three points) and
the upwind derivatives correspond to sideways derivatives in
the direction of the shift, i.e., no “downwind” information is
used. For higher order schemes, the importance of upwinding
may be less significant, since the stencils are large relative to
the size of the shift vector. In practise, some implementations
have empirically determined that upwinding by 1 point at 6th-
order is helpful [83]. However, this is not done universally,
particularly in conjunction with 8th-order centred differenc-
ing [12, 93].

We have found upwinding to be important in reducing nu-
merical error in the black hole motion for every order of ac-
curacy we have tried. The effect is demonstrated in Fig. 10,
which plots the motion of the black hole punctures for a
data set involving a pair of equal-mass binaries with spins
a1 = −a2 = 0.8 evolved at a relatively low resolution with
8th-order spatial finite differencing. The results of two evo-
lutions are plotted, one using fully centred stencils, and the
other upwinding the advection terms with a one-point offset.
Whereas the latter evolution displays the expected inspiral be-
haviour, at this resolution the binary evolved with centred ad-
vection actually flies apart. The is purely a result of accumu-
lated numerical error, and at higher resolutions both tracks can
be made to inspiral and merge. Our observation, however, is
that for a given fixed resolution, the one-point offset advec-
tion has a significantly reduced numerical error in the phase
as compared to the fully centred derivatives.

Based on some limited experimentation with larger offsets,
we have the general impression that the one point offset pro-
vides the optimal accuracy for each of the finite difference
orders we have tried (4th, 6th, 8th). We do not exclude the
possibility that there may be situations in which the fully cen-
tred stencils perform as well as upwinded advection, however
we have not come across a situation where the latter method
performs worse.

As an alternative, we have also tested lower order upwinded
derivatives as a potential scheme which would allow us to
maintain a smaller stencil width. We generally find that the
resultant numerical errors are of the same magnitude or larger
than if we had not done the upwind at all.

We note parenthetically the fact that the off-centering is
most important in the immediate neighbourhood of the black
holes, where the shift has a non-trivial amplitude. It is possible
that a scheme where the stencils are off-centred only on grids
where the shift is larger than some threshold would also be
effective, and not suffer the drawbacks mentioned above over
the bulk of the grid. We have not experimented with such a
scheme, however.

Appendix B: High order finite differencing

A recent trend in the implementation of finite difference
codes for relativity has been the push towards higher order
spatial derivatives, It is now common to use 6th or 8th-order
stencils. The benefit of higher order stencils is that the con-
vergence rate can be dramatically increased, so that a small
increase in resolution leads to a large gain in accuracy. And
while not guaranteed, it is often the case that for a given fixed
resolution, a higher order derivative will be more accurate, re-
quiring fewer points to accurately represent a wavelength [91].

In moving to high order stencils, there is a trade-off be-
tween the possible accuracy improvements, and the extra
computational cost. High order stencils generally involve two
extra floating point operations per order. Since they require
a larger stencil width, they also incur a cost in communica-
tion of larger ghost zones, as well as requiring wider overlap
zones at grid boundaries. In practice, we find that higher order



17

FIG. 11. Phase evolution of the (`,m) = (2, 2) mode ψ4 for the
aligned-spin model with a1 = −a2 = 0.8 h = 0.64M . The 6th-
order case at h0.64 has a trajectory between the low resolution (h0.80)
and high resolution (h0.64) 8th-order evolution.

stencils can also have a more strict Courant limit, requiring a
smaller timestep (and thus more computation to reach a given
physical time). While it is possible to demonstrate a large
gain in accuracy in switching from 2nd to 4th-order operators,
there are diminishing returns in the transition to 6th and higher
order [91].

We have experimented with 4th, 6th and 8th-order finite
differencing for the evolution equations. Generally we find
that the 8th-order operators can indeed provide a notable ben-
efit, particularly in the phase accuracy, at low resolution. In
Fig. 11, we plot the phase evolution for an equal mass model
with spins a1 = −a2 = 0.8. The evolution covers the last
three orbits and ringdown. We find that for this high-spin case,
even over this short duration, a significant dephasing takes
place. Assuming 8th-order convergence, the 6th-order evo-
lution at the h0.64 resolution would be comparable to the 8th-
order at approximately h0.77 resolution. We can get some idea
of the relative amount of work required for each calculation by
noting there would be N = (0.64/0.77)3 fewer grid points in
the h0.77 evolution, but the 8th-order derivatives require 9/7
times as many floating point computations for a derivative in
one coordinate direction, and requires a Courant factor which
is 0.9 times that of the 6th-order run. Taken together, this sug-
gests an 8th-order run at h0.77 would require a factor 0.68 of
the amount of work of the 6th-order case to achieve compa-
rable accuracy. Note that this computation does not take into
account potential additional communication overhead associ-
ated with the wider 8th-order stencils. But assuming this is
not dominant, the conclusion seems to be that for this level
of accuracy, the 6th-order evolution is somewhat less efficient
than the 8th-order version would be.

For a given situation, it may be that these factors change
significantly. Implementation, and even hardware, details can
shift the balance of costs between various operations. Fur-
ther, the test case considered here involves a fairly high spin.
Lower spin models (such as that considered in the main body
of the paper), are accurate at modest resolutions, and in such
cases the 6th-order evolutions may in fact prove to be rela-
tively more efficient if the accuracy is already sufficient for a
given purpose. On the other hand, if grid sizes and memory
consumption are limiting factors, the 8th-order operators do

FIG. 12. Amplitude and phase evolution of the (`,m) = (2, 2) mode
of ψ4 for the equal-mass aligned-spin model, comparing 8th-order
spatial finite differencing with a scheme in which 8th-order is used
only on the fine meshes surrounding the bodies, and 4th-order on the
wave-zone grids.

give a consistent accuracy benefit for a fixed grid size. Our
expectation, however, is that implementing yet higher order
stencils (for example, 10th-order) may not be justified on the
basis of efficiency.

As a final point, we note that the required high-order ac-
curacy appears to be largely a consequence of the field gra-
dients in the near-zone, immediately surrounding the black
holes. An alternative scheme, then, could be to apply high-
order finite differencing in this region, while using a lower
order (and thus more efficient) scheme in the wave zone. Re-
sults from such a test are displayed in Fig. 12, where we have
used 8th-order only on the finest refinement level, i.e. , the
mesh surrounding the black holes, but 4th-order on all coarser
Cartesian and radial wave-zone grids. This, in turn, allows
for a slightly less restrictive Courant limit, so that it becomes
possible to run with a slightly larger time-stepping. The phase
evolution of ψ4 is almost identical to that of the fully 8th-order
case, but the we found that the speed of the run was increased
by more than 25% (similar to that of the fully 6th-order evo-
lution). Further optimisations, such as decreasing ghost-zone
sizes of the 4th-order grids and consequently the communi-
cation overhead, might improve this further. While the errors
and convergence order of this scheme have not been tested in
detail, we suggest it as a potentially quite effective scheme for
the impatient.
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FIG. 13. Differences in phase of a spinning configuration with res-
olution h = 0.80M and conformal variables φ and W against a
simulation with h = 0.64M and conformal variable W . The de-
phasing is significant as we are on the coarse limit of resolution for
this particular configuration.

Appendix C: Choice of conformal variable

In Sec. III, we have described our implementation of the
BSSNOK evolution system, and note that currently three vari-
ations are in use, based on the use of different variables to
represent the conformal scalar. The original formulation is
based on the use of φ := log γ/12. An issue with this variable
in the context of puncture evolutions is that it has an O(ln r)
singularity which can lead to large numerical error in finite
differences calculated in the neighbourhood of the puncture.
More recently, the use of alternative variables χ = γ−1/3 [3]

and W = γ−1/6 [68] have been proposed as a means of im-
proving this situation by replacing φ with variables that are
regular everywhere on the initial data slice. In terms of the
evolution system outlined in Eqs. (22), the χ and W options
correspond to the choices κ = 3 and κ = 6, respectively.

The influence of this change of variable can be seen in im-
proved phase accuracy of binary evolutions carried out with
either χ or W . In Fig. 13, we show results from an evolution
of the equal-mass aligned-spin ( a1 = −a2 = 0.8) test case
presented in the previous appendices, using φ andW as evolu-
tion variables. Plotted are the phase errors, ∆φ, between runs
at low resolution, h0.80, using both φ and W with a higher
resolution, h0.64, evolution using W . The numerical error as-
sociated with the low resolution φ evolution is significantly
larger than that of the corresponding W evolution.

The reason for this may be related to that of the benefit seen
from upwind advective differences in Appendix A. The phase
accuracy of the waveforms is crucially dependent on correctly
modelling the motion of the bodies, and this requires accurate
advective derivatives in the neighbourhood of the punctures.
The reduced numerical error associated with the regular χ and
W variables is important.

Note that even in the φ case, numerical error generated
at the puncture seems to be confined to within the horizon.
Quantities such as constraints measured outside the horizon,
or the horizon properties itself, are not significantly affected.
However, it seems that a clear reduction in phase error can be
attained through the use of either the χ or W variants of BSS-
NOK, and we have used the latter for the tests carried out in
this paper.
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Rev. D79, 084011 (2009).

[81] C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilagyi, Class.
Quant. Grav. 27, 075014 (2010).

[82] M. Hannam et al., Phys. Rev. D79, 084025 (2009).
[83] S. Husa, M. Hannam, J. A. Gonzalez, U. Sperhake, and

B. Bruegmann, Phys. Rev. D77, 044037 (2008).
[84] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnetter, Phys.

Rev. D 67, 024018 (2003).
[85] A. Ashtekar and B. Krishnan, Living Rev. Relativ. 7, 10 (2004).
[86] S. Brandt and E. Seidel, Phys. Rev. D 52, 870 (1995).
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