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We construct effective-one-body waveform models suitable for data analysis with LISA for
extreme-mass ratio inspirals in quasi-circular, equatorial orbits about a spinning supermassive black
hole. The accuracy of our model is established through comparisons against frequency-domain,
Teukolsky-based waveforms in the radiative approximation. The calibration of eight high-order
post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional amplitude
agreement of better than 1 radian and 1% respectively over a period between 2 and 6 months de-
pending on the system considered. This agreement translates into matches higher than 97 % over
a period between 4 and 9 months, depending on the system. Better agreements can be obtained
if a larger number of calibration parameters are included. Higher-order mass ratio terms in the
effective-one-body Hamiltonian and radiation-reaction introduce phase corrections of at most 30
radians in a one year evolution. These corrections are usually one order of magnitude larger than
those introduced by the spin of the small object in a one year evolution. These results suggest
that the effective-one-body approach for extreme mass ratio inspirals is a good compromise between
accuracy and computational price for LISA data analysis purposes.

I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) are one of the
most promising sources of gravitational waves (GWs) ex-
pected to be detected with the proposed Laser Interfer-
ometer Space Antenna (LISA) [1–4]. These sources con-
sist of a small compact object, such as a neutron star or
stellar-mass black hole (BH), in a close orbit around a
spinning, supermassive BH [5]. Gravitational radiation
losses cause the small object to spiral closer to the su-
permassive BH and eventually merge with it. Hence, the
GW signal from such events encodes information about
strong gravity, allowing tests of general relativity [6] and
of the Kerr metric [7–17], as well as measurements of the
spins and masses of massive BHs [18].

Unfortunately, EMRIs are very weak sources of GWs
at their expected distances from us, and thus, they must
be observed over many cycles to be detectable [5]. For ex-
ample, a typical EMRI at a distance of 3 Gpc would pro-
duce GWs with signal-to-noise ratios (SNRs) on the order
of 10-200 depending on the observation time. Therefore,
matched filtering is essential to extract EMRIs from LISA
noise and the foreground of unresolved GWs from white
dwarf binaries in our galaxy.

Matched filtering consists of cross-correlating the data
stream with a certain noise-weighted waveform tem-
plate [19]. If the latter is similar to a GW event hidden
in the data, then this cross-correlation filters it out of the
noise. Of course, for matched filtering to be effective, one
must construct accurate template filters. Otherwise, real

events can be missed, or if an event is detected, parameter
estimation can be strongly biased [20]. The construction
of accurate EMRI waveforms is extremely difficult due to
the long duration of the signal and the strong-field nature
of the orbits. A one-year EMRI signal contains millions
of radians in phase information. To avoid significant de-
phasing, its waveform modeling must be accurate to at
least one part in 105–106 [21].

Such an exquisite accuracy requirement is complicated
further by the strong-field nature of the orbit. An EMRI
can reach orbital velocities of two-thirds the speed of
light and orbital separations as small as a few times
the mass of the supermassive companion. This auto-
matically implies that standard, post-Newtonian (PN)
Taylor-expanded waveforms fail to model such EMRI or-
bits [22]. PN theory relies on the assumptions that all
orbital velocities are much smaller than the speed of light
and that all objects are at separations much larger than
the total mass of the system [23]. A better approxima-
tion scheme to model EMRIs is BH perturbation theory,
where one only assumes that the mass ratio of the sys-
tem is much less than unity [24]. This is clearly the case
for EMRIs, as the mass ratio is in the range 10−4–10−6.
Perturbation theory, however, is computationally and an-
alytically expensive. Only recently have generic orbits
been computed around a non-spinning BH to linear or-
der in the mass ratio [25–27], and it is unlikely that these
will be directly used for EMRI data analysis [4].

EMRIs involve complicated inspiral analysis, but un-
like comparable-mass coalescences, the merger and ring-
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down phase can be completely neglected. To see this,
note that the instantaneous amplitude of the waves from
a binary scales as µ, where µ = m1m2/M is the reduced
mass, M is the total mass and m1,2 are the component
masses. The inspiral lasts for a time ∼ 1/µ and releases
an energy flux ∼ µ2/µ ∼ µ. In contrast, the merger and
ringdown last for a time ∼ M (independent of µ), and
thus, release an energy flux ∼ µ2. For an EMRI, µ≪M
and the inspiral clearly dominates the signal. Based on
this argument, we neglect the merger and ringdown, fo-
cusing on the inspiral for our analysis.

A. Summary of Previous Work

The modeling of EMRIs has been attempted in the
past with various degrees of success. One approach is
to compute the self-field of the test particle to under-
stand how it modifies the orbital trajectory. This task,
however, is quite involved, both theoretically and com-
putationally, as the self-field contains a divergent piece
that is difficult to regularize (see, e.g. Ref. [28] for a
recent review). Recently, a breakthrough was achieved,
with the full calculation of the self-force for generic EM-
RIs about non-spinning supermassive BHs [25, 26]. Such
calculations, however, are computationally prohibitive if
the goal is to populate a waveform template space.

Another approach is to use more approximate meth-
ods to model the EMRI trajectories. One such approach
was developed by Hughes [29, 30], following the pio-
neering work of Poisson [31]. In this radiative-adiabatic
scheme, the inspiral is treated as a sequence of adiabati-
cally shrinking geodesics. The degree of shrinkage is de-
termined by solving the Teukolsky equation on each indi-
vidual geodesic. Its solution encodes how the constants of
the motion (the energy, angular momentum and Carter
constant) change due to GW emission. By interpolat-
ing across such sequence of geodesics, one then obtains
a continuous inspiral and waveform. The calculation of
a single waveform, however, is rather computationally
expensive, as it requires the mapping of the entire or-
bital phase space, which for generic orbits is likely to be
prohibitive. It is also worth noting that the radiative ap-
proximation neglects the impact of conservative effects
which, especially for eccentric orbits, are likely to be im-
portant [32].

Other, perhaps more rough approximations can also be
used to model EMRIs. The templates obtained through
these methods are sometimes called kludge waveforms to
emphasize their approximate nature. The goal of their
construction was never to provide sufficiently accurate
templates for real data analysis. Instead, kludge wave-
forms were built to carry out descoping or parameter
estimation studies to determine roughly the accuracy to
which parameters could be extracted, given an EMRI de-
tection with LISA.

The first kludge waveforms were constructed by Barack
and Cutler [18]. These waveforms employ the quadrupole

formula to build templates as a function of the orbital tra-
jectories. The latter are simply Keplerian ellipses with
varying orbital elements. The variation of these is de-
termined by low-order PN expressions, constructed from
the GW energy and angular momentum fluxes. An im-
provement of these fluxes was developed by Gair and
Glampedakis [33], who fitted these low-order PN expres-
sion to more accurate fluxes constructed from solutions
to the Teukolsky equation. A further improvement was
developed by Babak et al. [34], who modeled the wave-
forms via a quadrupole-octopole formula and the orbital
trajectories via solutions to the geodesic equations, aug-
mented with PN–orbit-averaged evolution equations for
the orbital elements.

All of these improvements, however, do not mean that
kludge waveforms would be effectual or faithful for real-
istic data analysis with LISA. One cannot exactly quan-
tify this statement because exact EMRI waveforms are
not available and will not be in the near future. One
can nonetheless predict that these approaches will be in-
sufficient because critical components of the fluxes are
not being taken into account. For example, GWs do not
only escape to infinity, but they are also absorbed by
the supermassive BH, contributing to the overall fluxes
of energy and angular momentum. This contribution is
non-negligible if one considers sufficiently long waveforms
(longer than a few weeks). In fact, as we shall show in
this paper, even the inclusion of such terms and very high
order PN expressions in the fluxes is still insufficient for
accurate waveform models that last more than a couple
of months.

B. The Effective-One-Body Approach

The effective-one-body (EOB) formalism was intro-
duced in Refs. [35, 36] to model the inspiral, merger, and
ringdown of comparable-mass BH binaries. This scheme
was then extended to higher PN orders [37], spinning
BHs [38–41], small mass-ratio mergers [42–44], and im-
proved by resumming the radiation reaction-force and
waveforms [43, 45–48]. In the comparable mass case,
phase and amplitude agreement was achieved between
EOB and numerical-relativity waveforms, after calibrat-
ing a few parameters [49–51]. By calibrating the EOB
model to the comparable mass case, one can also im-
prove the agreement of the model with the self-force pre-
dictions [25, 52]. The combination of EOB and BH per-
turbation theory tools for LISA data-analysis purposes
was first carried out in Refs. [53, 54]. In these papers,
the EOB scheme was found successful for the coherent
modeling of EMRIs about a non-spinning background for
a 2 year period. Here we extend these results to non-
precessing EMRIs about a spinning background.

As a first step toward the construction of accu-
rate EMRI waveforms, we concentrate on quasi-circular,
equatorial EMRIs about a spinning, supermassive Kerr
BHs. The modeling of such EMRIs is simpler than that
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of inclined and eccentric ones, as only a single compo-
nent of the radiation-reaction force is non-vanishing and
entirely controlled by the GW energy flux (the Carter
constant vanishes by symmetry). Moreover, such EMRIs
are expected in at least one astrophysical scenario [55].
In this setup, stellar-mass compact objects are either cre-
ated in the accretion disk surrounding the supermassive
BH or are captured by the disk, and hence move with
the disk. The accretion disk is expected to be in the spin
equatorial plane within a few hundred gravitational radii
of the supermassive BH [56].

We first calibrate the EOB energy flux to the energy
flux computed in BH perturbation theory through the so-
lution to the Teukolsky equation. This calibration is done
in the test-particle limit, i.e. by setting relative mass-ratio
terms to zero in the EOB flux function.This calibration is
more complicated than for non-spinning systems because
it must now be performed globally, i.e., as a function of
both spin and velocity. This increases the computational
cost of the calibration and the number of calibration pa-
rameters, as a bivariate series generically contains more
terms than a monovariate one. After calibrating 8 pa-
rameters, we find that the fluxes agree to within one part
in 103 for all spins [a/M = (−0.99, 0.99)] and velocities
[v = (0.01 c, vISCO)] considered, where vISCO is the velocity
at the innermost circular orbit (ISCO).

Once the energy flux has been calibrated, we evolve
the Hamilton equations in the adiabatic approximation
and compare the amplitude and phase evolution to that
obtained with an approximate BH perturbation theory,
numerical result. For the latter, we employ the so-called
radiative approximation [29, 30], where one models the
EMRI as an adiabatic sequence of geodesics with vary-
ing orbital elements, as prescribed by the solution to
the Teukolsky equation. We find that the EOB and
Teukolsky-based waveforms agree in phase and relative
amplitude to better than 1 radian and 1% respectively
after 2 or 6 months of evolution, depending on the sys-
tem considered. Better agreements can be obtained if a
larger number of calibration parameters were included.

Our EOB waveforms differ from previous kludge mod-
els on several fronts. First, the radiation-reaction force is
here computed differently than in the kludge approach.
In the latter this force is calculated from PN, Taylor-
expanded fluxes that encode the GW that escape to
infinity only. These fluxes were then improved by fit-
ting a very large number of parameters to more accurate
Teukolsky-fluxes with a log-independent, power-series ex-
pansion for the fitting functions [33]. In the EOB ap-
proach, the radiation-reaction force is computed directly
from the factorized resummed waveforms [46, 47]. These
are enhanced through the addition of BH absorption
terms and then the calibration of eight high PN-order
parameters to Teukolsky fluxes with a log-dependent,
power-series expansion for the fitting functions. Second,
the conservative dynamics are also treated here differ-
ently than in the kludge approach. In the latter, the
Hamiltonian is either a two-body, Newtonian one [18]

or the full test-particle limit one, i.e., Schwarzschild or
Kerr [34]. In the EOB approach, the conservative dynam-
ics not only encodes the exact test-particle limit Hamilto-
nian, but they also allow for the inclusion of finite mass-
ratio terms and of the spin of the small body.

C. Data Analysis Implications

The waveforms computed here are thus suitable for
coherent data analysis over periods of several months.
This can be established by computing the overlap be-
tween the EOB and Teukolsky-based waveforms, after
maximizing over extrinsic parameters (an overall phase
and time shift). We find that, when eight calibration pa-
rameters are used, the overlap remains higher than 97 %
over 4 to 9 months of evolution, depending on the sys-
tem considered. This is to be compared with numerical
kludge waveforms [34] whose overlap drops to 56 % and
74 % after 4 and 9 months respectively, even when forty-
five calibration parameters are used to fit the flux [33] .
Of course, one could obtain higher overlaps by maximiz-
ing over intrinsic parameters, such as the chirp mass or
the spin of the background, but this would naturally bias
parameter estimation. Also, when integrating over only
two weeks, the overlap increases, remaining higher than
0.99999 at 1 Gpc regardless of the model used.

The benefit of coherently integrating over longer peri-
ods of time is that the recovered SNR naturally increases,
thus allowing us to detect signals farther out and improv-
ing parameter estimation. One can see this by simply
noting that the SNR scales with the square root of the
time of observation. For example, coherent integration
over 4 or 9 months instead of two weeks increases the
SNR at 1 Gpc from 2.8 to 14 and from 6 to 18 for two
prototypical EMRIs. Such a large increase in SNR by
coherently integrating over long observation times brings
EMRIs not only to a confidently detectable range, but
would also allow interesting tests of GR.

We conclude the paper by studying the error intro-
duced in these waveforms due to neglecting second-order
mass-ratio terms in the radiation-reaction force (dissipa-
tive PN self-force) and first-order in the mass-ratio terms
in the Hamiltonian (conservative PN self-force). Such
mass-ratio dependent effects can easily be included in
the EOB prescription, as they are known in the PN/EOB
framework. Of course, since these are known to finite PN
order, we cannot include full second-order effects. These
effects should be considered estimates, since the complete
result may differ from the PN prediction. We find that
such PN radiation-reaction effects modify the phase of
the waveform by O(10) radians in a one year evolution,
provided the EMRI samples the strong-gravity regime
close to the ISCO. In a two-month period, however, the
inclusion of finite mass-ratio effects increases the mis-
match from 2.9× 10−5 to 3.6× 10−5 at 1 Gpc. This im-
plies that such effects will only be seen if one coherently
integrates over a sufficiently long time of observation. We
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find a somewhat smaller final dephasing when we allow
the second body to be spinning and neglect any self-force
corrections. The relative importance of the conservative
or dissipative PN self-force terms and that of the spin
of the second body depends on somewhat on the EMRI
considered. Generically, we find all such corrections to
be larger than one radian after a full year of integration,
while they are negligible over a two month period.

This paper is organized as follows. Section II describes
how we model EMRIs analytically and numerically. Sec-
tion III discusses how the analytical EOB model is cal-
ibrated to the Teukolsky energy flux. Section IV com-
pares EOB evolutions to Teukolsky ones, while Sec. V
discusses the data analysis implications of such a compar-
ison. Section VI estimates the effect of mass-ratio depen-
dent effects and Sec. VII concludes and points to future
research. Appendix A presents details on the transforma-
tion between spheroidal and spherical tensor harmonics.
Appendix B contains expressions for the GW energy flux
absorbed by BHs. Finally, in Appendix C we write the
EOB Hamiltonian derived in Ref. [41] when BHs carry
spins aligned or anti-aligned with the orbital angular mo-
mentum. We use geometric units, with G = c = 1, unless
otherwise noted.

II. EMRI MODELING

A. Analytical modeling: EOB-based waveforms

Consider a BH binary system with masses m1 and m2,
total mass M = m1 + m2, reduced mass µ = m1m2/M
and symmetric mass ratio ν = µ/M . We assume that
the orbital angular momentum is co-aligned or counter-
aligned with the individual BH spins SA = aAmA =
qAm

2
A, where aA = SA/mA denotes the Ath BH’s spin

parameter and qA = aA/mA denotes the dimensionless
spin parameter.

We first discuss the case of a non-spinning BH (q2 = 0)
with mass m2 orbiting a spinning BH with spin param-
eter q1 and mass m1 ≫ m2, to leading order in the
mass ratio m2/m1. Subleading terms in the mass ra-
tio and terms proportional to q2 introduce conservative
corrections that are not included in the Teukolsky wave-
forms, which we shall use to calibrate our model, and we
therefore neglect them during the calibration. Eventu-
ally, however, we shall turn these conservative terms on
and estimate their effect using the spin EOB Hamiltonian
of Ref. [41] (see Appendix C).

In the EOB framework, the orbital trajectories are ob-
tained by solving Hamilton’s equations, supplemented by
a radiation-reaction force describing the backreaction of
GW emission on the orbital dynamics. Neglecting con-
servative corrections of order O(m2/m1) and O(q2), the
spin EOB Hamiltonian reduces to the Hamiltonian of a

non-spinning test-particle in Kerr, HNS:

HEOB = HNS [1 + O(m2/m1) + O(q2)] , (1)

HNS = βi pi + α
√
m2

2 + γij pi pj , (2)

where

α =
1√
−gtt

, (3)

βi =
gti

gtt
, (4)

γij = gij − gti gtj

gtt
, (5)

gµν being the Kerr metric. In Boyer-Lindquist coordi-
nates (t, r, θ, φ) and restricting ourselves to the equatorial
plane θ = 0, the relevant metric components read

gtt = − Λ

r2 ∆
, (6a)

grr =
∆

r2
, (6b)

gφφ =
1

Λ

(
− ω2

fd

r2 ∆
+ r2

)
, (6c)

gtφ = − ωfd

r2 ∆
, (6d)

where ωfd = 2q1m
2
1 r, and the metric potentials are

∆ = r2 + q21 m
2
1 − 2m1 r , (7)

Λ = (r2 + q21 m
2
1)

2 − q21 m
2
1 ∆ . (8)

Although the EOB formalism includes possible non-
adiabaticities in the last stages of the inspiral and plunge,
it is not necessary to include non-adiabatic effects here.
Generically, for the systems that we consider, we find that
the inclusion of non-adiabatic corrections leads to small
phase corrections (of O(1 rad) after one year of evolu-
tion) [53, 54]. The assumption of adiabaticity allows us
to simplify the evolution equations that are solved nu-
merically. This in turn reduces the computational cost of
producing EOB waveforms: an adiabatic EOB evolution
requires a few CPU seconds, while a non-adiabatic one
would require CPU days or weeks (although this is esti-
mated with a non-optimized Mathematica implementa-
tion). The non-adiabatic model is computationally more
expensive because one needs to solve all of Hamilton’s
equations, with radiation reaction source terms that are
expensive to evaluate.

The Hamiltonian of Eq. (2) simplifies drastically when
we consider circular, equatorial orbits (θ = π/2) with
S1 co-aligned or counter-aligned with the orbital angular
momentum (see eg. [57]). Imposing pr = 0, which is
a necessary condition for circular orbits, and inserting
Eqs. (6a)–(6d) in Eq. (2), a straightforward calculation
returns

HNS = pφ
ωfd

Λ
+
m2 r

√
∆
√
Q√

Λ
, (9)
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where

Q = 1 +
p2

φ r
2

m2
2 Λ

, (10)

and pφ ≡ L is the conjugate momentum to the φ Boyer-
Lindquist coordinate or simply the orbital angular mo-
mentum. Imposing the condition ṗr = (∂HNS/∂r)pr=0 =
0, which is also satisfied by circular orbits, we can solve
for L as a function of r and q1 [57]

L = ±m2m
1/2
1

r2 ∓ 2q1m
3/2
1 r1/2 + q21 m

2
1

r3/4
(
r3/2 − 3m1r1/2 ± 2q1m

3/2
1

)1/2
,

(11)
where ± corresponds to prograde or retrograde orbits, re-
spectively. Inserting the above equation in Eq. (9) yields
an expression for the energy E ≡ Hcirc

NS (r) of circular or-
bits in Kerr [57]

E = m1 +m2
1 − 2m1/r ± q1m

3/2
1 /r3/2

√
1 − 3m1/r ± 2q1m

3/2
1 /r3/2

. (12)

The above quantities can also be expressed in terms of
the orbital velocity ω, once r(ω) is derived for circular
orbits. Computing ω = (∂HNS/∂pφ)pr=0, using Eq. (11),
we obtain

r =
[1 − q1 (m1ω)]

2/3

(m1ω)2/3
. (13)

We also define the parameter v ≡ (m1ω)1/3.
In the adiabatic approximation, the orbital evolution

is fully determined by the frequency evolution through
Eq. (13). Assuming the motion follows an adiabatic se-
quence of quasi-circular orbits, we can use the balance
equation L̇ = Ė/ω = −F/ω to derive

ω̇ = − 1

ω

(
dL

dω

)−1

F(ω) , (14)

where F is the GW energy flux (see e.g. Ref. [36]). The
multipolar factorized form of this flux, proposed in the
non-spinning case in Refs. [43, 46] and extended to the
spin case in Ref. [47], is given by

F(ω) ≡ 1

8π

8∑

ℓ=2

ℓ∑

m=0

∣∣∣ḣℓm

∣∣∣
2

, (15)

which under the assumption of adiabaticity reduces to

F(ω) =
1

8π

8∑

ℓ=2

ℓ∑

m=0

(mω)2 |hℓm|2 , (16)

with

hℓm(v) = h
Newt,ǫp

ℓm S
ǫp

ℓm Tℓm eiδℓm (ρℓm)ℓ , (17)

where ǫp denotes the parity of the multipolar waveform
(i.e., ǫp = 0 if ℓ+m is even, ǫp = 1 if ℓ+m is odd), and

h
Newt,ǫp

ℓm ≡ m1

R
n

(ǫp)
ℓm cℓ+ǫp

vℓ+ǫp Yℓ−ǫp,−m(π/2, φ). (18)

When spin effects are present, the expressions for all the
terms in Eq. (17), namely S

ǫp

ℓm(v), Tℓm(v), δℓm(v) and
ρℓm(v) can be read in Ref. [47] [see Eqs. (24), (25), (26)
and (29) therein]. The functions Yℓ,m(θ, φ) are the stan-

dard spherical harmonics, while n
(ǫp)
ℓm and cℓ+ǫp

are nu-
merical coefficients that depend on the mass ratio (see
Eqs. (5)-(7) in Ref. [46]). As before, we work to lead-
ing order in ν initially, and later study how the terms of
higher-order in ν affect the GW phase evolution.

The solution to Eq. (14) requires that we prescribe ini-
tial data. We here choose post-circular initial conditions,
as described in Ref. [36], to set-up a mock evolution that
starts at a separation of 100m1 and ends at either the
ISCO or whenever the GW frequency reaches 0.01 Hz.
This mock evolution is then used to read initial data one-
year before the end of the mock evolution. This approach
leads to an accurate initial data prescription, without any
eccentricity contamination. For example, the error in the
initial frequency induced by starting the mock evolution
at 100m1, instead of 200m1, is on the order of 10−9 Hz,
which leads to a difference in accumulated GW cycles of
0.03 rads after a one year evolution.

Finite mass-ratio corrections can be incorporated
into the EOB model by including subleading terms of
O(m2/m1) and O(q2) in the Hamiltonian, angular mo-
mentum and r(ω) relation. We shall first ignore such
terms to compare against Teukolsky-based waveforms. In
Sec. VI, we shall study how our results change when we
include such terms. To do so, we shall still assume cir-
cular, equatorial orbits and an adiabatic evolution, but
employ the spin EOB Hamiltonian of Refs. [41, 58] (re-
viewed in Appendix C), instead of the Kerr Hamiltonian
of Eq. (9).

Except for this change, the EOB waveform model-
ing with finite mass-ratio corrections follows closely the
derivation presented above. First, we compute the an-
gular momentum associated with the Hamiltonian of
Eq. (C22) for circular, equatorial orbits, imposing ṗr =
(∂HEOB/∂r)pr=0 = 0 and solving for L ≡ pφ. Then,
we derive the orbital frequency ω = (∂HEOB/∂pφ)pr=0

to relate r to ω, and to express L in terms of ω. When
mass-ratio corrections are present, however, the Hamil-
tonian becomes much more involved, so solutions for L
as a function of r must be searched numerically. We have
checked that the discretization and interpolation used to
solve these equations numerically do not introduce an
error larger than 10−10 in the Hamiltonian (C22).
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B. Numerical modeling: Teukolsky-based

waveforms

Teukolsky-based waveforms is the name we give to ra-
diative models that use the Teukolsky equation to pre-
scribe the radiation-reaction force for an inspiral. We use
BH perturbation theory, considering a background space-
time with mass m1 and spin |S1| = m2

1q (recall that the
spin parameter q1 = a1/m1). The inspiraling object is a
test-body with mass m2 ≪ m1 and no spin (q2 = 0). In
principle, the masses and spins used here should be the
same as those introduced in the EOB model.

The radiative approximation assumes that EMRIs can
be modeled as an adiabatic sequence of geodesics with
slowly-varying constants of the motion. Consider the
discretization of the orbital phase space, each point of
which represents a certain geodesic with a given set of
constants of motion (energy E, angular momentum L
and Carter constant Q). For quasi-circular, equatorial
EMRIs, the Carter constant vanishes, while the varia-
tion of the energy and angular momentum are related
via δL = (δE)/ω, ω being the orbital frequency. At each
point in the orbital phase space, the geodesic equations
can be solved to obtain the orbital trajectory of the small
compact object, given any spin of the background.

Once the geodesic trajectories are known, one can use
these to solve the linearized Einstein equations and ob-
tain the gravitational metric perturbation. This is best
accomplished by rewriting the linearized Einstein equa-
tions in terms of the Newman-Penrose curvature scalar
ψ4 to yield the Teukolsky equation [59]. One can de-
compose ψ4 into spin-weight −2 spheroidal harmonics

−2S
aω
ℓm(θ), using Boyer-Lindquist coordinates (t, r, θ, φ),

in the Fourier domain:

ψ4 =
1

(r − im1q1 cos θ)4

∫ ∞

−∞

dω

×
∑

ℓm

Rℓmω(r) −2S
m1q1ω
ℓm (θ)e−i(mφ−ωt) . (19)

The radial functions Rℓmω(r) satisfy the radial Teukolsky
equation

∆2 d

dr

(
1

∆

dRℓmω

dr

)
− V (r)Rℓmω = −Tℓmω (20)

where ∆ is given in Eq. (7) and the radial potential is

V (r) ≡ −K
2 + 4i(r −m1)K

∆
+ 8iωr + λ , (21)

with K ≡ (r2 +m2
1q

2
1)ω−mm1q1, λ ≡ Eℓm−2m1q1mω+

m2
1q

2
1ω, and Eℓm the spheroidal harmonic eigenvalue. The

source function Tℓmω is given explicitly in Eq. (4.26) of
Ref. [29] and it depends on the stress-energy tensor for a
test-particle in a geodesic trajectory.

The Teukolsky equation admits two asymptotic solu-
tions: one outgoing as r → ∞ and one ingoing as one
approaches the background’s event horizon. These two

solutions represent outgoing radiation at future null infin-
ity and ingoing radiation that falls into the BH through
the event horizon. Both types of radiation are critical
in the modeling of EMRIs; not including BH absorption
can lead to errors in the waveform of order 104 radi-
ans [30, 60]. These solutions can then be used to recon-
struct both the GW radiated out to infinity, as well as the
total energy flux lost in GWs. The energy flux can then
be related to the temporal rate of change of the orbital
elements, such as the orbital radius.

Solving the Teukolsky equation for a geodesic orbit
tells us how that orbit tends to evolve due to the dissipa-
tive action of GW emission. By doing so for each point
in orbital phase space, we endow this space with a set
of vectors that indicate how the binary flows from one
orbit to another. We compute these vectors at a large
number of points, and use cubic spline interpolation to
estimate the rates of change of orbital constants between
these points. This allows us to compute the temporal
evolution of all relevant quantities, including the orbital
trajectories and gravitational waveforms.

We implemented this algorithm, discretizing the or-
bital phase space from an initial separation of r =
10, 000m1 to the Kerr ISCO

rISCO

m1
= 3 + Z2 ∓

√
(3 − Z1)(3 + Z1 + 2Z2) ,

Z1 = 1 +
(
1 − q21

)1/3
[
(1 + q1)

1/3
+ (1 − q1)

1/3
]
,

Z2 =
(
3q21 + Z2

1

)1/2
, (22)

in a 1, 000 point grid, equally spaced in

v ≡ (m1 ω)1/3 =

[
q1 − r3/2/m

3/2
1

q21 − r3/m3
1

]1/3

. (23)

We cannot evolve inside the Kerr ISCO with such a
frequency-domain code, as stable orbits do not exists in
this regime (and so such orbits do not have a well-defined
frequency spectrum). The code we use to construct our
waves is based on [29, 30, 61], updated to use the spec-
tral methods introduced by Fujita and Tagoshi [62, 63].
A detailed presentation of this code and its results is in
preparation [64].

The dominant error in these Teukolsky-based wave-
forms is due to truncation of the sums over ℓ and m.
In particular, to compare with PN results, we must map
this spheroidal decomposition to a spherical one (see Ap-
pendix A for more details). Such a mapping requires one
to include a buffer region of ℓ modes about the largest
mode computed. We have been careful to use a suffi-
ciently wide buffer and total number of ℓ modes such
that the energy fluxes are accurate to 10−10 for all ve-
locities and spins. In particular, this means that in the
strong field region (close to the ISCO) up to 50 ℓ modes
were included. Other sources of error are due to the
intrinsic double precision in the numerical solution to
the Teukolsky equation, the discretization of the orbital
phase space, and its cubic-spline interpolation. All of
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these amount to errors of order 10−14. All in all and in
terms of GW phase, the Teukolsky-based waveforms are
accurate to at least 10−2 rads. during an entire year of
evolution.

III. CALIBRATING THE TEST-PARTICLE

ENERGY FLUX

We consider here a calibrated EOB model that is built
from the hℓm functions in Eq. (17), but in which higher-
order PN terms are included in the functions ρℓm and
are calibrated to the numerical results. In particular, we
write

ρ22
Cal = ρ22 +

[
a
(9,1)
22 + b

(9,1)
22 eulerlog2v

2
]
q̄ v9

+
[
a
(12,0)
22 + b

(12,0)
22 eulerlog2v

2
]
v12 ,

ρ33
Cal = ρ33 +

[
a
(8,2)
33 + b

(8,2)
33 eulerlog3v

2
]
q̄2 v8

+
[
a
(10,0)
33 + b

(10,0)
33 eulerlog3v

2
]
v10 , (24)

where (a
(N,M)
ℓm , b

(N,M)
ℓm ) are eulerlog-independent and

eulerlog-dependent calibration coefficients that enter the
(ℓ,m) mode at O(vN ) and proportional to q̄M . As in
Refs. [46, 47] the euler-log function is defined as

eulerlogm(x) = γE + log
(
2m

√
x
)
, (25)

where γE = 0.577215 . . . is Euler’s constant. Notice that
we have introduced 4 calibration parameters in the non-
spinning sector of the flux and 4 in the spinning sector.
The spin parameter q̄ denotes here the spin of the back-
ground. When we neglect mass-ratio terms, we choose
q̄ = q1. However, when we switch on the mass-ratio
terms we have an ambiguity on the choice of q̄. Follow-
ing Ref. [47] we choose q̄ = q, where q is the deformed-
Kerr spin parameter defined in Appendix C. Note that
since q = q1 + O(m2/m1), these choices are identical in
the test-particle limit, which is when the energy flux is
calibrated.

The choice of calibrating function in Eq. (24) is rather
special and requires further discussion. We have cho-
sen this function so that leading-order corrections in the
two dominant GW modes, (2, 2) and (3, 3), are included.
Higher (ℓ,m) modes contribute significantly less to the
GW and its associated flux. In each mode, we have in-
cluded the leading-order unknown terms that are both
q-independent and q-dependent. Since q-independent
terms in the energy flux are known to much higher or-
der (5.5PN) than the q-dependent ones (4PN) in the
test-particle limit [24, 65, 66], spin-independent calibra-
tion coefficients enter at a much higher PN order. The
spin-dependence of the calibration terms is inferred from
known terms at lower PN orders. We have investigated
many functional forms for the calibrating functions, with
a varying number of degrees of freedom, and found the
one above to be optimal in the class studied.

The introduction of 8 additional calibration terms
might seem like a lot. In Ref. [53], the knowledge of
non-spinning terms up to 5.5 PN order was found to be
crucial to obtain a sufficiently good agreement in the flux.
Moreover, only 4 additional calibration terms (2 at 6PN
order in ρ22 and 2 at 5PN order in ρ33) were needed to
reach a phase agreement of 1 rad after two years of evolu-
tion. Similarly here, we expect that if the remaining 4.5,
5, and 5.5 PN order terms were calculated in the test-
particle limit when the central black carries a spin, then
the flux would also improve, requiring a smaller number
of calibration parameters. It is quite likely that those
higher-order PN terms will be computed in the near fu-
ture, as they involve dramatically less complicated cal-
culations than PN terms in the comparable-mass case.

Having in hand an improved GW energy flux carried
away to infinity, this must be enhanced with expressions
for the GW energy flux that is absorbed by the back-
ground BH. We do so here by simply adding the Taylor-
expanded form of the latter (see Appendix B) to the flux
of Eq. (15). The BH absorption terms in the GW energy
flux depend on polygamma functions, which are compu-
tationally expensive to evaluate. We have empirically
found that expanding this function in q ≪ 1 to 30th
order is a sufficiently good approximation for our pur-
poses. When performing computationally expensive cal-
culations (like the fits described below) we shall employ
such expansions, but when solving for the orbital phase
and when computing the waveforms we shall return to
the full polygamma expressions.

The resulting EOB energy flux, including BH absorp-
tion terms, is then calibrated via a two-dimensional,
least-squares minimization relative to numerical data ob-
tained from Teukolsky-based calculations. The fitting
routine is two dimensional because when considering EM-
RIs about spinning backgrounds, the flux depends on two
independent variables: the orbital velocity (or frequency
or separation) and the spin of the background. This, in
turn, increases the number of points that need to be used
by more than an order of magnitude to properly calibrate
Eq. (24). In all fits, we have assumed a data variance of
10−11 for all velocities and spins and we have required a
relative accuracy of one part in 108. Since the data is now
two-dimensional, one must search for a global minimum
in (q, v) space. After doing so, we find the calibration
parameters

a
(9,1)
22 = −3.1092 , b

(9,1)
22 = −18.786 , (26)

a
(12,0)
22 = 493.08 , b

(12,0)
22 = −247.89 , (27)

a
(8,2)
33 = −17.310 , b

(8,2)
33 = 22.500 , (28)

a
(10,0)
33 = −113.01 , b

(10,0)
33 = 28.125 , (29)

The computational cost of the calibrations performed
in this paper is much larger than those carried out in
Ref. [53] for the following reasons. First, we consider
twice as many calibration parameters as in Ref. [53],
increasing the dimensionality of the fitting space. Sec-
ond, global minimization routines require non-trivial al-
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FIG. 1. Fractional difference between PN and Teukolsky-
based fluxes as a function of velocity for spins q = (0.5, 0.9)
(top) and q = (−0.9,−0.5, 0.0) (bottom). The dotted curves
employ the Taylor-expanded PN flux with BH absorption
terms, while the dashed and solid curves use the uncalibrated
and calibrated ρ-resummed fluxes with BH absorption terms
respectively.

gorithms that are numerically more expensive than those
employed in one-dimensional minimizations. Third, the
amount of data fitted increases by at least one order of
magnitude, due to the intrinsic bi-dimensionality of the
problem. Combining all of this, the computational cost
of performing the calibration is now more than 100 times
larger than in Ref. [53]. Even then, however, these fits re-
quire O(10) CPU minutes to complete. Once they have
been carried out, this calculation does not need to be
repeated again in the waveform modeling.

Figure 1 plots the fractional difference between the
analytical GW energy flux and that computed with
Teukolsky-based waveforms as a function of velocity,
from an initial value of v/c = 0.01 to the veloc-
ity at the ISCO, for five different spin values: q =
(−0.9,−0.5, 0.0, 0.5, 0.9). All comparisons are here nor-
malized to the Newtonian value of the flux FNewt =
32/5ν2v10. The different curve styles differentiate be-
tween analytical models: the dotted curves use the total,
uncalibrated Taylor-expansion; the dashed curves use the
uncalibrated ρ-resummed flux with BH absorption terms;
the solid curves use the calibrated ρ-resummed flux with
BH absorption terms. Notice that the calibrated model
does better than the other two by at least two orders of
magnitude near the ISCO for all spin-values.

Several interesting conclusions can be drawn from
Fig. 1. First, as obtained in Ref. [47] the uncalibrated
ρ-resummed model is better than the Taylor-expanded
version of the flux, by up to nearly an order of magni-
tude at the ISCO for all spins. In turn, the calibrated
model is better than the uncalibrated one by one to two
orders of magnitude near ISCO for all spins. One could
also calibrate the Taylor-expanded flux (not shown in
Fig. 1), but this would not produce such good agreement
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FIG. 2. Fractional difference between ρ-resummed and
Teukolsky-based fluxes as a function of velocity for spins
q = (−0.9,−0.5, 0.0, 0.5, 0.9). The dotted curves do not
include the Taylor-expanded BH absorption contributions,
while the solid lines do.

in the entire (v, q) space. This is clearly because the un-
calibrated ρ-resummed model is more accurate than the
Taylor one, and thus the calibration terms have to do
less work to improve the agreement. For the calibrated
Taylor and ρ-resummed models to become comparable
in accuracy one would have to include up to at least 16
calibration coefficients in the Taylor model.

The inclusion of BH absorption coefficients is crucial
to obtain good agreement with the full Teukolsky-based
flux, a result that was not obvious for the case of non-
spinning EMRIs. Figure 2 plots the fractional differ-
ence between the uncalibrated EOB GW energy flux and
Teukolsky-based one as a function of velocity for five dif-
ferent spin values: q = (−0.9,−0.5, 0.0, 0.5, 0.9), from an
initial value of v/c = 0.01 at the ISCO, for five differ-
ent spin values: q = (−0.9,−0.5, 0.0, 0.5, 0.9). For these
cases, we have vISCO = (0.343, 0.367, 0.408, 0.477, 0.609).
The solid curves use the uncalibrated EOB model includ-
ing the Taylor-expanded BH absorption contributions,
while the dotted curves do not. For the non-spinning
case, observe that there is a very small difference (smaller
than 10−2) between adding the BH absorption terms or
not.

For the spinning cases, however, this is not the case.
For rapidly spinning backgrounds, adding the BH ab-
sorption terms improves the agreement by an order of
magnitude. Presumably, resumming these terms in a
multipolar-factorized manner would improve the agree-
ment even more. The BH absorption terms play a much
larger role in the spinning case because spin changes the
PN order at which absorption enters in the energy flux.
These terms enter at 4PN order for Schwarzschild black
holes, but at 2.5PN order for non-zero spin. This change
of order has a very large and important impact on the
system’s evolution.

The inclusion of calibration parameters to improve
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the agreement of PN-inspired fluxes and Teukolsky-based
ones for EMRIs is certainly not new. In Ref. [33], a sim-
ilar, PN-inspired calibration was carried out for circular-
inclined orbits (and more generic ones). Before calibra-
tion, their fluxes were Taylor-expanded to 2PN order and
included only the contribution that escapes to infinity
(not the BH absorption terms discussed above). Their
fit was then done with Teukolsky-data produced by an
older version of the code used here, which was accurate
only to one part in 106. Moreover, the fit was done in
the range r ∈ (5, 30)M [v ∈ (0.183, 0.436)], so the fitted
function loses accuracy rapidly outside this regime, par-
ticularly close to the ISCO. Inside the fitting regime, the
flux was fitted to an accuracy of 3 × 10−2 using 45 cali-
bration coefficients for an inclined, but fixed orbit. The
accuracy decreases to 0.1 for orbits which get closer to
the ISCO.

To fairly compare the results of Ref. [33] with our re-
sults which are restricted to circular, equatorial orbits, we
implemented their model and re-calibrated it considering
only circular, equatorial orbits. Using 45 coefficients, we
found an accuracy similar to ours at high velocities close
to the ISCO, but worse at low velocities. This is be-
cause their fluxes before calibration are not as accurate
as the one employed here (by including up to 5.5PN order
terms and BH absorption terms), particularly at low ve-
locities. It is important to emphasize that by calibrating
8 parameters instead of 45 we here obtain better flux ac-
curacies than in Ref. [33] for circular, equatorial EMRIs.
We could obtain even better accuracy if we were using
a larger number of calibration coefficients, e.g. using 16
coefficients the agreement with the Teukolsky-based flux
would be of O(10−5).

IV. COMPARISON OF THE GW PHASE AND

AMPLITUDE

The comparison of EOB and Teukolsky evolutions re-
quires that we choose a specific EMRI. We shall here fol-
low Ref. [53] and choose system parameters that define
two classes of EMRIs:

• System I explores a region between orbital separa-
tions r/M ∈ (16, 26), which spans orbital velocities
and GW frequencies in the range v ∈ (0.2, 0.25)
and fGW ∈ (0.005, 0.01) Hz respectively. Such
an EMRI has masses m1 = 105M⊙ and m2 =
10M⊙ for a mass ratio of 10−4 and it inspirals for
∼ (6.3–6.7) × 105 rads of orbital phase depending
on the spin.

• System II explores a region between orbital sep-
arations r/M ∈ (11, rISCO), which spans orbital
velocities and GW frequencies in the range v ∈
(0.3, vISCO) and fGW ∈ (0.001, f ISCO

GW ) Hz respec-
tively. Such an EMRI has masses m1 = 106M⊙

and m2 = 10M⊙ for a mass ratio of 10−5 and it

inspirals for ∼ (1.9–4.5)× 105 rads of orbital phase
depending on the spin.

The evolution of Sys. I is stopped around an orbital
separation of 16M , because this coincides with a GW
frequency of 0.01 Hz, which is close to the end of the
LISA sensitivity band. The evolution of Sys. II is usu-
ally stopped at the orbital separation corresponding to
the ISCO, or whenever its GWs reach a frequency of
0.01 Hz. For each of these systems, we shall investigate
different background spin parameters.

Before proceeding, notice that Sys. I and II should
not be compared on a one-to-one basis. One might be
tempted to do so, as Sys. I resembles a weak-field EMRI,
which inspirals at a larger orbital separation and with
smaller orbital velocities than Sys. II, a more strong-field
EMRI. Comparisons are not straightforward, however, as
these systems accumulate a different total number of GW
cycles. In fact, Sys. I usually accumulates almost twice
as many GW cycles as Sys. II. Therefore, even though
one might expect PN models of Sys. I to agree better
with Teukolsky-based evolutions, this need not be the
case, as this system has more time (as measured in GW
cycles) to accumulate a phase and amplitude difference
than Sys. II.

We compare the EOB and the Teukolsky-based wave-
forms after aligning them in time and phase. Such an
alignment is done by minimizing the statistic in Eq. (23)
of Ref. [50], just as was done in Ref. [53]. This is equiva-
lent to maximizing the fitting factor over time and phase
of coalescence in a matched filtering calculation with
white noise [50]. The alignment is done in the low-
frequency regime, inside the time interval (0, 64)λGW,
where λGW is the GW wavelength. This quantity de-
pends on the spin of the background, ranging from 386M
(63M) to 415M (121M) for Sys. I (Sys. II). This corre-
sponds to aligning the initial phase and frequency inside
a window of length in the range (0.004, 0.01) months de-
pending on the system and spin of the background. We
have checked that increasing the size of the alignment
window does not affect the final phase and amplitude dif-
ference; for example, for a spin of q = 0.9 and Sys. I, in-
creasing the alignment window by a factor of two changes
the final phase difference by 0.002 rads and the relative,
fractional amplitude agreement by 0.0004%.

Figure 3 shows the absolute value of the dephasing and
relative, fractional amplitude difference of the dominant
(ℓ,m) = (2, 2) mode for both systems and a variety of
background spins. For Sys. I, the calibrated EOB model
maintains a 1 radian phase accuracy over at least the
first 6 months for all spin values, while for Sys. II the
same phase accuracy is maintained for up to only the
first 2 months. The amplitude agreement is also excellent
for all spin values, with better agreement for Sys. I. As
found in Ref. [53] the GW phase agreement is primarily
due to the correct modeling of the orbital phase, as the
former tracks the latter extremely closely; we find that
the difference between the orbital and GW phase over a
one year evolution is less than 0.1 rads.
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FIG. 3. Absolute value of the dephasing (left) and relative, fractional amplitude difference (right) computed in the calibrated
EOB model and the Teukolsky-based waveforms for the dominant (ℓ, m) = (2, 2) mode. Different curves correspond to different
background spin values.

The agreement in the phase as a function of back-
ground spin follows closely the flux agreement shown in
Fig. 1. This is hard to see in Fig. 1, which is why Fig. 4
zooms into the velocity region sampled by Sys. I and plots
all background spin cases for the calibrated ρ-resummed
system. Observe that the q = 0.0 case has the best flux
agreement, which explains why the phase and amplitude
agreement is so good for this case in Fig. 3. Observe
also that the q = 0.9 and q = −0.9 cases have the worst
flux agreement, which also explains why they disagree
the most in phase and amplitude in Fig. 3.
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FIG. 4. Fractional difference between the calibrated
ρ-resummed and Teukolsky-based fluxes for spins q =
(−0.9,−0.5, 0.0, 0.5, 0.9) as a function of velocity. We plot
here only the range of velocities sampled by Sys. I.

The accuracy of the calibrated EOB model is excellent
relative to Taylor-expanded PN models. If one were to
use an uncalibrated Taylor-expanded version of the flux,
instead of the calibrated ρ-resummed flux, one would
find a phase and amplitude disagreement of ∼ 101–102

rads [∼ 103–104 rads] and ∼ 0.1% (∼ 10%) for Sys. I
(Sys. II) after a one year-evolution for different spin val-

ues. The above results are consistent with the arguments
in Ref. [22], who concluded that 3.5PN accurate GW
phase expressions could lead to phase errors around 103–
104 radians over the last year of inspiral. That analysis
reached those conclusions by comparing 3 to 3.5PN ac-
curate, analytic expressions for the GW phase. Here, we
are comparing full-numerical evolutions of the PN equa-
tions of motion carried out to much higher order, and,
of course, we find that such conclusions depend sensi-
tively on the type of EMRI considered and the spin of
the background.
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FIG. 5. Absolute value of the dephasing computed for the
dominant mode in different PN models and the Teukolsky-
based waveforms. Different curve colors/shades correspond to
different background spin values, while different curve types
correspond to different PN models.

The increase in accuracy of the calibrated ρ-resummed
model is due both to the calibration and to the hℓm fac-
torized resummation. This fact can be appreciated in
Fig. 5, where we plot the absolute value of the dephasing
for the dominant mode in different PN models and the
Teukolsky-based waveforms. Light curves (orange in the
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color version) correspond to background spins of q = 0.9,
dark curves (red in the color version) to q = −0.9 and
black curves to non-spinning backgrounds. Dotted curves
use the uncalibrated Taylor flux model, dashed curves
the uncalibrated ρ-resummed model and solid curves the
calibrated version. For Sys. I, there is a large gain in ac-
curacy by switching from the uncalibrated Taylor model
to the uncalibrated ρ-resummed model, but then the cal-
ibration itself does not appear to improve the accuracy
substantially. For Sys. II, on the other hand, the calibra-
tion can increase the accuracy up to almost 2 orders of
magnitude, as in the q = 0.9 case.

The agreement in the phase and amplitude is not only
present in the dominant mode, but also in higher (ℓ,m)
ones, as shown in Fig. 6. We here plot the absolute
value of the dephasing and the relative, fractional am-
plitude difference between the calibrated EOB model
and Teukolsky-based waveforms for the dominant mode,
as well as the (3, 3) and (4, 4) modes. We have here
shifted the higher (ℓ,m) modes using the best frequency
shift that maximizes the agreement for the dominant
mode. This agreement is simply a manifestation of the
agreement in the orbital phase. In fact, we find that
ΦGW ∼ mΦorb, with differences that are always less than
1 rad for all systems considered.

Higher-ℓmodes contribute significantly less to the SNR
than the dominant (2, 2) mode. Figure 7 plots the rela-
tive fraction between the squared of the SNR computed
with only the hℓm component of the waveform and that
computed by summing over all modes. This figure uses
data corresponding to Systems I and II, both with spin
q = 0.9 (results for other spin values are almost identi-
cal). Clearly, the (2, 2) mode is dominant, followed by the
(3, 3) and (4, 4) modes. Because of this feature of quasi-
circular inspirals, obtaining agreement for the (2, 2) mode
implies one can recover over 97% of the SNR.

V. DATA ANALYSIS IMPLICATIONS

Although the phase agreement presented in the previ-
ous section is a good indicator of the validity of the EOB
model, one is really interested in computing more realistic
data analysis measures. In this section we compute the
mismatch between the Teukolsky and the EOB model,
maximized over extrinsic parameters and as a function
of observation time.

Let us first introduce some basic terminology. Given
any time series a(t) and b(t), we can define the following
inner-product in signal space

(a| b) = 4 Re

∫ ∞

0

ã(f) b̃⋆(f)

Sn(f)
(30)

where the overhead tildes stand for the Fourier transform
and the star stands for complex conjugation. The quan-
tity Sn(f) is the spectral noise density curve, where here
we follow [67, 68]. Notice that we use the sky-averaged

version of this noise curve here, which is larger than the
non-sky-averaged version by a factor of 20/3. In particu-
lar, this means that our SNRs are smaller than those one
would obtain with a non-sky-averaged noise curve by a
factor of (20/3)1/2 ∼ 2.6. Also notice that we compute
the SNRs from the sky-averaged Fourier transform of the
response function, and not from the Fourier transform of
the (2, 2) mode.

Given this inner-product, we can now define some use-
ful measures. The SNR of signal a is simply

ρ =
√

(a| a) , (31)

while the overlap between signals a and b is simply

M = max
(a| b)√

(a| a) (b| b)
. (32)

with the mismatch MM = 1 − M. The max label here is
to remind us that this statistic must be maximized over
a time shift and a phase shift (see eg. Appendix B of [45]
for a more detailed discussion).

The data analysis measures introduced above (ρ and
MM) depend on the length of the time-series, i.e. the ob-
servation time. Figure 8 plots the mismatch between the
Teukolsky-based waveforms and a variety of models for
both Sys. I and II and a background spin of q = 0.9 as
a function of observation time. The vertical lines cor-
respond to observation times of 2 weeks, 2 months, 6
months, 9 months and 11.5 moths, together with their as-
sociated SNRs at 1 Gpc. The mismatches are computed
with different analytical models: black crosses stand for
the calibrated ρ-model with 8 calibration coefficients; red
circles to the uncalibrated ρ- model; blue squares to the
uncalibrated Taylor model; green circles to that EOB
evolution using the original flux of Ref. [33] which has
45 calibration coefficients (denoted GG in the figure).
For comparison, we also include the amount of dephas-
ing (numbers next to data points in Fig. 8) at 2 weeks, 2
months, 6 months, 9 months and 11.5 months. Observe
that the calibrated ρ-model maintains an overlap higher
than 97% over 9 and 4 months for Sys. I and II respec-
tively. The uncalibrated ρ-model performs comparably
to the EOB model using the flux of Ref. [33] which has
45 calibration coefficients, both of which have an over-
lap higher than 97% over 6 and 1 month for Sys. I and
II respectively. In the case of Sys. II the calibrated flux
of Ref. [33] perform better than the uncalibrated ρℓm

model. Also observe that the uncalibrated Taylor model
is simply inadequate to model EMRIs for any observation
time.

We then see that the use of the calibrated EOB model
allows us to integrate over longer observation times, com-
pared to a 2-week period or to other models. In turn, this
allows us to recover a higher SNR that we would other-
wise. The increase in SNR scales as the square root of
the observation time, as expected. For example, since
the calibrated EOB model is accurate over 9 months,
one would be able to coherently recover an SNR of 14



12

10
-1

10
0

10
1

(2,2), q=0.9
(3,3), q=0.9
(4,4), q=0.9
(2,2), q=-0.9
(3,3), q=-0.9
(4,4), q=-0.9

0 1 2 3 4 5 6 7 8 9 10 11
t [Months]

10
-1

10
0

10
1

10
2

|φ
T

eu
k-φ

E
O

B
| [

ra
ds

]

System II

System I

10
-4

10
-3

10
-2

10
-1

0 1 2 3 4 5 6 7 8 9 10 11
t [Months]

10
-2

10
-1

10
0

10
1

|A
lmT
eu

k -A
lmE
O

B
|/A

lmT
eu

k  [
%

]

(2,2), q=0.9
(3,3), q=0.9
(4,4), q=0.9
(2,2), q=-0.9
(3,3), q=-0.9
(4,4), q=-0.9

System II

System I

FIG. 6. Absolute value of the dephasing (left) and relative, fractional amplitude difference (right) computed in the calibrated
EOB model and the Teukolsky-based waveforms. The solid curve corresponds to the dominant (2, 2) mode, while the dashed
curve is for the (3, 3) mode and the dotted curve for the (4, 4) mode. Different curves stand for different background spins.

(2,1)(2,2)(3,1)(3,2)(3,3)(4,1)(4,2)(4,3)(4,4)(5,1)(5,2)(5,3)(5,4)(5,5)
(l,m)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ρ lm2 /ρ
T

ot
al

2

Sys I, q=0.9
Sys II, q=0.9l=m

l=m

l=m+1

l=m

l=m+1

l=m+2

l=m+1

l=m+2

FIG. 7. Relative fraction between the squared of the SNR
computed with only the (ℓ, m) mode and that computed with
all (ℓ, m) modes. The lines connecting points are only meant
to group points with ℓ = m (dotted), ℓ = m +1 (dashed) and
ℓ = m + 2 (dot-dashed).

at 1 Gpc for Sys. I, to be compared with an SNR of 11
obtained after 6 months of coherent integration if using
for example the fluxes of Ref. [33]. In general, an inte-
gration over a period longer than two weeks gains us a
large increase in SNR. Such gains in SNR are important
because they allow us to see EMRIs farther out. Since
the SNR scales as ρ ∼ D−1

L , where DL is the luminosity
distance, even an SNR increase in a factor of 3 increases
our accessible volume by a factor of 27, since the later
scales as D3

L.

VI. HIGHER-ORDER EFFECTS

Let us now discuss how finite mass-ratio higher-order
effects affect the GW phase and amplitude. Those ef-

fects are encoded in the ν terms present in the radiation-
reaction force and in the Hamiltonian. The former are
second-order effects in the dissipative dynamics, while
the latter are first-order effects in the conservative dy-
namics. We have analytic control over the PN version of
such effects within the EOB formalism, but until now, we
had set both of these to zero when comparing to Teukol-
sky evolutions, as the latter do not account for such ef-
fects. In the EOB model, however, it is straightforward to
include such terms, as PN expansion are formally known
for all mass ratios at some given order in v. The inclu-
sion of conservative ν terms is achieved by using the spin
EOB Hamiltonian of Ref. [41] reviewed in Appendix C.
The inclusion of dissipative ν terms is achieved by in-
cluding relative ν terms in the multipolarly decomposed
waveform hℓm and flux F .

Whether such mass-ratio effects matter depends on the
EMRI considered. In Ref. [53], it was found that such ef-
fects increase the dephasing between EOB and Teukolsky
models by one order of magnitude after a two year evo-
lution for non-spinning EMRIs, a result consistent with
Ref. [69]. This effect is greatly amplified when consider-
ing spinning EMRIs. Table I compares the effect that the
inclusion of relative ν terms in the EOB Hamiltonian and
the radiation-reaction force has on the final dephasing af-
ter a one-year evolution. In order to read out the effect
of such finite mass-ratio terms in the phasing, one must
compare rows two, three and four to the baseline given in
the first row of Table I. For example, the effect of the ν
terms in the Hamiltonian are such as to increase the de-
phasing by 27.20 − 10.04 = 17.16 radians. Observe that
the conservative and dissipative ν terms usually push the
dephasing in different directions, partially canceling out
when both of them are present. Even then though, the
generic effect of high-order ν terms is to increase the rate
of dephasing by several tens of radians are a one year
evolution. Notice furthermore that the magnitude of the
effect is here not very large because we are considering
circular equatorial orbits.
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background spin of q = 0.9.

System I I I II II II
q1 −0.9 0.0 0.9 −0.9 0.0 0.9

No rel. ν 10.04 1.60 9.36 7.63 42.21 48.39
ν in H 30.38 0.083 18.96 4.38 40.35 47.13

ν in Ė 19.99 5.31 4.49 7.24 41.50 46.55

ν in H and Ė 40.32 6.83 14.08 3.98 39.64 45.29

TABLE I. Absolute value of the total dephasing after a 11.5
moths of evolution. The first row includes no relative ν con-
tributions in the Hamiltonian or the radiation-reaction force.
The second row includes relative ν terms in the Hamiltonian,
while the third row includes such terms in the radiation reac-
tion force.

Finite mass-ratio effects are clearly suppressed when
dealing with circular orbits. This is because, for such
orbits outside the ISCO, the effect of the conservative
self force is simply to shift the waveform from one or-
bital frequency to another. Thus, from an observational
standpoint, such an effect is unmeasurable. Even though
the conservative self-force shifts the ISCO, this effect is
still degenerate with a shift of the system’s mass pa-
rameters. This discussion, however, neglects radiation-
reaction, which is crucial to model a true inspiral wave-
form. One can think of the radiation-reaction force as
defining a trajectory through the sequence of orbital en-
ergies that an orbit follows. There is gauge invariant
information in this sequence, in the sense that the map-
ping between energies and orbital frequencies depends
on the details of the orbit at each energy level. For a
given radiation-reaction force, the sequence of geodesic
orbits (and hence the sequence of frequencies) depends
on whether the conservative self-force is included or not.

As is clear from this discussion, the “real” (gauge-
invariant) effect of the conservative self-force on quasi-
circular inspiral waveforms can be rather subtle. A ro-
bust effect, however, does arise if the self-force acts on
a more generic orbit, such as an eccentric one. In that
case, this force will act separately on the radial and the
azimuthal orbital frequencies, which can leave a poten-

tially strong imprint in the waveform. In principle, even
for an inclined circular orbit there could be a strong im-
print. In practice, however, the azimuthal and polar or-
bital frequencies are quite similar, which suggests that
perhaps, even in this case, the self-force effects will be
small.

With all of this in mind, let us discuss the results pre-
sented in Table I in more detail. Our study suggests that
the overall effect of ν terms in bothH and F leads to only
5.2 and 2.5 additional radians of phase for non-spinning,
Sys. I and II respectively. This is in fact consistent with
the results presented in Ref. [53], except that there one
considered 2-year long evolutions. One might wonder
whether using the non-spinning Hamiltonian of Ref. [50]
(where the deformed-Schwarzschild potential are Padè-
resummed instead of being given by Eqs. (C18), (C8))
has an effect on this dephasing. We have investigated
this question and found that the additional contribution
to the phase is 0.05 (0.03) and 1.06 (1.33) radians for
Sys. I and II respectively over the entire year of inspi-
ral using the 3PN (4PN) Pade form of the deformed
potentials. [We notice [70] that the 4PN Padè poten-
tials of Ref. [50] reproduce very closely the ISCO-shift of
Ref. [25].] This implies that the non-spinning Hamilto-
nian [50] at 3PN and 4PN order is sufficiently close to the
Hamiltonian presented in Appendix B for data analysis
of non-spinning EMRIs.

One can also compare the results in Table I to the re-
cent study of Huerta and Gair [71], who investigated the
effect of ν2-corrections in the determination of parame-
ters, given an EMRI signal. Their Table I presents the
number of cycles accumulated for a variety of mass ratios.
Their last column happens to correspond to our Sys. II
with no spin, for which they get a total dephasing of
2.3 rads and 3.8 rads after the last year of inspiral when
including only conservative and all second-order correc-
tions. This is to be compared to our results: 1.86 rads in
and 2.6 rads after the last year of inspiral when including
only conservative and all second-order corrections. These
numbers are in excellent agreement, allowing for differ-
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System I I I II II II
q1 −0.9 0.0 0.9 −0.9 0.0 0.9

q2 = −0.75 36.34 3.96 16.03 4.41 40.41 47.04
q2 = 0.00 40.32 6.83 14.08 3.98 39.64 45.29
q2 = 0.75 44.31 9.70 12.14 3.56 38.88 43.54

TABLE II. Absolute value of the total dephasing in rads after
a 11.5 moths of evolution. The second row sets the second
BH’s spin to zero, while the second row sets it to q2 = 0.75.
In both cases, the spin of the background is set to q1 = 0.9
and ν 6= 0 in both the Hamiltonian and the radiation-reaction
force.

ences in the modeling. Their analysis suggests that such
small difference will not affect parameter estimation for
EMRIs similar to Sys II. For Sys I, however, the dephas-
ing is much larger as the mass ratio is less extreme by one
order of magnitude; thus, parameter estimation might be
affected in this case.

Another high-order effect that one can study is the
inclusion of the small object’s spin in the evolution of
the binary. Since the spin angular momentum of the
small body scales with its mass, its contribution to the
orbital evolution is one order in ν suppressed. We can
model this effect by allowing q2 6= 0 in the EOB Hamil-
tonian of Ref. [41] and letting ν 6= 0. Doing so for Sys. I
(Sys. II) with q1 = 0.9 and q2 = 0.75, we find that the to-
tal dephasing now becomes 17.26 (45.49 rads), as shown
in Table II. This is to be compared to the case when
q2 = 0, which returns a dephasing of 14.08 rads (45.29
rads). Thus, the effect of the second spin contributes
roughly 3.3 rads in this case. We can also compare these
results to those estimated by Barack and Cutler [18]. In
their Appendix C, they estimate that for quasi-circular
inspirals similar to our Sys. II, the spin of the second
body should induce a dephasing of roughly 1 − 10 rads.
This is in good agreement with the results correspond-
ing to Sys. II in our Table II. Our results are also in
good agreement with the results of Wen-Biao [72], who
estimated a dephasing of O(π/10) for our System II. Fi-
nally, these results are also in agreement with an upcom-
ing and independent investigation of spin-effects in the
PN phasing [73].

Finally, taking into account the results of including
finite mass-ratio effects, we can conclude that unless
these are precisely modeled, it is not worth requiring
an agreement better than 10–30 rads when calibrating
the phase of the test-particle EOB waveforms against the
Teukolsky-based waveforms.

VII. CONCLUSIONS

We have constructed an EOB model for EMRIs in
quasi-circular, equatorial orbits about spinning back-
grounds. In the test-particle limit, this model consists of
adiabatically evolving a test-particle in the Kerr space-
time using the factorized energy flux of Refs. [46, 47],

augmented by 8 calibration coefficients. The latter are
determined by comparing the factorized energy flux to a
Teukolsky-based flux, built from solutions to the Teukol-
sky equation in the radiative approximation. In the adi-
abatic approximation, the EOB waveforms can be con-
structed in CPU seconds at a very low computational
cost. When finite mass-ratio effects and the small ob-
ject’s spin are included, we build the EOB model by
numerically solving the Hamilton equations with the
spin EOB Hamiltonian of Ref. [18] and the Teukolsky-
calibrated factorized energy flux augmented by finite
mass-ratio effects [47].

For both EMRI systems considered, we find excellent
phase and amplitude agreement, with dephasing less than
one radian, over periods of months. The exact length
of the agreement depends on how relativistic the EMRI
system is. We also calculated the overlap between EOB
and Teukolsky-based waveforms to find it higher than
97 % over 4 to 9 months, depending on the EMRI system
considered.

The EOB waveforms built here have higher overlaps
and better phase agreements that all currently known
EMRI models for spinning, equatorial systems, while re-
quiring much fewer calibration parameters. In particu-
lar, the EOB model with 8 calibration coefficients out-
performs by almost an order of magnitude the numerical
kludge waveforms with the calibrated fluxes of Ref. [33]
which use 45 calibration coefficients. This implies that
EOB waveforms with 8 calibration coefficients can be
used for longer coherent integrations, allowing us to ob-
tain a 50 % increase in SNR. In turn, this implies that
EOB waveforms can see EMRIs that are farther out, in-
creasing the accessible volume by at least a factor of two
relative to numerical kludge waveforms. Furthermore if
we were using 16 calibration coefficients, we could im-
prove the dephasing from 0.91 rads (8.7 rads) to 0.85
rads (4.2 rads) for System I (System II) after 6 months
of evolution. In turn, this would decrease the mismatch
from 0.2% (12%) to 0.19% (3.9%) for System I and II
after 6 months of evolution.

Another possible avenue for future research is the cal-
culation of high PN order terms in the energy flux and
waveforms. Our EOB model relies on the use of accurate
fluxes, but for spinning systems, the flux to infinity is
only known up to 4PN order in the test-particle limit.
This is in contrast to the non-spinning terms that are
known to 5.5PN order or the BH absorption terms that
are known to 6.5PN order. The calculation of the spin-
dependent terms in the flux to infinity to 4.5, 5 and 5.5PN
order terms in the test-particle limit is not quixotic and
would be invaluable. Once these coefficients are known,
then presumably the EOB waveforms would be more ac-
curate and might require less adjustable parameters.

Of course, the EOB waveforms we constructed here are
less powerful than kludge waveforms [18, 33, 34] in their
generality. Our waveforms cannot yet model inclined or
eccentric inspirals. The inclusion of inclined orbit should
be relatively straightforward, but the addition of eccen-
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tricity might require some revamping of the EOB frame-
work. Future work in this direction would be definitely
worthwhile.

Ultimately, one would like to obtain a waveform model
that is sufficiently fast, efficient and accurate to do real-
istic EMRI data-analysis for LISA. Such a model would
need to include the correct self-force contributions to
the conservative dynamics, the appropriate second-order
terms in the radiation-reaction force and the correct
terms that describe the small object’s spin. The EOB
model we developed here does agree with all known PN
self-force calculation to date. However, since full self-
force calculations are not yet completed, we do not have
a way of assessing the error of including the currently
known EOB finite mass-ratio effects. In fact, so far the
only comparisons between the PN/EOB and self-force
results have been concerned with the non-spinning case,
and have been limited to the ISCO shift [25, 52] and other
gauge invariant quantities [74, 75]. Quite interestingly,
the calibration of the EOB model to comparable-mass
numerical-relativity simulations improves the agreement
of the model to self-force results [52, 70]. Thus, we hope
that future calibrations of the spin EOB Hamiltonian to
comparable-mass simulations of spinning BHs will allow
us to build an EOB model which includes finite mass-
ratio effects in a more accurate way.

All that said, we have found that the presence of PN
self-force terms in the spin EOB model of Ref. [41] leads
to dephasing of 10–30 rad over one year depending on the
EMRI system and the spin of the background. By con-
trast, the inclusion of the small object’s spin introduces
dephasing on the order of a few radians. Taking into
account those results, we can conclude that unless those
finite mass-ratio effects are precisely modeled, currently,
it is not worth requiring an agreement better than 10–30
rads when calibrating the phase of the test-particle EOB
waveforms against the Teukolsky-based waveforms. This
in turn implies that calibrating 16 parameters instead of
8 to an EOB model is overkill as other systematics (in-
duced by neglecting self-force effects) will be dominant.
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Appendix A: Mapping between Spheroidal and

Spherical Harmonics

1. Quantities at Spatial Infinity

Let us first consider the GW fluxes that describe radi-
ation escaping to infinity, and later discuss the radiation
absorbed by the BH. Frequency-domain Teukolsky equa-
tion codes expand the curvature scalar ψ4 as

ψ4 =
1

r

∑

ℓm

ZH
ℓmS

−

ℓm(θ, φ)e−iωmt . (A1)

We have here incorporated the eimφ dependence into the
spin-weighted spheroidal harmonics S−

ℓm. These harmon-
ics depend on the value of m1q1ωm, and the minus super-
script is a reminder that the we consider here harmonics
of spin-weight −2. Throughout this appendix, the index
ℓ refers to the spheroidal harmonic index, while l refers
to the spherical harmonic index.

From ψ4, we compute waveforms via ψ4 = (ḧ+ −
iḧ×)/2, and hence, for a frequency-domain application,

h+ − ih× = −2

r

∑

ℓm

ZH
ℓm

ω2
m

S−

ℓm(θ, φ)e−iωmt . (A2)

We have implicitly assumed that ωm is time-independent,
or at least that its time-dependence is subleading. A
better expansion is to re-express things in terms of the
accumulated phase, i.e., the integral of the frequency
ωm ≡ Φ̇m, namely

ψ4 =
1

r

∑

ℓm

ZH
ℓmS

−

ℓm(θ, φ)e−iΦm (A3)

h ≡ h+ − ih× = −2

r

∑

ℓm

ZH
ℓm

ω2
m

S−

ℓm(θ, φ)e−iΦm .(A4)

The EOB and numerical relativity (NR) communi-
ties like to project these quantities onto a basis of
spin-weighted spherical harmonics. For ψ4, they define
Clm(t, r) via

ψ4 =
1

r

∑

lm

Clm(t, r)Y −

lm(θ, φ) . (A5)

and the harmonically-decomposed waveforms hlm(t, r)
via

h =
1

r

∑

lm

hlm(t, r)Y −

lm(θ, φ) . (A6)

The minus superscript again denotes spin-weight −2.
Defining the inner-product

〈
Y −

lm|f
〉

=

∫
dΩY −,∗

lm (θ, φ)f , (A7)

the extraction of the Clm and hlm is simple:

Clm(t, r) = r
〈
Y −

lm|ψ4

〉
, hlm(t, r) = r

〈
Y −

lm|h
〉
. (A8)
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Let us now take the Schwarzschild limit to see whether
these expressions simplify. In that limit

S−

ℓm(θ, φ) = Y −

ℓm(θ, φ) , (A9)

and thus, performing the necessary projections and tak-
ing advantage of the orthonormality of spherical harmon-
ics, we find

Clm(t, r) = ZH
lme

−iΦm ; (A10)

hlm(t, r) = −2ZH
lm

ω2
m

e−iΦm . (A11)

In spinning backgrounds, however, the mapping is
more complicated. We can use the fact that spheroidal
harmonics can be expressed as a sum of spherical har-
monics via

S−

ℓm(θ, φ) =
∑

j

bℓj Y
−

jm(θ, φ) . (A12)

The dependence on m1q1 ωm enters through the expan-
sion coefficients bℓj (see, e.g. Ref. [60]). Inserting this
expansion into Eq. (A1) and using the inner-product def-
inition, Eq. (A8), we find

Cjm = e−iΦm

∑

ℓ

bℓjZ
H
ℓm ; (A13)

hjm = −2e−iΦm

ω2
m

∑

ℓ

bℓjZ
H
ℓm = −2Cjm

ω2
m

. (A14)

In the Schwarzschild limit, bℓj = δℓj , so that Kerr simply
limits as it should.

From the definition of the Isaacson stress-energy ten-
sor, one can easily show that

d2E∞

dtdΩ
=
∑

ℓm

S−

ℓm(θ, φ)2
|ZH

ℓm|2
4πω2

m

, (A15)

=
∑

lm

Y −

lm(θ, φ)2
|CH

lm|2
4πω2

m

. (A16)

We have here used the orthonormality of both the
spheroidal and spherical harmonics to simplify the sums,
as well as the fact that the time dependence of the CH

lm
disappears when its modulus is computed. Performing
the angular integrals leaves us with familiar formulas:

Ė∞ =
∑

ℓm

|ZH
ℓm|2

4πω2
m

=
∑

lm

|CH
lm|2

4πω2
m

. (A17)

This breaks down nicely enough that it is useful and sen-
sible to define the modal contributions Ėℓm.

2. Quantities at Event Horizons

As a general principle, computing quantities that are
related to an event horizon is usually more complicated

than computing the same quantities at spatial infinity.
For the fluxes, for example, this is because there is no
simple generalization of the Isaacson tensor on the hori-
zon. Instead, one must examine the shear of the horizon’s
generators, look at how this shear generates entropy,
and then apply the area theorem to compute fluxes [76].
The relevant quantities at the horizon depend on the
Newman-Penrose scalar ψ0, instead of ψ4, the former of
which is a quantity of spin-weight +2, rather than −2.

The GW energy flux per unit solid angle at the horizon
is given by

d2EH

dtdΩ
=
ωmm1r+

2πpm
|σHH|2 , (A18)

where pm = ωm −mω+, and where ω+ = q1/(2r+) is the
angular velocity of observers co-rotating with the event
horizon. The quantity σHH is the shear to the horizon’s
generators as found by Ref. [77]. This quantity is fairly
simply related to ψ0, so let us introduce an expansion of
ψ0 in spin-weight +2 spheroidal harmonics

ψ0 = ∆−2
∑

ℓm

W∞

ℓm(r)S+
lm(θ, φ) e−iΦm , (A19)

where ∆ is given in Eq. (7). Notice that this quantity
diverges on the event horizon r+ because the Kinnersley
tetrad, which is used to define the projection for ψ0, is
ill-behaved as r → r+. This can be corrected for by
converting to σHH for any given (ℓ,m) mode [76]

σHH
ℓm = ∆2γmψ0,ℓm =

∑

ℓm

γmW
∞

ℓmS
+
lm(θ, φ)e−iΦm .

(A20)
The complex number γm is given by γm = −[4(ipm +

2ǫ)(2m1r+)2]−1, where ǫ =
√
m2

1 −m2
1q

2
1/(4m1r+).

With this in hand, the GW energy flux at the horizon
becomes

d2EH

dtdΩ
=
∑

ℓm

ωmm1r+
2πpm

|γm|2|W∞

ℓm|2
(
S+

ℓm

)2
(A21)

=
∑

ℓm

(
S+

ℓm

)2 ω3
m

16pm(p2
m + 4ǫ2)(2m1r+)3

|W∞
ℓm|2

4πω2
m

,

which integrates to

ĖH =
∑

ℓm

ω3
m

16pm(p2
m + 4ǫ2)(2m1r+)3

|W∞
lm|2

4πω2
m

. (A22)

Implementing this equation is difficult because it requires
that one computes both ψ0 and ψ4 when solving the
Teukolsky equation. Since these quantities have differ-
ent angular dependence and a different source function,
this would be a non-trivial undertaking.

Instead, one can take advantage of a remarkable sim-
plification, the so-called Starobinsky identities [78], that
relates ψ4 to ψ0 and vice-versa via an algebraic relation.
We can use this to relate the coefficients W∞

ℓm to the co-
efficients Z∞

ℓm, namely

W∞

ℓm = βℓmZ
∞

ℓm , (A23)
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where

βℓm =
64(2m1r+)4ipm(p2

m + 4ǫ2)(−ipm + 4ǫ)

cℓm
Z∞

ℓm ,

|cℓm|2 =
[
(λ+ 2)2 + 4q1m1ωm − 4q21m

2
1ω

2
m

] (
λ2

+ 36mq1m1ωm − 36q21m
2
1ω

2
m

)
+ (2λ+ 3)

× (96q21m
2
1ω

2
m − 48mq1m1ωm)

+ 144ω2
mm

2
1(1 − q21) ,

Im cℓm = 12m1ω ,

Re cℓm = +
√
|cℓm|2 − 144m2

1ω
2 ,

λ = Eℓm − 2q1m1mω + q21m
2
1ω

2 − s(s+ 1) , (A24)

and Eℓm is the eigenvalue of S−

ℓm(θ, φ).

We can then finally write the energy flux formula as

ĖH =
∑

ℓm

αℓm
|Z∞

ℓm|2
4πω2

m

, (A25)

where the coefficient αℓm, given explicitly in Ref. [60],
agglomerates the factors β, γ into one big expression.
This expression reorganizes terms slightly in order for its
structure to resemble the expression for the flux to infin-
ity as much as possible. Using this, it is simple to write
the modal contribution as decomposed into a spheroidal
harmonic basis: ĖH

ℓm = αℓm|Z∞

ℓm|2/(4πω2
m).

Decomposing the horizon energy flux formula into a
spherical harmonic basis is slightly more difficult. The
key confusing issue is that there are now two spheri-
cal harmonic basis to worry about: one for each spin-
weight. With respect to these two bases, we can define
two spheroidal harmonic expansions:

S−

ℓm(θ, φ) =
∑

j

bℓjY
−

jm(θ, φ) , (A26)

S+
ℓm(θ, φ) =

∑

j

dℓ
jY

+
jm(θ, φ) . (A27)

(The coefficients dℓ
j expand the +2 spin-weight spheroidal

harmonic in +2 spin-weight spherical harmonics, just as
the coefficients bℓj do so for the −2 harmonics.) It’s worth
emphasizing that the different spherical harmonics are
not simply related to one another.

The two quantities which can be put into a spheri-
cal harmonic basis are ψ0 and ψ4, both evaluated in the
vicinity of the horizon:

ψ0 = ∆−2
∑

ℓjm

W∞

ℓmd
ℓ
jY

+
jm(θ, φ)e−iΦm (A28)

= ∆−2
∑

jm

U∞

jmY
+
jm(θ, φ) , (A29)

U∞

jm =
∑

ℓ

W∞

ℓmd
ℓ
je

−iΦm ; (A30)

and

ψ4 =
∆2

(r − iq1m1 cos θ)4

∑

ℓjm

Z∞

ℓmb
ℓ
jY

−

jm(θ, φ)e−iΦm(A31)

=
∆2

(r − iq1m1 cos θ)4

∑

jm

C∞

jmY
−

jm(θ, φ) , (A32)

C∞

jm =
∑

ℓ

Z∞

ℓmb
ℓ
je

−iΦm . (A33)

Using the results presented in this appendix, one can eas-
ily find an expression for ĖH in terms of the +2 harmonic
coefficients U∞

lm:

ĖH =
∑

lm

ω3
m

16pm(p2
m + 4ǫ2)(2m1r+)3

|U∞

lm|2
4πω2

m

. (A34)

Unfortunately, this is not that useful, as it requires
knowledge of the ψ0 expansion coefficients W∞

ℓm.
Taking advantage of the Starobinsky identity again, we

can combine Eqs. (A23) and (A30) to find

U∞

jm =
∑

ℓ

βℓmZ
∞

ℓmd
ℓ
je

−iΦm . (A35)

It is then a straightforward to insert this into Eq. (A34)
to obtain the down-horizon flux expanded into modes of
+2 spherical harmonics.

3. Truncation issues

We have so far been rather schematic regarding the
limits on all sums. In principle, all these sums should be
carried out from some lower limit lmin to infinity, where
the former is given by lmin = min(|s|, |m|). In a numerical
application, the upper limit must be truncated at some
finite value lmax. We typically find that the magnitude
of terms falls off as a power of l. When decomposing
into spheroidal harmonics, it is thus typically sufficient
to pick some cutoff value and apply it uniformly.

Applying such a cutoff is slightly more complicated
when we convert to spherical harmonics. The reason
is that a given spheroidal harmonic ℓ has contributions
from spherical harmonics at index j > ℓ. Consider,
as a concrete example, the spheroidal harmonic S−

54 for
a/m1 = 0.99, ω = 0.1: the expansion coefficients for this
harmonic are

b53 = −0.0110657 , b54 = 0.99987 , b55 = 0.0117368,

b56 = 0.000123221 , b57 = 9.4336× 10−7,

b58 = 6.4276× 10−8 b59 = 3.70511× 10−11 ,

b510 = 1.93317× 10−13 b511 = 8.97558× 10−16 . (A36)

Coefficients beyond b511 are small enough that our code
does not compute them in this case. Notice that as we
move away from the j = ℓ term (whose value is close
to unity) the coefficients fall off by roughly powers of
ǫ ≃ 0.01. This behavior is typical, although the value
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of ǫ depends strongly on q1 and ω (e.g., ǫ ≃ 10−3 for
q1 = 0.1, ω = 0.1, but ǫ ≃ 0.4 for q1 = 0.999, ω = 5).

When one converts from ZH
ℓm to Cjm, this behavior

forces us to include a buffer of ℓ-values beyond the maxi-
mum spherical harmonic that we want to compute. The
size of the buffer depends (rather strongly) on the values
of q1 and ω. In the weak field, where q1m1ω ≪ 1 even for
large m, it is enough to include a buffer of 2 (i.e., such
that ℓmax = jmax +2). For the results used in this paper,
we have chosen a uniform buffer region of size 8.

Appendix B: GW Energy Absorption

The N/2-th order Taylor expansion of the flux in PN
theory is given by the series [19]

F (N)
Tay. = FNewt.

N∑

n=0

[an(ν) + bn(ν) log(v)] vn, (B1)

where FNewt ≡ 32/5ν2v10 is the leading-order (Newto-
nian) piece of the flux, v is the circular orbital frequency,
log stands for the natural logarithm while an and bn are
PN parameters, with bn<6 = 0.

The PN parameters can be classified according to their
physical origin and whether they include spin contribu-
tions or not. The flux pieces that account for GW emis-
sion to infinity are well-known and, for example, are given
in Ref. [79, 80]. Those that correspond to radiation in-
falling into the horizon will be labeled (aHor

n , bHor

n ), with
a superscript S (NS) if they are further spin-dependent
(spin-independent).

The coefficients associated with BH absorption can
only be formally obtained employing BH perturbation
theory, as PN theory treats BHs as effective test parti-
cles. The logarithm-independent terms associated with
non-spinning contributions to the radiation flux through
the horizon are

aHor,NS

8 = 1, aHor,NS

9 = 0, (B2)

aHor,NS

10 = 4, aHor,NS

11 = 0, (B3)

aHor,NS

12 =
172

7
, aHor,NS

13 = 0, (B4)

(B5)

where aHor,NS

<8 = 0. All logarithm-dependent terms iden-
tically vanish here: bHor,NS

n = 0. Similarly, the logarithm-
independent terms associated with spinning contribu-

tions to the radiation flux through the horizon are

aHor,S
5 = − q̄

4
− 3q̄3

4
, (B6)

aHor,S
6 = 0, (B7)

aHor,S
7 = −q̄ − 33q̄3

16
, (B8)

aHor,S
8 = −1

2
+

35

6
q̄2 − 3

12
q̄4

+

(
1

2
+

13

2
q̄2 + 3q̄4

)(
1 − q̄2

)1/2

+ iq̄
(
1 + 3q̄2

)
)
{
ψ(0)

[
3 − 2iq̄

(
1 − q̄2

)−1/2
]

− ψ(0)
[
3 + 2iq̄

(
1 − q̄2

)−1/2
]}
, (B9)

aHor,S
9 = −43q̄

7
− 4651q̄3

336
− 17q̄5

56
, (B10)

aHor,S
10 = −2 +

433

24
q̄2 − 95

24
q̄4

+

(
2 +

163

8
q̄2 +

33

4
q̄4
)(

1 − q̄2
)1/2

− 3

24
iq̄
(
4 − 3q̄2

){
ψ(0)

[
3 + iq̄

(
1 − q̄2

)−1/2
]

− ψ(0)
[
3 − iq̄

(
1 − q̄2

)−1/2
]}

− 3iq̄
(
1 + 3q̄2

)

× ψ(0)
[
3 + 2iq̄

(
1 − q̄2

)−1/2
]

+ 3iq̄
(
1 + 3q̄2

)

× ψ(0)
[
3 − 2iq̄

(
1 − q̄2

)−1/2
]
, (B11)

where aHor,S
<5 = 0 and where the polygamma function

ψ(n)(z) ≡ (dnΓ(z)/dz) Γ(z)−1 is the nth-derivative of
the Gamma function. The coefficients (aHor,S

11 , aHor,S
12 ) are

also known, but we do not write them out here as they
are lengthy and unilluminating [e.g., see Appendix J in
Ref. [24]]. Notice that the BH absorption coefficients in
the spinning case are non-zero starting at 2.5 PN order,
which is to be contrasted with the non-spinning BH ab-
sorption terms that start at 4 PN order.

An ambiguity exists when incorporating these BH ab-
sorption contributions into the flux. As one can ob-
serve, the spin-dependent coefficients aHor,S

n depend on
the spin parameter of the background q̄, for which one
could choose the real spin parameter q̄ = q1 or the effec-
tive spin parameter q̄ = q, defined in Appendix C. Since
q = q1+O(m2/m1), these choices are identical in the test
particle limit, when we calibrate to Teukolsky-fluxes. In
lack of better guidance, we here choose q̄ = q.

Appendix C: Spin EOB Hamiltonian

In Sec. VI we have investigated how the analyti-
cal results calibrated to the Teukolsky-based waveforms
change when we switch on the PN conservative self-force
and the second-order radiation reaction effects, and when
we include the spin of the small object. This study em-
ployed the spin EOB Hamiltonian of Ref. [41], which was
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derived from Ref. [58], building also on results of Ref. [40].
As we shall review below, the Hamiltonian of Ref. [41] re-
produces the known spin-orbit (spin-spin) PN couplings
through 2.5PN (2PN) order for comparable masses, and
all PN couplings linear in the spin of the small object in
the test-particle limit. We shall here restrict attention to
circular, equatorial orbits, and assume that the spins are
aligned with the orbital angular momentum.

The motion of a spinning test-particle in a generic
curved spacetime is described by the Papapetrou equa-
tion [81–83]. Reference [58] derived a Hamiltonian whose
Hamilton equations are equivalent to the Papapetrou
equation. This Hamiltonian therefore describes the mo-
tion of a spinning particle in a generic curved spacetime,
and Ref. [41] computed it in the particular case of the
Kerr spacetime in Boyer-Lindquist coordinates. Denot-
ing with S1 and m1 the spin and mass of the background
BH, and with S2 and m2 the spin and the mass of the
smaller BH, the Hamiltonian of a spinning test-particle
in Kerr has the generic form [41]

H = HNS +HS , (C1)

where HNS is the Hamiltonian of a non-spinning test par-
ticle in Kerr, given by Eq. (2), while HS depends on S1

and S2 and, if PN expanded, generates all PN terms lin-
ear in the small object’s spin S2.

In Ref. [41] the authors constructed the spin EOB
Hamiltonian by mapping the PN Hamiltonian of two
BHs of masses m1,2 and spins S1,2 into the effective
Hamiltonian of a spinning test-particle of mass µ =
m1m2/(m1 + m2) and spin S∗ moving in a deformed-
Kerr spacetime with mass M = m1 +m2 and spin SKerr,
ν = µ/M being the deformation parameter. Note that
the deformed-Kerr spin parameter q ≡ |SKerr|/M2 6= q1,
but instead q ≈ q1(1− 2m2/m1 + . . .) when m2/m1 ≪ 1.

The effective Hamiltonian is [41]

Heff = HNS +HS − µ

2M r3
S2
∗ , (C2)

where HNS is the Hamiltonian of a non-spinning effective
particle in the deformed-Kerr background,

HNS = pφ
ω̃fd

Λt
+
µ r

√
∆t

√
Q√

Λt

, (C3)

which differs from Eq. (9) in that the Kerr potentials
∆ and ωfd have been replaced by their deformed forms
∆t and ω̃fd (and also m1 → M , q1 → q, m2 → µ).
Furthermore, HS in Eq. (C2) is linearly proportional to
the effective particle’s spin S∗ and reads

HS =
S∗

2µM
√

∆t Λ
5/2
t

(√
Q+ 1

) √
Qr2

{
2µ
√

∆t Λt

(√
Q+ 1

)(√
∆t pφ r

3 + µ
√

ΛtQ ω̃fd

)
r2

+
√

∆r

[
µ∆t,r

√
Λt pφ

((
2
√
Q+ 1

)
(r2 +M2 q2)2 − Λt

(√
Q+ 1

))
r3

+2µ∆t

√
Λt pφ

(
2
√
Q+ 1

) (
Λt − 2r2 (r2 +M2 q2)

)
r2

+
√

∆t

(
p2

φ r
2 + µ2Λt

√
Q
(
1 +

√
Q
))

(Λt ω̃fd,r − Λt,r ω̃fd)
]}

, (C4)

where we denote with a comma the derivative with re-
spect to r. The term proportional to S2

∗ in Eq. (C2) is
added to reproduce known spin-spin results at 2PN or-
der. The quantities (C3) and (C4) depend on the Kerr-
deformed potentials ∆t, ∆r, Λt, ω̃fd, while

Q = 1 +
p2

φ r
2

µ2 Λt
. (C5)

In particular, we have [41]

Λt = (r2 +M2 q2)2 −M2 q2 ∆t , (C6)

and

ω̃fd = 2qM2 r + ωfd
1 ν

qM4

r
+ ωfd

2 ν
q3M4

r
, (C7)

where ωfd
1 and ωfd

2 are two adjustable parameters regulat-
ing the frame dragging strength. Although precise values

for ωfd
1 and ωfd

2 can only be determined by calibrating
the model against NR simulations of comparable-mass
spinning BHs, a preliminary comparison of the final spin
predicted by the EOB model to NR results [84, 85] sug-
gests that ωfd

1 ≈ −10 and ωfd
2 ≈ 20.

The deformed-Kerr potential ∆t is given at 3PN order
by

∆t = r2
[
A(u) + q2 u2

]
, (C8)

A(u) = 1 − 2 u+ 2ν u3 + ν

(
94

3
− 41

32
π2

)
u4 .

(C9)

When setting ν = 0, ∆t reduces to the Kerr expression
(7) (with m1 →M , q1 → q) ∆ = ∆t = r2−2M r+q2M2.
In order to guarantee the presence of deformed horizons
(which correspond to the zeros of ∆t), Ref. [41] suggested
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to rewrite Eq. (C8) as (u ≡M/r)

∆t = r2
[
1 − 2u (1 −K ν)

(1 −K ν)2
+ q2 u2

]
× (C10)

[
1 + ν∆0 + ν log

(
1 +

4∑

i=1

∆i u
i

)]
, (C11)

with

K = K0 + 4(K1 −K0) ν , (C12)

and

∆0 = K (ν K − 2) , (C13)

∆1 = −2(ν K − 1) (K + ∆0) , (C14)

∆2 =
1

2
∆1 (−4ν K + ∆1 + 4) − q2 (ν K − 1)2 ∆0 ,

(C15)

∆3 =
1

3

[
− ∆3

1 + 3(ν K − 1)∆2
1 + 3∆2 ∆1

−6(ν K − 1) (−ν K + ∆2 + 1)

−3q2 (ν K − 1)2 ∆1

]
, (C16)

∆4 =
1

12

{
6q2

(
∆2

1 − 2∆2

)
(ν K − 1)2 + 3∆4

1

−8(ν K − 1)∆3
1 − 12∆2 ∆2

1

+12 [2(ν K − 1)∆2 + ∆3] ∆1

+12

(
94

3
− 41

32
π2

)
(ν K − 1)2

+6
[
∆2

2 − 4∆3 (ν K − 1)
]}

, (C17)

When expanding Eq. (C10) through 3PN order, one re-
covers Eq. (C8). The quantity (C10) depends on two
parameters K0 and K1. K0 is fixed to the value 1.4467
in order to reproduce the results of Ref. [25] for the shift
of the ISCO frequency due to the conservative part of the
self force. Also, recent comparisons of the EOB model
with numerical simulations of non-spinning comparable
mass BHs have suggested K1 ≈ 3/4.

The deformed-Kerr potential ∆r is given by [41]

∆r = ∆t

{
1 + log[1 + 6ν u2 + 2(26 − 3ν) ν u3]

}
,

(C18)

which reduces to the Kerr-potential ∆ in the limit ν = 0
(with m1 →M , q1 → q).

Finally, the spins SKerr and S∗ in the effective descrip-
tion are not equal to S1 a S2, are instead given by

S∗ = S1
m2

m1
+ S2

m1

m2
+

1

c2
∆S∗ , (C19)

SKerr = S1 + S2 , (C20)
where

∆S∗ =
ν

12

{
2M

r

[
7

(
S1

m2

m1
+ S2

m1

m2

)

−4(S1 + S2)

]
+ (Q− 1)

[
3(S1 + S2)

+4

(
S1

m2

m1
+ S2

m1

m2

)]}
, (C21)

With all of this at hand, the EOB Hamiltonian used in
Sec. VI is

HEOB = M

√

1 + 2ν

(
Heff

µ
− 1

)
. (C22)

A few final observations are due at this point. When
the smaller BH has zero spin S2 = 0 and mass m2 ≪
m1, at lowest order in m2/m1 the EOB Hamiltonian of
Eq. (C22) reduces to the Hamiltonian of a non-spinning
test particle in Kerr. This is because both S∗ and the de-
formations of the Kerr potentials are O(m2/m1). How-
ever, at the next-to-leading order in the mass-ratio, the
EOB Hamiltonian presents corrections with respect to
the Hamiltonian of a non-spinning test particle in Kerr,
(i) because of the deformations of the Kerr potentials; (ii)
because of the effective spin S∗, which is not zero; (iii)
because of the higher-order terms in ν that one obtains
expanding Eq. (C22). These corrections encode the con-
servative part of the self-force in the EOB framework [41].
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