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Extreme mass ratio inspirals, in which a stellar-mass object orbits a supermassive black hole,
are prime sources for space-based gravitational wave detectors because they will facilitate tests of
strong gravity and probe the spacetime around rotating compact objects. In the last few years of
such inspirals, the total phase is in the millions of radians and details of the waveforms are sensitive
to small perturbations. We show that one potentially detectable perturbation is the presence of
a second supermassive black hole within a few tenths of a parsec. The acceleration produced by
the perturber on the extreme mass-ratio system produces a steady drift that causes the waveform
to deviate systematically from that of an isolated system. If the perturber is a few tenths of a
parsec from the extreme-mass ratio system (plausible in as many as a few percent of cases) higher
derivatives of motion might also be detectable. In that case, the mass and distance of the perturber
can be derived independently, which would allow a new probe of merger dynamics.

I. INTRODUCTION

Space-based gravitational wave detectors such as the
Laser Interferometer Space Antenna (LISA) are expected
to see a wide variety of sources in their ∼ 10−4−10−1 Hz
sensitivity band. Of these, extreme mass-ratio inspirals
(EMRIs), a stellar-mass compact object (SCO) spiraling
into a supermassive black hole (SMBH), are considered
particularly promising because they can probe strong
gravity over millions of radians of phase evolution in the
last few years of evolution. As a result, EMRI waveforms
serve as highly precise probes of strong gravity and of the
spacetime around rotating SMBHs. Considerable study
has been devoted to astrophysical scenarios for EMRIs
[1–3] as well as to the analysis of their waveforms [4–10].

There has been less exploration of the possibility of
deviations from isolated EMRI waveforms that might oc-
cur due to environmental effects (see e.g. [2, 11–14] for a
study of differences caused by an accretion disk around
the SMBH). Here we point out an effect that has not been
considered in this context: the acceleration of the EMRI
system by a nearby (distance of roughly a few tenths of a
parsec or less) secondary SMBH. As we demonstrate, this
acceleration leads to phase drifts of fractions of a radian
over a year of inspiral, which is potentially detectable
from EMRIs of plausible signal strength. Depending on
the fraction of galaxies that merge, and on the fraction of
time in such mergers that the secondary SMBH is within
a few tenths of a parsec of the primary, this could affect
as many as a few percent of EMRIs.

The detection of such an effect could yield a new probe
of galactic merger dynamics, providing a measure of the
ratio of the secondary SMBH’s mass and its distance to
the EMRI. If such effects are not present in a detected
gravitational wave (GW), then one can place an upper
limit on the density of SMBHs inside some radius of a

few tenths of a parsec. If this is the case, then one would
confirm that, as far as LISA is concerned, EMRIs occur
in vacuum.

This paper is organized as follows: In Sec. II we do
a simple analysis of the acceleration effect as it would
apply to a signal of constant frequency and amplitude,
which we expand on in the Appendix. In Sec. III we ex-
plain how to model real EMRI waveforms, for the partic-
ular case of quasi-circular, equatorial orbits, and explain
how to implement modifications to model an accelera-
tion effect. In Sec. IV we extend the simple analysis of
Sec. II to real waveforms and perform a dephasing and
an overlap study. In Sec. V we explore whether some
of these deviations can be masked by adjustments of
EMRI system parameters. We present our conclusions
in Sec. VI. In most of this paper, we use geometric units
with G = c = 1. For reference, in this system of units,
one solar mass M⊙ = 1.476 km = 4.92 × 10−6 s, while
1 pc = 1.03 × 108 s = 2.09 × 1013M⊙.

II. SIMPLE MODEL

Here we present the basic effects of acceleration in a
simplified model. We assume that there is an EMRI of a
SCO into a (primary) SMBH with mass M• on the x̂-ŷ
plane, with orbital and spin angular momentum in the ẑ
direction. We further simplify the scenario by assuming
GWs of constant frequency and amplitude. Let us also
assume there is a secondary SMBH in a circular orbit
about the EMRI’s center of mass (COM). Suppose that
the secondary SMBH has a mass MSec and the total mass
of the system MTot = M• + MSec. Suppose also that
the semi-major axis of the circular orbit of the primary-
secondary SMBH system is rSec, and that it is inclined to
the line of sight at an angle ι (here ι is zero for a face-on
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FIG. 1. Schematic view of the EMRI system (in the xy plane),
the massive perturber MSec (at a distance rSec from the EMRI
SMBH), and the line of sight. ι is the inclination between
the primary-secondary SMBH’s orbital angular momentum
vector and the line of sight.

binary and 90◦ for an edge-on binary). We depict this
scenario in Fig. 1.

If these systems are well-separated, then the EMRI’s
COM will move essentially at a constant velocity relative
to us, with a projection into our line of sight of

vlos(t) =

(

MSec

MTot

)

vNewt cos (ωNewtt+ δ) sin (ι) . (1)

where vNewt = (GMTot/rSec)
1/2 is the Newtonian virial

velocity, ωNewt = (GMTot/r
3
Sec

)1/2 is the Newtonian an-
gular velocity for an object in a circular orbit, and δ is
an initial phase, with (ωNewtt + δ) the orbital phase of
the EMRI-Secondary system. A constant relative speed
is entirely absorbed in a redefinition of the masses. As
such, constant relative velocities cannot enter any of our
results.

If the EMRI’s COM is sufficiently close to the sec-
ondary SMBH, then the former will experience an mea-
surable acceleration, which will produce a net Doppler
phase drift relative to the best-fit waveform. Note that
the orbital period for MTot = 106−7 M⊙ and rSec =
0.1−1 pc is at least ∼ 103−5 years, so for the duration of
a LISA observation the binary will not change phase sig-
nificantly. Tidal effects on the EMRI system due to the
perturber can be neglected, as this acceleration scales as
the inverse cube of rSec (see Sec. III B for more details).

If the EMRI system is accelerated by an amount v̇
relative to its original line of sight speed over a time t,
then the GW phase difference compared to the initial
frequency is ∆ΦGW = 1

2 v̇tN/c, where N is the number
of radians in the waveform (see Appendix A for a more
detailed explanation of this effect). Let us designate by ǫ
the detectable fractional phase shift: ǫ ≡ ∆ΦGW,detect/N .
As a fiducial value we will use ǫ = 10−7, or 0.1 radians
over ∼ 106 radians for a typical one-year inspiral. To

leading-order in a Taylor-expansion about ωNewtt = 0, we
then have

1

2

v̇t

c
=

1

2
(sin ι) (sin δ)

MSec

rSec

t

rSec

= ǫ , (2)

where we have here neglected a constant term that is
non-observable. Solving for the distance at which this is
satisfied gives

rSec ≈ 0.26 pc (sin ι)
1/2

(sin δ)
1/2

(

MSec

106 M⊙

)1/2

×

(

t

1 yr

)1/2
( ǫ

10−7

)−1/2

. (3)

The next order term in the phase shift scales as

1

6

v̈t2

c
=

1

6
(sin ι) (cos δ)

MSec

rSec

√

MTot

rSec

t2

r2
Sec

. (4)

Setting this equal to ǫ and solving for r, we find

rSec ≈ 0.025 pc (sin ι)2/7 (cos δ)2/7
(

MSec

106 M⊙

)2/7

×

(

MTot

2 × 106 M⊙

)1/7 (

t

1 yr

)4/7
( ǫ

10−7

)−2/7

.(5)

Additional corrections can be computed similarly.
Therefore, for BH masses >∼ 106 M⊙ and separations

of a few tenths of a parsec or less, acceleration can cause
a detectable shift in the simplified waveform. As we find
in Sec. IV, this shift is proportional to the combination
A ≡ MSec/r

2
Sec

. For separations of a few hundredths of
a parsec or less, higher order derivatives are measurable.
In this case, the detectable shift in the waveform is cap-
tured by the linear combination of A and other higher-

order derivative terms, such as B ≡ M
3/2
Sec r

−7/2
Sec . Given

a sufficiently small rSec one could then measure both A
and B and thus disentangle MSec from rSec.

The range of masses and separations that could be ob-
served, given a sufficiently strong EMRI-perturber sys-
tem are depicted in Fig. 2. In this figure, we show with
solid lines the constraint given by Eq. (2), and with a
dashed line that of Eq. (4) (with M• = MSec for sim-
plicity), where the black, red and blue colors correspond
to ǫ = 10−7, 10−6 and 10−5. A larger value of ǫ corre-
sponds to more conservative choices of what is detectable
by LISA. The area above the curves show the values of
MSec and rSec that could be measurable. For compari-
son, we also show the region of (MSec, rSec) space that
fall in the pulsar-timing-array (PTA) sensitivity band.
Of course, for PTAs to individually resolve such bina-
ries, their distance to Earth would have to be sufficiently
small [15]. In principle, however, this scenario allows for
the possibility of coincident future detection of GWs with
LISA and PTAs.

We now discuss the detectability of the changes dis-
cussed above for a realistic EMRI. In Sec. VI, we return
to the question of how common it will be to have a sec-
ondary SMBH this close.
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FIG. 2. Range of secondary masses and separations that could
be measurable by LISA given a sufficiently strong EMRI. The
region above the solid and dashed lines would be observable.
Measurement of the leading-order effect gives a determina-
tion of the combination (MSec sin ι)/r2

Sec, while measuring the
next-order effect gives a determination of the combination

(MSec sin ι)3/2/r
7/2

Sec . Thus measuring both effects together al-
lows both MSec sin ι and rSec to be determined.

III. REALISTIC EMRI WAVEFORMS

A. Standard EOB Modeling

We employ the effective-one-body (EOB) formalism to
model waveforms with and without the acceleration cor-
rection. This formalism was initially developed in [16, 17]
to model comparable-mass BH binary coalescences. Im-
provements and extensions to other binaries were de-
veloped in [18–29] and compared to a set of numerical
relativity results in [30–32] and to self-force calculations
in [33, 34]. Recently, [8–10] combined the EOB approach
with BH perturbation theory results to model EMRI
waveforms for LISA data-analysis. We here concentrate
on the formulation of [10], as it is applicable to EMRIs,
the systems of interest in this paper.

We focus on quasi-circular EMRI inspirals in the equa-
torial plane of a spinning BH because they are simpler to
model. We define the following orbital parameters: the
SCO’s mass m⋆; the SMBH’s mass M•; the total mass
M = m⋆+M•; the reduced mass µ = m⋆m•/M ; and the
symmetric mass-ratio ν = µ/M . We also assume that the
EMRI’s orbital angular momentum is aligned with the
MBH’s spin angular momentum S• = a•M• = q•M

2
• ,

where a• = S•/M• is the MBH’s spin parameter and
q• = a•/M• is its dimensionless spin parameter. We em-
ploy the adiabatic approximation, in which we assume
that the radiation-reaction time-scale is much longer than
the orbital one.

With this at hand, let us now describe the EOB ap-
proach we employ. In the adiabatic approximation, the

GW phase can be obtained by solving

ω̇ = −

(

dE

dω

)−1

F(ω) , (6)

φ̇ = ω , (7)

where ω ≡ φ̇ is the orbital angular frequency, with φ the
orbital phase, overhead dots stand for time derivatives,
E is the system’s total energy and F is the GW energy
flux. The energy of the system is [35]

E = M• +m⋆
1 − 2M•/r ± q•M

3/2
• /r3/2

√

1 − 3M•/r ± 2q•M
3/2
• /r3/2

. (8)

where the ± stands for prograde or retrograde orbits. In
this equation and all throughout the rest of this paper,
we ignore sub-leading corrections that are proportional
to the EMRI’s mass-ratio. In practice, this means we ig-
nore conservative and second-order dissipative self-force
effects, i.e. the effect of the SCO on its own geometry, as
well as the SCO’s spin.

The GW flux can be written in the factorized form
of [10, 24, 27, 28], which in the adiabatic regime is

F(ω) =
1

8π

8
∑

ℓ=2

ℓ
∑

m=0

(mω)2 |hℓm|
2
, (9)

where the multipole-decomposed waveforms are

hℓm(v) = h
Newt,ǫp
ℓm S

ǫp
ℓm Tℓm eiδℓm (ρℓm)ℓ , (10)

and where ǫp is the parity of the waveform (i.e., ǫp = 0
if ℓ +m is even, ǫp = 1 if ℓ +m is odd). The quantities
(S

ǫp
ℓm(v), Tℓm(v), δℓm(v) and ρℓm(v)) in Eq. (10) can be

found in [24, 27, 28]. The Newtonian waveform is

h
Newt,ǫp
ℓm ≡

M•

R
n

(ǫp)
ℓm cℓ+ǫp v

ℓ+ǫp Yℓ−ǫp,−m(π/2, φ). (11)

where Yℓ,m(θ, φ) are spherical harmonic functions, while

n
(ǫp)
ℓm and cℓ+ǫp are numerical coefficients [27].
We enhance the flux of Eq. (9) by linearly adding BH

absorption terms and calibration coefficients that are fit-
ted to a more accurate, numerical flux [10]. The first
modification is necessary as BHs lose energy due to GWs
that both escape to infinity and fall into BHs. The second
modification accounts for the fact that the bare fluxes
written above are built from low-velocity (PN) expan-
sions, and as such, are not sufficiently accurate by them-
selves for long evolutions, even after the resummations
introduced.

The above differential system is solved with the post-
circular initial conditions of [17], enhanced with a mock-
evolution at 100M• (see e. g. [10]). The orbital phase can
then be used in the waveforms of Eq. (10), together with
the fact that for quasi-circular orbits

r =
[1 − q1 (M•ω)]

2/3

(M•ω)2/3
. (12)
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where r is the EMRI’s separation and v = (M•ω)1/3 by
Kepler’s third law. With the waves at hand, we then
compute the GW phase and its amplitude via

Φℓm
GW

= ℑ

[

ln

(

hℓm
|hℓm|

)]

, Aℓm
GW

= |hℓm| . (13)

The GW phase as defined above needs to be unwrapped
every 2π, so in practice it is simpler to define the time
derivative of this quantity and then obtain Φℓm

GW
via inte-

gration.

B. Modifications to EOB Modeling

How do we incorporate the effects of an external accel-
eration into GW modeling within the EOB framework?
Let us first distinguish between wave generation and wave
propagation effects. By the former, we mean effects that
arise in the near-zone (less than a gravitational wave-
length away from the EMRI’s COM) and that generate
GWs due to the inspiral of the EMRI. By the latter, we
mean effects that arise after the system has generated a
GW and it propagates out to the wave-zone, where the
observer is located, many gravitational wavelengths away
from the source.

As is expected, all propagation effects, such as the
backscattering (or tails) of GWs off the metric of the
secondary SMBH, occur beyond Newtonian (leading) or-
der in post-Newtonian theory [36], and can be safely ne-
glected here. The presence of an external source, how-
ever, does introduce non-negligible modifications to the
generation of GWs. One could incorporate such effects
by introducing an external, vectorial force to Hamilton’s
equations in the direction of the perturber. This force
would simply be the product of the the total mass of the
system and the time derivative of the velocity of Eq. (1).
The modeling of this effect would require a non-adiabatic
evolution, i.e. the evolution of the full set of Hamilton’s
equations, without assuming circular orbits or using Ke-
pler’s third law. One expects that such force would in-
duce eccentricity and inclination in the inspiral, driving
the SCO out of the equatorial plane of the secondary
SMBH.

One can estimate the magnitude of this effect by con-
sidering the tidal force effect of the perturber on the
COM relative to the SCO’s acceleration due to the sec-
ondary SMBH. Since the tidal force scales as FTidal =
MSec/r

3
Sec

, this effect is suppressed relative to the ac-
celeration by a factor of r/rSec ∼ 10−4 for an EMRI
with orbital separation of 30m• and a primary-secondary
SMBH orbital separation of 0.01 pc. The ratio is this
small because the perturber is assumed to be at parsec
scales away from the COM, and one parsec translates to
∼ 1013M⊙ in geometric units. Since the tidal force scales
as the inverse of the separation cubed, any tidal effects
are insignificant.

Given that this type of generation effects are sup-
pressed, are there any others that should be included?

The dominant generation effect is simply a Doppler shift
in the frequencies, which then leads to an integrated mod-
ification in the GW phase (see the Appendix for a de-
tailed explanation of this Doppler effect). In this sense,
such a correction is similar to the integrated Sachs-Wolfe
effect for GWs [37], where here the perturbation to the
potential is given by a third body, instead of some cos-
mological background. The implementation of this cor-
rection to an EOB evolution is simple: divide the right-
hand-side of Eq. (7) by the appropriate Doppler factor

φ̇ = ω → φ̇ = ω [1 + vlos(t, δ = π/2)] . (14)

In this equation, we have not included the appropriate
Lorentz factor Γ, since vNewt/c≪ 1, and we can linearize
in this quantity. Moreover, we have removed the constant
velocity drift component of vlos by choosing δ = π/2, as
the former is not measurable.

IV. PERTURBING ACCELERATION EFFECT

ON RELATIVISTIC EMRI WAVEFORMS

A. Preliminary Considerations

With the machinery described in Sec. III, we can con-
struct modified EMRI waveforms as a function of time,
for a given value of the second MBH mass and separa-
tion to the EMRI’s COM. We consider the following two
EMRI systems, integrated for one year each:

• System I: The primary SMBH has mass m• =
105M⊙ and spin parameter q• = 0.9, while the
SCO has mass and spin parameter m⋆ = 10M⊙

and q⋆ = 0. This system inspirals for ∼ 6 × 105

rads of orbital phase between orbital separations
r/M ∈ (16, 26). In this range the orbital veloci-
ties are v ∈ (0.2, 0.25) and the GW frequencies are
fGW ∈ (0.005, 0.01) Hz.

• System II: The primary SMBH has mass m• =
106M⊙ and spin parameter q• = 0.9, while the
SCO has mass and spin parameter m⋆ = 10M⊙

and q⋆ = 0. This system inspirals for ∼ 3×105 rads
of orbital phase between orbital separations r/M ∈
(11, rISCO). In this range the orbital velocities are
v ∈ (0.3, vISCO) and the GW frequencies are fGW ∈
(0.001, f ISCO

GW
) Hz.

System I exits the most sensitive part of the LISA band at
around 16M , which is why we stop the evolution there.
In contrast, Sys. II is stopped when the SCO reaches
the innermost stable circular orbit (ISCO). For each of
these systems, we explore a variety of secondary SMBH
masses MSec = (105, 106)M⊙ as well as a variety of sepa-
rations rSec = (0.01, 0.1, 1) pc. Larger secondary masses
are also possible; these would have equivalent effects on
the EMRI at correspondingly larger distances r ∼M1/2.
(For example, MSec = 109M⊙ at r = 30 pc would have
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m• m⋆ MSec rSec/pc T ⋆
Orb T •

Orb T ⋆
GW T •

GW

10 105 105 10−2 10−5 2.1× 102 5.6 1019

10 105 105 10−1 10−5 6.6× 103 5.6 1023

10 105 105 10+0 10−5 2.1× 105 5.6 1027

10 105 106 10−2 10−5 8.9× 101 5.6 1018

10 105 106 10−1 10−5 2.8× 103 5.6 1022

10 105 106 10+0 10−5 8.9× 104 5.6 1026

10 106 105 10−2 10−5 8.9× 102 18 1018

10 106 105 10−1 10−5 2.8× 103 18 1022

10 106 105 10+0 10−5 8.9× 104 18 1026

10 106 106 10−2 10−5 6.6× 102 18 1018

10 106 106 10−1 10−5 2.1× 103 18 1022

10 106 106 10+0 10−5 6.6× 104 18 1026

TABLE I. Summary of System properties. All masses are in
units of M⊙, rSec is in units of parsecs and all time scales are
in units of years. The time to merger is here estimated as
TGW = r/ṙGW, where ṙGW is the rate of change of the orbital
separation due to GW emission and for r we take the values
in the itemized list. The superscript star stands for quantities
associated with the SCO-SMBH system, while the solid dot
stands for those associated with the SMBH-SMBH system.

equivalent effects to MSec = 106M⊙ at r = 1 pc.) All of
this information is summarized in Table I, including the
orbital periods TOrb and the time to merger due to GW
emission TGW. In all cases we set sin ι = 1 and δ = π/2,
as this leads to the largest possible effect. The reasoning
behind this is that if this effect is not observable with
this choice of parameters, it will not be observable with
any other choice.

B. Dephasing Study

Let us define the dephasing between waveforms as fol-
lows:

∆ΦGW ≡ ΦAcc

GW
− Φno. Acc

GW
(15)

where ΦAcc

GW
is the GW phase of an EMRI waveform with

an accelerated COM, while Φno. Acc

GW
is that of an iner-

tial COM. We have here aligned the waveforms in time
and phase before computing this dephasing. This align-
ment is equivalent to minimizing the statistic in Eq. (23)
of [31], which in turn is the same as maximizing the fitting
factor over time and phase of coalescence in a matched
filtering calculation with white noise [31]. The alignment
is done here in the same way as in [8–10].

Figure 3 plots the dephasing of the dominant (ℓ,m) =
(2, 2) GW mode as a function of time in months for Sys. I
and II. The different line colors/shades correspond to dif-
ferent separations to the perturber [rSec = (0.01, 0.1, 1)
pc], while different line styles correspond to different per-
turber masses [MSec = (105, 106)M⊙]. Observe that for
both Systems a dephasing of order 0.1 rads is achieved for
separations rSec . 0.1 pc over less than one year. This is
consistent with the estimates of Sec. II. Similarly, more
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FIG. 3. Dephasing for Sys. I and II as a function of time in
units of months, for a variety of separations and masses of the
perturber.

massive perturbers enhance the dephasing roughly by one
order of magnitude.

The amplitudes of the waveforms are not shown in this
figure; they disagree at the level of 10−3 for Sys. I and
10−4 for Sys. II.

The magnitude and shape of the dephasing depends
on how far away and massive the perturber is. One can
show that the dephasing scales as ∆ΦGW ∝ NMSecT/r

2
Sec

,
where T is the observation time and N is the number of
cycles. Since there is a factor of two fewer GW cycles
in Sys. II relative to Sys. I, then the dephasing for the
former is also smaller by a factor of two.

C. Overlap Study

The dephasing study of the previous subsection is
suggestive, but not sufficiently quantitative to assess
whether such types of corrections are large enough to
be measurable. Let us then perform a slightly more so-
phisticated data analysis study here.

Given any time series A(t) and B(t), one can construct
the inner-product

(A| B) = 4 Re

∫ ∞

0

Ã(f) B̃⋆(f)

Sn(f)
df (16)

where the overhead tildes stand for the Fourier trans-
form, the star stands for complex conjugation and Sn(f)
is the spectral density of noise in the detector. We choose
here the sky-averaged version of the noise curve presented
in [38, 39].

With this inner-product, we can now construct some
data analysis measures. The signal to noise ratio (SNR)
of signal A is

ρ(A) =
√

(A| A) , (17)
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while the overlap between signals a and b is

M = max
(A| B)

√

(A| A) (B| B)
. (18)

with the mismatch MM = 1 − M. The max label in
Eq. (18) is to remind us that this statistic must be maxi-
mized over an event time (e.g., the time of coalescence of
the EMRI system) and a phase shift [26]. If the overlap
is larger than 97% (or equivalently, if the mismatch is
lower than 3%), then the difference between waveforms
A and B is sufficiently small to not matter for detection
purposes (see e. g. [40]). The minimum overlap quoted
above (97%) is mostly conventional, motivated by the
fact that the event rate scales as the cube of the overlap
for a reasonable source distribution. For an overlap larger
than 97%, no more than 10% of events are expected to
be lost at SNRs of O(10). Of course, for larger SNRs,
one might not need such high overlaps, although EMRI
sources are expected to have SNRs < 100.

Whether the difference between waveforms A and B
can be detected in parameter estimation can be assessed
by computing the SNR of the difference in the waveforms
δh ≡ A−B:

ρ(δh) =
√

(δh| δh) = 4 Re

∫ ∞

0

δ̃h(f) δ̃h
⋆
(f)

Sn(f)
df . (19)

When this SNR equals unity, then one can claim that A
and B are sufficiently dissimilar that they can be differ-
entiated via matched filtering (see e. g. [41]).

We applied these measures to EOB waveforms with
and without acceleration of the COM. The results are
plotted in Fig. 4 as a function of observation time in
months. The vertical dotted lines correspond to obser-
vation times of (0.5, 2, 4, 6, 9, 12) months, and the num-
bers next to them, in parenthesis, stand for the SNR
of Sys. I and II for that observation time. The differ-
ent line styles and colors correspond to mismatches and
SNRs of the error for different secondary systems. Ob-
serve that the mismatch is always smaller than 0.03 (the
solid black horizontal line), suggesting that this effect
will not affect detection. Observe also that the SNR of
the difference reaches unity (the dashed black horizontal
line) in between 6 and 12 months of observation, and for
the MSec = 106 M⊙, ρ(δh) reaches ∼ 10 after one year.
This suggests that given a sufficiently strong EMRI with
SNR ∼ 50 − 100, the magnitude of this effect is in prin-
ciple detectable within one year of coherent integration.

V. DEGENERACIES

Now that we have determined that there exists a set
of plausible perturber parameters for which the magni-
tude of the correction could be measurable, let us con-
sider the possibility of degeneracies. That is, let us in-
vestigate whether we can mimic an acceleration of the

0 1 2 3 4 5 6 7 8 9 10 11 12
t [Months]

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01
0.03

0.1

1

10

M
M

, ρ
(δ

h)

(2.8,6)

(5.8,12)

(11,24)

(14,34)
(17,45)

(8.5,19)

M
Sec

=10
5
M., MM, Sys I 

M
Sec

=10
5
M., ρ(δh), Sys I

M
Sec

=10
6
M., MM, Sys I 

M
Sec

=10
6
M., ρ(δh), Sys I

M
Sec

=10
5
M., MM, Sys II

M
Sec

=10
5
M., ρ(δh), Sys II

M
Sec

=10
6
M., MM, Sys II

M
Sec

=10
6
M., ρ(δh), Sys II

FIG. 4. Mismatch as a function of time in units of months
for Sys. I and II and different perturber masses, all at a sep-
aration of rSec = 0.1 pc. SNRs for Sys. I and II are given in
parentheses for a source at 1 Gpc.

COM by changing the intrinsic parameters (the com-
ponent masses, the spin parameter, etc.) in the non-
accelerating waveform. The simplest way to see whether
this is possible is to study the frequency dependence of
the GW modification introduced by the COM’s acceler-
ation.

Let us then remind ourselves of how the frequency-
domain representation is constructed. For this, we em-
ploy the stationary-phase approximation (see e. g. [42]),
under which, the frequency-domain waveform is simply

h̃(f) = Af−7/6eiψ(f) , (20)

where the Newtonian (leading-order) amplitude is A =

π−2/330−1/2 M5/6D−1
L , with M = η3/5M , while the

phase is constructed from

ψ(f) = −
π

4
+ 2πft(f) − 2φ(f) , (21)

where the second term arises due to the Fourier transform
and the third term due to the oscillatory nature of the
time-domain waveform.

The phase of the frequency-domain waveform in the
stationary phase approximation is then controlled by
these last two terms in Eq. (21). The first term can be
computed via

2πft(f) = 2πf

∫ f/2 τ(F ′)

F ′
dF ′ , (22)

where f is the GW frequency, while the second term can
be calculated from

φ(f) = 2π

∫ f/2

τ(F ′)dF ′ , (23)

where τ(F ) ≡ F/Ḟ and F is the orbital frequency.
The Doppler correction to the waveform comes in the

calculation of φ(f), as this is simply the integral of the
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frequency. For simplicity, we can reparameterize the
vlos(t) → vlos(F ), by noting that, to Newtonian order,

2πF (t) =
4−3/2

M

[ η

5M
(tc − t)

]−3/8

, (24)

which we can invert to obtain

t(F ) = tc −
5M

256η
(2πMF )

−8/3
, (25)

where tc is the time of coalescence of the EMRI system.
Taylor-expanding Eq. (1) about ωNewtt = 0, we find

vlos ∼ v0 + v1 (2πMF )
−8/3

+ v2 (2πMF )
−16/3

+ v3 (2πMF )
−8

, (26)

where the vi coefficient are the following frequency-
independent functions:

v0 =

(

MSec

MTot

)1/2 (

MSec

rSec

)1/2
[

cos δ −

(

MTot

rSec

)1/2
tc
rSec

sin δ

−
1

2

MTott
2
c

r3
Sec

cos δ +
1

2

(

MTot

rSec

)3/2
t3c
r3
Sec

sin δ

]

sin ι

v1 =
10

512

MMSec

r2
Sec

η−1(sin ι)

[

sin δ +

(

MTot

rSec

)1/2
tc
rSec

cos δ

− −
1

2

MTott
2
c

r3
Sec

sin δ

]

v2 =
25

131072

M2MSec

r3
Sec

[

−

(

MTot

rSec

)1/2

cos δ +
MTottc
r2
Sec

sin δ

]

× η−2 sin ι ,

v3 = −
125

100663296

M3MSecMTot

r5
Sec

η−3 sin δ sin ι . (27)

Notice that v0 is of O(M1/2/r
1/2
Sec ), v1 is of O(M2/r2

Sec
),

v2 is of O(M7/2/r
7/2
Sec ) and v3 is of O(M5/r5

Sec
).

With these relations at hand, we can now compute the
correction to the frequency-domain waveform phase in
the stationary phase approximation. Denoting by ∆ψ =
ψAcc−ψno. Acc, we find that

∆ψ = −4π

∫ f/2

τ(F ′) vlos(F
′) dF ′ ,

∼ −
5π

24

M

η

∫ f/2

(2πMF ′)
−8/3

[

v0 + v1 (2πMF ′)
−8/3

+ v2 (2πMF ′)
−16

+ v3 (2πMF ′)
−8

]

dF ′ (28)

where in the second line we have used that to Newtonian
order

Ḟ =
48

5πM2
(2πMF )11/3 . (29)

Normalizing this phase correction by the Newtonian form
of the frequency-domain waveform phase, we find

∆ψ =
3

128
(πMf)

−5/3

[

8

3
v0 +

40

39
v1η

8/5 (πMf)
−8/3

+
40

63
v2η

16/5 (πMf)
−16/3

+
40

39
v3η

24/5 (πMf)
−8

]

.(30)

Setting δ = π/2 = ι, the above expression simplifies to

∆ψ =
3

128
(πMf)

−5/3

[

−
8

3

MSectc
r2
Sec

+
4

9

MSecMTott
2
c

r5
Sec

+

(

25

1248

MMSec

r2
Sec

−
25

2496

MMSecMTott
2
c

r5
Sec

)

(πMf)
−8/3

+
125

1032192

M2MSecMTottc
r5
Sec

(πMf)−16/3

−
625

1094713344

M3MSecMTot

r5
Sec

(πMf)
−8

]

. (31)

Let us now discuss this result in more detail. The first
two terms inside the square bracket in Eq. (31) arise due
to a constant misalignment between the time of coales-
cence of the EMRI system and the primary-secondary
SMBH system (we have implicitly set the latter to zero).
This effect can be absorbed via a redefinition of the chirp
mass, and thus, it is not observable. All other lines
in Eq. (31), on the other hand, contain a non-trivial
frequency-dependence and they cannot be reabsorbed via
a redefinition of intrinsic parameters.

A physical way to think about this is the following.
Given a signal and a template without modeling a sec-
ondary perturber, one would like to maximize the phase
coherence by shifting the template’s phase and frequency.
Such a shift corresponds to an adjustment of the total
mass and the chirp mass, which eliminates the first term
in Eq. (31). Once this shift is done, however, there are
no other template parameters that can be shifted, while
the frequency derivatives of the signal and template will
continue to disagree.

The many terms that arise in the second, third and
fourth lines of Eq. (31) are due to the Taylor expansion
in ωNewtt, which in frequency space has become an expan-
sion in inverse powers of (M f) and (rSec/MSec). Clearly,
the second line Eq. (31) is dominant over all others as
it scales with r−2

Sec
to leading order, while the third and

fourth lines scale as r−5
Sec

. If MSec/rSec is large enough,
however, one might be able to measure the coefficients in
front of both the dominant f−8/3 term and the f−16/3 or
f−8 term. This would then imply that one could break
the degeneracy betweenMSec and rSec in the leading order
term and measure both quantities.

Ignoring such possible acceleration effects could intro-
duce a bias in the extraction of parameters via matched
filtering [43, 44]. Imagine, for example, that an EMRI
GW is detected with vacuum templates. One would then
proceed to extract parameters from this detection, such
as the primary SMBH’s and SCO’s mass with some error
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bars. Usually, the error estimate accounts for statisti-
cal error plus possible systematics with the modeling.
The acceleration effect here would be one such system-
atic, whose magnitude would have to be determined via
a careful Markov-Chain Monte-Carlo exploration of the
likelihood surface.

Notice also that in Eq. (31) we have kept only the New-
tonian contribution to an infinite post-Newtonian expan-
sion. This is essentially because in Eqs. (24) and (29) we
have dropped all but the leading order, Newtonian term.
Interestingly, the correction terms that arise at leading
order are dominant over the Newtonian piece, as they
depend on high inverse powers of frequency (in partic-
ular, higher than 5/3). This implies that if a detailed
parameter estimation study were to be carried out, these
post-Newtonian terms should be taken into account, as
they contribute at the same order as the Newtonian term
in an inertial frame.

The dependence of the correction in Eq. (31) on dif-
ferent powers of the frequency suggests that these terms
are non-degenerate with the standard ones that appear
in the non-accelerating GW phase. More precisely, the
GW phase in an inertial frame is given by (see eg. [42]).

ψ(f)no. Acc = 2πftc − φc +
3

128
(πMf)

−5/3
(32)

×

[

1 +

(

3715

756
+

55

9
η

)

η−2/5 (πMf)2/3 + . . .

]

,

where φc is the phase of coalescence and the ellipses stand
for higher order terms in the post-Newtonian series. No-
tice that there are no powers of f−8/3, f−16/3 or f−8 in
the above equation. Thus, the correction computed in
Eq. (31) is weakly correlated to the GW phase in an in-
ertial frame, i. e. the off-diagonal elements of the Fisher
matrix are small for the MSec/r

2
Sec

coordinate sector rel-
ative to the diagonal term. Although these results are
suggestive, a more detailed analysis should be carried
out to determine the level of correlation between all pa-
rameters and the accuracy to which MSec and rSec could
be extracted.

Although the correction due to the acceleration of the
COM seems to be weakly correlated to other intrinsic
parameters, one might wonder whether it is degenerate
with other effects not included in vacuum GR waveforms.
Takahashi and Nakamura [45] have studied the effect of
the acceleration of the Universe in the frequency-domain
form of the waveform. They find that

∆ψ =
3

128
(πMf)

−5/3

[

25

768
Mż (πMf)

−8/3

]

. (33)

One can clearly see that this cosmological effect is de-
generate with the one computed here [the second line
in Eq. (31)]. However, the magnitude of Eq. (33) is
much smaller than that of Eq. (31), simply because
H0 ≪ MSec/r

2
Sec

for all relevant perturbers considered
here. For example, at small redshift, H0 ∼ 10−23 km−1

in geometric units, while at rSec = 0.1 pc and for a 106M⊙

perturber, MSec/r
2
Sec

∼ 10−19 km−1. The perturber sep-
aration at which these effects become comparable is ap-
proximately rSec ∼ 11 pc [Msec/(106M⊙)]1/2.

Another possible source of degeneracy could be if
there are corrections to general relativity that induce
phase modifications with the specific frequency depen-
dence found in Eq. (31). In fact, we see that the result
obtained here can be mapped to the parameterized post-
Einsteinian framework [44] with the choice

α = 0, β =
25

1248

MSecM

rSec

, b = −
8

3
, (34)

to leading order in MSec/rSec (see e.g. Eq. 1 in [44]). As
found in that paper, however, there are no known alter-
native theories to date that could potentially lead to the
frequency dependence found in Eq. (31).

VI. DISCUSSION AND CONCLUSIONS

We have shown that a ∼ 106M⊙ secondary SMBH
within a few tenths of a parsec of the EMRI system
can produce detectable modifications in the waveform.
A more massive secondary SMBH at a correspondingly
larger distance would produce equivalent effects. It is not
possible to say with certainty how common this will be.
A rough upper limit can be obtained from the following
observation. Since a redshift of z = 1 (corresponding
roughly to 1010 years), tens of percent of Milky Way-like
galaxies have had a major merger [46, 47]. If the typical
merger takes hundreds of millions of years, then at most
a few percent will be involved in a merger at any stage.
The fraction of time spent at separations <∼ 1 pc remains
uncertain; although there are well-understood dynamical
processes that can reduce the secondary SMBH’s separa-
tion to ∼ 1 pc and gravitational radiation will bring the
binary to merger from ∼ 10−3 pc, the transition between
the regimes is uncertain (this is commonly called the “fi-
nal parsec problem”; see, e.g., [48] for a discussion). It
is therefore possible that the system spends considerable
time at roughly the detectable separations.

We also note that when a secondary SMBH comes
within a few tenths of a parsec of the primary, various
dynamical effects temporarily increase the rate of close
encounters of stellar-mass objects with both SMBHs [49].
As a result, it may be that a disproportionate number of
EMRIs occur with a secondary SMBH nearby. Indeed,
recently [50] estimated that more than 10% of all tidal
disruption events could originate in massive black hole
binaries, so if the EMRI fraction is similar it corresponds
to our rough estimate.

In these cases, measurement of an EMRI phase shift
affords a new way to detect the presence of a binary
SMBH. If the separation is close enough to measure an
additional derivative of the motion, then the degeneracy
between the secondary mass and its distance is broken. If
the EMRI-SMBH system is sufficiently close, then pulsar
timing measurements [15] might also be able to detect
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gravitational waves from the SMBH-SMBH binary. Al-
ternatively, if no phase shift is detected, then this implies
that there are no secondary SMBH in a radius of a few
tenths of a parsec, thus implying an upper limit on the
density of BHs close to the detected EMRIs. In princi-
ple, therefore, EMRIs have another astrophysical link in
addition to their utility in testing general relativity.

The importance of the astrophysical environment in
EMRI GW modeling is a double-edged sword. Although
on the one hand, one could potentially extract some as-
trophysical information, on the other, these effects could
make it difficult to test general relativity [44]. For such
tests to be possible, one must have complete control of
the waveforms within general relativity. If the astrophys-
ical environment needs to be included, then the modeling
might be dramatically more difficult. We note here, how-
ever, that only a fraction of EMRIs would experience the
astrophysical environment effect discussed here. If devi-
ations from general relativity are present, on the other
hand, these should be present for all EMRIs. Thus, in
principle, a statistical analysis would allow us to disen-
tangle deviations in our waveforms to discern whether
they have an astrophysical or theoretical origin.
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Appendix A: Acceleration Effect

Here we explain in more detail how the Doppler correc-
tion to the waveform comes about. Let us consider the
effect of an acceleration on the COM position vector. For
simplicity we consider the toy-model of a perfect circular
orbit with angular velocity ω, whose position vector in
the COM can be parameterized as

~x = b (cosωt, sinωt, 0) , (A1)

where b is the binary’s separation and we have erected
a Cartesian coordinate system, with the binary in the
x̂-ŷ plane. If an external force is present that causes
an acceleration, this in turn will cause a displacement
~x → ~x′ = ~x + δ~x. Let us parameterize the magnitude
of this displacement as |δ~x| = (1/2)v̇lost

2, which holds to
Newtonian order for a uniformly accelerated body. One

can then show that the shift in the magnitude of the
COM velocity vector is simply

|~v′| = |~v| +
1

2
v̇lost (x̂ · δx̂) + O(v̇2

los
t2) , (A2)

where v̇ = ~̇x is the unperturbed velocity vector. Notice
that there is a factor of 1/2 here, just as in the estimates
of Sec. II.

Before proceeding, it is useful to concentrate on this
velocity shift. Choosing δ = π/2 = ι, one can easily
show that

vlos ∼
MSec

MTot

vNewt(ωNewtt)

[

1 −
1

6
ω2

Newt
t2 + O(ω4

Newt
t4)

]

,

(A3)
upon Taylor expanding about ωNewtt ≪ 1. We can take
the time-derivative of vlos and then Taylor-expand again
to find:

v̇lost ∼ −
MSec

MTot

vNewt (ωNewtt)

[

1 −
1

2
ω2

Newt
t2 + O(ω4

Newt
t4)

]

.

(A4)
Obviously, this is the same as simply Taylor-expanding
vlos to leading order.

One effect of the COM velocity drift is a Doppler shift
to the waveform. Special relativity predicts that if a fre-
quency source is moving with velocity v away from the
observer at an angle θ, then the frequency observed is

ω′ =
ω

Γ
(1 + v cos θ)

−1
,

∼ ω

[

1 − v cos θ + v2

(

cos2 θ −
1

2

)

+ O(v4)

]

,(A5)

where ω is the frequency of the source, ω′ is the fre-
quency the observer detects and Γ = (1 − v2)−1/2 is the
usual special relativity factor. In the notation of Sec. II,
v cos θ = vlos.

The Doppler shift effect can also be understood in two
additional, complementary ways. The LISA response
function naturally contains a Doppler shift term in the
phase, due to LISA’s motion about the Solar System
barycenter. The Doppler shift discussed above is iden-
tical to this, but now it is the GW source that moves,
as opposed to the detector. Similarly, one could con-
sider first the GW phase emitted in the EMRI’s center
of mass, and then map this to that observed in the So-
lar System by shifting the phase’s time-dependence by
dt, corresponding to the light travel time along the line
of sight between the center of mass of the EMRI system
and the SMBH-SMBH system. From this perspective,
the maximum phase shift that could accumulate in one
year is simply the product of the EMRI orbital frequency
and the light-crossing time of the projection of one year
of SMBH binary evolution along the line of sight.

We can then easily integrate Eq. (A5), assuming a con-
stant ω, to recover the ∆ΦGW computed in Sec II. Setting
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ι = π/2 = δ, we find

∆ΦGW = −ω

∫

vlos(t)dt ,∼ −
N

2

(

MSec

MTot

)

vNewt (ωNewtT ) .

(A6)
Notice that by choosing δ = π/2, there is no leading-
order, unobservable constant velocity drift term. In the

second line, we have Taylor expanded about ωNewtt = 0
and used that ΦGW,Tot = N = ωT , where T is the time
of integration, and that ΦGW,Tot = N , where N is the to-
tal number of radians in the non-accelerating waveform.
Notice that this is the same ∆ΦGW correction described
in Sec. II.
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