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We construct a class of coherent spin-network states that capture properties of curved space-times
of the Friedmann-Lamâıtre-Robertson-Walker type on which they are peaked. The data coded by a
coherent state are associated to a cellular decomposition of a spatial (t =const.) section with dual
graph given by the complete five-vertex graph, though the construction can be easily generalized
to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of
the graph and are computed through a smearing process starting from a continuum extrinsic and
intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian
signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex
semiclassical states used in Spin Foams.

PACS numbers: 04.60.Pp,98.80.Qc

I. INTRODUCTION

Semiclassical states are a standard tool to select the
semiclassical regime of a quantum theory. The semi-
classical states in the Hilbert space of quantum General
Relativity are states that are able to reproduce a given
classical geometry in terms of their expectation values,
and in which the quantum mechanical fluctuations are
small. Within canonical Loop Quantum Gravity [1–5]
and Loop Quantum Cosmology [6–10], the use of semi-
classical states has revealed fruitful in a number of appli-
cations, such as the analysis of the quantum constraints
[11, 12] and the computation of effective Hamiltonians
[13, 14]. In the covariant Spin Foam setting [15–17],
coherent states have been useful for understanding the
correct way of implementing the constraints of BF-like
theories [18–20], while addressing their low-energy limit
[21–26] or investigating their renormalizability [27–29].

In the framework of the boundary formalism for gen-
erally covariant field theories [30], a strategy to derive
scattering amplitudes in Spin Foams has been delined in
[31, 32]. The key idea is to use semiclassical states of
geometry as a ‘background’ for local measurements. For
example, the semiclassical 2-point function can be com-
puted, and the result has been compared to the standard
graviton propagator on Minkowski space [33–35]. Under-
standing the form of semiclassical states also for curved
space-times is important for the generalization of n-point
functions to curved backgrounds.

The calculation of semiclassical n-point functions are
made asymptotically for large distance scales, to first or-
der in a graph expansion, and to first order in the spin
foam vertex expansion, so that only a finite set of degrees
of freedom of Generaly Relativity is captured. A similar
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graph expansion has also been advocated in contexts of
cosmological interest. This is the way in which a “tri-
angulated loop quantum cosmology” has been derived
[36–40] by means of such a graph truncation, directly
from the full theory. The resulting expansion is neither
an ultraviolet nor an infrared truncation, but it is rather
equivalent to a mode expansion to the simplest modes
of the gravitational field on a compact space. For ex-
ample, in an almost homogeneous and isotropic universe,
the lowest mode is represented by the scale factor a(t).
See [41] for a recent discussion on the rationale of this
heuristic approximation.

In this paper, we present a class of coherent states
useful for a semiclassical analysis on a spatially closed
Friedmann-Lamâıtre-Robertson-Walker (FLRW) back-
ground. We follow the line of [42] (see also [43]) for the
general construction and the relation between canonical
and covariant semiclassical states, [37] for the Maurer-
Cartan formalism, and [40] for a similar application of
coherent states to cosmology.

There is a simple way to construct a coherent state
peaked on a given classical space-time, the logic is the
following. Consider a space-like hypersurface Σt of con-
stant time in a closed FLRW space-time. Σt has the
topology of the 3-sphere. Take a regular cellular decom-
position of Σt and associate to it its dual graph. We will
choose a regular geodesic graph with five nodes. This de-
composition provides us with a set of curves and surfaces
to be used for the smearing process. We first compute the
holonomies hl of the Ashtekar connection along curves l
and fluxes Xl of gravitational electric fields through the
surfaces Sl dual to l. The variables hl, Xl parametrize
a truncation of the phase space of classical General Rel-
ativity. They can be used as semiclassical labels over
which the coherent state is peaked. Equivalently, the
polar decomposition

Hl = hl e
Xl ∈ SL(2,C) (1)

constitutes the label of coherent states, one per each
curve considered.

mailto:magliaro@gravity.psu.edu
mailto:amarcian@haverford.edu
mailto:perini@gravity.psu.edu


2

Those labels can be expressed, alternatively, in terms
of a positive parameter η, an angle ξ, and two unit vectors
~n,

{ηl, ξl, ~ns(l), ~nt(l)}. (2)

This geometrical parametrization of the phase space is
the one of twisted geometries [44–46].

The parametrization (2) is used to compute the asymp-
totic expansion in the usual spin-network basis. Using
the result [42], this is given by a Gaussian distribution
over spins j, times a phase factor that codes the extrinsic
curvature of the slicing:

e−
(j−j0)2

2σ2 × e−iξj . (3)

In the next section we review the heat-kernel technique
for coherent states in Loop Quantum Gravity. In sec-
tion II we outline the main properties of FLRW geom-
etry which are relevant to our construction. In section
III we compute the non-local observables associated to a
given cellular decomposition. Those are the labels of the
FLRW coherent states, discussed in section V, where we
determine their large scale behavior. We set the speed of
light c = 1 throughout this paper.

II. COHERENT SPIN-NETWORKS

In LQG the kinematical Hilbert space associated to a
graph Γ, embedded in a spatial hyper-surface Σ, is HΓ =
L2(SU(2)L/SU(2)N), where L is the number of links of
the graph and N the number of its nodes. Kinematical
states are then functions of SU(2) group elements hl that
are invariant under SU(2) transformations at nodes,

Ψ(hl) = Ψ(gs(l)hlg
−1
t(l)), (4)

where s(l) and t(l) are respectively the nodes that are
source/target of the link l. The standard orthonormal
basis is labeled by spins jl associated to links and in-
variant tensors in (intertwiners) associated to nodes; it
is formed by spin-network states

Ψjl,in
(hl) = ⊗vin

· ⊗Djl(hl) (5)

where in labels an orthonormal set of intertwiners, Djl

are spin-jl unitary representation matrices and · denotes
indices contraction.

Once a graph Γ is fixed, spin-network states capture a
finite number of d.o.f. of General Relativity: the ones as-
sociated to the classical phase space of holonomies of the
Ashtekar-Barbero connection along links of the graph Γ
and fluxes through surfaces dual to the links of the graph
Γ. Now choose a classical configuration of the Ashtekar
connection A and its conjugate momentum, the gravita-
tional electric field E. Moreover, let ∆Σ be a cellular de-
composition of Σ and Γ the graph which is the 1-skeleton
of a dual complex ∆∗

Σ. This provides a discretization of

the manifold; fields are discretized smearing A, which is a
su(2)-valued connection 1-form, and E, which is a su(2)-
valued density vector, over curves and surfaces (the links
of Γ and the dual surfaces).

The connection is smeared along half-link l of the graph
Γ, that is from the source node s(l) to the point of in-
tersection with the surface. So we denote with hl the
path-ordered exponential

hl = P exp

∫

l

A (6)

which, implicitly, will be always defined on half of the link
l. For this analysis we consider the following definition
of the flux [47]:

El = E(Sl) =

∫

Sl

AdU ∗ E. (7)

Here the densitized inverse triadE is parallel-transported
by the holonomy U to the integration point. Ad stands
for the action of the adjoint representation of SU(2) on
Lie algebra elements. ∗ is the Hodge dual operator. Def-
inition (7) depends on the point σ0 ∈ Sl that is used as
base-point for the holonomies U . This is chosen as the
intersection-point between the link l and the dual surface
Sl. The holonomy U is computed along a path which
starts at σ0 and ends at the integration point σ. The
reason for considering this definition of the flux variable
is the simple behavior under local SU(2) gauge transfor-
mations:

E(S) → AdG(σ0)E(S). (8)

The set of couples (hl, El), one per each link of the
graph, can be viewed as a point in a truncation of the
phase space of General Relativity as captured by the
graph Γ. The smeared Poisson algebra reads

{Ul, Ul′} = 0, {Ei
l , E

j
l′} = δll′ǫ

ijkEk
l ,

{Ei
l , Ul′} = ±δll′ 8πG~γ τ iUl, (9)

derived from the fundamental brackets

{Ai
a(x), A

j
b(y)} = 0, {Ea

i (x), Eb
j (y)} = 0,

{Ai
a(x), E

b
j (y)} = 8πGγ δi

jδ
b
aδ(x, y), (10)

where the non-vanishing real number γ is the Barbero-
Immirzi parameter. In the previous equations, τ i = iσi/2
are su(2) generators defined in terms of the Pauli matri-
ces σi. The sign ± in (9) depends on the relative ori-
entation between the link l and the surface Sl. In the
following we will choose the ‘+’ orientation. The couple
(hl, El) can be identified with an element of SL(2,C), the
complexification of SU(2), using the polar decomposition

Hl = hl exp(i
αlEl

8πG~γ
). (11)

Coherent spin-networks with labels as in (11) are peaked
on the classical configuration (hl, El). The presence of
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the positive real numbers, called heat-kernel times, αl in
(11) will become clearer later on (see equation (56) and
the comment following it).

The construction of coherent states for quantum grav-
ity relies on a heat-kernel technique, that in the following
lines we first review for the simple example of a quantum
particle in non-relativistic mechanics. Consider the heat-
kernel of L2(Rn, dx) defined by:

Kt(x, x
′) = e−

α
2 ∆xδ(x, x′) (12)

where ∆x is the Laplacian on Rn. The phase space of a
particle in Rn is R2n ≃ Cn, the complexification of the
Abelian group Rn. Consider now the unique analytic
continuation of the heat-kernel w.r.t. the variable x′.
We have thus defined the family of wave functions

ψα
z (x) = Kα(x, z) z ∈ Cn. (13)

Those states are coherent in the following mathematical
sense:

• They are eigenstates of the annihilation operator

ẑ = x̂+ iαp̂,

• saturate the Heisenberg uncertainty relation

∆x∆p =
~

2
,

• form an overcomplete basis of L2(Rn, dx)

∫

ψα
z (x)ψα

z (x′)dz = δ(x, x′).

We are interested in coherent states for the sector of
LQG associated to a single graph Γ. The main ingredient
are Hall coherent states [48, 49], generalization of the
previous construction from the abelian group Rn to a
general compact Lie group. We restrict our attention
to SU(2). First, apply the heat-kernel evolution to the
Dirac delta distribution over the group:

Kα(h, h′) = e−
α
2 ∆hδ(h, h′) (14)

where the Laplace-Beltrami operator ∆h on SU(2) is de-
fined w.r.t. the unique bi-invariant metric tensor. Ex-
plicitely, we have

Kα(h, h′) =
∑

j

(2j + 1)e−j(j+1) α
2 TrD(j)(h−1h′). (15)

Now take the unique analytic continuation of (14) w.r.t.
the variable h′, which defines wave-functions ψα

H(h) la-
beled by an element H in the complexification SU(2)C,
which is SL(2,C):

ψα
H(h) = Kα(h,H) H ∈ SL(2,C). (16)

Being SU(2) simply connected, SU(2)C is defined via
exponentiation of the complexification of the Lie algebra.
Intuitively, the heat-kernel technique is the natural way
to construct ‘Gaussian’ wave-packets on SU(2).

Applying the heat-kernel technique to several copies of
SU(2) allows to build coherent spin-network states for
LQG [42, 50–53]. Coherent spin-networks are defined as
follows: we consider the gauge-invariant projection of a
product over the links of a graph of heat kernels,

ΨΓ,Hl
(hl) =

∫

∏

n

dgn

∏

l

Kαl
(hl, gs(l)Hl g

−1
t(l)), (17)

where we have a SU(2) integration for each node n.
Here, αl are positive real numbers (heat-kernel times)
that can be fixed from some dynamical requirement. As
shown in [50], coherent spin-networks provide a Segal-
Bargmann transform for Loop Quantum Gravity, that
has been lifted to Spin Foams in [54].

We can use a parametrization of SL(2,C) with an
interpretation in terms of discrete geometries. Any
SL(2,C) element Hl can be written as

Hl = g~ns(l)
e(ηl+iξl)

σ3
2 g−1

~nt(l)
(18)

that is as a SU(2) rotation that brings the direction ~nt(l)

on the direction ~z = (0, 0, 1) times a SL(2,C) transfor-
mation along ~z times a rotation that brings ~z on ~ns(l).
This decomposition is unique once we choose a map
S2 → SU(2) at each node, namely a section of the Hopf
fibration.

A different choice for those sections implies a redef-
inition (shift) of the parameters ξl. Notice that, while
this choice is purely conventional, a shift of ξl that keeps
fixed the section will change Hl. But the physical infor-
mation is contained in Hl. We will see how Hl, hence ξl,
is determined unambiguously from the FLRW geometry.

The decomposition (18), discussed in [42], provides the
following equivalent set of labels for coherent states:

{ηl, ξl, ~ns(l), ~nt(l)} (19)

i.e. a positive real number, an angle and two unit vectors.
The parameter ηl is related to the modulus of the gravi-
tational flux through the surface which is intersected by
the link, namely to the area of a surface. The unit vector
~ns(l) is interpreted as the unit-flux, parallel transported
at the source node (and similarly for ~nt(n)). The angle
ξl is the conjugacy class over which the holonomy of the
Ashtekar-Barbero connection is peaked, and therefore it
codes the extrinsic curvature.

In terms of those variables, the following large distance
(large η) asymptotic behavior for coherent spin-networks
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can be found[42]1:

ΨHl
(hl) ≃

∑

jl,in

∏

l

e
−

(jl−j0
l
)2

2σ2
l e−iξljl(

∏

n

Φin
)Ψjl,in

(hl).

(20)

This is a Gaussian with phase. The position of the peak
j0l is related to ηl by (2j0l + 1) = 2ηl/αl, and the spread
of the Gaussian around j0l is governed by the parameter
σl = 1/

√
αl. Finally, Φin

is the coefficient for the expan-
sion of the Livine-Speziale coherent intertwiner [18] on a
orthonormal basis labeled by in, and carries the depen-
dence on the unit vectors.

III. FLRW: CLASSICAL SPACE-TIME

In this section we review some properties of FLRW
space-time, that will be useful for the application to co-
herent states in Loop Quantum Gravity. We consider a
time-oriented globally hyperbolic space-time with topol-
ogy R× S3 and line element

ds2 = −dt2 + a(t)2dΩ (21)

where the function a(t) is the scale factor and

dΩ = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2) (22)

is the metric of the Euclidean 3-sphere. Here θ ∈
[0, π), φ ∈ [0, 2π), ψ ∈ [0, 2π), namely, we are using hy-
perspheric coordinates. This geometry describes a ho-
mogeneous and isotropic expanding or contracting uni-
verse. We want to construct a semiclassical state as in
(17) which is peaked on the intrinsic and the extrinsic
geometry of a spatial (t =const.) section of FLRW space-
time.

For calculation purposes, we shall use the Maurer-
Cartan formalism for homogeneous spaces, as done in
[37]. The unit Euclidean 3-sphere is diffeomorphic to
the Lie group SU(2). The manifold SU(2) is then an
homogeneous space w.r.t. its own action, the latter be-
ing free and transitive. It carries a natural homogeneous
(left-invariant) su(2)-valued form, named Maurer-Cartan
form,

ω = g−1dg = ωi
aτ

idxa (23)

which satisfies the structural equation

dωi +
1

2
ǫijk ω

j ∧ ωk = 0, (24)

namely ωi
a also defines a flat principal connection over

SU(2). The spatial sections are described by a time-
dependent 3-dimensional metric tensor that can be writ-
ten in terms of the Maurer-Cartan form, the latter viewed

1 We are omitting an overall normalization factor.

as a frame field (a cotriad):

gab(t) = a(t)2ωi
aω

i
b (25)

More precisely, the cotriad for a universe of radius a(t)
is

ei
a = a(t)ωi

a. (26)

This corresponds to a specific class of gauge fixing which
makes the cotriad proportional to the Maurer-Cartan 1-
form. The triad is the dual vector field

eai = gabei
b. (27)

The explicit expression in hyperspheric coordinates can
be found in the Appendix. The Ashtekar-Barbero con-
nection A = Ai

aτ
idxa has components

Ai
a = Γi

a + γKi
a (28)

with Γi
a the spin-connection and Ki

a the extrinsic curva-
ture. It can be written in a homogeneous gauge where it
is left-invariant and proportional to the Maurer-Cartan
connection

Ai
a = (Γ + γK)ωi

a. (29)

To compute the scalar coefficients Γ and K, we first write
Γi

a = Γωi
a; the proportionality coefficient Γ can be com-

puted by first evaluating the Ricci scalar, and compar-
ing with the known value for the 3-sphere of radius a(t),
namely

R =
6

a(t)2
= ǫijkej

ae
k
b (DΓ)i

ab, (30)

where D is the covariant exterior derivative. This fixes
the intrinsic curvature coefficient in (29) as Γ = 1/2.
The extrinsic curvature is (half) the Lie derivative with
respect to the unit future-oriented vector field ∂/∂t nor-
mal to the space-like surface,

Kab =
1

2
L ∂

∂t
gab =

1

2

∂

∂t
gab = aȧ ωi

aω
i
b (31)

so that, raising one index by means of the inverse triad
field, we get

Ki
a = ebiKab = ȧ ωi

a. (32)

The last relation fixes the scalar coefficient K of the ex-
trinsic curvature in (29) to be K = ȧ(t).

IV. FLRW: CELLULAR DECOMPOSITION

Consider a cellular decomposition ∆ of the constant
time 3-surface Σt, defined as follows. In the Euclidean 3-
sphere of radius a(t) take five equally spaced points, and
join them with ten geodesic paths. We obtain an em-
bedded complete graph with 5 vertices, 1-skeleton of ∆.
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FIG. 1. The complete graph with 5 nodes, 1-skeleton of the
cellular decomposition ∆ ≃ ∆∗.

Every closed loop joining three points is the boundary
of a minimal surface, which is a totally geodesic trian-
gle, and a 2-cell of ∆. The 3-cells are the closed regions
bounded by four mutually adjacent 2-cells. We need also
the dual complex ∆∗, isomorphic to ∆, whose vertices
are barycenter of the 3-cells of ∆. Call Γ5 the 1-skeleton
graph of ∆∗ where l labels its links. Each link l of Γ5

cuts exactly one surface Sl of ∆ through the barycenter.
The cellular decomposition and its dual, in particular

the surfaces Sl and the dual links l, constitute the struc-
ture needed for the smearing process.

Computation of holonomies

We have to compute holonomies of the left-invariant
Ashtekar-Barbero connection Ai

a = c ωi
a, with

c = Γ + γK. (33)

This task is easily accomplished if the path is a geodesic,
as in our case.

Recall that the holonomy of the connection A along
the curve γ is the path-ordered exponential2

U(A) = P exp

∫

γ

A =

∞
∑

m=0

Im, (35)

where the m-th integral has the form

Im =

∫ L

0

ds1

∫ s1

0

ds2 . . .

∫ sm−1

0

dsmγ̇(s1) . . . γ̇(sm)A(s1) . . . A(sm).

(36)

Here we have used an explicit parametrization of the
geodesic γ(s) in terms of the proper distance s along the
curve (gabγ̇

aγ̇b = 1) and L is the proper length of the

2 The holonomy of the su(2) connection A associated to a
parametrized curve γ(s), s ∈ [0, s0], is the solution evaluated
at s = s0 of the SU(2) matrix differential equation

8

<

:

d

ds
U(s) + γ̇a(s)Aa(γ(s))U(s) = 0

U(0) = 1 (34)

curve. Now we exploit the fact that since eai, i = 1 . . . 3
are three left-invariant vector fields, and the spatial met-
ric tensor gab is right-invariant3, eai are Killing vectors
[55]. It follows that the three scalars

ei
aγ̇

a ≡ ni (37)

are conserved quantities, i.e. constant along (spatial)
geodesics. We can then easily compute the path-ordered
exponential (35). Given

Im =
1

m!
(
L

a(t)
~n · ~τ )m, (38)

we have4

Uγ(c ω) = Uγ(ω)c = ec L
a(t)

~n·~τ . (39)

Notice that the first equality in (39) does not hold for
any path connecting the initial and final points, but only
for geodesic paths. In fact if it did work for general
paths, since Uγ(ω) is path-independent, that would imply
that the holonomy of the Ashtekar connection is path-
independent, or equivalently, that the holonomy of any
contractible loop is the identity (which means that the
connection is flat). Instead, the Maurer-Cartan holon-
omy is given by formula (39) with c = 1, for any path.

Specifically, we are interested in holonomies along the
oriented links of the embedded graph Γ5. A link goes
from the source node s(l) to the target node t(l) of the
geodesic link l. In fact, as explained in Section II, we con-
sider holonomies along half-links, from the source node
to the point of intersection with the dual surface.

Take a node of Γ5 and suppose all the four surrounding
links are oriented as ‘outgoing’. It is clear that since the
four links emanate from the node in isotropic directions,
the four unit vectors defined in (37) are such that ~nl ·~nl′ =
arccos(−1/3) for l 6= l′. These can be thought as the
unit vectors normal to the four faces of an equilateral
tetrahedron in R3. For the general case, observe that
unit vectors associated to different orientations of the
path are related by ~nl = −~nl−1 . This fixes uniquely the
full set of 10 unit vectors, up to a global rotation.

Moreover the length of a full link is

L = a(t) 2Θ , Θ = arccos(−1/4). (40)

This can be easily seen considering the following geodesic
on the unit Euclidean sphere S3 ≃ SU(2):

γ(s) = esτ3 =

(

eis/2 0
0 e−is/2

)

. (41)

3 Of course, the spatial metric gab is both left and right-invariant.
It is the unique bi-invariant metric tensor on SU(2) ≃ S3, up to
a global scale factor, which is fixed to be a(t).

4 Geodesics over SU(2) ≃ S3 that start at the identity element
have the simple form g(s) = es~n·~τ , namely they are the 1-
parameter subgroups of SU(2).
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Suppose we have chosen coordinates where this geodesic
lies over one link l of the graph. With the standard
embedding5 of SU(2) in R4, it becomes clear that the
two nodes Ns(l), Nt(l), viewed as vectors in R4, have
scalar product Ns(l) · Nt(l) = cosΘ. Now, since the

previous geodesic (41), embedded in R4, has the form
N(s) = (cos s

2 , sin
s
2 , 0, 0), imposing

N(0) ·N(s) = cos
s

2
= cosΘ, (43)

we find the value s = 2Θ for the geodesic length. To
obtain the geodesic length for a sphere of different radius,
we just multiply by the appropriate scale factor a(t), so
we prove (40).

Thus, we find that the holonomy of the Ashtekar-
Barbero connection along half-link l is

Ul(A) = e(Γ+γK)Θ~nl·~τ . (44)

This completes the computation of holonomies. Notice
that the dependence on t in the holonomy is contained in
the extrinsic curvature coefficient K, that codes the em-
bedding properties of the 3-sphere into the curved space-
time.

Computation of fluxes

The computation of fluxes is more tricky as it relies on
the definition (7). The flux E(S) = E(S)iτ i depends on
the surface as well as on the holonomies along a system
of paths, as explained in section II. However, we shall
not need those complicated details, as we are mostly in-
terested in the unit-fluxes, and not in the explicit calcu-
lation of the modulus. In spite of this fact, the smearing
process must not break the symmetries of the regular cel-
lular decomposition we have chosen. In our case we can
take a family of geodesics joining the intersection point
σ0 with the generic point σ of integration on the surface.
We have

Ei(S) =

∫

S

ni deth d2σ (45)

where hab, a, b = 1, 2, is the metric induced on the surface
from gab, and ni is a unit vector given by

ni =
N i

√
N jN j

, (46)

with

N i(σ) = Rij
σ0→σ e

aj(σ0)na(σ). (47)

5 The standard embedding of SU(2) in R4 is
„

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

«

∈ SU(2), (42)

with x1, . . . , x4 real and x2

1
+ x2

2
+ x2

3
+ x2

4
= 1.

Let us explain our short notation. The rotation matrix
Rij

σ0→σ is the holonomy in the adjoint representation of
SU(2), that acts on the internal indices. It performs the
parallel transport of the triad from the base point σ0 to
the point of integration σ, along a geodesic path. Since
we are averaging ni around the barycenter σ0, we have
clearly

Ei(S) = |E(S)|ni(σ0), (48)

where |E(S)| =
√

E(S)iE(S)i denotes the modulus of
the flux, whose time dependence is easily recovered:
|E(S)| ∝ a(t)2. We denote El = E(Sl) the flux across
the oriented surface Sl punctured by the link l. We have

El = |E|~nl · ~τ . (49)

It is important to remark that the unit fluxes ~nl =
~El/|E| in the last equation coincide with the unit direc-
tions that identify the 1-parameter subgroup of Ashtekar
holonomies Ul, namely with ~nl of equation (44). This
is true because the orientations of the link l and of the
surface Sl agree.

V. FLRW: QUANTUM STATE

We can now define the coherent spin-network for
FLRW geometry as the one labeled by SL(2,C) variables
on links, as defined by the smearing process of previous
section:

Hl = Ul e
Xl Xl = αlEl/γ. (50)

We now apply the decomposition (18) to obtain:

Hl = g~nl
e(Γ+γK)Θτ3+i|X|τ3g−1

~nl
, (51)

where g−1
~nl

is precisely the inverse of g~nl
, namely there

is no extra relative phase. As we anticipated in sec-
tion II, the smearing process determines unambiguously
the relative phase between ‘source’ and ‘target’ SU(2)
holonomies. In the asymptotic regime, this translates
into a precise prescription for the relative phases of
Livine-Speziale intertwiners, as we shall see in a moment.

The term proportional to Γ in the exponent of (51) can
be absorbed in the redefinition of the arbitrary phase of
one of the g~n, that is

Hl = g′~nl
e(γK)Θτ3+i|X|τ3g−1

~nl
, (52)

in which

g′~nl
= Ul(Γ)g~nl

= g~nl
eΓΘ τ3 . (53)

Notice that this choice of the relative phase between the
‘source’ and ‘target’ SU(2) group elements is analogous
to (actually, in the asymptotic regime coincide with) the
canonical choice of relative phase for Livine-Speziale co-
herent intertwiners in the boundary of a flat 4-simplex
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of references [25, 26]. There, the canonical relative phase
is obtained by the parallel transport of coherent states
using the discrete spin-connection. Here instead the par-
allel transport Ul(Γ) is computed as the holonomy of
the smooth spin-connection Γi

a along geodesics of the 3-
sphere.

The coherent spin-network with labels as in (50), or
equivalently (52), can be written as a superposition over
the ordinary spin-network orthonormal basis Ψjl,in

as

ΨHl
(hl) =

∑

jl,in

ψHl
(jl, in)Ψjl,in

(hl). (54)

By the asymptotic formula (20), the asymptotic behavior
of the coherent spin-network for large |X | ∝ a(t)2 can be
found. We find that for large scale factor a(t), the FLRW
coherent state is

ψHl
(jl, in) ≃

∏

l

e−
(jl−j0)2

2σ2 eiγKΘjl

∏

n

Φin
. (55)

with

j0 =
|E|

8πG~γ
(56)

K = ȧ(t) (57)

Θ = arccos(−1/4) (58)

and we have set the inverse heat-kernel times σl = σ, to
respect the symmetry of the regular cellular decomposi-
tion. Lastly, let us comment on the units in (56): by the
definition (11), the dependence on the heat-kernel time
in j0 drops out, and we are left with the dimensionful
factor 8πG~γ. This is in agreement with the area spec-
trum of Loop Quantum Gravity. In the following we give
specific examples.

Our construction applies to the case of flat space-time,
provided that we consider the Riemannian signature (++
++) and space-time topology R4. Indeed, in this case we
are allowed to write the metric in polar coordinates in the
form

ds2 = dr2 + r2dΩ3, (59)

where dΩ3, as usual, is the metric tensor of a unit Eu-
clidean 3-sphere. Thus (59) has the FLRW form, pro-
vided by the scale factor

a(r) = r, (60)

and consistently with this latter relation the extrinsic
curvature coefficient K, defined by Ki

a = K ωi
a, is given

by

K = ȧ(r) = 1. (61)

The semiclassical state for Euclidean space-time is then
characterized by the large scale behavior:

ψHl
(jl, in) ≃

∏

l

e−
(jl−j0)2

2σ2 eiγ arccos(− 1
4 )jl

∏

n

Φin
. (62)

Remarkably, those coefficients are similar6 to those ones
used in order to define correlation functions over flat
space in the Spin Foam setting [31–35]. In particular,
the oscillatory factor which prescribes the extrinsic cur-
vature matches exactly with the analogous phase factor
originally advocated by Rovelli’s ansatz [31]. More pre-
cisely, it matches with the one of reference [35], which
includes the correct dependence on the Immirzi param-
eter. Moreover, in the Spin Foam setting, the angle
Θ = arccos(−1/4) is interpreted as a 4-dimensional dihe-
dral angle between two tetrahedra lying in the boundary
of an equilateral, flat 4-simplex. Such a value of the
dihedral angle is also responsible for the mechanism of
coherent cancellation of phases, which yields the correct
semiclassical behavior of the 2-point function.

In cosmology, de Sitter space-time is usually coordina-
tized in the form

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2), (63)

so that the constant-t surfaces are flat Euclidean spaces
E

3, and the scale factor grows exponentially in time. H
is the (constant) Hubble rate of expansion. We are not
considering here such a kind of canonical surfaces. We
rather consider a spherical slicing of de Sitter space-time
attained by the use of the following coordinates:

ds2 = −dt2 +
1

H2
cosh2(Ht)dΩ3 (64)

in the Lorentzian case, and

ds2 = dr2 +
1

H2
cos2(Hr)dΩ3 (65)

in the Riemannian case. When de Sitter space-time is
viewed as the homogeneous, isotropic solution of vacuum
Einstein equations with cosmological constant Λ, we have
H =

√

Λ/3. This foliation of the de Sitter manifold
corresponds, for the two space-time signatures, to

K = ȧ(t) = sinh(Ht) (66)

K = ȧ(r) = − sin(Hr) (67)

respectively.
As a final remark, notice that if we invert the sign of

K in (55), we obtain the the complex conjugate state,
which is a different state, even though classically these
two states correspond to the same solution of Einstein
equations, but opposite space-time orientations. A differ-
ent way to think about it is to consider parity transforma-
tions, enlarging SO(3) to the full orthogonal group O(3).
Under a parity transformation, which is a large gauge

6 A significant difference is that the heat-kernel coherent states
discussed here present (asymptotically) a diagonal spin-spin cor-
relation matrix, while a non-diagonal correlation matrix seems to
be required from matching conditions in the graviton propagator
calculation [35].
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transformation, the triad changes sign and the scalar co-
efficients transform as

Γ → Γ, (68)

K → −K, (69)

so (55) and its complex conjugate are related by parity.
This does not mean that Loop Quantum Gravity vio-
lates parity, as parity-related sectors in the kinematical
Hilbert space could be super-selected by the dynamics
[56, 57]. Nevertheless, the issue of the parity behavior of
Loop Quantum Gravity is tricky, as one of the fundamen-
tal variables, the Ashtekar-Barbero connection, does not
transform simply. Moreover, the parity transformation
Ai

a = Γi
a + γKi

a → Γi
a − γKi

a requires to disentangle the
extrinsic and intrinsic components from the connection,
which is possible only by using the equations of motion.

CONCLUSIONS AND OUTLOOK

We provided a class of coherent spin-network states for
Loop Quantum Gravity which are peaked around k = 1
FLRW-like geometries. The main result is the derivation
of the semiclassical state for flat space-time used in Spin
Foams from the canonical theory, and its generalization
to curved (homogeneous and isotropic) backgrounds, for
both Euclidean and Lorentzian signatures.

Our analysis gives further intuition on which aspects
of classical General Relativity are captured by the trun-
cation to a given graph of the phase space of Loop Quan-
tum Gravity. We chose the complete 5-vertex graph (4-
simplex graph), symmetrically embedded in the canon-
ical hyper-surface, in order to compare the result with
the standard boundary states of Spin Foam vertex am-
plitudes, but we stress that the construction can be easily
generalized to different (e.g. very fine) graphs. The ap-
plications of such a class of coherent states in a context of
cosmological interest could open new perspectives within
the semiclassical analysis of the Spin Foam dynamics, as

a possible development of a cosmological perturbation
theory.

Taking into account a simple and highly symmetric
semiclassical state is the natural way to perform a sym-
metric reduction within the full quantum theory, which
can then be compared with the standard results of Loop
Quantum Cosmology. We hope the simple coherent state
discussed here (maybe the most simple) could shed light
on this relationship. Finally, it would be interesting to
investigate the relation (if any) of the de Sitter coherent
state we presented in this paper with the Kodama ground
state [58–60].
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Appendix A: Useful formulae

The Maurer-Cartan form ω = ωi
aτ

idxa in hyperspheric
coordinates reads

ω1 = cosφ sin θdψ + sinψ
(

cosψ cosφ cos θ+ (A1)

− sinψ sinφ
)

dθ − sinψ sin θ
(

sinψ cosφ cos θ+

+ cosψ sinφ
)

dφ,

ω2 = sinφ sin θdψ + sinψ
(

cosψ sinφ cos θ+ (A2)

+ sinψ cosφ
)

dθ − sinψ sin θ
(

sinψ sinφ cos θ+

− cosψ cosφ
)

dφ,

ω3 = cos θdψ − sinψ cosψ sin θdθ + sin2 ψ sin2 θdφ.
(A3)

with ranges θ ∈ [0, π), φ ∈ [0, 2π), ψ ∈ [0, 2π).
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