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By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass

neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these

systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival

of the hypermassive-neutron star produced at the merger by accelerating its collapse to a black hole. We also

provide evidence that even if purely poloidal initially, the magnetic fields produced in the tori surrounding the

black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that

magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during

the inspiral or after the merger we conclude that for realistic magnetic-field strengths B . 1012 G such effects

could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However,

magnetically induced modifications could become detectable in the case of small-mass binaries and with the

development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at

frequencies larger than ≈ 2 kHz.

PACS numbers: 04.30.Db, 04.40.Dg, 04.70.Bw, 95.30.Qd, 97.60.Jd

I. INTRODUCTION

The use of improved and more accurate numerical tech-

niques, together with the access to larger computational in-

frastructures, has brought the simulation of binary neutron-

star (BNS) systems to an unprecedented level of maturity. A

number of groups have reported on calculations of BNSs with

different levels of approximation, for equal and unequal-mass

systems, with and without magnetic fields (see, e.g., [1–8] for

some of the most recent works). Besides the obvious impli-

cations that these systems have in our understanding of the

origin of short γ-ray bursts (GRBs), whose short rise times

suggest that their central sources have to be highly relativis-

tic objects [9], BNS systems are expected to produce sig-

nals of amplitude large enough to be relevant for Earth-based

gravitational-wave (GW) detectors and to be sufficiently fre-

quent sources to be detectable over the timescale in which the

detectors are operative. Current estimates for the detection

rate relative to the first-generation interferometric detectors is

∼ 1 event per ∼ 40− 300 years, increasing to an encouraging

∼ 10 − 100 events per year for the advanced detectors [10].

The detection of gravitational waves from neutron-star (NS)

binaries will also provide a wide variety of physical informa-

tion on the component stars [11]. This includes their mass,

spin, and radius, which would in turn provide vital clues on the

governing equation of state (EOS), and, possibly, their mag-

netic field. However, for this information to be extracted it is

essential that accurate and long-term simulations are carried

out, which span the interval ranging from the early inspiral

to the decaying tail of the late ringing of the formed black

hole (BH). This is indeed the goal of this work, where we fo-

cus on whether present and future GW detectors will be able

to determine or not the level of magnetization of NSs. This

is not an academic question as we know that NSs have very

large magnetic fields and it is indeed via the magnetic-dipolar

losses that the vast majority of NSs are routinely detected as

pulsars [12]. Yet, determining what the effects of magnetic

fields are on the inspiral and merger of BNSs is a remarkably

difficult task requiring the solution of the Einstein equations

together with those of general-relativistic magnetohydrody-

namics (GRMHD). So far, only three GRMHD simulations

of inspiralling BNSs have been reported [3, 5, 6], and while

Refs. [3, 5] considered magnetic fields that are astrophysically

unrealistic1 [13, 14], only the work in Ref. [6] has studied

magnetic fields of the order of ≈ 1012 G, which are probably

the strongest to be expected for NSs near the merger. Ultra-

large magnetic fields are however not entirely uninteresting

from a general-relativistic point of view. Indeed, as discussed

in [6], the magnetic tension associated with these extremely

large magnetic fields can be so strong to reduce the stellar

tidal deformations during the inspiral and hence to lead to a

slightly delayed time of merger.

We here present a more extended analysis than the one

given in [6] and report on a systematic investigation of equal-

mass BNSs systems through long-term simulations using the

highest resolutions to date. The calculations cover a range of

magnetic fields from B ≈ 108 G up to B ≈ 1012 G, and two

different masses to distinguish the phenomenology of those

binaries that lead to a prompt collapse from those that lead

instead to a delayed one (see the discussion in [2]). Overall,

we find that magnetic fields are amplified during the merger,

when the turbulent motions, triggered during the merger by

the Kelvin-Helmholtz instability, curl magnetic field lines pro-

ducing a strong toroidal component that reaches a strength

1 We note that although NSs with magnetic fields as large as 1016 are widely

expected to be behind the phenomenology associated with magnetars, it is

unrealistic to expect that the old NSs comprising the binary have magnetic

fields that are so large.
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comparable to the poloidal one. The toroidal field main-

tains a value comparable or larger than the poloidal one dur-

ing the subsequent evolution of the hypermassive neutron star

(HMNS) formed after the merger. The stability of the latter,

however, is influenced by the strength of the poloidal field,

which can transport angular momentum outwards and trigger

the collapse of the HMNS to a BH. Furthermore, equipartition

among the poloidal and toroidal magnetic field components

has been measured during the first 5 ms after the collapse of

the HMNS, when the system consists of a rotating BH sur-

rounded by a massive, high-density torus.

We have also analyzed in detail the GW signal emitted

by these systems and found that for the timescales consid-

ered here, the overlaps in the GWs between a non-magnetized

binary and a magnetized one are always above what detec-

tors such as Advanced LIGO (advLIGO) or Advanced Virgo

(advVirgo) can distinguish. Hence, it is very unlikely that

present detectors will be able to measure the presence of mag-

netic fields. However, for sufficiently small-mass binaries,

whose corresponding HMNS could survive for up to a frac-

tion of a second (see the Appendix of [8]), the dephasing in-

duced by the presence of magnetic fields could be measur-

able, especially by those detectors, such as the Einstein Tele-

scope [15], that have higher sensitivities at frequencies larger

than ≈ 2 kHz.

The paper is organized as follows. In Section II we first

summarize the formalism we adopt for the numerical solu-

tion of the Einstein and of the GRMHD equations; we then

describe briefly the numerical methods we implemented in

the Whisky code [16–18], we outline our mesh-refined grid

setup, and we finally describe the quasi-equilibrium initial

data we use. In Section III we describe the dynamics of the

different models by studying both the evolution of the matter

and of the magnetic field. In Section IV we instead describe

the GWs emitted by these systems and we estimate the possi-

bility to detect magnetic field effects on those signals, while

in Section V we summarize our main results.

We here use a spacelike signature (−, +, +, +) and a sys-

tem of units in which c = G = M⊙ = 1 (unless explicitly

shown otherwise for convenience).

II. MATHEMATICAL AND NUMERICAL SETUP

Most of the details on the mathematical and numerical

setup used for producing the results presented here are

discussed in depth in [6, 18–20]. In what follows, we limit

ourselves to a brief overview and we describe in more

details only the main differences with respect to our previous

simulations.

A. Einstein and Magnetohydrodynamics equations

The evolution of the spacetime was obtained using the

Ccatie code, a three-dimensional finite-differencing code

providing the solution of a conformal traceless formulation

of the Einstein equations [19]. The GRMHD equations

were instead solved using the Whisky code [16–18], which

adopts a flux-conservative formulation of the equations as pre-

sented in [21] and high-resolution shock-capturing schemes

(HRSC). The Whisky code implements several reconstruc-

tion methods, such as Total-Variation-Diminishing (TVD)

methods, Essentially-Non-Oscillatory (ENO) methods [22]

and the Piecewise Parabolic Method (PPM) [23]. As al-

ready discussed in [6] the use of reconstruction schemes of

order high enough is fundamental for the accurate evolution

of these systems and in particular for assessing the impact of

the magnetic fields. Therefore all the results presented here

have been computed using the PPM reconstruction, while the

Harten-Lax-van Leer-Einfeldt (HLLE) approximate Riemann

solver [24] has been used to compute the fluxes.

In order to guarantee the divergence-free character of the

MHD equations we have employed the flux-CD approach de-

scribed in [25], but with the difference that we adopt as evolu-

tion variable the vector potential instead of the magnetic field.

In other words, by using an expression similar to equation

(31) of [25], we compute the electric field at the center of

each numerical cell by interpolating the fluxes computed at

the interfaces of the cell and then use it to evolve directly the

vector potential. We recall that in ideal MHD a relation exists

between the fluxes of the magnetic field ~B and the value of

the electric field ~E ≡ −~̃v × ~̃B, where

B̃i ≡ √
γBi , (1)

ṽi ≡ αvi − βi , (2)

and where γ is the determinant of the 3-metric, vi is the 3-

velocity of the fluid as measured by an Eulerian observer, α
the lapse, and βi the shift vector. In particular, the following

relations hold in Cartesian coordinates

Ex = F̃ z(B̃y) = −F̃ y(B̃z) , (3)

Ey = −F̃ z(B̃x) = F̃ x(B̃z) , (4)

Ez = F̃ y(B̃x) = −F̃ x(B̃y) , (5)

with

F̃ i(B̃j) ≡ ṽiB̃j − ṽjB̃i . (6)

The evolution equations for the vector potential ~A and for the

magnetic field ~B can then be written as

∂t
~A = − ~E , (7)

~̃B = ~∇× ~A . (8)

Equation (7) is solved at the center of each cell (i, j, k), where

the electric field is given by
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Ex(xi, yj, zk) =
1

4

(

−F̃ y(B̃z)(i,j+1/2,k) − F̃ y(B̃z)(i,j−1/2,k) + F̃ z(B̃y)(i,j,k+1/2) + F̃ z(B̃y)(i,j,k−1/2)

)

, (9)

Ey(xi, yj, zk) =
1

4

(

F̃ x(B̃z)(i+1/2,j,k) + F̃ x(B̃z)(i−1/2,j,k) − F̃ z(B̃x)(i,j,k+1/2) − F̃ z(B̃x)(i,j,k−1/2)

)

, (10)

Ez(xi, yj, zk) =
1

4

(

−F̃ x(B̃y)(i+1/2,j,k) − F̃ x(B̃y)(i−1/2,j,k) + F̃ y(B̃x)(i,j+1/2,k) + F̃ y(B̃x)(i,j−1/2,k)

)

, (11)

F̃ i(B̃j) being the numerical flux computed at the interface of

the cell.

Since the magnetic field is computed from the curl of the

vector potential using the same differential operator used to

compute its divergence (i.e., a central-difference scheme), its

divergence free character is guaranteed at essentially machine

precision at all times, also when using AMR. We note that a

similar approach has been recently implemented also in an-

other code [26] and, in analogy with [26], we add a Kreiss–

Oliger type of dissipation [27] to the evolution equation of

the vector potential in order to avoid the possible formation

of spurious post-shock oscillations in the magnetic-field evo-

lution. It has indeed been shown by [28] that applying TVD

operators to the vector potential does not guarantee automati-

cally the TVD character of the magnetic field, leading to pos-

sible post-shock oscillations in the latter. The code has been

validated against a series of tests in special relativity [29] and

in full general relativity (see [18]).

The system of GRMHD equations is closed by an EOS and,

as discussed in detail in [2], the choice of the EOS plays a fun-

damental role in the post-merger dynamics and significantly

influences the survival time against gravitational collapse of

the HMNS produced by the merger.

As already done in [6], also in this paper we have employed

the commonly used “ideal-fluid” EOS, in which the pressure

p is expressed as p = ρ ǫ(Γ − 1), where ρ is the rest-mass

density, ǫ is the specific internal energy and Γ is the adiabatic

exponent. Such an EOS, while simple, provides a reasonable

approximation and we expect that the use of realistic EOSs

would not change the main results of this work.

B. Adaptive Mesh Refinements

Both the Einstein and the GRMHD equations are solved us-

ing the vertex-centered adaptive mesh-refinement (AMR) ap-

proach provided by the Carpet driver [30]. Our rather basic

form of AMR consists in centering the highest-resolution level

around the peak in the rest-mass density of each star and in

moving the “boxes” following the position of this maximum

as the stars orbit. The boxes are evolved as a single refinement

level when they overlap.

The results presented below refer to simulations performed

using 6 levels of mesh refinement with the finest level having

a resolution of h = 0.1500 M⊙ ≃ 221 m. The grid structure

is such that the size of the finest grids is 24 M⊙ ≃ 35.4 km,

while a single refinement level covers the region between a

distance r = 164 M⊙ ≃ 242.2 km and r = 254.4 M⊙ ≃

375.7 km from the center of the domain. This region is the

one in which our gravitational-wave extraction is carried out,

with a resolution of h = 4.8 M⊙ ≃ 7.1 km (as a comparison,

the gravitational wavelength is about 100 km and thus well-

resolved on this grid). In addition, a set of refined but fixed

grids is set up at the center of the computational domain so as

to better capture the details of the Kelvin-Helmholtz instabil-

ity (cf. [2]). Moreover, after the merger, at about 8.5ms, we

enlarge the central grid that is formed by the merging of the

two initial boxes. We do this in order to cover a cubical region

with a side of about 88.6 km and so better resolve not only

the whole HMNS, but also the BH-torus system which is pro-

duced by the collapse of the HMNS. For all the simulations

reported here we have used a reflection-symmetry condition

across the z = 0 plane and a π-symmetry condition across the

x = 0 plane2. At the outer boundary we instead used simple

zeroth-order extrapolation on the MHD variables (in practice,

we just copy the value of the MHD quantities from the outer-

most evolved point in each direction to the points of the outer

boundary in that direction). Also note that a very little amount

of matter and magnetic fields reaches the outer boundary, so

the effect of the outer-boundary conditions on the MHD and

hydrodynamical variables is negligible.

The timestep on each grid is set by the Courant condition

(expressed in terms of the speed of light) and so by the spa-

tial grid resolution for that level; the Courant coefficient is

set to be 0.35 on all refinement levels. The time evolution is

carried out using 4th-order–accurate Runge-Kutta integration

algorithm. Boundary data for finer grids are calculated with

spatial prolongation operators employing 3rd-order polyno-

mials for the matter variables and 5th-order polynomials for

the spacetime variables. The prolongation in time employs

2nd-order polynomials and this ensures a significant memory

saving, requiring only three timelevels to be stored, with little

loss of accuracy due to the long dynamical timescale relative

to the typical grid timestep.

The grid setup used here is therefore quite different from

the one adopted in our previous work on magnetized NS bi-

naries [6], where we had used fixed mesh-refinement in or-

der to reduce the violation (generated by the interpolation in

the buffer zones) of the divergence-free constraint of the mag-

netic field. Our current implementation, based of the evolution

of the vector potential, does not produce any violation of the

2 Stated differently, we evolve only the region {x ≥ 0, z ≥ 0} applying a

180◦-rotational-symmetry boundary condition across the plane at x = 0.



4

TABLE I: Properties of the eight equal-mass binaries considered: proper separation between the stellar centers d/M
ADM

; baryon mass Mb

of each star; total ADM mass M
ADM

; angular momentum J ; initial orbital angular velocity Ω0; mean coordinate radius re along the line

connecting the two stars; ratio of the polar to the equatorial coordinate radii rp/re; maximum rest-mass density ρmax; maximum initial

magnetic field B0, where ∗ is 8, 10 or 12. Note that M
ADM

and J are reported as measured on the finite-difference grid.

Binary d/M
ADM

Mb (M⊙) M
ADM

(M⊙) J (g cm2/s) Ω0 (rad/ms) re (km) rp/re ρmax (gm/cm3) B0 (G)

M1.45-B* 14.4 1.445 2.680 6.5084 × 1049 1.78 15.0 ± 0.3 0.899 4.58 × 1014 0 or 1.97 × 10∗

M1.62-B* 13.3 1.625 2.981 7.7806 × 1049 1.85 13.6 ± 0.3 0.931 5.91 × 1014 0 or 1.97 × 10∗

divergence-free condition of the magnetic field, since it inter-

polates the vector potential instead of the magnetic field in the

buffer zones. Moreover, since the vector potential is stored at

the center of the cell, it is possible to use without modification

the prolongation and restriction operators currently available

in the Carpet driver. This makes possible the use of the

moving-grid setup that has been utilized with success in our

previous general-relativistic hydrodynamics simulations.

C. Initial data

The initial data are the same used in [2, 6]. They were

produced by Taniguchi and Gourgoulhon [31] with the multi-

domain spectral-method code LORENE [32]. The initial solu-

tions for the binaries are obtained assuming a quasi-circular

orbit, an irrotational fluid-velocity field, and a conformally-

flat spatial metric. The matter is modeled using a polytropic

EOS p = KρΓ with K = 123.6 and Γ = 2, in which case

the maximum gravitational mass is M
ADM

≃ 1.82 M⊙ for a

nonrotating star and M
ADM

≃ 2.09 M⊙ for a uniformly ro-

tating one. Since no self-consistent solution is available for

magnetized binaries yet, a poloidal magnetic field is added

a-posteriori using the vector potential

Aφ ≡ ̟2Ab max (p − pcut, 0)ns , (12)

where ̟ ≡
√

x2 + y2, Ab > 0 parameterizes the strength

of the magnetic field, pcut defines where in the NS the mag-

netic field goes to zero, and ns determines the degree of differ-

entiability of the potential. The components of the magnetic

field are then computed by taking the curl of the Cartesian

components of Eq. (12) to enforce that the divergence of the

magnetic field is zero at machine precision. Here we have set

pcut = 0.04 max(P ), and ns = 2 to enforce that both the

magnetic field and its first derivative are zero at p = pcut. In

Ref. [3] the magnetic field was built with an expression equiv-

alent to (12), but with pcut set to the pressure in the atmo-

sphere, and in Ref. [5] the expression used is slightly different

and Pcut is set to be 4% − 0.1% of max(p); in both Refs. [3]

and [5] ns = 1.

Table I lists some of the properties of the eight equal-mass

binaries considered here. More specifically, we have consid-

ered two classes of binaries differing in the initial masses,

i.e., binaries M1.45-B*, and binaries M1.62-B*. For each

of these classes we have considered four different magne-

tizations (indicated by the asterisk) so that, for instance,

M1.45-B12 is a low-mass binary with a maximum initial

magnetic field B0 = 1.97 × 1012 G. Note that the binaries

with zero magnetic fields are the same as those evolved in

Ref. [2].

D. Gravitational-Wave Extraction

Details about the algorithms implemented in the code to ex-

tract the GW signal can be found in [2]. Here we just remind

the reader that we compute the waveforms using two different

methods. The first one is based on the Newman-Penrose for-

malism and computes the Weyl scalar Ψ4. The gravitational-

wave polarization amplitudes h+ and h× are then related to

Ψ4 by simple time integrals [33]

ḧ+ − iḧ× = Ψ4 , (13)

where the double overdot stands for the second-order time

derivative.

The second method is instead based on the measurements of

the nonspherical gauge-invariant perturbations of a Schwarz-

schild BH (see refs. [34–36] for some applications of this

method to Cartesian-coordinate grids). In practice, a set of

“observers” is placed on 2-spheres of fixed radius where we

extract the gauge-invariant, odd-parity (or axial) current mul-

tipoles Q×

ℓm and even-parity (or polar) mass multipoles Q+
ℓm

of the metric perturbation [37, 38]. The Q+
ℓm and Q×

ℓm vari-

ables are related to h+ and h× as [39]

h+ − ih× =
1√
2r

∑

ℓ, m

(

Q+
ℓm − i

∫ t

−∞

Q×

ℓm(t′)dt′

)

−2Y
ℓm .

(14)

Here −2Y
ℓm are the s = −2 spin-weighted spherical harmon-

ics and (ℓ, m) are the indices of the angular decomposition.

Since the two methods have demonstrated to give wave-

forms that are identical up to the truncation error, we will

here use h+ computed only with the gauge-invariant quan-

tities and we will focus only on the ℓ = 2, m = 2 mode

since the others have amplitudes which are negligible com-

pared to this. All the waveforms have been extracted at a

radius riso = 200M⊙ ≈ 300 km. We also ignored the con-

tribution from the spherical harmonics since they depend on

the direction of the source with respect to the detector and

contribute as a multiplication factor of order 1 and so do not

modify the results presented here.
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FIG. 1: Snapshots at representative times of the evolution of the high-mass binary with initial maximum magnetic field of 1010 G,

i.e., M1.62-B10. Shown with two different color-code maps are the rest-mass density ρ (red-yellow) and the magnetic field |B| (blue-

green-yellow-white). To better visualize the inner structure we plot only the values on z < 0. In order to show the two scalar quantities at the

same time, they are shown on either side of a fictitious screen (ρ on the left and |B| on the right). The first four panels refer respectively to

the binary at the initial separation of 45 km, to the binary after two orbits, to the merger and to the bar-deformed HMNS. The last two panels,

instead, refer respectively to when the BH has just been formed and to a subsequent stage of the quasi-stationary evolution of the BH-torus

system. The grey spheroidal surface in the center represents the location of the apparent horizon.
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E. Accuracy of the Results

A reliable assessment of the truncation error is essential to

draw robust conclusions on the results of numerical simula-

tions. Following a procedure discussed in detail in Ref. [4],

also here we have carried out a systematic measurement of

the accuracy and convergence properties of our simulations,

and deduced a corresponding “error-budget”. The main con-

clusions are very similar to those drawn in Ref. [4], which

for compactness only we briefly recall here. More specif-

ically, we showed that with typical (finest) resolutions of

h ∼ 0.12 M⊙ − 0.19 M⊙, the results show the expected con-

vergence rate of 1.8 during the inspiral phase, which how-

ever drops to 1.2 at the merger and during the evolution of

the HMNS. This deterioration of the convergence rate is due

mostly to the strong shocks which form during the merger and

which HRSC schemes can reproduce at 1st-order only. Fur-

thermore, physical quantities, such as the rest-mass, are con-

served with a relative error of . 10−6, while the energy and

the angular momentum is conserved to . 1% after taking into

account the parts lost to radiation. Finally, the expected agree-

ment in both phase and amplitude is found in the waveforms

extracted from different detectors within the same simulation

or from the same detector but at different resolutions. Such

waveforms have been found to be also convergent at a rate of

1.8 (see [4] for details). Finally, for all the simulations re-

ported here the violation of the Hamiltonian constraint has an

L2-norm which is . 10−4/M2
ADM for the high-mass binaries

and . 10−5/M2
ADM for the low-mass ones, for which no BH

is formed.

III. BINARY DYNAMICS

As mentioned above, in order to highlight some of the

most salient aspects of the binary dynamics it will be suffi-

cient to consider two main classes of initial configurations:

M1.62-B* and 1.45-B*. These models differ only in the

mass, the first being composed of stars each having a rest mass

of 1.625 M⊙ (which we refer to as the “high-mass binaries”),

the second of stars of rest mass 1.445 M⊙ (which we refer to

as the “low-mass binaries”). The use of these two classes

is useful to distinguish the phenomenology of binaries whose

merger leads to a prompt collapse of the HMNS from those

where the HMNS can instead survive for several tens of mil-

liseconds and up to a fraction of a second (see the discussion

in [2]). We also note that in the case of the unmagnetized mod-

els, the dynamics are the same as the one described in [2], to

which we refer the interested reader for a more detailed de-

scription of the evolution of the matter and of the hydrody-

namical instabilities such as the Kelvin-Helmholtz instability.

A synthetic overview of the dynamics is summarized in

Fig. 1, which shows snapshots at representative times of the

evolution of the high-mass binary with initial maximum mag-

netic field of 1010 G, i.e., M1.62-B10. Shown with two

different color-code maps are the rest-mass density ρ (red-

yellow) and the magnetic field |B| (blue-green-white). To

better visualize the inner structure we plot only the values

on z < 0. In order to show the two scalar quantities at the

same time, they are shown on either side of a fictitious screen

(ρ on the left and |B| on the right). The first four panels re-

fer respectively to the binary at the initial separation of 45
km (t = 0 ms), to the binary after two orbits (t = 4.7 ms),
to the merger (t = 9.2 ms) and to the bar-deformed HMNS

(t = 10.6 ms). The last two panels, instead, refer respectively

to when the BH has just been formed (t = 12.6 ms) and to a

subsequent stage of the quasi-stationary evolution of the BH-

torus system (t = 15.2 ms).
With this overall qualitative behaviour of the binary in

mind, we will next consider a more quantitative discussion of

the evolution of the magnetic fields and we will only briefly

summarize the dynamics of the matter. In doing this we will

present in Figs. 2 and 3 the evolution of both the high and low-

mass binaries to aid the comparison between the two classes

of models.

A. High-mass binaries

We start by considering the evolution of the high-mass bi-

naries M1.62-B*, some of which systems were already con-

sidered in [6], where it was shown that initial magnetic fields

lower than 1014 G do not affect the dynamics in the inspi-

ral phase. Overall, given the initial coordinate separation of

45 km, all binaries inspiral for approximately 3 orbits before

merging at t ≈ 8.2 ms. There are different ways to measure

the time of the merger and the one we adopt here consists in

looking at the first peak in the evolution of |Ψ4|. This time cor-

responds approximately to when the two stellar cores merge

and we note that the external layers of the stars enter into con-

tact about 2 ms earlier. In the top panel of the left column of

Fig. 2 we show the evolution of the maximum of the rest-mass

density ρmax normalized to its initial value. It is particularly

clear from the evolution of ρmax that all the models merge

at the same time (e.g. see the first minimum in the evolu-

tion), while the post-merger dynamics are quite different. All

the models form an HMNS that survives a few milliseconds

before collapsing to a Kerr BH, but its survival time varies

considerably, as well as the number of oscillations in the evo-

lution of the density before the rapid exponential increase in

correspondence with the collapse. A discussion about this will

be presented in the following Section III B.

The middle panel of the left column of Fig. 2 shows instead

the maximum of the absolute value of the divergence of the

magnetic field. To the best of our knowledge this is the first

time that the evolution of the divergence of the magnetic field

is shown in a GRMHD simulation of BNSs. Because this is

a fundamental quantity to evaluate the quality of a numerical

calculation, we encourage other authors to present it systemat-

ically as well. As expected on mathematical grounds, the im-

plementation of the GRMHD equations discussed in Sect. II A

is such that the divergence of the magnetic field is essentially

at machine precision at all times. It is important to stress that

such a small violation would not be possible with the cell-

centred AMR algorithm provided by the Carpet code unless

the vector potential is used as an evolved variable.
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FIG. 2: Evolution of the maximum of the rest-mass density ρ normalized to its initial value (top row), of the maximum of the absolute value

of the divergence of B (middle row), and of the maximum of the magnetic field strength |B| (bottom row). The left and right columns refer to

the high-mass and low-mass binaries, respectively. Note that in the case of the high-mass models (left column), the values of |Bmax| after BH

formation refer, for the large majority of the time, to matter outside the apparent horizon and in the torus.
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FIG. 3: Evolution of the maximum magnetic field strength |B|max (black solid line) and of its poloidal |BP|max (blue long-dashed line) and

toroidal |BT| (red short-dashed line) components during and after the merger. The left column refer to the high-mass model while the right

one to the low-mass case. The vertical dashed lines refer to the time of the merger and of the collapse (measured respectively as the first and

last peaks in the evolution of |Ψ4|). Since the simulations of the low-mass binaries were not carried on until the collapse, only the time of the

merger is shown in the panels in the right column.
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FIG. 4: Evolution of the maximum magnetic field strength |B|max

for the high-mass model M1.62-B12 evolved with three different

resolutions: h = 177 m (high resolution, black solid line), h =
221 m (medium resolution, blue short-dashed line) and h = 354 m
(low resolution, red long-dashed line). The curves have been shifted

in time to account for the slightly different time of the merger.

Finally, the bottom panel of the left column of Fig. 2 shows

that the magnetic field grows mostly at the time of the merger

and reaches values which are about one order of magnitude

higher, before the collapse to BH. We note that in the case

of the high-mass models (left column) the values of |Bmax|
after BH formation refer, for the large majority of the time,

to matter outside the apparent horizon and in the torus. This

is because the steep gradients of the matter variables inside

the apparent horizon are under-resolved as a result of the grid

stretching and dissipated on a timescale which is of the order

of a fraction of a ms. Hence, with a few possible exceptions,

the data in the plots refers statistically to the matter outiside

the apparent horizon.

The growth of the magnetic field at the merger is made more

clear in the different panels contained in the left column of

Fig. 3, where we concentrate in particular on the evolution of

the maxima of the total magnetic field (black solid line) and

of its toroidal (red dot-dashed line) and poloidal (blue long-

dashed line) components. As already shown in [2], Kelvin-

Helmholtz instability develops during the merger, when the

external layers of the two NSs enter into contact, i.e., roughly

2 ms before the time of the merger, which is indicated in those

panels with the first vertical dotted line. This purely hydrody-

namical instability leads to the formation of vortices that can

curl magnetic field lines that were initially purely poloidal and

produce toroidal components. As it is evident from the panels

in Fig. 3, a strong toroidal component is indeed formed in all

cases and it reaches values that are comparable or larger than

the poloidal component, but its energy is not in equipartition

with the kinetic energy in the layer. Despite the exponential

growth caused by the Kelvin-Helmholtz instability, the overall

amplification of the magnetic field is of an order of magnitude

at most, with a growth rate dB/dt ∼ 2 × 1012 (G/ms) in

the case of model M1.62-B12. This is in contrast with what

reported by [40], where an amplification of several orders of

magnitude in the magnetic field of the HMNS was observed,

with a growth rate dB/dt ∼ 2 × 1015 (G/ms) for a model

similar to M1.62-B12.

It is presently unclear what is the origin of this discrep-

ancy. It is possible that this is due to the use of very dif-

ferent numerical techniques, namely smooth-particle hydro-

dynamics and HRSC methods. It is also possible that al-

though we have used the largest resolutions employed so

far in simulations of magnetized BNSs, such resolutions are

not yet sufficient to properly resolve the nonlinear develop-

ment of the instability. Studies of the effect of these insta-

bilities and of the consequent amplification of the magnetic

fields have recently been performed with local simulations

on simpler backgrounds [41, 42]. These studies have indeed

shown that in order to achieve convergence in the vortex re-

gion it is necessary to use resolutions that are much higher

than those currently affordable in BNS simulations. On the

other hand, by performing simulations with different resolu-

tions for model M1.62-B12 we did not observe any sensi-

ble difference in the amplification of the magnetic field and

indeed the magnetic field evolution is certainly consistent if

not convergent (see the discussion in [4] about why it is dif-

ficult to determine the convergence order after the merger).

This is shown in Fig. 4, where we report the evolution of the

maximum magnetic field strength |B|max for the high-mass

model M1.62-B12 evolved with three different resolutions:

h = 177 m (high resolution, black solid line), h = 221 m
(medium resolution, that is the standard resolution used in this

article, blue short-dashed line) and h = 354 m (low resolu-

tion, red long-dashed line). The curves have been shifted in

time to account for the slightly different time of the merger.

It is clear that that doubling the resolution produces a differ-

ence in the amplification of less than a factor ∼ 2 (compare

the red long-dashed line with the black solid line); the dif-

ferences become even smaller when comparing the medium

and high resolution3. A similar consistency with resolution

is not present in the simulations reported in [40], where the

differences among the amplified magnetic fields seem even to

become larger with increasing resolution4.

Overall we believe that the main reason why the toroidal

magnetic field in our simulations does not grow significantly

at the merger is that the timescale over which the instabil-

ity can develop is rather short. The shear layer between the

two stars, in fact, survives only for about 1 ms, before being

3 Figure 4 also shows a considerable increase in the magnetic field at the

merger. However, this is not related to the Kelvin-Helmholtz instability,

but rather to flux conservation which amplifies the magnetic field when the

matter is compressed by the collision of the two stellar cores.
4 Note that because we are here capturing a non-sustained turbulent flow, the

variations of the magnetic field strength with resolution are not necessarily

monotonic.
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destroyed by the collision between the two stellar cores. In

Refs. [41, 42], the amplification of the magnetic field has been

observed on timescales that are even shorter than this one, but

only under very specific conditions and only for specific val-

ues of the velocity at the shear layer. The differences between

the condition under which the instability develops in our fully

general-relativistic simulations and those used in these local

simulations may explain the different results. Clearly, the best

way to assess whether or not the development of the Kelvin-

Helmholtz instability leads to a large or only to a moderate

field amplification is to perform direct comparisons with other

general-relativistic simulations of magnetized BNSs. Unfor-

tunately, so far the only other reported evolution of the mag-

netic field is the one in [6], which is clearly not useful for an

independent comparison.

As a final remark, it is important to emphasize that the

toroidal and poloidal components have comparable values

also in the torus that is formed after the collapse to BH

(cf. panels in the left column of Fig. 3). Since most of the sim-

ulations to date of magnetized accretion disks around BHs that

model the central engine of short GRBs use initial conditions

in which the magnetic field has only a poloidal component, it

is of particular importance to remark that more realistic initial

data should instead have a toroidal and a poloidal component

of the comparable magnitude.

B. Delay of the Collapse

It has been shown and discussed in a number of works that

when the merger leads to a collapse, the time of survival of the

HMNS depends on several factors, which include: the EOS,

the efficiency in the redistribution of angular momentum, and

the efficiency of the radiative transfer. Clearly, all of these

influencing factors will act differently in highly-magnetized

matter and hence the delay time τd, i.e., the time between

the formation of the HMNS and its collapse to a BH, can be

used to measure indirectly the magnetic fields of the progen-

itor NSs. There are several different ways of defining τd, but

a convenient and gauge-invariant one is to consider the delay

time as the interval between the first and last peak in the evo-

lution of |Ψ4|, which are always well-defined in the amplitude

evolution, as these can be taken to correspond to the merger

of the stellar cores and to the BH production.

In Fig. 5 we show therefore the survival time of the HMNS

as a function of the initial magnetic field strength, together

with the error bar as estimated from a set of simulations of

unmagnetized binary NS mergers at different resolutions (the

delay time converges at first order, increasing with resolu-

tion). It is clear from Fig. 5 that while models M1.62-B0 and

M1.62-B8 have roughly the same post-merger dynamics and

the same collapse time (see also the top left panel of Fig. 2), it

is also clear that models M1.62-B10 and M1.62-B12 col-

lapse earlier than the unmagnetized one. To understand why

this is the case, we recall that magnetic fields can affect the

dynamics of the HMNS as first shown in axisymmetric evo-

lutions of an isolated differentially rotating HMNS [43, 44].

FIG. 5: Lifetime of the HMNS formed after the merger in the high-

mass case as a function of the initial magnetic field. The error bar

has been estimated from a set of simulations of unmagnetized binary

NS mergers at three different resolutions; in particular, we have as-

sumed that the magnetized runs have the same relative error on the

delay time of the corresponding unmagnetized model. Indicated with

a dashed line is the continuation of the delay times to ultra-high mag-

netic fields of 1017 G.

In essence, magnetic fields can, via magnetic tension5, redis-

tribute the angular momentum, transporting it outwards and

reducing the amount of differential rotation that is essential

in supporting the HMNS against gravitational collapse (we

recall that a HMNS has, by definition, a mass which cannot

be sustained by the star if rotating uniformly). The ratio be-

tween the magnetic tension and the pressure gradients scales

like the ratio between the magnetic pressure and the gas pres-

sure, and this ratio increases (although remaining less than

one) after the merger because the magnetic fields are stronger

and the HMNS is more extended and with smaller pressure

gradients. As a result, magnetic fields can “accelerate” the

collapse of these models, but only if sufficiently strong so

that the magnetic tension can be comparable or larger than the

normal pressure gradients. Hence, the efficiency in angular-

momentum redistribution will be proportional to the inten-

sity of the (square of the) magnetic field and this explains

why the delay time is essentially unchanged for small mag-

netic fields, such as B0 . 108 G. For larger values, how-

5 We recall that in Newtonian ideal MHD the Lorentz force appearing in the

equation for the conservation of momentum is given by

1

4πρ

h

(∇× ~B) × ~B
i

=
1

4πρ

»

( ~B · ∇) ~B −∇

„

B2

2

«–

, (15)

where in the right-hand side the first term is the “magnetic tension” along

the field lines and the second one is the (isotropic) “magnetic pressure”.
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FIG. 6: Evolution of the total rest-mass for the different high-mass

binaries considered. Note that the sudden drop corresponds to when

the apparent horizon is formed since we exclude the region inside it

from the computation of the mass. Note also that the early collapse

of M1.62-B10 leads to tori which are about a factor of two less

massive.

ever, the magnetic fields can influence the dynamics of the

HMNS and decrease τd as shown by models M1.62-B10

and M1.62-B12.

Interestingly, the HMNS relative to the binary

M1.62-B12 survives longer than the M1.62-B10 one. This

should not be entirely surprising since a very large magnetic

field will also introduce a magnetic pressure [cf. eq. (15)],

which will provide an additional pressure support and thus

either compensate or even dominate the angular-momentum

redistribution. Indeed, when simulating a binary with an

initial magnetic field of B0 ∼ 1017 G we have found that the

delay time increases and is even larger than the one obtained

in the absence of a magnetic field. This is not shown directly

in Fig. 5, which has been restricted to realistic values of

the magnetic field, but we have indicated with a dashed line

the continuation of the delay times to ultra-high magnetic

fields. Clearly, because of this tight correlation between the

degree of magnetization of the NS matter and the delay of the

time of the collapse, the measurement of the latter via a GW

detection will allow to infer the former.

The difference in the time of the collapse produces also

small differences in the mass of the final BH and torus. This

is shown in Fig. 6, which reports the evolution of the total

rest-mass for the different high-mass binaries considered, and

where the sudden drop corresponds to the formation of the ap-

parent horizon (the matter inside the horizon is excluded from

the computation of the baryon mass; see [45] for a discus-

sion of the properties of the collapse with the gauge condi-

tions used here). Similarly, in Table II we list the mass and

spin of the BH formed at the end of the evolution, and the

FIG. 7: Comparison of the properties of the tori produced either by

a magnetized binary (M1.62-B12, blue dashed line) or by a un-

magnetized one (M1.62-B0, red solid line). Top panel: rest-mass

density along the x-axis at ∼ 3 ms after the formation of the appar-

ent horizon and which we truncate at 1010 g/cm3
. Bottom panel:

Angular velocity at the same time as above; shown as reference with

a dotted line is the Keplerian angular velocity ΩKep, which matches

very well the outer parts of the torus.

mass and radius of the torus. Since the models collapse at

different times we have taken our measure at the end of the

simulation (i.e., at t ≃ 20 ms), when the accretion onto the

BH is small and essentially stationary. In all cases the mass of

the BH is MBH ≈ 2.9M⊙ and the spin is a ≡ J/M2 ≈ 0.8,

but the mass of the torus drops from about 0.063− 0.085 M⊙

to 0.033M⊙ in the case of model M1.62-B10. This is prob-

ably due to the fact that the magnetic field causes some matter

to move outside the core region and that will become a BH;

as a result, the longer the delay time, the larger the tori. We

note that, even if small, these tori could still provide sufficient

energy to power short GRBs.

As a final remark we note that at least over the timescales

considered here, the differences in the local dynamics of the

torus matter between magnetized and unmagnetized binaries

is very small. This is because the magnetic field is not yet

strong enough to produce significant changes in the dynam-

ics. A convincing example is shown in Fig. 7, which offers

a comparison of the properties of the tori produced either by

a magnetized binary (M1.62-B12, blue dashed line) or by

a unmagnetized one (M1.62-B0, red solid line). The top

panel, in particular, shows the rest-mass density along the x-

axis at about 3 ms after the formation of the apparent horizon

and which we truncate at 1010 g/cm
3
. Besides small differ-

ences (the data refers to very different simulations), the den-

sity profiles are very similar. An analogous conclusion can

be drawn when looking at the bottom panel, which shows the

angular velocity at the same time as above; also reported as
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TABLE II: Columns 2 − 3 report the mass M and spin a of the

BH, while column 4 shows the mass of the torus formed after the

merger of the high-mass models, and column 5 the radius of the torus

(computed as a mean of the position where the rest-mass density goes

below 1010gcm−3 in the time interval between 19 and 20 ms). All

the other quantities have been measured at t = 20ms), when the

accretion onto the BH is small and essentially stationary.

Binary M [M⊙] a ≡ J/M2 Mtor [M⊙] rtor [km]

M1.62-B0 2.90 0.80 0.076 105 ± 13

M1.62-B8 2.89 0.80 0.085 102 ± 16

M1.62-B10 2.94 0.82 0.033 69 ± 4

M1.62-B12 2.91 0.81 0.063 94 ± 4

reference with a dotted line is the Keplerian angular velocity

ΩKep, which matches very well the outer parts of the torus.

C. Low-mass binaries

As already shown in [6] and anticipated in the previous

Section, also in the low-mass case the presence of an initial

magnetic field introduces no significant modification in the

evolution of the binaries during the inspiral. To compare di-

rectly with the behavior of the high-mass binaries, we show

in the right column of Fig. 2 the evolution of the maximum of

the rest-mass density normalized to its initial value, the max-

imum of the absolute value of the divergence of the magnetic

field and the maximum of the magnetic field. We recall that

in Ref. [8] it was shown that the low-mass models take more

than 100 ms to collapse to BH in the unmagnetized case, so

the 20 ms of evolution of the present work are not sufficient to

reach the collapse.

In the top panel it is possible to appreciate that the evolu-

tion of ρmax for the unmagnetized case and those of the mag-

netized binaries are very similar, with only small differences

in the frequency of the oscillations of the HMNS formed af-

ter the merger. Overall, the presence of a magnetic field de-

creases the oscillation frequency (cf. inset), probably because

the additional magnetic tension counters the expansions of the

bar-deformed HMNS. Moving over to the right bottom panel

of Fig. 2, it is possible to note that also in the low-mass case all

the magnetized models show an amplification of the magnetic

field of about one order of magnitude and also in this case the

divergence of the magnetic field is zero essentially at machine

precision. As for the high-mass binaries, interesting point to

note is that, on the timescale studied here, the magnetic field

grows of about one order of magnitude soon after the merger

(at t ≈ 8 ms), but then it saturates to a constant value.

Additional information about the magnetic-field evolutions

for the three different models are given in the panels in the

right column of Fig. 3. Also in this case the toroidal compo-

nent of the magnetic field (red dot-dashed line) is amplified

exponentially because of the Kelvin-Helmholtz instability at

the time of the merger of the external layers of the stars and

it reaches the same value of the poloidal component. Both

components have comparable values for the remaining dura-

tion of the simulation and we expect that also in this case the

collapse of the HMNS will produce a torus with a magnetic

field configuration in which the toroidal and poloidal compo-

nents have the same strength. This seems to be, at least for the

equal-mass BNSs considered here, a universal characteristic

of the tori that are formed from these systems.

IV. GRAVITATIONAL-WAVE EMISSION

A. High-mass binaries

In Fig. 8 we show the GW signals emitted by the 4 high-

mass binaries considered in this paper. The top left panel

shows the unmagnetized case, the top right panel the model

with an initial magnetic field of 108 G, the bottom left panel

B ≈ 1010 G and the bottom right panel B ≈ 1012 G. In

the bottom right panel, together with M1.62-B12 (black

solid line, which collapses at t ≈ 16 ms), we also show -

to make the comparison clearer - the evolution of M1.62-B0

(red dashed line, which collapses later). All the waveforms

exhibit very similar features and, with the exception for the

different duration of the post-merger phase already discussed

in Section III A, they are almost indistinguishable from each

other. Therefore, for all the models the signal is essentially

composed of three parts: the inspiral (from t − r = 0 ms to

t − r ≈ 8 ms), the HMNS evolution (from t − r ≈ 8 ms
to t − r ≈ 13 − 17 ms) and the ring-down of the final BH.

The high-frequency oscillations in the post-merger phase are

due to the cores of the two NSs that repeatedly bounce against

each other until a sufficient amount of angular momentum is

extracted via GWs emission or is moved to the external lay-

ers of the HMNS via the magnetic-field tension. When this

happens, the centrifugal support becomes insufficient to bal-

ance the gravitational forces and the HMNS is induced to col-

lapse to a rotating BH with dimensionless spin J/M2 ≃ 0.80
(cf. Table II). Such oscillations are directly related to the os-

cillations visible in the evolution of the maximum of the rest-

mass density in the top-left panel of Fig. 2.

B. Low-mass binaries

In analogy with what done for the high-mass binaries,

we show in Fig. 9 the GW signal for the low-mass models

and also in this case the bottom right panel shows both the

M1.45-B12 (black solid line terminated at t − r ≈ 19 ms)
and M1.45-B0 (red dashed line) models for comparison.

Since we have not evolved these models until the collapse

of the HMNS to BH, only the inspiral and the post-merger

phase (the part of the signal for t − r & 8.5 ms) are present

in the GW signal. The high-frequency oscillations in the post-

merger phase are related to the formation of a bar-deformed

HMNS (as already described in [2]), whose spinning fre-

quency is not significantly affected by the presence of mag-

netic fields. Also in this case, all the waveforms are very sim-

ilar to each other both during the inspiral and after the merger.

As a result, and in contrast with what seen for the high-mass
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FIG. 8: Gravitational waves for the high-mass binaries as a function of the retarded time t − r in ms. The last panel shows for comparison

also the unmagnetized model (i.e., red dashed line which collapses at t − r ≈ 17ms) together with the model M1.62-B12 (black solid line

which collapses earlier).

case, the differences in the phase evolution are very small,

at least over the timescales considered here (cf. bottom right

panel). Clearly, if the HMNS continues to exist for longer

times (on the radiation-reaction timescale), then the small dif-

ferences may grow sufficiently and lead to a detectable differ-

ence. While the numerical simulation of the secular evolution

of the HMNS represents a challenge that we will address in

future work, its impact on the detectability of the magnetic

field will be further discussed in the next Section.

C. Detectability of the magnetic field

In order to assess the possibility of distinguishing between

the different waveforms and hence establish whether differ-

ent magnetizations of the HMNS can be measured, we have

computed the power spectral densities of the GWs discussed

before and plotted them in Fig. 10 against the sensitivity

curves of different ground-based GW detectors. In particu-

lar, we show the scaled power spectral densities h̃+(f)f1/2

for the high-mass case (left panel) and low-mass case (right

panel) with an initial magnetic field (dot-dashed red line) of

B ≈ 108 G (first row), B ≈ 1010 G (second row), and

B ≈ 1012 G (third row). In all the panels the sources are
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FIG. 9: Gravitational waves for the low-mass binaries as a function of the retarded time t− r in ms. The last panel shows for comparison also

the unmagnetized model (i.e., red dashed line which terminates at t− r = 20ms) together with the model 1.45-B12 (black solid line which

terminates earlier).

considered as placed at a distance of 100 Mpc. We report

also the spectral densities for binaries without magnetic field

(solid black line) to aid the comparison. Also shown are

the noise curves of the Virgo detector (dotted green line), of

the advLIGO [46] and advVirgo [47] detectors (short-dashed

blue and dot-dashed magenta lines, respectively), and of the

planned Einstein Telescope [15, 48] (dashed red line). With

a dotted vertical line we indicate the value of twice the initial

orbital frequency f0, so that the signal for f < 2f0 should be

ignored.

In all the panels the part of the signal up to about 700 Hz
is associated with the inspiral part of the waveform and in the

case of the high-mass binaries (panels in the left column) it is

also the strongest peak. The low-mass binaries (panels in the

right column) also show an additional peak with an amplitude

comparable to that at f ≈ 700 Hz and it is related to (twice)

the spinning period of the bar-deformed HMNS. That peak

appears for all the models at a frequency of approximately

2 kHz and its amplitude is sufficiently high to enter into the

band of advLIGO.

While we expect the position in frequency of the peak to

be accurate, its amplitude clearly depends on the subsequent

evolution of the HMNS, which we have followed here only

for about 12 ms. Clearly, should the HMNS survive on much

longer timescales as shown in [8] (see the right panel of fig-

ure A1 in the appendix of [8]), then the amplitude of this peak
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FIG. 10: Scaled power spectral densities h̃+(f)f1/2 for the high-mass case (left panel) and low-mass case (right panel) without magnetic field

(solid black line) or with an initial magnetic field (dot-dashed red line) of ≈ 108 G (first row), ≈ 1010 G (second row) or ≈ 1012 G (third

row). In all the panels the sources are considered when placed at a distance of 100 Mpc. Shown also are the noise curves of the Virgo detector

(dotted green line), of the advanced LIGO and advanced Virgo detectors (short-dashed blue and dot-dashed magenta lines, respectively), and

of the planned Einstein Telescope (dashed red line). The dotted vertical line indicates the value of twice the initial orbital frequency f0.
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could be considerably larger and scale with the square root

of the period in which the HMNS continues to rotate before

collapsing. Even when leaving aside the role that the energy

extraction via neutrinos may play on the evolution of the post-

merger object, the hydrodynamical survival of the bar defor-

mation in a rapidly rotating star is still a matter of debate. The

general-relativistic simulations of isolated NSs first carried

out in Ref. [49] and then analyzed in great detail in Ref. [50–

52], all indicate that the bar deformation persists only over a

timescale which is comparable with (or slightly larger than)

the dynamical one6. This is due to the coupling between the

m = 2 bar deformation with other unstable modes (most no-

tably the m = 1 one), which grow to comparable amplitudes

and suppress the instability, redistributing angular momentum

(see also [55] for a perturbative analysis in terms of a Fara-

day resonance). On the other hand, simulations of stellar-core

collapse (see [56] for a recent review and a complete set of

references) and the very long simulations carried out in [8]

suggest that bar-deformed stellar cores or HMNSs can be pro-

duced and survive on timescales much longer than the dynam-

ical one. This different behavior in the persistence of the bar

deformation may well be due to the very different distribution

of angular momentum and density stratification between the

two configurations. Work is ongoing to confirm whether this

is actually the case.

Also quite evident from all the panels is that the spectra are

very similar but not identical and that these differences be-

come more appreciable for larger initial magnetic fields. In-

deed the largest differences appear for B ≃ 1010 and, as for

the accelerated collapse discussed in Fig. 5, magnetic fields

of this strength are those that most influence the postmerger

dynamics. Once again, it is worth emphasizing that the spec-

tra presented here refer to a possibly too short portion of the

evolution of the HMNS and if the HMNS does survive on

much longer timescales, then the small differences shown here

would become considerably more pronounced and well within

the sensitivities of advanced detectors.

In order to asses in a more quantitative way the possibility

to detect these small differences in the GWs, we have com-

puted the overlap between two waveforms h
B1

, h
B2

from bi-

naries with initial magnetic fields B1, B2 as

O[h
B1

, h
B2

] ≡ 〈h
B1
|h

B2
〉

√

〈h
B1
|h

B1
〉〈h

B2
|h

B2
〉

, (16)

where 〈h
B1
|h

B2
〉 is the scalar product and is defined as

〈h
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|h

B2
〉 ≡ 4ℜ

∫ ∞

0

df
h̃

B1
(f)h̃∗

B2
(f)

Sh(f)
, (17)

and h̃(f) is the Fourier transform of the GW h(t) and Sh(f) is

the noise power spectral density of the detector (we have here

considered advLIGO). Taken two waveforms, the closer to 1

6 Similar results have been found also in Newtonian simulations [53] and

also for magnetized stars [54]

is their overlap, the harder will be for a detector to distinguish

them.

The overlaps computed for all the magnetized binaries con-

sidered here when compared with the corresponding non-

magnetized models are collected in Table III. Note that we

present both the total overlap O, i.e., the overlap computed

over the full time-series, and the overlaps computed over the

inspiral only or the post-merger only, i.e., Oinsp and Opostm,

respectively. Given the values in Table III and since present

and advanced detectors could potentially distinguish two sig-

nals if O < 0.995, it is clear that a detector such as advLIGO

or advVirgo would not be able to distinguish between a mag-

netized binary and an unmagnetized one (cf. second column in

the Table). Similar considerations apply also when the over-

lap is computed only over the inspiral phase (cf. third column

in the Table). However, if the overlap is computed only over

the post-merger phase (cf. fourth column in the Table) then

it is evident that the differences among the various binaries

are much larger and the corresponding overlaps considerably

smaller. Hence, we conclude that a long-lived HMNS and a

detector with sufficient sensitivity at high frequencies (such as

the Einstein Telescope) could be able to measure the level of

magnetization in the progenitor NSs.

To complete the information about the GW emission from

magnetized BNSs, we have also computed the signal-to-

noise-ratio (SNR) defined as

(

S

N

)2

= 4

∫ ∞

0

|h̃+(f)|2
Sh(f)

df , (18)

for different detectors and we have listed their values in Ta-

ble III for a source at 100 Mpc. Overall, it is easy to real-

ize that while the current Virgo and LIGO detectors (respec-

tively the fifth and sixth columns) would not be able to detect

these signals, SNRs larger than 1 are obtained when consid-

ering advLIGO and advVirgo, and even larger than 40 in the

case of the Einstein Telescope (last column in the Table). It

is worth stressing that these SNRs should be seen as lower

limits. Firstly, because the binaries are expected to enter the

sensitivity band at lower frequencies than the ones considered

here, hence adding considerable power to the SNR. Secondly,

as discussed extensively above, the possibility of a long-lived

HMNS could significantly add to the power at high frequen-

cies, hence increasing the SNR.

In summary: the results presented here indicate that BNSs

do represent strong sources of GWs and that these can be de-

tected at distances up to 100 Mpc by the planned advanced

interferometers. Determining the level of magnetization of

the progenitor stars will be very difficult if the detected sig-

nal is confined essentially to the inspiral, while it could be

possible if the HMNS survives for sufficiently long times as a

deformed and spinning bar. In this latter case, detectors which

have high sensitivities at high frequencies, such as advLIGO

and more importantly the Einstein Telescope, will be in a good

position to measure the strength of the magnetic fields and

hence extract important physical and astrophysical informa-

tion on the progenitor NSs.
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TABLE III: GW-related quantities. Column 2 shows the total overlap computed for advLIGO between the magnetized models and the cor-

responding unmagnetized binary, while columns 3 and 4 represent the overlap computed over the inspiral and over the post-merger phase.

Finally, columns 5 − 9 show the SNR computed for different detectors for all the eight models considered here. The SNR has been obtained

assuming a source at 100 Mpc.

Binary O Oinsp Opostm SNR (Virgo) SNR (LIGO) SNR (AdvVirgo) SNR (AdvLIGO) SNR (ET)

M1.45-B0 1.000 1.000 1.000 0.33 0.23 1.94 2.11 38.90

M1.45-B8 0.997 0.999 0.926 0.33 0.23 1.94 2.10 38.72

M1.45-B10 0.996 0.999 0.934 0.33 0.23 1.94 2.11 38.82

M1.45-B12 0.996 0.999 0.899 0.33 0.23 1.94 2.11 39.01

M1.62-B0 1.000 1.000 1.000 0.36 0.25 2.00 2.24 42.57

M1.62-B8 0.998 1.000 0.938 0.36 0.25 2.00 2.24 42.59

M1.62-B10 0.993 1.000 0.724 0.36 0.25 2.00 2.23 42.48

M1.62-B12 0.997 1.000 0.893 0.36 0.25 2.00 2.24 42.49

V. CONCLUSIONS

There is little doubt that BNSs represent prime sources for

present and advanced GW detectors. Equally clear is that NSs

are observed to have large magnetic fields, with values which

can be as high as 1016 G for isolated and young magnetars.

It is therefore of great importance to assess what is the role

that magnetic fields play during the inspiral and merger on

BNSs. Extending a research presented in [6], we have pre-

sented the first numerical simulations of magnetized BNSs

with astrophysically realistic magnetic fields. More specif-

ically, we have carried out a systematic investigation of the

dynamics of both matter and magnetic fields of equal-mass

BNSs. While previous works [3, 5, 6] considered only astro-

physically unrealistic magnetic fields (B ≈ 1016−1017 G) or

focused mainly on the inspiral part [6], we have here consid-

ered magnetic-field values ranging from 108 to 1012 G, and

evolved BNSs through all the stages of the inspiral, merger,

HMNS evolution, and collapse to BH.

Overall, we have shown that realistic magnetic fields do not

affect sensibly the dynamics of the inspiral, but they can in-

fluence that of the post-merger, where they can accelerate the

collapse of the HMNS. The different time intervals from the

merger to the collapse of the HMNS also imply that the tori

produced around the BH have slightly different masses, re-

flecting the different distributions of matter and angular mo-

mentum at the time of collapse. As a result of the tight corre-

lation between the degree of magnetization of the NS matter

and the delay time of the collapse, the measurement of the lat-

ter via a GW detection will allow to infer the former. To the

best of our knowledge, this is the first time that effects of this

type have been discussed in the evolution of inspiralling and

magnetized NSs.

Magnetic fields can be amplified at the merger of the bi-

nary, when a Kelvin-Helmholtz instability develops between

the outer layers of the two stars. Although the resolution used

here is the highest employed so far in simulating magnetized

BNSs and it is sufficient to reveal the development of the in-

stability and the exponential growth of the toroidal magnetic

field, the amplification we have measured is only of about one

order of magnitude and much smaller than that reported in

Ref. [40], where the newly produced fields reach values in

equipartition with the kinetic energy. Although it is possi-

ble that the different results are due to the different numerical

methods employed in Ref. [40], we believe the reason behind

our modest amplifications to be that the shear layer between

the two stars survives only for about 1 ms, before being de-

stroyed by the collision between the two stellar cores. Such a

short timescale and the relatively small velocities at the shear

layer are probably insufficient to yield the type of amplifica-

tion that has been obtained in more “controlled” simulations

of the Kelvin-Helmholtz instability [41, 42].

The toroidal magnetic field continues to be amplified also

after the Kelvin-Helmholtz instability has been suppressed

and it can reach values that are comparable with the initial

poloidal one either during the evolution of the HMNS (in the

case of low-mass binaries) or during the evolution of the torus

produced after the HMNS collapse (in the case of high-mass

binaries). This result is particularly important since it suggests

that the magnetic field topology in the tori formed from BNS

mergers is not purely poloidal, as instead several magnetized

accretion disk simulations have assumed so far.

When considered in terms of their GW emission, the mag-

netized binaries studied here show that it is unlikely that the

degree of magnetization will be measurable by present and

advanced detectors if the inspiral is the only part of the sig-

nal available. However, if the HMNS survives for sufficiently

long times as a deformed and spinning bar, then the modi-

fications introduced by the presence of magnetic fields could

lead to waveforms which differ appreciably from those of non-

magnetized binaries. In this case, detectors which have high

sensitivities at frequencies larger than about 2 kHz, such as

advLIGO and, more importantly, the Einstein Telescope, will

be able to measure these effects for binaries up to distances of

about 100 Mpc.
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