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Abstract

We provide a semi-analytic derivation of approximate evolution equations for density pertur-

bations of warm dark matter (WDM) candidates that decoupled while relativistic with arbitrary

distribution functions, their solutions at small scales and a simple numerical implementation that

yields their transfer functions and power spectra. Density perturbations evolve through three

stages: radiation domination when the particle is relativistic and non-relativistic and matter domi-

nation. An early ISW effect during the first stage leads to an enhancement of density perturbations

and a plateau in the transfer function for k . kfs the free streaming wave vector. An effective fluid

description emerges at small scales which includes the effects of free streaming in initial conditions

and inhomogeneities. The transfer function features WDM-acoustic oscillations at scales k & 2 kfs.

A simple analytic interpolation of the power spectra between large and small scales and a numerical

implementation valid for arbitrary distribution functions is provided. As an application we study

the power spectra for two models of sterile neutrinos with m ∼ keV produced non-resonantly and

compare our results to those obtained from Boltzmann codes.

PACS numbers: 98.80.Cq; 98.80.-k; 98.80.Bp

∗Electronic address: boyan@pitt.edu
†Electronic address: juw31@pitt.edu

1



I. INTRODUCTION

In the concordance ΛCDM standard cosmological model dark matter (DM) is composed

of primordial particles which are cold and collisionless[1]. In this cold dark matter (CDM)

scenario particles feature negligible small velocity dispersion leading to a power spectrum

that favors small scales. Structure formation proceeds in a hierarchical “bottom up” ap-

proach: small scales become non-linear and collapse first and their merger and accretion

leads to structure on larger scales, dense clumps that survive the merger process form satel-

lite galaxies.

Large scale simulations seemingly yield an over-prediction of satellite galaxies[2] by almost

an order of magnitude larger than the number of satellites that have been observed in Milky-

Way sized galaxies[2–6]. Simulations within the ΛCDM paradigm also yield a density profile

in virialized (DM) halos that increases monotonically towards the center[2, 7–10] and features

a cusp, such as the Navarro-Frenk-White (NFW) profile[7] or more general central density

profiles ρ(r) ∼ r−β with 1 ≤ β . 1.5[4, 7, 10]. These density profiles accurately describe

clusters of galaxies but there is an accumulating body of observational evidence[11–17, 19, 20]

that suggest that the central regions of (DM)-dominated dwarf spheroidal satellite (dSphs)

galaxies feature smooth cores instead of cusps as predicted by (CDM). This difference is

known as the core-vs-cusp problem[17]. Salucci et.al.[18] reported that the mass distribution

of spiral disk galaxies can be best fit by a cored Burkert-type profile.

In ref.[20] a “galaxy size” problem has been reported, where large scale simulations at

z = 3 yield galaxies that are too small, this problem has been argued to be related to that

of the missing dwarf galaxies.

Thus there seems to be emerging evidence that the ΛCDM paradigm for structure for-

mation may have problems at small scales[21].

Warm dark matter (WDM) particles were invoked[22–24] as possible solutions to the

discrepancies both in the over abundance of satellite galaxies and as a mechanism to smooth

out the cusped density profiles predicted by (CDM) simulations into the cored profiles that

fit the observations in (dShps). (WDM) particles feature a range of velocity dispersion in

between the (CDM) and hot dark matter leading to free streaming scales that smooth out

small scale features[25] and could be consistent with core radii of the (dSphs). If the free

streaming scale of these particles is smaller than the scale of galaxy clusters, their large scale
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structure properties are indistinguishable from (CDM) but may affect the small scale power

spectrum[26] so as to provide an explanation of the smoother inner profiles of (dSphs), fewer

satellites and the size of galaxies at z = 3[20].

Furthermore recent numerical results hint to more evidence of possible small scale dis-

crepancies with the ΛCDM scenario: another over-abundance problem, the “emptiness of

voids” [27] and the spectrum of “mini-voids”[28] both may be explained by a WDM candi-

date. Constraints from the luminosity function of Milky Way satellites[29] suggest a lower

limit of ∼ 1 keV for a WDM particle, a result consistent with Lyman-α[30–32], galaxy

power spectrum[33] and lensing observations[34]. More recently, results from the Millenium-

II simulation[35] suggest that the ΛCDM scenario overpredicts the abundance of massive

& 1010M⊙ haloes, which is corrected with a WDM candidate of m ∼ 1 keV. This body of

emerging evidence in favor of WDM as possible solutions to these potential small scale prob-

lems of the ΛCDM scenario warrants deeper understanding of their small scale clustering

properties.

A model independent analysis suggests that dark matter particles with a mass in the

keV range is a suitable (WDM) candidate[36, 37], and sterile neutrinos with masses in the

∼ keV range are compelling (WDM) candidates[38–51]. These neutrinos can decay into an

active-like neutrino and an X-ray photon[52], and recent astrophysical evidence in favor of

a 5 keV line has been presented in ref.[53] (see also[54]). The analysis in ref.[55] suggests

upper mass limits for a sterile neutrino in the range ∼ 6− 10 keV. Possible direct detection

signals of such candidates have been recently assessed in ref.[56].

A property of a dark matter candidate relevant for structure formation is its distribu-

tion function after decoupling[57, 59–61]. It depends on the production mechanism and

the (quantum) kinetics of its evolution from production to decoupling. There are differ-

ent production mechanisms of sterile neutrinos[38–41, 43–51, 57, 58, 62], leading in gen-

eral to non-thermal distribution functions. There is some tension between the X-ray[52]

and Lyman-α forest[30–32] data if sterile neutrinos are produced via the Dodelson-Widrow

(DW)[38] non-resonant mixing mechanism, leading to the suggestion[55] that these may not

be the dominant (DM) component. Constraints from the Lyman-α forest spectra are partic-

ularly important because of its sensitivity to the suppression of the power spectrum by free-

streaming in the linear regime[30–32]. The gravitational clustering properties of collisionless

(DM) in the linear regime are described by the power spectrum of gravitational perturba-
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tions. Free streaming of collisionless (DM) leads to a suppression of the transfer function

on length scales smaller than the free streaming scale via Landau damping[26, 63, 64]. This

scale is determined by the decoupling temperature, the particle’s mass and the distribution

function at decoupling[65].

Goals: The most accurate manner to obtain the transfer function for DM perturbations

is to use the publicly available computer codes for cosmic microwave background (CMB)

anisotropies[66–68], with modifications that would allow to include the different distribution

functions of the WDM particles. These codes include baryons, radiation, neutrinos and

DM and yield very accurate numerical results. The drawbacks in using these codes for

WDM particles are that they do not readily yield to an understanding of what aspects of

a distribution function influence the small scale behavior, and must be modified for the

individual WDM candidates because their distribution functions are “hard-wired” in the

codes.

The goals of this article are twofold:

• i): a semi-analytic derivation and solution of the evolution equations for (WDM)

density perturbations, understanding of the main physical processes that determine

the transfer function of WDM candidates at small scales that entered the horizon well

before matter-radiation equality for arbitrary distribution functions.

• ii): to provide a relatively simple formulation of the power spectrum that allows a

straightforward and efficient numerical implementation, valid for arbitrary distribution

functions.

In order to achieve these goals we must necessarily invoke several approximations: a) we

neglect the contribution from baryons, b) we also neglect anisotropic stresses resulting from

the free streaming of ultrarelativistic standard model active neutrinos. These approxima-

tions entail that the results of the transfer functions will be trustworthy up to 10 − 15%

accuracy. However, the main purpose of this work is not to obtain the WDM transfer func-

tion to a few percent accuracy, but to provide a semi-analytic “tool”, to study the main

features of the transfer function at small scales for a particular WDM candidate given its

distribution function determined by the microscopic process of production and decoupling.

If the transfer function features important small scale properties that could potentially lead
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to substantial changes in structure formation, this would warrant more accurate study with

the CMB codes and eventual inclusion into N-body simulations.

In this article we study the transfer function for WDM density and gravitational perturba-

tions by solving the collisionless Boltzmann equation in a radiation and matter dominated

cosmology including the perturbations from the radiation fluid for arbitrary distribution

function of the WDM particle, thus the results (within the acknowledged possible errors)

are valid for z > 2.

Strategy:

WDM particles with a mass in the ∼ keV range typically decouple from the primordial

plasma when they are still relativistic in the radiation dominated era and become non-

relativistic when T ≈ m ≈ keV when the size of the comoving horizon η . Mpc.

Therefore we anticipate three stages of evolution for density perturbations: I) when the

particle is still relativistic, this is a radiation dominated (RD) stage, II) when the particle is

non-relativistic but still during the (RD) era, III) when matter perturbations dominate the

gravitational potential (the particle is non-relativistic in this era). When the WDM particles

are relativistic, their contribution to the total radiation component is negligible because their

effective number of degrees of freedom is ≪ 1 (see below). Therefore during stages I) and II)

the gravitational potential is completely determined by the radiation fluid. Our strategy is to

solve the Boltzmann equation for WDM density perturbations in the three stages. In stages

I) and II) the gravitational potential is completely determined by the radiation fluid and

the Boltzmann equation is solved by considering the gravitational potential as a background

determined by the Einstein-Boltzmann equation for the radiation fluid. In stage III) when

matter perturbations dominate, the 00-Einstein equation for small scale perturbations is

equivalent to Poisson’s equation. The initial conditions for the Boltzmann equation are

given deep in the (RD) era when the relevant modes are well outside the horizon. In this

work we consider adiabatic initial conditions determined by the primordial perturbations

seeded during inflation. The main strategy is to use the solution of the integration of the

Boltzmann equation in a previous stage as the initial condition for the next stage. During

stage I) suppression by free streaming is independent of the distribution function and the

free streaming scale grows with the comoving horizon. However we find that modes that

enter the horizon when the particle is relativistic with wavelengths up to the sound horizon
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are amplified via an early integrated Sachs-Wolfe effect (ISW) as a consequence of the time

dependence of the gravitational potential produced by acoustic oscillations of the radiation

fluid. The evolution of WDM density perturbations at the end of this stage determine

the initial conditions for stage II) when the particle becomes non-relativistic but still the

gravitational potential is determined by the perturbations in the radiation fluid. During

this stage the free streaming scale depends only logarithmically on the comoving horizon.

Whereas CDM perturbations grow logarithmically during this stage (Meszaros effect), WDM

perturbations are suppressed by a free streaming function that depends on the distribution

function of the decoupled WDM particle. In stage III) when WDM perturbations dominate

the gravitational potential, density perturbations obey a self-consistent Boltzmann-Poisson

integral equation which we analyze in a systematic expansion valid for small scales.

The main results are:

• The main results are a semi-analytic derivation of the evolution for density pertur-

bations of WDM species that decoupled during radiation domination with adiabatic

superhorizon initial conditions. A solution of the evolution equations throughout the

three states, and a simple numerical implementation that yields the WDM transfer

function and power spectrum for arbitrary distribution functions.

• During the (RD) era acoustic oscillations in the radiation fluid determine the grav-

itational potential φ. The time dependence of φ induces an early ISW that results

in an enhancement of the amplitude of WDM density perturbations for wavelengths

larger than the sound horizon of the radiation fluid at ηNR when the particle becomes

non-relativistic.

• In stage III), we turn the Boltzmann-Poisson equation into a self-consistent differential

integral equation that admits a systematic Fredholm series solution. Its leading term

is the Born approximation and lends itself to a simple and straightforward numerical

analysis for arbitrary distribution functions. This approximation is equivalent to a fluid

description but with an inhomogeneity and initial conditions completely determined

by the past history during stages I) and II). The resulting fluid equation is a WDM

generalization of Meszaros equation[69–71]. The solutions describe WDM acoustic

oscillations, the suppression by free streaming is manifest in the inhomogeneity and

initial conditions.
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• In the Born approximation we obtain a semi-analytic expression for the transfer func-

tion and compare it to the CDM case. We also provide an expression for the power

spectra that interpolates between large and small scales and give a concise summary

for its numerical evaluation for arbitrary distribution functions, mass and decoupling

temperature.

• Although we do not advocate nor endorse any particular WDM model, as an appli-

cation of the method and illustration of the results we study in detail the transfer

functions and power spectra of sterile neutrinos with m ∼ keV. There are many dif-

ferent suitable mechanisms for sterile neutrino production[38–41, 43–51, 57, 58, 62]

and as specific examples in this article we focus on two different scenarios of ster-

ile neutrinos produced non-resonantly: via the (DW) mechanism[38] and via boson

decay[43, 57, 58]. Although we recognize that Lyman- α constraints[30–32, 55] may

already rule out the (DW) mechanism, we nevertheless study this case because we

can compare the results from our semi-analytic method to the results of Boltzmann

codes obtained in refs.[32, 41, 42] for this particular case, thereby establishing a solid

benchmark for the reliability of results found here. The second choice, provides a mi-

croscopic distribution function obtained from a quantum kinetic description which also

describes the production of sterile neutrinos by inflaton[43] and gravitino[62] decay.

Whereas the (DW) distribution function departs from thermality only in an overall

constant β ≪ 1 that multiplies the Fermi-Dirac distribution function, in the (BD) case

the distribution function resulting from freeze out at temperatures of the order of the

electroweak scale is highly non-thermal with an enhancement at low momentum which

reduces the velocity dispersion, this non-thermality and the higher decoupling temper-

ature effectively make this species colder than (DW). Thus the first choice provides a

benchmark test case for comparison with results available in the literature[32, 41, 42].

The results of the Born approximation agree to < 5% with the numerical fit to the

transfer function provided in ref.[32] in the region where the fit is valid. The sec-

ond choice provides a definite contrast to the (DW) case that allows us to glean how

details of the distribution function affect the transfer function and power spectra at

small scales.

This work differs from that in ref.[72] that analyzes (standard model active) neutrinos as
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(WDM) but in an Einstein-Desitter cosmology, in two main aspects: i) our study includes

the (RD) era and the transition to matter domination (MD) including the time dependence

of the gravitational potential, which is a source of an early ISW effect during stage I) and

the history during stages I) and II), and ii) we study non-thermal distribution functions.

The inclusion of stages I) and II) during the (RD) era also distinguishes this work from that

in ref.[57, 61].

II. PRELIMINARIES

We consider a radiation and matter dominated cosmology:

H2 =
ȧ2

a4
= H2

0

[
Ωr

a4
+

Ωm

a3

]
=
H2

0Ωm

a4
[a + aeq] (II.1)

where the dot stands for derivative with respect to conformal time (η), the scale factor is

normalized to a0 = 1 today, and

aeq =
Ωr

Ωm
≃ 1

3229
. (II.2)

Introducing

ã =
a

aeq

, (II.3)

it follows that
d ã

dη
=

[
H2

0Ωm

aeq

] 1

2

[1 + ã]
1

2 (II.4)

leading to

η =
2

[
H2

0
Ωm

aeq

] 1

2

[√
1 + ã− 1

]
≡ 288.46

[√
1 + ã− 1

]
(Mpc) , (II.5)

where we have used Ωmh
2 = 0.134[73]. At matter-radiation equality we define

keq ≡ Heq aeq =
√

2

[
H2

0Ωm

aeq

] 1

2

=
9.8 × 10−3

Mpc
(II.6)

corresponding to the comoving wavevector that enters the Hubble radius at matter-radiation

equality. Furthermore from (II.5) we find the comoving size of the horizon at matter-

radiation equality,

ηeq =
2
√

2(
√

2 − 1)

Heqaeq
≃ 1.172

Heqaeq
≃ 120 Mpc (II.7)
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from which we obtain

ã =
η

η∗

[
1 +

η

4η∗

]
; η∗ =

ηeq

2(
√

2 − 1)
=

√
2

keq

. (II.8)

During radiation domination

ã ≈
( η
η∗

)
≪ 1 , (II.9)

and in this regime

η ≃ ã 144.23 (Mpc) . (II.10)

During matter-radiation domination, a comoving wavevector k enters the (comoving)

Hubble radius when k = Ha corresponding to a value of the scale factor

ãk =
1 +

√
1 + 8

(
k

keq

)2

4
(

k
keq

)2 . (II.11)

We are interested in small scale properties for perturbations with comoving wavelenghts

100 pc ≤ λ ≡ 2π/k < 10 Mpc corresponding to k ≫ keq. For these modes, which have

entered the horizon during the radiation dominated era, it follows that

ãk ∼
√

2
keq

k
≪ 1 . (II.12)

A weakly interacting massive particle (WIMP) of mass m ∼ 100 GeV that undergoes

chemical freeze-out at Tch ∼ m/20 and thermal decoupling at Td ∼ 10 MeV when ãd ∼ 10−7,

and ηd ∼ 10 pc, i.e, deep in the (RD) era, is non-relativistic at decoupling. Scales . ηd where

inside the horizon when the DM particle was still coupled to the cosmological plasma and

acoustic oscillations of the photon fluid are imprinted on the transfer function at these very

small scales[74]. However, larger scales were outside the horizon and their perturbations

are frozen, they enter the horizon after decoupling and their evolution is described by the

collisionless Boltzmann equation.

On the other hand, sterile neutrinos with mass m ∼ keV decoupled thermally at much

higher temperature (∼ 150 MeV for (DW)[38], ∼ 100 GeV for production via scalar or vector

boson decay[57, 58]), and become non-relativistic at T ∼ m ∼ keV, namely for ã ∼ 10−3.

In terms of conformal time, m ∼ keV sterile neutrinos become non-relativistic at

ηNR ∼ 0.2 Mpc

(
keV

m

)
, (II.13)
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so that for η ≪ ηNR this (DM) candidate is relativistic and non-relativistic for η > ηNR.

Therefore, for DM candidates that decoupled for temperatures Td & 10 MeV all modes of

cosmological relevance for (comoving) scales λ & 50 pc may be studied in the linear regime

via the collisionless Boltzmann-Vlasov equation. A firmer estimate will be provided in

section (IIIA).

For WDM particles with m ∼ keV we see from eqns. (II.12, II.6) that comoving scales

λ & 0.2 Mpc entered the horizon when the DM particle is non-relativistic, whereas smaller

scales entered during the radiation dominated stage when the WDM particle is relativistic.

Therefore comoving scales smaller than that of cluster of galaxies became sub-horizon during

(RD) when the WDM particle is still relativistic. This is important because free streaming

changes from the relativistic to the non-relativistic case: during the relativistic stage the free

streaming length is of the order of the horizon, but much smaller during the non-relativistic

stage (see below).

Hence as anticipated above, there are three distinct stages of evolution of density pertur-

bations for WDM particles with m ∼ keV and scales smaller than 0.2 − 1 Mpc:

• I) (RD), relativistic η < ηNR,

• II) (RD), non-relativistic ηeq > η > ηNR,

• III) matter domination (MD), non-relativistic for η ≥ ηeq.

III. EVOLUTION OF PERTURBATIONS: THE BOLTZMANN EQUATION

We follow the notation of Ma and Bertschinger[75] (see also[76–80]), and consider only

scalar perturbations in the conformal Newtonian gauge (longitudinal gauge) with a per-

turbed metric

g00 = −a2(η)
[
1 + 2ψ(~x, η)

]
(III.1)

gij = a2(η)
[
1 − 2φ(~x, η)

]
δij . (III.2)

The perturbed distribution function is given by

f(p, ~x, η) = f0(p) + F1(p, ~x, η) (III.3)
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where f0(p) is the unperturbed distribution function, which after decoupling obeys the colli-

sionless Boltzmann equation in absence of perturbations and ~p, ~x are comoving momentum

and coordinates respectively. As discussed in ref.[57, 60, 61] the unperturbed distribution

function is of the form

f0(p) ≡ f0(y; x1, x2, · · · ) (III.4)

where

y =
p

T0,d
(III.5)

where p is the comoving momentum and T0,d is the decoupling temperature today,

T0,d =
( 2

gd

) 1

3

TCMB , (III.6)

with gd being the effective number of relativistic degrees of freedom at decoupling, TCMB =

2.35 × 10−4 eV is the temperature of the (CMB) today, and xi are dimensionless couplings

or ratios of mass scales.

The methods and main results presented below are general and valid for arbitrary f0.

However, although we do not endorse or advocate any particular WDM model it is obviously

important to test the results of our semi-analytic study and the reliability of the numerical

implementation and to provide at least some preliminary understanding of the influence of

the details of the distribution function on the WDM power spectrum within some established

models, here we focus our discussion on sterile neutrinos with the mass range m ∼ keV.

These candidates may be produced by many different mechanisms[38–41, 43–51, 57, 58] as

mentioned above.

While we do not advocate or endorse a production mechanism, in this article we apply

the results and numerical implementation to analyze in detail two test scenarios: sterile

neutrinos produced by the Dodelson-Widrow (DW) (non-resonant) mechanism for which

f0(p) =
β

ey + 1
(III.7)

where β ≃ 10−2[38], and sterile neutrinos produced by the decay of a scalar with a mass of

the order of the EW scale or vector bosons (BD), which are abundant at temperatures near

the EW scale[57, 58],

f0(p) = λ
g5/2(y)√

y
; g5/2(y) =

∞∑

n=1

e−n y

n
5

2

(III.8)
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and λ ∼ 10−2[57, 58]. This distribution function is similar to that found from inflaton[43]

and gravitino[62] decays.

As discussed above, (DW) sterile neutrinos may already be ruled out by observations,

however we study this model because it allows us to directly compare our results with the

power spectrum obtained with Boltzmann codes in refs.[32, 41, 42] thereby establishing a

benchmark for the semi-analytic method and its numerical implementation. The (BD) case

represents a highly non-thermal distribution function obtained in different scenarios and

provides a clear contrast with the (DW) case allowing to glean how the small scale aspects

of the power spectra depend on the distribution function. A next step in the program will

apply the method to the study of the power spectra for other WDM candidates.

We will also compare the results for the WDM distributions with that for weakly in-

teracting massive particles (WIMPs) which freeze-out with a Maxwell-Boltzmann (MB)

distribution,

f0(p) = N e−
y2

2x ; x =
m

Td
(III.9)

where m ∼ 100 GeV, Td ∼ 10 MeV is the thermal decoupling temperature, and N is

determined at chemical freeze-out[82].

An important observation for WDM candidates is that during the radiation dominated

era when these are relativistic, their contribution to the energy density is

ρ =
1

a4

∫
d3p

(2π)3
p f0(p) ∝ T 4(t) ×

{
β (DW)

λ (BD)
(III.10)

for sterile neutrinos produced by the Dodelson-Widrow (DW) or scalar decay (BD) mecha-

nisms. Namely these WDM candidates contribute to the radiation component with an effec-

tive number of degrees of freedom proportional to β, λ,∼ 10−2 and can be safely neglected in

their contribution to the radiation component. The same argument justifies neglecting the

anisotropic stress (quadrupole moment) arising from the free streaming of these particles

when they are relativistic.

Introducing spatial Fourier transforms in terms of comoving momenta ~k (we keep the

same notation for the spatial Fourier transform of perturbations), the linearized Boltzmann

equation for perturbations is given by[75–80]
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Ḟ1(~k, ~p ; η) + i
k µ p

ǫ(p, η)
F1(~k, ~p ; η) +

(d f0(p)

dp

)[
p φ̇(~k, η) − ik µ ǫ(p, η) ψ(~k, η)

]
= 0 (III.11)

where µ = k̂ · p̂, dots stand for derivative with respect to conformal time η and

ǫ(p, η) =
√
p2 +m2 a2(η) (III.12)

is the conformal energy of the particle of mass m. During (RD) and (MD), the 00 component

of Einstein’s equation in conformal Newtonian gauge is[76]

φ(~k, η) + 3
H
k

(
1

k
φ̇(~k, η) +

H
k
ψ(~k, η)

)
= −3

4

k2
eq

k2 ã2

[
ã
(δρ
ρ

)
m

+
(δρ
ρ

)
r

]
, (III.13)

where

H =
˙̃a

ã
= aH = keq

[1 + ã]
1

2√
2 ã

(III.14)

is the inverse comoving Hubble radius, and

δρj(~k, η) =
1

a4

∫
d3p

(2π)3
ǫ(p, η) F1,j(~k, ~p, η) ; j = r,m . (III.15)

In what follows we neglect stress anisotropies leading to

φ(~k, η) = ψ(~k, η) , (III.16)

thereby neglecting the quadrupole moment from relativistic standard model (active) neutri-

nos. We also neglect the baryonic component in the matter contribution, a compromise that

allows us to pursue a semi-analytic understanding of the (DM) transfer function at small

scales. The remaining Einstein’s equations are not necessary for the discussion that follows.

In absence of stress anisotropy, Einstein’s equation (III.13) can be written in another useful

form,

2

3

k2ã2

k2
eq

φ+ (1 + ã)
(
ã φ
)′

= −1

2

[
ã
(δρ
ρ

)
m

+
(δρ
ρ

)
r

]
(III.17)

where
′ ≡ d

dã
. (III.18)

The formal solution of the Boltzmann equation (III.11) is

F1(~k, ~p ; η) = F1(~k, ~p ; ηi) e
−ik µ l(p,η,ηi)−p

(d f0(p)

dp

) ∫ η

ηi

dτ e−ik µ l(p,η,τ)

[
dφ(~k, τ)

dτ
−i k µ

V (p, τ)
φ(~k, τ)

]

(III.19)
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where

l(p, η, η′) =

∫ η

η′

V (p, τ) dτ ; V (p, τ) =
p

ǫ(p, τ)
(III.20)

is the comoving free streaming distance that a particle travels between η′ and η with physical

velocity V (p, τ) = p/ǫ(p, τ).

The solution (III.19) with (III.20) is the starting point of our analysis. The density and

gravitational perturbations produced by a WDM particle with m ∼ keV that decouples from

the plasma when it is still relativistic are obtained by evolving the solution (III.19) through

the three stages : I) when the DM particle is still relativistic during (RD), II) when the

particle becomes non-relativistic for ã & 10−3 but still during (RD), III) during (MD) ã ≥ 1

(the DM particle is non-relativistic).

During the first two stages the perturbation in the gravitational potential φ in (III.19) is

completely determined by the radiation component to which the WDM candidate contributes

negligibly as discussed above. The difference between stages I) and II) is manifest in the

free streaming distance l(p, η, η′). During stage III) the gravitational potential is determined

by the DM density perturbations self-consistently through Poisson’s equation (this is the

advantage of the conformal Newtonian gauge). Our strategy is to determine initial conditions

deep in the radiation era when the cosmologically relevant modes are still superhorizon, and

to evolve the solution (III.19) through each of these stages, using the distribution function

at the end of each stage as the initial condition for the next stage, thereby propagating the

initial condition determined deep in the radiation era to matter-radiation equality.

A. Free streaming distance:

The free streaming distance l(p, η, η′) can be obtained analytically with (II.8), the general

result can be expressed in terms of elliptic functions, however it is unyielding and not very

illuminating. It simplifies considerably in two relevant cases: for radiation domination when

η ≪ ηeq which includes the era when the DM candidate becomes non-relativistic, and in the

non-relativistic regime for η ≫ ηNR which includes the matter dominated era.

Radiation domination (RD):

Since f0(p) is a function of y = p/T0,d it is convenient to write p = yT0,d in V (p). In the
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radiation dominated era η ≪ ηeq during which a(η) ∼ η/η∗ we find

k l(p, η, η′) =
α y

2
ln

[
z +

√
y2α2

4
+ z2

z′ +
√

y2α2

4
+ z′ 2

]
; z = kη (III.21)

where we have introduced

α = 2
√

2
k T0,d

mkeqaeq

≃ 2.15 × 10−3
( k

keq

)( 2

gd

) 1

3

(keV

m

)
≃ 0.22 k

( 2

gd

) 1

3

(keV

m

)
×
(
Mpc

)
.

(III.22)

Since for the WDM distributions under consideration y2f(y) is strongly peaked at y ∼√
y2 where

y2 =

∫∞
0
y4f0(y)dy∫∞

0
y2f0(y)dy

=





105
12

ζ(7)
ζ(5)

≃ 8.505 ; for (BD)

15 ζ(5)
ζ(3)

≃ 12.939 ; for (DW or thermal fermion)

3 x = 3 m
Td

; for (MB)

(III.23)

it follows that for z, z′ ≪
√
y2 α the ultrarelativistic approximation v(p, η) ∼ 1 is valid1,

and in this regime

l(p, η, η′) = (η − η′) , (III.24)

which is the comoving free streaming distance traveled by an ultrarelativistic particle be-

tween η and η′. In the opposite limit when the particle is non-relativistic but still in the

radiation dominated era z, z′ ≫
√
y2 α it follows that

k l(p, η, η′) = α
y

2
ln

[
z

z′

]
. (III.25)

Non-relativistic WDM

From the expression of the conformal energy (III.12) and the physical velocity V (p, τ)

in (III.20) we see that the particle is relativistic if p ≫ ma(η) and non-relativistic for p ≪
ma(η). Since the comoving momentum is integrated over and weighted by the distribution

function, we define

ãNR =
〈p2〉 1

2

maeq
, (III.26)

1 The condition z ≪
√

y2 α is equivalent to 〈p2〉 ≫ m2a2(η), where the average is with f0(p).
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where the average is taken with the distribution f0(p) as the value of ã that determines the

transition between the relativistic and non-relativistic regime, the particle is relativistic for

ã≪ ãNR and non-relativistic for ã > ãNR. When the particle is non-relativistic

V (p, η) =
p

ma(η)
. (III.27)

therefore

ãNR = 〈V 2(teq)〉
1

2 . (III.28)

Writing p = y T0,d we find

〈V 2(teq)〉
1

2 ≃ 7.59 × 10−4

√
y2
(keV

m

)( 2

gd

) 1

3

. (III.29)

A weakly interacting massive particle (WIMP) (CDM ) of mass ∼ 100 GeV and Td ∼
10 MeV features 〈V 2(teq)〉

1

2 ≃ 4 × 10−8, whereas for a WDM candidate with m ∼ keV

we find 〈V 2(teq)〉
1

2 . 10−3, namely all these DM candidates are non-relativistic at teq with

〈V 2(teq)〉 ≪ 1. Since the WDM particle is non-relativistic at the epoch of matter-radiation

equality ãNR ≪ 1, we find from eqns. (II.8,II.10) that

ηNR =

√
2

keq
〈V 2(teq)〉

1

2 , (III.30)

for η ≫ ηNR the particle is non-relativistic and relativistic for η ≪ ηNR.

Since in the non-relativistic stage the physical velocity is given by (III.27), the integral

in (III.20) is easily performed by changing integration variable from η → ã, we find

k l(p, η, η′) = y α [u− u′] , (III.31)

where we introduced

u(η) =
1

2
ln

[√
1 + ã(η) − 1√
1 + ã(η) + 1

]
=

1

2
ln

[
η

4η∗ + η

]
; uNR ≤ u(η) ≤ 0 , (III.32)

where ãNR = ã(ηNR), normalized u(η) so that u(∞) = 0 and introduced

uNR = ln
[√ãNR

2

]
. (III.33)

During the radiation era when the WDM particle is non-relativistic, ã≪ 1 we find that

k l(p, η, η′) =
α y

2
ln
[ η
η′

]
(III.34)
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which reproduces the result (III.25). During the matter dominated era for ã≫ 1 it follows

that

u(η) ∼ − 1√
ã(η)

∼ −2η∗

η
. (III.35)

Free-streaming wavevector from fluid analogy

In analogy with the Jean’s wavevector in the fluid description of perturbations during

matter domination, we introduce the comoving free-streaming wavevector

k2
fs(t) =

4πGρm(t)

〈~V 2(t)〉
a2(t) (III.36)

where

ρm(t) =
ρm(0)

a3(t)
; 〈~V 2(t)〉 =

〈~V 2(0)〉
a2(t)

(III.37)

and the value of the velocity dispersion today is

〈~V 2(0)〉 = y2

(
Td,0

m

)2

. (III.38)

We note that

kfs(aeq) ≡
2π

λfs
=

√
3

2

keq

〈~V 2(teq)〉
1

2

, (III.39)

Therefore for these particles

kfs(aeq) ≫ keq . (III.40)

We define the free streaming wavevector as

kfs ≡ kfs(aeq) =
11.17√
y2

( m

keV

)(gd

2

) 1

3

(Mpc)−1 . (III.41)

This scale will be seen to play a fundamental role in the (DM) transfer function.

For a m ∼ keV sterile neutrino produced non-resonantly by boson decay (BD) that

decoupled near the electroweak scale[57] (gd ∼ 100), it follows that

kBD
fs ∼ 14.12 (Mpc)−1 , (III.42)

whereas for a similar mass sterile neutrino produced non-resonantly via the (DW) mechanism

near the QCD scale (gd ∼ 30) we find

kDW
fs ∼ 7.7 (Mpc)−1 . (III.43)
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and for a WIMP of m ∼ 10 GeV that decoupled thermally at Td ∼ 10 MeV one finds

kfs ∼ 106 (Mpc)−1. We will see later that kfs determines the scale of suppression of the

transfer function.

It is convenient to introduce

κ ≡
√
y2 α ≡

√
6 k

kfs
=

√
6
λfs

λ
= 2

√
2
k

keq
〈~V 2(teq)〉

1

2 . (III.44)

where y2 is given by (III.23) for the DM species considered here, and λfs = 2π/kfs. The

dimensionless ratio κ will be important in the discussion of non-relativistic DM.

From (III.31,III.32) we find

k l(p, η0, ηeq) ≃ yα ln
[√

2 + 1
]

(III.45)

where η0 is the conformal time today, namely l(p, η0, ηeq) is the free streaming distance

traveled by the non-relativistic WDM particle from matter-radiation equality until today.

Combining this result with eqn. (III.39) we find2

l(p, η0, ηeq) ≃ 0.344
y√
y2

λfs . (III.46)

From which it follows that during matter domination λfs, which is the equivalent of the Jeans

length for collisionless matter perturbations, is simply related to the free streaming distance

traveled by the non-relativistic particle moving with average comoving momentum
√

〈p2〉
from the time of matter-radiation equality until today, namely λfs ≈ 2.9 l

(√
〈p2〉, η0, ηeq

)
.

From (III.29) and (III.33) we find

uNR ≃ −4.27 +
1

2
ln

[√
y2

3

(keV

m

)(50

gd

) 1

3

]
, (III.47)

where the argument of the logarithm is O(1) for m ∼ keV sterile neutrinos produced via

the (DW) or (BD) mechanisms.

From eqns. (II.8,III.30) we find the relation

ηNR =

√
2

keq

〈~V 2(teq)〉
1

2 =

√
3√

2 kfs

, (III.48)

2 The slight discrepancy with the result in ref.[61] can be traced back to the difference between matter only

and matter-radiation evolution.
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hence from the definition of κ, eqn. (III.44) and (III.30) it follows that

k ηNR =
κ

2
. (III.49)

Therefore comoving modes that entered the horizon when the particle is still relativistic

correspond to κ & 2 ⇒ k & kfs whereas those that entered when the particle is non-

relativistic correspond to κ . 2 ⇒ k . kfs. The main corollary is that the free streaming

wavelength is of the order of the size of the horizon at the time when the (DM) particle

transitions from being relativistic to non-relativistic.

This is important: when the particle is relativistic the free streaming distance grows with

the comoving horizon η and free streaming is most efficient to erase density perturbations,

whereas when the particle is non-relativistic, the free streaming distance grows only with the

logarithm of the comoving horizon and free streaming is less efficient to erase perturbations

because the particle free streams with a small velocity. Therefore the dimensionless ratio κ

indicates the regimes in which free streaming is more (κ ≫ 2) or less (κ ≪ 2) efficient to

suppress density perturbations.

B. Initial conditions

Initial conditions are determined deep in the radiation dominated era and when the

wavelengths are well outside the horizon. We will only consider adiabatic initial conditions

for which all the radiation components feature the same δρr/ρr and (non-relativistic) matter

perturbations obey (
δρ

ρ

)

m

=
3

4

(
δρ

ρ

)

r

. (III.50)

For the radiation component temperature perturbations correspond to a perturbation in the

distribution function

F1,r(~k, ~p; ηi) = −Θ(~k, ηi) p
(df0,r(p)

dp

)
; Θ(~k, ηi) =

∆T (~k, ηi)

T0

(III.51)

so that (
δρ

ρ

)

i,r

= 4Θ(~k, ηi) . (III.52)

For superhorizon perturbations when perturbations in the radiation component are nearly

constant the temperature anisotropy is determined by the Newtonian potential[75–77]

Θ(~k, ηi) = −1

2
φi(k) ; k ηi ≪ 1 . (III.53)
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Initial conditions for adiabatic perturbations of the matter component also correspond to

F1,m(~k, ~p; ηi) = −Θ(~k, ηi) p
(df0,m(p)

dp

)
(III.54)

which leads to

δρm(~k, ηi)

ρm
= −Θ(~k, ηi)

∫
p3
(

df0,m(p)

dp

)
dp

∫
p2 f0,m(p) dp

= 3 Θ(~k, ηi) =
3

4

(
δρ

ρ

)

i,r

(III.55)

The subtlety for WDM candidates is that in setting up initial conditions for superhorizon

fluctuations, small comoving scales are superhorizon when the WDM candidate is rela-

tivistic and intermediate and large comoving scales are superhorizon when the particle has

become non-relativistic. However, adiabatic initial conditions for all modes are determined

by (III.54). Indeed, when the WDM candidate is relativistic such initial condition yields an

energy density perturbation which is adiabatic for a radiation component and when the par-

ticle is non-relativistic it gives the corresponding relation (III.50). Therefore adiabatic initial

conditions for all modes (superhorizon at the initial time ηi) for the WDM perturbations

are

F1(~k, ~p; ηi) =
1

2
φi(k) p

(df0(p)

dp

)
; k ηi ≪ 1 , (III.56)

where f0(p) is the unperturbed distribution function for the DM candidate, and φi(k) is the

primordial gravitational potential determined during inflation.

In what follows it is convenient to define

F̃ (~k, ~p; η) =
F1(~k, ~p; η)

n0
; f̃(p) =

f0(p)

n0
(III.57)

where

n0 =

∫
d3p

(2π)3
f0(p) , (III.58)

is the density of (DM) today. Furthermore, we introduce

δ(~k, η) =

∫
d3p

(2π)3
F̃ (~k, η) . (III.59)

which becomes δρm/ρm after the DM particle becomes non-relativistic, its initial condition

is

δi(k) ≡ δ(~k, ηi) = −3

2
φi(k) ; for kηi ≪ 1 . (III.60)
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C. Long wavelength perturbations:

We begin by studying the evolution of φ(k, η) for long-wavelength modes that remain

superhorizon throughout, to establish the normalization of the transfer function.

For k → 0 the solution of the Boltzmann equation (III.19) becomes the same for DM or

radiation (relativistic) components namely

F̃ (η) = F̃ (ηi) −
(
p
df̃

dp

)
[φ(η) − φ(ηi)] , (III.61)

where we have suppressed the argument ~k since we consider only k = 0 here.

For the radiation component we write, following eqn. (IV.2)

F̃r(η) = −Θ(η)

(
p
df̃

dp

)
(III.62)

leading to the solution

Θ(η) = φ(η) − 3

2
φi (III.63)

where we used the initial condition (III.53). For DM perturbations, from eqn. (III.59) we

obtain

δ(η) = 3φ(η) − 9

2
φi (III.64)

where we used the initial condition (III.60).

For a DM particle that decouples while relativistic and during the stage when it is still

relativistic δρ/ρ 6= δ. However, for a WDM particle with m ∼ keV it follows that δρ/ρ = δ

for ã & ãNR ∼ 10−3. Hence, for ã & ãNR the Einstein equation (III.17) becomes

2

3

k2ã2

k2
eq

φ+ (1 + ã)
[
ã φ

′

+ φ
]

= −1

2
[ã δ + 4Θ] (III.65)

where we have used (III.14). Using the solutions of the Boltzmann equations (III.63,III.64)

for k = 0, and defining φ̃ = φ/φi, we find

φ̃′ + φ̃

[
5 ã+ 6

2 ã (1 + ã)

]
=

3

4ã

[
3 ã+ 4

1 + ã

]
(III.66)

the solution of this equation is

φ̃(ã) =

√
1 + ã

ã3

∫ ã

0

3

4y

[
3 y + 4

1 + y

]
y3 dy√
1 + y

+ C
[√

1 + ã

ã3

]
, (III.67)
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and C is determined by giving φ̃(ãNR). Since ãNR ≤ 10−3 for the DM candidates studied

here, we will take ãNR → 0 whence φ̃(ãNR → 0) = 1, namely we are assuming that the

DM particle becomes non-relativistic when the Newtonian potential still has the primordial

superhorizon value. With this initial condition we find

φ̃(ã) =
1

10 ã3

[
16
√

1 + ã + 9ã3 + 2ã2 − 8ã− 16

]
, (III.68)

a result that agrees with those found in refs.[76, 81]. For ã ≪ 1 it follows that φ̃(ã) =

1 − ã/10 + O(ã2) therefore the approximation φ(ãNR) ≃ φ(0) = φi is very reliable. φ̃(ã)

decreases monotonically from φ̃(0) = 1 to φ̃(∞) = 9/10, and at matter-radiation equality

φ̃(1) = 0.963.

For k 6= 0 the transfer function for the Newtonian potential is defined as

φ̃(k; ã≫ 1) ≡ 9

10
T (k) ; T (0) = 1 . (III.69)

Whereas long wavelength perturbations in the gravitational potential remain nearly con-

stant, short wavelength perturbations fall off as a consequence of suppression by free stream-

ing.

For kã≫ keq the first term in the left hand side of Einstein’s equation (III.17) dominates,

leading to Poisson’s equation

φ(k, ã) = −3

4

k2
eq

k2ã2

[
ã
(δρ
ρ

)
m

+
(δρ
ρ

)
r

]
. (III.70)

IV. EVOLUTION OF DENSITY PERTURBATION DURING RADIATION DOM-

INATION.

Although the Newtonian potential is determined by Einstein’s equation (III.13) where

the right hand side also has a contribution from the DM perturbations during the stage

when they are relativistic, such contribution is negligible because of the perturbatively small

effective number of degrees of freedom (β, λ ∼ 10−2) as discussed above.

Hence, during the (RD) era ã ≪ 1 the DM perturbations can be neglected, and the

evolution of the perturbations is completely determined by the evolution of the radiation

fluid. In this case there is an exact solution for the Newtonian potential[76–81]

φ(z) = −3φi(k)

[(
z√
3

)
cos( z√

3
) − sin( z√

3
)

( z√
3
)3

]
; z = k η (IV.1)
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where φi the primordial value of the Newtonian potential determined during inflation. The

solution (IV.1) reflects the acoustic oscillations of the radiation fluid with speed of sound

cs = 1/
√

3.

A. Relativistic DM: stage I

During the(RD) stage in which the DM particle is still relativistic, namely for kη ≪
√
y2 α

the free streaming distance l(p, η, η′) = η− η′ and v(p, η) = 1, the integrand in (III.19) does

not depend on p. In this case it proves convenient to write

F̃ (~k, ~p η) = −Θ(k, µ; η) p
(df̃(p)

dp

)
, (IV.2)

and we find

Θ(k, µ; η) = −φ(z) + e−iµ z

[
1

2
φi(k) + 2

∫ z

0

dz′
(dφ(z′)

dz′

)
eiµ z′

]
; z = k η . (IV.3)

Expanding Θ(k, µ; η) in Legendre polynomials,

Θ(k, µ; η) =

∞∑

l=0

(−i)l (2l + 1) Θl(k; η)Pl(µ) (IV.4)

we obtain

Θl(k; η) = −φ(z) δl,0 +
1

2
φi(k) jl(z) + 2

∫ z

0

dz′
(dφ(z′)

dz′

)
jl(z − z′) , (IV.5)

where we have taken k ηi = 0. The last term describes an ISW contribution akin to that

in the temperature perturbations of photons[76]. We note that if the mode remains outside

the horizon all throughout the evolution during the (RD) stage in which the DM particle is

relativistic, namely k η = z ≪ 1, it follows that

Θl(z) = −1

2
φi(k) δl,0 + O(z) . (IV.6)

The WDM density perturbation

δ(k; η) =
1

2

∫ 1

−1

dµ

∫ ∞

0

F̃ (~k, ~p; η)
p2dp

4π2
, (IV.7)

therefore during the RD era when the DM perturbation is relativistic

δ(k; η) = 3 Θ0(z) ; δ(k; ηi) = −3

2
φi(k) . (IV.8)
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The monopole Θ0(z) begins to grow when it enters the horizon as a consequence of the

ISW contribution, it reaches a maximun and damps out as a consequence of (relativistic) free

streaming. This is understood from the following argument: at early time the derivative

of the Newtonian potential is negative and its modulus increases, reaching a maximum

approximately at the sound horizon kη ≃
√

3π, whereas the free streaming function j0(z−s)
is approximately constant for z ∼ s, therefore the integrand receives the largest contribution

near the upper limit, and the total integral peaks near the sound horizon. However, at later

times the integrand is strongly suppressed by free-streaming since dφ/ds peaks near the

sound horizon, but for z ≫ π
√

3 the free-streaming function suppresses the integrand. Fig.

(1) displays Θ0(z)/Θ0(0).
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FIG. 1: Left panel Θ0(z)
Θ0(0)

, right panel: zΘ0(z)/Θ0(0) compared to the asymptotic form (IV.10) for

the monopole.

Although an analytic expression for the integrals in (IV.5) is not readily available, we

can obtain a reliable asymptotic expansion for z ≫ 1. For this purpose it is convenient to

integrate by parts the derivative of the Newtonian potential, for z ≫ 1 the contributions

near the upper limit of the integral s ∼ z vanish rapidly and the integral is dominated by

the small s region since the Newtonian potential ∝ 1/s2 for large s. Using the asymptotic

expansion

jl(z) =
sin(z − lπ

2
)

z
+ O

( 1

z3

)
(IV.9)

and setting z → ∞ in the upper limit of the integrals we find for z ≫ 1

Θl(z)
z≫1
= 3φi(k)

sin
[
z − lπ

2

]

z

[
5

2
−
√

3 ln

(√
3 + 1√
3 − 1

)]
+ O

(
1

z2

)
, (IV.10)

this damped oscillatory behavior emerges for z & 15.
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We note that the oscillations in (IV.10) do not feature the frequency corresponding to

sound waves, the only remnant of the acoustic oscillations of the radiation fluid in the

asymptotic form is in the terms featuring the
√

3 in the prefactor of the asymptotic form

(IV.10).

An important conclusion of this section is that during the stage in which the DM particle

is relativistic density perturbations do not depend on the unperturbed distribution function

and particle statistics.

When the particle becomes non-relativistic, for modes k ηNR ≫ 1 the asymptotic form is

still valid, and the monopole features oscillatory behavior

Θ0(k) ∝
sin κ

2

κ
. (IV.11)

This oscillatory behavior is a consequence of the acoustic oscillations of the radiation fluid,

numerically we find that oscillations arise for κ/2 & 15 (see fig. (1)).

B. Non-relativistic DM: stages II and III

When the DM particle becomes non-relativistic (NR) ǫ(p, η) ∼ ma(η) ; v(p, η) =

p/ma(η). It proves convenient to change from η to a new variable s defined by

ds =
dη

a(η)
⇒ s(η) =

2 u(η)
[
H2

0 Ωmaeq

] 1

2

=
2
√

2u

keqaeq

(IV.12)

where u(η) is given by eqn. (III.32). The solution of the Boltzmann equation for the

normalized perturbation (III.57) is

F̃ (~k, ~p; s) = −φ(~k, s)
(
p
df̃

dp

)
+

∫ s

sNR

ds′

{
ima2(s′)φ(~k, s′)

(
~k · ~∇pf̃

)[
1 +

p2

m2 a2(s′)

]}
e−i

~k·~p
m

(s−s′)

+ e−i
~k·~p
m

(s−sNR)
[
F̃ (~k, ~p; ηNR) + φ(~k, ηNR)

(
p
df̃

dp

)]
. (IV.13)

The initial “time” sNR = s(ηNR) corresponds to the (conformal) time at which the DM

particle becomes non-relativistic. For WIMP’s that decoupled thermally for Td ≪ m at

conformal time ηd ∼ 10 pc during the (RD) era, sNR can be taken to be sNR = s(ηd).

Modes with comoving scales much larger than ηd where outside the horizon at sNR, for

these modes the initial condition is given by eqn. (III.56), namely

F̃ (~k, ~p; ηNR) =
1

2
φi(k) p

(df̃(p)

dp

)
. (IV.14)
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On the other hand, WDM particles with m ∼ keV WDM decouple when they are still

relativistic, namely Td ≫ m. For these candidates comoving scales that enter the horizon

during the (RD) stage when the WDM particle is still relativistic evolve until the particle

becomes non-relativistic at η = ηNR as described in the previous section. Therefore sNR =

s(ηNR) and

F̃ (~k, ~p; ηNR) = −Θ(k, µ; ηNR) p
(df̃(p)

dp

)
, (IV.15)

where Θ(k, µ; ηNR) is given by equations (IV.4,IV.5) with η = ηNR. Integrating eqn. (IV.13)

by parts in s′ and ~p, and neglecting the term (p/ma(s))2 ≪ 1 in the non-relativistic limit,

the evolution of the density perturbation is given by

δ̃(~k, s) = 3φ(k, s) − k2

∫ s

sNR

ds′a2(s′)φ(k, s′) (s− s′)K(k, s− s′)

+

∫
d3p

(2π)3
p
(df̃(p)

dp

)
e−i

~k·~p
m

(s−sNR) S
[
~k, ~p ; ηNR

]
. (IV.16)

where

K(k, s− s′) =

∫
d3p

(2π)3
e−i

~k·~p
m

(s−s′)f̃(p) (IV.17)

determines the suppression by non-relativistic free streaming and

S
[
~k, ~p ; ηNR

]
=

3

2
φi(k)e

−iµzNR + 2 iµ

∫ zNR

0

dz′φ(z′) e−iµ(zNR−z′) ; z = kη (IV.18)

is the result of evolution during stage I and determines the initial condition for the evolution

during the non-relativistic stages II and III.

Since f0 only depends on p, using eqns. (IV.12,III.22) it follows that

K(k, s− s′) ≡ K[α(u− u′)] =
1

N

∫
y2f0(y)j0[yα(u− u′)] dy ; N =

∫
y2f0(y) dy (IV.19)

and j0 is the spherical Bessel function.

The first line in (IV.16) integrates the gravitational potential during the stages in which

the particle is non-relativistic. As described above, there are two distinct epochs: when the

gravitational potential is dominated by perturbations in the radiation fluid and when it is

dominated by dark matter perturbations. The crossover between the two stages occurs at

a scale s∗ ≡ s(a∗) that is determined self-consistently, for s > s∗ the matter perturbation

dominates the gravitational potential.

It is convenient to separate the contributions to the gravitational potential from the DM

and radiation components, writing in obvious notation φ(k, η) = φr(k, η) + φm(k, η) where
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φr(kη) is given by (IV.1). The contribution from DM is obtained from Einstein’s equation

(III.17) which for a > a∗ reduces to the Poisson’s equation for all scales smaller than a few

Mpc, namely

φm(k, η) = −3

4

k2
eq

k2 ã
δ(~k, s) . (IV.20)

For s > s∗ the integral in (IV.16) can be split up into the integral from sNR up to s∗ which

is dominated by φr and corresponds to stage II, and the integral from s∗ up to s in which

the gravitational potential is dominated by the DM component (IV.20).

Therefore for s > s∗, the density perturbation δ obeys Gilbert’s equation[57, 61, 83, 84]

δ(~k, s) = −9

4

k2
eq

k2 ã
δ(~k, s)+

3

2
H2

0 Ωm

∫ s

s∗
ds′(s− s′)K(k, s− s′) a(s′) δ(~k, s′)+ I[k, s] , (IV.21)

where the inhomogeneity

I[k, s] = 3φr(k, s) − k2

∫ s∗

sNR

ds′a2(s′)φr(k, s
′) (s− s′)K(k, s− s′)

+

∫
d3p

(2π)3
p
(df̃(p)

dp

)
e−i

~k·~p
m

(s−sNR) S
[
~k, ~p ; ηNR

]
, (IV.22)

and φr is the radiation contribution to the gravitational potential given by (IV.1). Thus the

inhomogeneity incorporates the past history during stages I and II.

C. Kernels for CDM and WDM:

The kernel K(k, s − s′) determines the suppression of WDM perturbations by non-

relativistic free streaming and depends on the distribution function f̃(p). For WIMPs

(CDM) f̃ is the Maxwell-Boltzmann distribution function given by eqn. (III.9) whereas

for (DW) or (BD) WDM particles f̃(y) is given by eqn. (III.7) or (III.8) respectively.

1. CDM: Maxwell-Boltzmann distribution function

For CDM we find

K(k, s− s′) = e−
κ2

6
(u−u′)2 , (IV.23)

where u(η) is defined by eqn. (III.32), and from the definitions (III.44,III.22), along with

eqn. (III.23), we find

κ =

√
6 k

kfs
= 0.38 k

(
100 GeV

m

) 1

2

(
10 MeV

Td

) 1

2

(
2

gd

) 1

3

× (pc) . (IV.24)
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2. WDM: DW distribution function

With the distribution function (III.7) one finds[57, 61, 84]

K(k, s− s′) = K[Q] =
4

3ζ(3)

∞∑

n=1

(−1)n+1 n

(n2 +Q2)2
(IV.25)

where

Q = α (u− u′) ; α =
0.68 k

kfs

= 0.278 κ (IV.26)

3. WDM: BD distribution function

With the distribution function (III.8) one finds[57]

K(k, s−s′) = K[Q] =

√
2√

3 ζ(5)

∞∑

n=1

1
(
ρ n
) 5

2

[
1+

n

ρ

] 1

2

[
2n+ ρ

n+ ρ

]
; ρ =

√
n2 +Q2 , (IV.27)

where in this case

Q = α(u− u′) ; α =
0.84 k

kfs
= 0.343 κ (IV.28)

We note that in all the cases considered here, the kernels K are functions of the combi-

nation κ2(u− u′)2.

The free streaming kernels are suppressed, either exponentially (MB) or as high inverse

powers (DW,BD) of the ratio k2/k2
fs.

V. COLD DARK MATTER

For a WIMP of m ∼ 100 GeV decoupling at Td ∼ 10 MeV (for which gd ∼ 10) comoving

scales λ ≫ ηd ∼ 10 pc entered the horizon well after decoupling and when the particle is

non-relativistic, in which case we can set ηNR ∼ 0 and

Θ(k, µ; ηNR) =
1

2
φi(k) . (V.1)

For these CDM particles, λfs . 1 pc and for comoving wavelengths λ≫ 10 pc it follows that

κ ≪ 1 therefore K ≃ 1, this amounts to setting 〈V 2
eq〉

1

2 = 0, consistently with CDM. The

perturbation equation (IV.16) simplifies to

δ(~k, s) = 3φ(k, s) − k2

∫ s

sNR

ds′a2(s′)φ(k, s′) (s− s′) − 9

2
φi(k) (V.2)
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This equation can be recognized by taking d2/ds2 of both sides,

d2

ds2

[
δ(~k, s) − 3φ(k, s)

]
= −k2a2φ(k, s) (V.3)

using d/ds = ad/dη and ȧ/a = 1/η during (RD) we find

δ̈ +
δ̇

η
= 3φ̈+

3

η
φ̇− k2φ , (V.4)

which is the equation obeyed by CDM perturbations during the (RD) era[76].

During this era when φ is determined by the radiation fluid a2(η) = [H2
0Ωmaeq]η

2 ; s(η) =

ln(η)/[H2
0Ωmaeq]

1

2 + constant and φ(k, η) is given by eqn. (IV.1), and eqn. (V.2) becomes

δ(k, η) = 9φi(k)

{
−
[
x cos(x) − sin(x)

x3

]
+

∫ x

xNR

dx′ ln
( x
x′

) d

dx′

(
sin(x′)

x′

)
− 1

2

}
(V.5)

where x = kη/
√

3. For WIMPs and perturbations with comoving scales λ ≫ 10 pc we can

set xNR = 0, leading to the result

δ(k, η) = −9φi(k)

{[
x cos(x) − sin(x)

x3

]
+

sin(x)

x
− 1

2
− Ci(x) + ln(x) + γE

}
(V.6)

where γE = 0.577216 · · · and Ci(x) is the cosine-integral function. Fig. (2) displays

δ(x)/δ(0) vs. x = kη/
√

3, where δ(0) = −3φi(k)/2. The density perturbation receives

a “kick” upon entering the horizon at kη ∼ 1. We find numerically that

δ(x)

δ(0)
≃ 6

(
ln(x) + γE − 1

2

)
for x & 10 . (V.7)

We can now estimate the crossover scale at which the Newtonian potential is determined

by radiation or CDM perturbations. For ã ≪ 1 deep in the RD dominated era and for

subhorizon modes kη ≫ 1 Einstein’s equation (III.13) determines that

(
δρ

ρ

)

r

∼ 6φi(k) cos(x) (V.8)

Taking the asymptotic behavior (V.7) for δ, the Newtonian potential determined by Ein-

stein’s equation (III.13) begins to be dominated by matter density perturbations when

3

2
ã ln(x) > 1 . (V.9)
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FIG. 2: D(x) = δ(x)
δ(0) vs. x = kη/

√
3.

For comoving scales smaller than a few Mpc we find that the crossover scale from radiation

to matter perturbations dominating the gravitational potential is

ã∗ . 0.1 . (V.10)

During RD, x ∼ ã
√

2 k/
√

3 keq, therefore for all comoving scales smaller than a few Mpc

the crossover to the domination of the Newtonian potential by DM density perturbations

occurs within the RD dominated era.

Passing to the variable u defined by eqn. (IV.12), for u > u∗ Gilbert’s eqn. (IV.21) now

becomes

δ(~k, u) = −9

4

k2
eq

k2 ã
δ(~k, u) + 6

∫ u

u∗

du′(u− u′) ã(u′) δ(~k, u′) + I[k, u] (V.11)

where

I[k, u] = 3φr(k, u) −
8 k2

k2
eq

∫ u∗

uNR

du′ã2(u′)φr(k, u
′) (u− u′) − 9

2
φi(k) . (V.12)

For k ≫ keq and kã ≫ keq which is valid for modes well inside the horizon when DM

density perturbations dominate, we can safely neglect the first term (V.11) and because

during radiation domination kη =
√

2kã/keq and for modes deep inside the horizon φr ∼
cos(kη)/k2η2 we can also neglect the 3φr in I[k, u]. We then notice that I[k, u] is linear in

u and (V.11) can be turned into an ordinary homogenous differential equation,

d2

du2
δ(k, u) − 6 ã(u)δ(k, u) = 0 , (V.13)

30



with the initial conditions

δ(k, u∗) = I[k, u∗] ;
d δ(k, u)

du

∣∣∣∣∣
u=u∗

=
d I[k, u]

du

∣∣∣∣∣
u=u∗

. (V.14)

Since the variable u depends solely on the combination

ζ =
√

1 + ã(u) =
1

tanh[−u] (V.15)

(see eqn. (III.32)) it proves convenient to write the differential equation (V.13) in terms of

ζ . We find
d

dζ

[
(1 − ζ2)

dδ

dζ

]
+ 6 δ = 0 . (V.16)

This is Legendre’s equation of index ν = 2 with solutions

P2(ζ) =
1

2

(
3 ζ2 − 1

)
(V.17)

Q2(ζ) =
1

4

(
3 ζ2 − 1

)
ln

[
ζ + 1

ζ − 1

]
− 3

2
ζ (V.18)

In terms of ã rather than ζ eqn. (V.16) becomes

d2 δ

dã2
+

(2 + 3ã)

2ã(1 + ã)

dδ

dã
− 3

2

δ

ã(1 + ã)
= 0 (V.19)

this is Meszaros’ equation[69–71]. We find remarkable that in terms of the variable ζ

Meszaros’ equation is simply Legendre’s equation of index ν = 2.

The general solution is

δ(k, ã) = δg(k)P2(ζ) + δd(k)Q2(ζ) ; ζ =
√

1 + ã (V.20)

The coefficients δg,d must be obtained from the initial conditions (V.14) and the Wronskian

of the independent solutions P2, Q2. However, we recognize that the asymptotic solution

(V.7) can be written as

δ(k, ã) ≃ 6 δi

[
ln

(√
2 k eγE− 1

2√
3 keq

)
+ ln

[
ζ2 − 1

]]
(V.21)

where we used the relation η =
√

2ã/keq valid during the RD dominated era for η ≪ ηeq

corresponding to ã≪ 1. Matching (V.20) to (V.21) for ζ ∼ 1 we find

δd(k) = −12δi(k) ; δg(k) = 6δi(k) ln

[
4
√

2 k eγE− 7

2√
3 keq

]
(V.22)
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For ã≫ 1 the growing solution is given by δgP2(ζ), namely

δ(k, ã) ≃ 9δi(k) ln

[
4
√

2 k eγE− 7

2√
3 keq

]
ã (V.23)

and the gravitational potential becomes for ã≫ 1

φ(k) =
9

10
φi(k)TCDM(k) , (V.24)

where including the long-wavelength normalization (III.69) we find

TCDM(k) =
45

4

k2
eq

k2
ln

[
4
√

2 k eγE− 7

2√
3 keq

]
(V.25)

is the CDM transfer function for k ≫ keq. This result agrees with that of Weinberg[85] and

Wu and Sugiyama[86] and numerically agrees to within few percent with the numerical fit

provided by Bardeen et.al.[87] for k ≫ keq.

An alternative derivation of this result which is relevant for comparison with WDM below

begins by defining a new variable

∆(k, u) = δ(k, u) − I[k, u] (V.26)

obeying
d2

du2
∆(k, u) − 6 ã(u)∆(k, u) = 6 ã(u)I[k, u] , (V.27)

with initial conditions

∆(k, u∗) = 0 ;
d∆(k, u)

du

∣∣∣∣∣
u=u∗

= 0 . (V.28)

Therefore from the solution of (V.27,V.28) we find

δ(k, u) = I[k, u] + 6

∫ u

u∗

ã(u′)I[k, u′]G(u, u′) du′ (V.29)

where

G(u, u′) =
1

W

[
P (u)Q(u′) − P (u′)Q(u)

]
(V.30)

and G[u, u′] = G(u, u′)Θ(u− u′) is the retarded Green’s function obeying

[
d2

du2
− 6 ã(u)

]
G[u, u′] = δ(u− u′) . (V.31)
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The functions P (u) = P2(ζ(u));Q(u) = Q2(ζ(u)) are the growing and decaying homogeneous

solutions of [
d2

du2
− 6 ã(u)

]{
P (u)

Q(u)

}
= 0 , (V.32)

and W = 1 their Wronskian. It is straightforward to prove that the solution (V.29) is exactly

the same as (V.20) after using the homogeneous differential equation (V.32) for P2, Q2 and

twice integrating by parts in u′.

Since the source I[k, u] remains bound as u→ 0− (ã→ ∞), it follows that asymptotically

for ã≫ 1

δ(k, u) → 6

W
P (u)

∫ 0

u∗

Q(u′) ã(u′) I[k, u′]du′ = 9 ã(u)

∫ 0

u∗

Q2(u
′) ã(u′) I[k, u′]du′ . (V.33)

From (IV.20) and (III.69) we find

TCDM(k) = −30

4

k2
eq

k2 φi(k)

∫ 0

u∗

Q2(u
′)ã(u′)I[k, u′]du′ . (V.34)

The main reason for describing this alternative in detail is because the form (V.34)

generalizes to the WDM case.

VI. WARM DARK MATTER:

Passing to the dimensionless variable u in (IV.16), eqns. (IV.21,IV.22) become

δ(~k, u) = 3φ(k, u)− 8k2

α k2
eq

∫ u

uNR

ã2(u′)φ(k, u′) Π
[
α(u− u′)

]
du′ +

1

N

∫ ∞

0

y3dy
(df0(y)

dy

){3

2
φi(k) j0

[
y α(u− uNR) + zNR

]

+ 2

∫ zNR

0

dz′φ(z′)j1
[
y α(u− uNR) + zNR − z′

]
}

(VI.1)

where

Π
[
α(u− u′)

]
=

1

N

∫ ∞

0

yf0(y) sin
[
y α (u− u′)

]
dy = α(u− u′)K(k, u− u′) , (VI.2)

and N is defined in eqn. (IV.19).

When the DM perturbations dominate the gravitational potential for u > u∗ which is

determined self-consistently as explained above, δ obeys Gilbert’s equation in the form

δ(~k, u) − 6

α

∫ u

u∗

ã(u′) δ(k, u′) Π
[
α(u− u′)

]
du′ = I[k;α; u] (VI.3)
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where we neglected terms proportional to k2
eq/k

2, and

I[k;α; u] = 3φr(k, u) −
8k2

α k2
eq

∫ u∗

uNR

ã2(u′)φr(k, u
′) Π
[
α(u− u′)

]
du′ +

1

N

∫ ∞

0

y3dy
(df0(y)

dy

){3

2
φi(k) j0

[
y α(u− uNR) +

κ

2

]

+ 2

∫ κ
2

0

dz′φr(z
′)j1
[
y α(u− uNR) +

κ

2
− z′

]
}
, (VI.4)

where we have used zNR = kηNR = κ/2. For k ≫ keq the term 3φr in the first line in (VI.4)

is subleading as compared to the second term and will also be neglected in our analysis.

It is clear from the integral equation (VI.3) that δ obeys the initial conditions

δ(k, u∗) = I[k;α; u∗] ;
d δ(k, u)

du

∣∣∣∣
u∗

=
d I[k;α; u]

du

∣∣∣∣
u∗

. (VI.5)

In the first line in (VI.4) the kernel Π determines the free streaming of WDM perturba-

tions during the (RD) stage during which the particle is non-relativistic, whereas the last two

lines are the result of free streaming during the stage when the particle is still relativistic.

In particular the third term in (VI.4) corresponds to the ISW contribution (IV.5) (after an

integration by parts) studied in section (IVA) which undergoes damping by free streaming

during the non-relativistic stage. As it will be seen below, this ISW contribution yields an

enhancement of the transfer function for k < kfs.

Thus the inhomogeneity I[k; κ; u] is completely determined by the past history during

stages I and II when perturbations in the radiation component dominate the gravitational

potential. We have made explicit that the inhomogeneity depends both on k and α (or κ).

For fixed wavevector k the CDM limit is obtained by letting m(gd)
1

3 → ∞ which lets α→ 0

(and κ→ 0) with fixed k (see the definition (III.22)) and also uNR → −∞ (ηNR → 0).

At this stage one can proceed to a numerical integration of (VI.3), however in this article

we will pursue an approximate semi-analytic treatment valid for an arbitrary distribution

function postponing a full numerical study to a forthcoming article.

Before studying (VI.3,VI.4), we analyze the asymptotic long time behavior as u → 0 of

the WDM density perturbation, which is obtained by neglecting the source term I since it

is bounded in time.

For u→ 0 it follows from (III.35) that ã(u) ≃ 1/u2. The integrand in (VI.3) is dominated

by the region u′ ∼ u ∼ 0, assuming that δ(k, u) → δ(k, 0)(−u)−β as u → 0 and using that
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for u′ ∼ u ∼ 0 it follows that Π[α(u− u′)] ∼ α(u− u′), and we find

6

α

∫ u

u∗

ã(u′) δ(k, u′) Π
[
α(u− u′)

]
du′ ∼ δ(k, 0)

6 (−u)β

β(β + 1)
(VI.6)

therefore there is a self-consistent solution of eqn. (VI.3) (for I = 0) with β = 2,−3 corre-

sponding to the growing and decaying solutions δg(k, u) ∝ ã ; δd(k, u) ∝ 1/ã3/2 respectively.

This is an exact result which shows that asymptotically for ã≫ 1 δ ∝ ã.

The Volterra equation of the second kind (VI.3) has a solution in terms of the Fredholm-

Neumann series. However this iterative solution does not make explicit the growth factor

ã exhibited by the exact solution. The analysis of the CDM case in the previous section

suggests a re-organization of this series that manifestly exhibits the growth factor. For

this purpose we cast Gilbert’s equation (VI.3) as an integro-differential equation by taking

derivatives with respect to u.

The following integro-differential equation is obtained,

d2

du2
δ(k, u) − 6ã(u)δ(k, u)− 6

α

∫ u

u∗

ã(u′) δ(k, u′)
d2

du2
Π
[
α(u− u′)

]
du′ =

d2

du2
I[k, u] . (VI.7)

Performing the same asymptotic analysis in the limit u → 0; ã(u) ∼ 1/u2 leading to (VI.6)

we find in this limit3

− 6

α

∫ u

u∗

ã(u′) δ(k, u′)
d2

du2
Π
[
α(u− u′)

]
du′ ∼ α2 y2 δ(k, u) ; y2 =

1

N

∫ ∞

0

y4f0(y)dy . (VI.8)

This leading asymptotic behavior can be incorporated in (VI.7) by writing

d2

du2
Π
[
α(u− u′)

]
= −α2y2 Π

[
α(u− u′)

]
+ α2Π̃

[
α(u− u′)

]
(VI.9)

where

Π̃
[
α(u− u′)

]
=

1

N

∫ ∞

0

yf0(y)(y2 − y2) sin
[
y α (u− u′)

]
dy (VI.10)

Using the original integral equation (VI.3) we obtain

d2

du2
δ(k, u) − 6ã(u)δ(k, u) + κ2δ(k, u) − 6α

∫ u

u∗

ã(u′) Π̃
[
α(u− u′)

]
δ(k, u′) du′

=
d2

du2
I[k, u] + κ2I[k, u] (VI.11)

3 This can be found self-consistently by proposing δ(k, u) ∝ (−u)−β and following the steps leading to

(VI.6.)

35



were we used the definition (III.44).

The last term in the first line in (VI.11) can be interpreted as a non-local potential with

a memory kernel Π̃
[
α(u− u′)

]
. It is straightforward to show that Π̃

[
α(u− u′)

]
∝ (u− u′)3

as u′ → u and from the results for the kernels (IV.23,IV.25,IV.27) that it falls off as a high

power (or exponential) of the argument for the distribution functions considered here.

Furthermore, we have already established that asymptotically δ(k, u) ∝ ã ∝ 1/u2, imple-

menting the same analysis leading to (VI.6) and replacing this asymptotic behavior in the

memory integral in (VI.11) we find that asymptotically as u→ 0 it behaves as
∫ u

u∗

ã(u′) Π̃
[
α(u− u′)

]
δ(k, u′) du′ ∝ ln(−u) ∝ ln(ã) , (VI.12)

therefore its contribution is subleading in the asymptotic limit ã → ∞ as compared to all

the other terms in the first line of (VI.11).

Hence, we conclude from this analysis that the memory integral in (VI.11) can be con-

sidered as a perturbation.

Again, it is convenient to introduce the combination ∆(k, u) given by (V.26) that satisfies

d2

du2
∆(k, u) − 6ã(u)∆(k, u) + κ2∆(k, u) = 6ã(u)I[k, u] + J [δ; u] (VI.13)

with the initial conditions given by (V.28), where

J [δ; u] = 6α

∫ u

u∗

ã(u′) Π̃
[
α(u− u′)

]
δ(k, u′) du′ . (VI.14)

The solution of (VI.13) with the initial conditions (V.28) is completely determined by the

retarded Green’s function obeying
[
d2

du2
− 6ã(u) + κ2

]
G[u, u′] = δ(u− u′) . (VI.15)

The formal solution of (VI.11) with initial conditions (VI.5) is

δ(k, u) = I[k, u] +

∫ u

u∗

G(u, u′)

[
6ã(u′)I[k, u′] + J [δ; u′]

]
du′ (VI.16)

where

G(u, u′) =
1

W

[
P (u)Q(u′) − P (u′)Q(u)

]
(VI.17)

where P,Q are the linearly independent growing and decaying homogeneous solutions of the

fluid-like equation [
d2

du2
− 6 ã(u) + κ2

]{
P (κ; u)

Q(κ; u)

}
= 0 (VI.18)
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and W is their (constant) Wronskian. The formal solution (VI.16) is again an integral

equation, however it is a re-summed form of the Fredholm-Neumann solution of (VI.3) that

displays the asymptotic growth factor explicitly since asymptotically the growing solution

of (VI.18) P (κ; u) features the growth factor ∝ ã (see below).

From the analysis above, we note that the inhomogeneity J is subleading compared to

the first term ã I[k, u] for the following reasons:

• At early times u ∼ u∗, J vanishes as (u− u∗)3 whereas ã I[k, u] remains finite.

• Asymptotically at long time (u → 0; ã → ∞) ã I[k, u] ∼ ãI[k, 0] ∝ ã whereas J ∝
ln(ã).

• At long wavelengths k → 0 for which α → 0 (κ → 0) it follows that J → 0. This is

the CDM limit.

• For short wavelengths free streaming suppresses density perturbations, this is manifest

in the expression (VI.4). In an iterative solution δ is suppressed by free streaming and

the term J involves a further suppression by the kernel Π̃ with respect to I.

Hence the term J can be treated perturbatively as argued above, giving rise to a systematic

Fredholm-Neumann iterative solution of (VI.16) formally in powers of the free streaming

kernels Π which for (WDM) are strongly suppressed by large inverse powers of κ at small

wavelength (see the expressions (IV.23-IV.27) or exponentially suppressed as for (MB) (see

(IV.23))

δ(k, u) = δ(0)(k, u) + δ(1)(k, u) + · · · (VI.19)

where

δ(0)(k, u) = I[k, u] + 6

∫ u

u∗

G(u, u′)ã(u′)I[k, u′] (VI.20)

δ(n)(k, u) =

∫ u

u∗

G(u, u′)J [δ(n−1); u′]du′ ;n ≥ 1 (VI.21)

note that δ(0)(k, u) is first order in the free streaming kernels, δ(1)(k, u) second order, etc.

We refer to the zeroth-order solution (VI.20) as the Born approximation because of its

similarity to quantum scattering theory. In references [57, 61] it was shown that the Born

approximation is reliable in a wide range of scales. In what follows we will study the transfer
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function in the Born approximation as a prelude to a full numerical study of (VI.3) and its

comparison to the Born and higher approximations to be reported elsewhere.

We note that the Born approximation is exact for CDM since in this case α = 0 (conse-

quently κ = 0).

It remains to obtain the homogeneous solutions P,Q of the fluid-like equation (VI.18),

which becomes more familiar when written in terms of cosmic time t,

[
d2

dt2
+ 2H

d

dt
+

(
k2 〈V 2(t)〉
a2(t)

− 4πρm(t)

)]{
P

Q

}
= 0 (VI.22)

where ρm(t); 〈V 2(t)〉 are the density and the velocity squared velocity dispersion of the

DM particle given by (III.37,III.38). This is equivalent to the Jean’s fluid equation for

non-relativistic matter recognizing that k/a(t) = kphys(t) is the physical wavevector, and

replacing the (adiabatic) speed of sound by the DM particle’s velocity dispersion. The term

proportional to k2 plays the role of a pressure term and its origin is traced back to the

free-streaming kernel Π in Gilbert’s equation (VI.3).

We emphasize that whereas the fluid equation (VI.22) suggests acoustic-like oscillations

and is familiar, it is only half the story, it has no information on the suppression of perturba-

tions by free streaming. The solution of Gilbert’s equation (VI.19,VI.20,VI.21) is completely

determined by the inhomogeneity and initial conditions, these are determined by the past

history and describe the suppression of density perturbations by free-streaming.

A. Meszaros’ equation for WDM

Just as in the CDM case (see equations (V.13,V.16)), it is convenient to pass to the

variable ζ , in terms of which the homogeneous equation (VI.18) becomes

[
(1 − ζ2)

d2

dζ2
− 2 ζ

d

dζ
+ ν(ν + 1) − (iκ)2

1 − ζ2

]{
P (κ, ζ)

Q(κ, ζ)

}
= 0 ; ν = 2 (VI.23)

this is the associated Legendre equation with indices ν = 2 ; iκ. We choose the growing and

decaying solutions respectively as

P (κ, ζ) = Re

{(ζ − 1

ζ + 1

)−iκ
2

F
[
− 2, 3; 1 − iκ;

1 − ζ

2

]}
(VI.24)
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Q(κ, ζ) =
sinh(πκ)

2πκ
Re

{
Γ(3 − iκ)Γ(iκ)

(ζ − 1

ζ + 1

)−iκ
2

F
[
− 2, 3; 1 − iκ;

1 − ζ

2

]}
(VI.25)

where F [a, b; c; z] is the hypergeometric function. We find

P (κ, u) = cos(κ u)FR(κ, ζ(u)) + κ sin(κ u)H(κ, ζ(u)) (VI.26)

Q(κ, u) = −1

2

{
3P (κ, u) + (κ2 − 2)

[
cos(κ u)H(κ, ζ(u))− sin(κ u)

κ
FR(κ, ζ(u))

]}
(VI.27)

where

FR(κ, ζ(u)) = 1 − 3(1 − ζ)

(1 + κ2)
+

3(2 − κ2)(1 − ζ)2

(1 + κ2)(4 + κ2)
(VI.28)

H(κ, ζ) = − 3(1 − ζ)

(1 + κ2)(4 + κ2)

[
1 + κ2 + 3 ζ

]
; ζ(u) =

1

tanh[−u] (VI.29)

It is straightforward to confirm that P (0, ζ) = P2(ζ) ; Q(0, ζ) = Q2(ζ) are the Legendre

functions solutions of Meszaros’s equation (V.17,V.18) for CDM perturbations. In fact, in

terms of the variable ã equation (VI.18) (or alternatively eqn. (VI.23)) becomes Meszaro’s

equation for WDM,

[
d2

dã2
+

(2 + 3ã)

2ã(1 + ã)

d

dã
− 3

2ã(1 + ã)
+

κ2

4ã2(1 + ã)

]{
P

Q

}
= 0 (VI.30)

whose growing and decaying solutions are given by (VI.26,VI.27) respectively.

The asymptotic behavior of the growing and decaying solutions for ã≫ 1 ; u→ 0 are

P (κ, u) → 3(2 − κ2)

u2 (1 + κ2)(4 + κ2)
(VI.31)

Q(κ, u) → −u3 (1 + κ2)(4 + κ2)

30
(VI.32)

from which we extract the Wronskian

W =
2 − κ2

2
. (VI.33)

Therefore we find

G(u, u′) =
2

2 − κ2

[
P (κ, u)Q(κ, u′) − P (κ, u′)Q(κ, u)

]
. (VI.34)

For ã ≫ 1 when the gravitational potential is determined by DM perturbations, using

Poisson’s equation (IV.20), the definition of the transfer function (III.69) and the solution
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FIG. 3: Mode functions of fluid equation (VI.18). Q(κ, u) are the decaying and P (κ, u) the growing

solutions. The “fundamental” decaying solution features a node at matter-radiation equality.

for δ (VI.16) along with the asymptotic behavior (VI.31) of the growing solution P (κ, u)

leads to an exact expression for the transfer function

TWDM(k; κ) =
−5 k2

eq

k2(1 + κ2)(4 + κ2)φi(k)

∫ 0

u∗

Q(κ, u′)

[
6ã(u′)I[k; κ; u′] + J [δ; u′]

]
du′ .

(VI.35)

The CDM transfer function TCDM(k) corresponds to setting α = 0; ηNR → 0 which sets

κ = 0; uNR → −∞ and J = 0. In the Born approximation we obtain

TB(k; κ) =
−30 k2

eq

k2(1 + κ2)(4 + κ2)φi(k)

∫ 0

u∗

Q(κ, u′) ã(u′)I[k; κ; u′]du′ (VI.36)

and as explained above the Born approximation is exact for CDM (for k ≫ keq).

TCDM(k) is given by (V.34) and its leading behavior for k ≫ keq is given by (V.25). It is

convenient to normalize the WDM transfer function defining

T (k) =
TWDM(k; κ)

TCDM(k)
(VI.37)

where WDM refers to κ 6= 0. In the Born approximation we find

TB(k) =
4

(1 + κ2)(4 + κ2)

[ ∫ 0

u∗
Q(κ, u′) ã(u′)I[k; κ; u′] du′

∫ 0

u∗
Q2(u′) ã(u′)ICDM [k; u′] du′

]
(VI.38)

where Q2 is the Legendre function given by eqn. (V.18),

ã(u) =
1

sinh2[u]
, (VI.39)
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and

ICDM [k; u] = I[k; 0; u] . (VI.40)

The matching scale u∗ describes the transition from when the gravitational potential is

dominated by the radiation fluid to when the DM perturbations dominate. In the CDM

case analyzed in section(V) we found that this scale is smaller than the scale of matter-

radiation equality. From the result (V.7) and the analysis leading to (V.21) we also found

that the density perturbation in CDM depends logarithmically on the change of scale and

for k ≫ keq taking the matching scale

u∗ ≃ ueq =
1

2
ln

[√
2 − 1√
2 + 1

]
= −0.881 (VI.41)

yields a correction which is of order k2
eq/k

2 ≪ 1 in the small scale regime studied here. For

WDM, free streaming makes the dependence on this scale even weaker, and it is evident

from the expression (VI.38) that the contribution from ã ≪ 1 is suppressed. Hence, in

our analysis we take u∗ = ueq = −0.881. A comprehensive numerical analysis confirms the

insensitivity on the choice of scale for k ≫ keq.

It is convenient to divide the inhomogeneity (VI.4) by −3φi(k) which cancels in the

ratio (VI.36). Furthermore since the integrals in (VI.36) range from ηeq 6 η 6 ∞ and

φ(k, η) ∝ 1/(kη)2 we can safely neglect the term 3φr in the first line in (VI.4) as compared

to the second term for k ≫ keq. Thus in the ratio (VI.36) I simplifies to

Ĩ[k;α; u] =
1

N

∫
y2f0(y)

[
I1[k; y; u] + I2[k; y; u] + IISW [k; y; u]

]
dy (VI.42)

where

I1[k; y; u] = −8 k2

k2
eq

∫ ueq

uNR

ã2(u′)ϕ(k; u′)
sin[yα(u− u′)]

yα
du′ , (VI.43)

I2[k; y; u] =
d ln f0(y)

d ln y

[
− 1

2
j0

(
yα(u− uNR) +

κ

2

)]
(VI.44)

IISW [k; y; u] =
d ln f0(y)

d ln y

[
2

∫ κ
2

0

ϕ(z′)j1

(
yα(u− uNR) +

κ

2
− z′

)]
dz′ (VI.45)

where

ϕ(z) =

[(
z√
3

)
cos( z√

3
) − sin( z√

3
)

( z√
3
)3

]
; z = k η . (VI.46)

In the CDM limit (α→ 0)

sin[yα(u− u′)]

yα
→ (u− u′) ; I2 → −1

2

d ln f0(y)

d ln y
; IISW → 0 , (VI.47)
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leading to

ĨCDM [k; u] = −8 k2

k2
eq

∫ ueq

uNR

ã2(u′)ϕ(k; u′) (u− u′) du′ +
3

2
, (VI.48)

which along with (V.18) determines the denominator in (VI.36).

In the appendix we provide an explicit form for (VI.43), we gather all the relevant re-

sults, and provide a concise summary of the Born approximation for an easy numerical

implementation.

The contribution IISW is a result of an integration by parts in eqn.(IV.3) and is the only

contribution that vanishes in the CDM limit. It originates in stage I during (RD) when the

WDM particle is still relativistic.

Figures (4,5) displays the ratio T and its logarithm for both cases of non-resonant sterile

neutrino production (DW,BD). The production via boson decay at the electroweak scale

leads to a colder species for two reasons: i) the effective number of degrees of freedom at

decoupling gd is larger, therefore the particle is colder today and at matter-radiation equality,

and ii) the distribution function (III.8) favors small momenta and yields a smaller velocity

dispersion (see eqn. (III.23)). This is manifest in the transfer functions displayed in fig. (4):

it is clear from this figure that the wavevector scale of suppression for DW-produced sterile

neutrinos is smaller than for the BD-production mechanism for the same mass.
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FIG. 4: TB(k) for DW, and BD for m=1,2 keV. Sterile neutrinos produced via the BD-non-resonant

mechanism are colder for the same mass.
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FIG. 5: ln(|TB(k)|) a for DW and BD, for m=1,2 keV.

B. ISW enhancement:

As discussed above the contribution IISW is a direct consequence of the evolution of

density perturbations during stage I during the (RD) era described by eqn. (IV.3), and

vanishes in the CDM limit. Therefore it is a distinct contribution to the WDM transfer

function, and only arises from the time evolution of the Newtonian potential driven by the

acoustic oscillations of the radiation fluid, i.e. an ISW effect.

This contribution is “out of phase” with the first two terms I1,2: the Bessel functions

j0 of these two terms are decreasing functions of k until their arguments vanish. Instead,

the Bessel function j1 grows during the initial interval when j0 decreases. As a result IISW

grows for small k. This is precisely the behavior displayed in fig. (1) corresponding to the

l = 0 (monopole) component of the density perturbation (IV.5) (integrating by parts the

integral term the j0 becomes j1).

Since the maximum value of η during stage I is ηNR and kηNR = κ/2 the analysis following

eqn. (IV.8) suggests that IISW features a peak when the wavelength of the perturbation is

approximately the sound horizon at ηNR, namely kηNR ≈
√

3π or κ ≈ 2π
√

3. This analysis

suggests that IISW features a peak at k . kfs because the argument of the Bessel function

is now shifted towards the positive values (since u− uNR ≥ 0). The presence of a peak can

also be gleaned from IISW directly, since for small z′ ϕ(z′) is nearly constant but j1 grows,

featuring a maximum when its argument is ≈ 2, which obviously suggests a peak at k ≈ kfs.

Therefore the hotter species, with smaller kfs must feature a peak at a smaller value of k
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when compared to the colder species which features the peak at a larger value k because

of a larger value of kfs. This expectation is borne out by fig. (6) that displays the ISW

contribution to the Born ratio TB (VI.38). The ISW enhancement extends to larger values

of k for the colder species for the same mass (BD) as a consequence of a larger value of kfs.

For small k the contributions I2 and IISW feature opposite signs, therefore the ISW

enhancement competes with and is partially cancelled by I2 yielding an overall suppression

of the transfer function with respect to CDM. Nevertheless, the ISW enhancement prolongs

the region in k where the transfer function is closer to that of CDM.
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FIG. 6: The ISW contribution to TB(k) for DW, m=1,2 keV and comparison with BD for m=1

keV.

For κ & 30 (k ≫ kfs) the ISW contribution features oscillations as discussed in section

(IVA) and shown explicitly in fig. (1).

C. On the origin of WDM acoustic oscillations:

The Q and P modes (VI.27,VI.26) feature acoustic oscillations as displayed in fig. (3),

and only the Q modes enter in the evaluation of the transfer function (VI.36). This mode

function always vanishes at u = 0 (today), and there is a particular “fundamental” mode that

features only one other node at matter-radiation equality, for κ ≃ 6.3. In the integral leading

to the transfer function (VI.36) the mode function Q multiplies the three contributions to

I displayed in (VI.42-VI.45). The integral over y with the distribution function leads to the

dephasing of the oscillatory functions in I1, I2, IISW and their suppression by free streaming.
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However, we can identify some of the more obvious oscillatory contributions. From the

study in section (IVA) and the results displayed in fig. (1), the oscillations from the ISW

component begin at zNR & 15 (κ & 30) or k & 5
√

6 kfs, and are suppressed by free streaming

during stages II) and III). This suppression is encoded in the y integral with the distribution

function which contributes during the stages when the particle is non-relativistic.

The explicit form of I1 given in the appendix, (A.7) reveals at least two contributions that

lead to oscillations, these are the term sin[α y U ]/α y in the first line, and the second line

in (A.7). After integrating in y these contributions are proportional to the free streaming

kernels (IV.23,IV.25,IV.27), however, although these contributions do not feature oscilla-

tions after the integration in y by themselves, they are multiplied by the mode function Q.

Therefore the last term in the first line in (A.7) leads to oscillations for wavevectors larger

than that of the “fundamental” Q-mode. The second line in (A.7) yields a contribution of

the form

∝
[
1 − sin(xNR)

xNR

]

times a function suppressed by free streaming. With xNR = κ/2 this contribution vanishes

for k ≪ kfs, reaches the value 1 at κ = 2π and oscillates around one for κ≫ 2π. Therefore

this function reaches its asymptotic value ∼ 1 for values of κ near the “fundamental” mode.

This analysis leads us to suggest that oscillations in the transfer function begin when the

“fundamental” mode is excited, namely κ & 6.3.

For values of κ & 6.3 the nodes in the mode functions Q between matter-radiation

equality and today lead to oscillations in the transfer functions. Therefore we conclude that

oscillations are manifest for

k & 2 kfs . (VI.49)

This expectation is approximately borne out, for (DW) with kfs ∼ 7.7 (Mpc)−1 we see from

fig. (7) that oscillations begin at k ≈ 11 (Mpc)−1 and for (BD) with kfs ≈ 14 (Mpc)−1, fig.

(8) shows oscillations beginning at k ≈ 31.5 (Mpc)−1. The period of the oscillations is more

difficult to assess because the various terms are out of phase leading to beating of frequencies

(a hint of this is observed in ln(T ) displayed in fig. (7)), however, the approximate estimate

k ≃ 2 kfs for the emergence of oscillations is confirmed by the numerical analysis.

It is important to recognize that both I1, IISW originate in the acoustic oscillations of

the radiation fluid, which couple to the WDM perturbations via the Newtonian potential.
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Therefore in this sense, the origin of the WDM acoustic oscillations at small scales is similar

to the small scale oscillations in the CDM transfer function obtained in ref.[74]. In that

reference the oscillations originated from the direct coupling of the CDM particle to the

radiation fluid prior to decoupling, whereas in this work the coupling is indirect through the

gravitational potential and the past history of the evolution during stages I and II.

At the scale where WDM acoustic oscillations emerge the transfer function is strongly

suppressed by free-streaming and as a result of this suppression in the power spectrum the

relevance of these WDM acoustic oscillations for structure formation is not clear. However,

it is conceivable that the effect of the oscillations will be amplified by non-linear gravitational

collapse, leading to enhanced peaks and troughs in the matter distribution at low redshift.

The (comoving) scales for these oscillations kao ∼ 11 (Mpc)−1 for (DW) and kao ∼
31.5 (Mpc)−1 for (BD) could lead to clumpiness in the mass distribution with mass scales

MDW ∼ 3 × 109M⊙ or MBD ∼ 1.8 × 108M⊙ respectively.
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FIG. 7: Acoustic oscillations at small scales: (DW) species.

The smaller amplitudes of acoustic oscillations for the (BD) species as compared to the

(DW) case is consistent with the fact that (BD) sterile neutrinos are colder and feature

smaller velocity dispersions.

D. Power spectra: interpolation between large and small scales.

The power spectra normalized to CDM is given by

P (k) =
[
T (k)

]2
, (VI.50)
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FIG. 8: Acoustic oscillations at small scales: (BD) species.

and the full power spectra is therefore,

P (k) = PCDM(k)P (k) . (VI.51)

Since the transfer function for WDM particles is indistinguishable from that of CDM for

small k, and as we have pointed out above the result (V.25) coincides within a few percent

with the result by Bardeen et. al.[87]for k ≫ keq, we use the numerical fit provided by

Bardeen et.al.[87] for the CDM transfer function (without baryons) to extrapolate PCDM(k)

to large scales:

PCDM(k) = Akns

[
TBBKS(k)

]2
(VI.52)

where A is the overall amplitude and is determined by the power spectrum of scalar fluc-

tuations during inflation[76], and ns ≃ 0.96 is the index of scalar perturbations during

inflation[73]. Without baryons and with three relativistic (standard model) neutrinos [87]:

TBBKS(k) =
ln
[
1 + 2.34 q

]

2.34 q

[
1+3.89 q+(16.1 q)2+(5.46 q)3+(6.71 q)4

]− 1

4

; q =
k

Ωm h2
(Mpc)−1 .

(VI.53)

Combining eqns. (VI.50,VI.51,VI.52) and using the Born approximation for T (k) we find

the following expression for the power spectra that interpolates between large and small

scales,

P (k) = Akns

[
4 TBBKS(k)

(1 + κ2)(4 + κ2)

∫ 0

ueq
Q(κ, u′) ã(u′)Ĩ[k; κ; u′] du′

∫ 0

ueq
Q2(u′) ã(u′)ĨCDM [k; u′] du′

]2

(VI.54)
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The inhomogeneities Ĩ , ĨCDM are given by (VI.42-VI.48), ueq = −0.881 and the mode func-

tions Q2, Q are given by eqns. (V.18,VI.27) respectively. The appendix gives a simplification

of these terms along with a numerical implementation. This compact expression provides

an interpolation between large and small scales that describes accurately the CDM limit

for long-wavelengths k ≪ kfs and captures the free streaming suppression at small scales

encoded in the Born approximation. Its numerical implementation is fairly straightforward

for arbitrary distribution functions, mass and decoupling temperature.

This is one of our main results.

E. Comparison to numerical results from Boltzmann codes:

The (WDM) power spectrum for non-thermal sterile neutrinos produced via the (DW)

mechanism has been studied in refs.[32, 39–42]. The most recent studies using the Boltzmann

codes CMBFAST[66] and or CAMB[67] have been reported in refs.[32, 41, 42]. The results

of ref.[42] coincide with those of ref.[32] and are summarized by the fit given by eqns. (6,7)

in ref.[32]. In both refs.[32, 42] the distribution function for sterile neutrinos is that given

by eqn. (III.7) obtained in ref.[38]. However, the fitting function eqn. (6,7) given in ref.[32]

(which reproduces the results of ref.[42]) fits the results of the Boltzmann code in the range

k < 5 h Mpc−1[32].

In ref.[41] the kinetic equation for production of sterile neutrinos given in ref.[38] was

solved numerically and the solution was input in the numerical Boltzmann codes. In this

reference the explicit form of the distribution function is not provided but instead a fitting

formula for the transfer function normalized to CDM is given, eqn. (11,12) in this reference.

Whereas both fitting functions in refs.[32, 41] are of the same form, they differ in the powers

of momenta: at large k the fitting formula (11) in ref.[41] falls off with a power ≃ k−6.93

whereas the fit given by eqn. (6) in ref.[32] falls of with a power ≃ k−10. Therefore at small

scales there is a large difference between these fits, whereas at large and intermediate scales

there is a substantial agreement (see fig.4 in ref.[41]). Because in ref.[41] the distribution

function has been obtained directly from the numerical integration of the kinetic equation

derived in ref.[38], it is not clear whether the main differences with the results of ref.[32] are

a consequence of the distribution function obtained numerically and input in the Boltzmann

code being different from the form (III.7) which is the one used in refs.[32, 42].
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Because our study relies on a pre-determined form of the distribution function and we

neglect baryons, we can most directly compare our results with the distribution function

(III.7) to the results in ref.[32], which also uses the form (III.7) and neglects baryons, however

it includes ΩΛ = 0.7 which our study does not.

We compare our results for the transfer function T (k) (normalized to CDM) given by

(VI.38) with those obtained from the fit given by eqns. (6,7) (for the non-thermal case)

in ref.[32], with the caveat that this fit may not be the correct description of the power

spectrum for k > 5 h Mpc−1 as suggested by the discussion in ref.[32]. We also compare to

the fit (11,12) in ref.[41], although this may not be fair comparison because we assume the

distribution function (III.7) whereas in ref.[41] the effective distribution function may be dif-

ferent and the difference cannot be quantified in absence of a functional form. Furthermore,

we use the “standard” value gd = 10.75 for the comparison, whereas as discussed in ref.[41]

the actual value may differ because this species of sterile neutrinos is produced very near

the QCD phase transition where the effective number of relativistic degrees of freedom vary

rapidly. Recognizing all these caveats we present the comparison of the transfer functions

normalized to CDM in the range of masses and scales displayed in refs.[32, 41] in fig. (9),

m = 0.5, 1.0, 1.7 keV: the solid line is T (k) from the Born approximation (VI.38), the dashed

line is the fit given by eqns(6,7) for the non-thermal case in ref.[32], the dotted line is the

fit (11,12) in ref.[41].

We find a remarkable agreement, to less than 5% with the fit given by eqns. (6,7) (non-

thermal case) in ref.[32] in a wide range in which their fit is valid (see discussion in ref.[32])

for m & 1 keV the agreement is substantially better in a far larger range. In fig. (9) the

comparison is in the range displayed in refs.[32, 41] to highlight agreements and discrepancies.

In all cases reported in the literature the range studied or displayed are for wavectors k far

smaller than the range in which the acoustic oscillations become manifest. The approximate

estimate (VI.49) for the threshold suggests that for m = 0.5, 1.0, 1.7 keV oscillations should

be manifest for k & 5.4, 10.8, 18.5 (Mpc)−1 (corresponding to k & 7.5, 15.0, 25.6 h (Mpc)−1

respectively). Fig. (10) displays T (k) from (VI.38) in a linear-linear scale for k & 2kfs for

m = 1.0, 1.7 keV. These figures are the continuation of the same T (k) displayed as solid

lines in fig. (9) to the smaller scales k & 2kfs in each case.

This comparison, with all the caveats mentioned above, suggests that the semi-analytic

formulation along with the Born approximation summarized by (VI.38) captures the essential
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FIG. 9: Comparison of the transfer function for DW with gd = 10.75 normalized to CDM with

the results from Boltzmann codes. The solid line is the semi-analytic result from eqn. (VI.38), the

(blue) dashed line is the result from the interpolation eqns.(6,7) (non-thermal case) from ref.([32]),

the (red) dotted line is the result from the interpolating fit eqn. (11,12) in ref. ([41]). For all cases

h = 0.72,ΩDMh2 = 0.133, gd = 10.75.

�  !"#$%&' ( )* )) )+ ),
-./0

*1*****1***2*1**)**1**)2*1**+**1**+2*1**,**1**,2*1**3* 456 789:; <=> 6 ?@ 8 9;:AB

C DEFGHIJKL KM KN KO KP QR QK QQ QS
TUVW

RXRRRRRXRRRKRXRRRQRXRRRSRXRRRYRXRRRLRXRRRMRXRRRN Z[\ ]^_`a bcd \ ef ^ _g`ah

FIG. 10: T (k) from the semianalytic approximation (VI.38) displaying the acoustic oscillations

at small scales k & 2kfs ∼ 10.8, 18.5 (Mpc)−1 for m = 1.0, 1.7keV respectively. Note that the

horizontal scale is in (Mpc)−1 and that vertical scales differ by a factor 5 between the two figures.

physical processes and provide a reliable tool to study the transfer function and power spectra

for arbitrary distribution functions.
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F. Applications:

Having established a direct comparison between the semi-analytic method and the results

from Boltzmann codes in refs.[32, 41] and having confirmed the reliability of the method

for the case of (DW) sterile neutrinos, we now compare the results for the case of (BD)

production mechanism, which as mentioned above yields a highly non-thermal distribution

function which is similar to that obtained from inflaton[43] and gravitino[62] decay.

The (DW) distribution function is proportional to a thermal distribution function and

the proportionality constant only determines the abundance but is irrelevant for the free

streaming length or indeed the transfer function (as can be gleaned from the previous sec-

tions).

There is a quasi-degeneracy between the (DW) and (BD) power spectra for different

masses: a more massive WDM particle with a (DW) distribution function features a similar

power spectrum as a less massive one but with a (BD) distribution function in a wide range

of scales. This is explicitly shown in fig. (11) which displays the power spectra normalized

to CDM (VI.50).
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FIG. 11: The power spectra normalized to CDM for DW and BD with m = 1, 2 keV. Note that

for the same mass the BD (colder species) is less suppressed than the DW (hotter species).

From this figure it is clear that P (k) for (DW) with m = 2 keV is almost indistinguishable

from P (k) for (BD) with m = 1 keV for k . 6− 8 (Mpc)−1. This is because the (BD) sterile
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neutrinos are colder for two reasons: they decouple earlier and their distribution function

favors small momenta, therefore the (BD) WDM particle has smaller velocity dispersion.

This quasi-degeneracy is not unexpected, the mass is not the only relevant indicator for the

power spectrum of the WDM particle, but also two other important aspects must enter in

the assessment: the decoupling temperature (the higher, the colder the particle) and the

details of the distribution function at small momenta: enhanced small momentum behavior

leads to a colder species and a less suppressed power spectrum, for a given mass.
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FIG. 12: The matter power spectra: P (k) = Ak (T (k))2 for ns = 1 (A is the normalization

amplitude) for CDM, DW and BD for m = 1, 2keV. Note the quasi degeneracy for DW with

m = 2keV (d) and BD with m = 1keV (c) in a large range of k . 12 (Mpc)−1.

The full power spectra obtained using the interpolating eqn. (VI.54) for the two species

considered here are shown in Fig. (12) which displays P (k) for ns = 1 ; Ωm h
2 = 0.134. Note

how the two cases (c) (BD, m = 1 keV) and (d) (DW, m = 2 keV) are nearly indistinguish-

able for k . 6 − 8 (Mpc)−1.
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VII. CONCLUSIONS AND DISCUSSIONS

Our main result is a semi-analytic derivation of the evolution equations for WDM per-

turbations and their solutions at small scales in a radiation-matter cosmology for arbitrary

mass and distribution function of the decoupled WDM particle, and a simple numerical

implementation that yields the power spectra at small scales.

There are three stages in the evolution of density perturbations of WDM candidates that

decouple while they are relativistic: stages I) and II) describe the evolution during the RD era

when the particle is relativistic and non-relativistic respectively but the gravitational poten-

tial is dominated by the radiation fluid, during stage III, the particle is non-relativistic and

matter density perturbations dominate the gravitational potential. We consider adiabatic

initial conditions determined when all the cosmologically relevant modes are superhorizon.

The collisionless Boltzmann equation is solved in the three stages by using the solution at

the end of a stage as the initial condition for the next stage. The free streaming wavevector

kfs =

√
3 keq

2 〈V 2
eq〉

1

2

where 〈V 2
eq〉

1

2 is the mean square root velocity dispersion of the WDM particle at matter-

radiation equality not only determines the scale of suppression but also determines the size

of the comoving horizon when the WDM particle becomes non-relativistic:

ηNR =

√
3√

2 kfs

.

During stages I) and II) the acoustic oscillations in the radiation fluid dominate the gravi-

tational potential, leading to an ISW effect that amplifies WDM density perturbations on

scales larger than the sound horizon at ηNR. This amplification translates in a prolonged

plateau in the transfer function for k . kfs which is more pronounced for colder species

since these feature a larger kfs.

When the particle is non-relativistic and WDM perturbations dominate the gravitational

potential, the evolution is described by the Boltzmann-Poisson equation which yields an

integral equation for density perturbations and is equivalent to integro-differential equation

with an inhomogeneity and initial conditions determined by the past history during stages I

and II. This equation is amenable to a systematic Fredholm expansion valid at small scales,

whose leading order is the Born approximation which establishes a direct relation with a
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fluid description of WDM perturbations. The resulting fluid equation is the generalization

of Meszaros’ equation for CDM but with an inhomogeneity and initial conditions that incor-

porate suppression by free streaming during the first two stages. The Born approximation

lends itself to a simple numerical implementation for arbitrary distribution functions and

mass of the decoupled WDM particle. Its main ingredients are the growing and decaying

solution of the generalized Meszaros fluid equation for WDM perturbations, and the initial

conditions and inhomogeneity that are completely determined by the past history during the

first two stages. The solutions of the fluid equations feature (WDM)-acoustic oscillations

which are manifest in the transfer function and power spectra for k & 2kfs.

An approximate form of the power spectra that interpolates between large and small

scales for arbitrary distribution functions is given by eqn. (VI.54) and a simple and concise

summary of the main elements of the Born approximation and its numerical implementation

are provided in the appendix.

As an application of the method and its numerical implementation we study in detail

and compare the transfer functions and power spectra of sterile neutrinos with mass in

the ∼ keV range for two non-resonant production mechanisms: Dodelson-Widrow (DW)

(sterile-active mixing) and Boson-decay (BD) near the electroweak scale. The former yields

a distribution function proportional to a thermal fermion but with a decoupling tempera-

ture Td ∼ 150 MeV, whereas the latter leads to a strongly non-thermal distribution with

a decoupling temperature Td ∼ 100 GeV that favors small momentum and yields a colder

species of sterile neutrinos for a given mass. For a sterile neutrino with mass ∼ keV the

(DW)-species is warmer with k
(DW )
fs ≃ 7.7 (Mpc)−1 and the (BD)-species is colder with

k
(BD)
fs ≃ 14.12 (Mpc)−1 and its transfer function features a longer plateau for k . kfs as a

consequence of the ISW enhancement during stage I.

The study of the (DW) species allows us to directly compare the results for the transfer

function from the semi-analytic formulation presented here to the results obtained in refs.[32,

41, 42] from the Boltzmann codes. Although we recognized several caveats in the comparison,

we find excellent agreement to < 5% between the results from the Born approximation

(VI.38) and the numerical fit to the result of Boltzmann codes presented in ref.[32] in the

region of scales where the fit is valid. Thus while this WDM scenario may already be ruled

out by Lyman-α constraints the detailed comparison between the method presented here

and the results from Boltzmann codes confirm the reliability of our results.
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Although the power spectra is strongly suppressed by free streaming at the scales at which

(WDM) acoustic oscillations emerge, we conjecture that non-linear gravitational collapse

may amplify these oscillations into peaks and troughs in the matter distribution at small

scales, leading to clumpiness on mass scales associated with these scales, for example for a

m ∼ keV sterile neutrino produced via the (BD) mechanism this scale is about ∼ 108M⊙ .

Perhaps coincidentally this is of the order of the mass contained within a half-light radius

in the (DM) halos of spiral, low surface brightness and dwarf spheroidal galaxies[88].

Having established the reliability of the method with a benchmark case, the next step of

the program will implement these methods to obtain the power spectra for sterile neutrinos

with different distribution functions obtained from the different production mechanisms. The

method and its numerical implementation is quite general, independently of the particular

WDM candidate and reliably yields the transfer function normalized to CDM for any WDM

species that freezes out and becomes non-relativistic during the radiation dominated era.

A numerical solution of the full Gilbert equation (VI.3) along with its comparison to the

Born approximation will be reported elsewhere.
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Appendix A: Simplification of I1

It is convenient to introduce the variables

x =
kη√

3
; ̟(k) =

4
√

2√
3

k

keq

≫ 1 (A.1)

and change integration variable from u′ to η using eqns. (III.32,II.8)), yielding

I1 = −6Ia (A.2)

Ia =
1

αy

∫ xeq

xNR

f(x)
d

dx

(sin(x)

x

)
sin
[
α y
(
U − 1

2
ln(x) +

1

2
ln[f(x)]

)]]
dx (A.3)

where

U = u+
1

2
ln[̟(k)] ; f(x) = 1 +

x

̟(k)
(A.4)
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xeq =
k ηeq√

3
≃ 69.3 k (Mpc) ; xNR =

κ

2
√

3
(A.5)

Integrating by parts and neglecting terms ∝ 1/̟(k) ≪ 1 we find

Ia =
1

2

[
1 +

√
2
]sin(xeq)

xeqα y
sin
[
α y
(
u+ 0.787)

)]

− sin(xNR)

xNRα y
sin
[
α y
(
u− 1

2
ln
(〈V 2

eq〉
1

2

4

))]

+
1

2

∫ xeq

xNR

sin(x)

x2
cos
[
α y
(
U − 1

2
ln(x)

)]
dx . (A.6)

In the second and third line in the above expression we have approximated f(x) ∼ 1 since

xNR/̟(k) ∼ 〈V 2
eq〉

1

2 ≪ 1 and the contribution from the upper limit to the integral in the

third line (the region where x/̟(k) ∼ 1 ) is suppressed by ∼ 1/x2
eq ∼ k2

eq/k
2. It is convenient

to extract the singular term ∝ 1/x as x ∼ xNR when xNR ≪ 1 (this is the CDM limit),

integrating by parts again, leading to

Ia =
1

2

[
1 +

√
2
] sin(xeq)

xeq α y
sin
[
α y
(
u+ 0.787)

)]
− sin

[
α y U

]

α y

+
[
1 − sin(xNR)

xNR

] 1

α y
sin
[
α y
(
u− 1

2
ln
(〈V 2

eq〉
1

2

4

))]

+
1

2

∫ xeq

1

sin(x)

x2
cos
[
α y
(
U − 1

2
ln(x)

)]
dx

− 1

2

∫ xNR

1

[sin(x) − x]

x2
cos
[
α y
(
U − 1

2
ln(x)

)]
dx (A.7)

The CDM limit corresponds to α→ 0, xNR → 0

Appendix B: Numerical implementation of the Born approximation.

The first step in the numerical implementation is to obtain
√
y2 for the given distribution

function of decoupled WDM particles and to input this value into the mode functions Q,P

given by eqns. (VI.26-VI.29).

For numerical implementation, it is convenient to take the wavevector k in units of

(Mpc)−1 and to write

α = c1 k ; c1 = 0.22

(
2

gd

)1

3

(
keV

m

)
(B.1)

κ = c2 k ; c2 = c1
√
y2 (B.2)

c22 =
c2

2
√

3
= 0.289 c2 (B.3)
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along with eqns. (III.29,III.47)), lead to

I1[k; y; u] = −6

{
1

c1 k y

[
1 − sin(c22k)

c22k

]
sin
[
c1 k y

(
u− 1

2
ln
(〈V 2

eq〉
1

2

4

))]

+
0.017

k2 c1 y
sin[69.3 k] sin

[
c1 k y

(
u+ 0.787)

)]
− sin

[
c1 k y

(
u+ 2.904 + 0.5 ln(k)

)]

c1 k y

+
1

2

∫ 69.3 k

1

sin(x)

x2
cos
[
c1 y
(
u+ 2.904 + 0.5 ln(k) − 0.5 ln(x)

)]
dx

−1

2

∫ c22 k

1

[sin(x) − x]

x2
cos
[
c1 y
(
u+ 2.904 + 0.5 ln(k) − 0.5 ln(x)

)]
dx

}
(B.4)

ICDM
1 [k; u] = −6

{
0.017

k
sin[69.3 k]

(
u+ 0.787)

)
−
(
u+ 2.904 + 0.5 ln(k)

)

+ 0.211 − 1

2

∫ ∞

69.3 k

sin(x)

x2
dx

}
(B.5)

The last integral term is . 10−3 for k ≥ 0.2 and can be neglected for small scales.

I2[k; y; u] = −1

2

(
d ln f0(y)

d ln y

)
j0

[
c1 k y (u− uNR) + 0.5 c2 k

]
(B.6)

ICDM
2 [k; u] = −1

2

(
d ln f0(y)

d ln y

)
(B.7)

IISW [k; y; u] =
12

c2 k

∫ 1

0

dt

t2

[
cos
(
c22 k t

)
− sin

(
c22 k t

)
(
c22 k t

)
]
j1

[
c1 k y(u− uNR) + 0.5 c2(1 − t)

]

(B.8)

ICDM
ISW = 0 (B.9)
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