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We present a new estimation method for mapping the gravitational lensing potential from observed
CMB intensity and polarization fields. Our method uses Bayesian techniques to estimate the average
curvature of the potential over small local regions. These local curvatures are then used to construct
an estimate of a low pass filter of the gravitational potential. By utilizing Bayesian/likelihood
methods one can easily overcome problems with missing and/or non-uniform pixels and problems
with partial sky observations (E and B mode mixing, for example). Moreover, our methods are local
in nature which allow us to easily model spatially varying beams and are highly parallelizable. We
note that our estimates do not rely on the typical Taylor approximation which is used to construct
estimates of the gravitational potential by Fourier coupling. We present our methodology with a
flat sky simulation under nearly ideal experimental conditions with a noise level of 1 µK-arcmin
for the temperature field,

√
2 µK-arcmin for the polarization fields, with an instrumental beam full

width at half maximum (FWHM) of 0.25 arcmin.

I. INTRODUCTION

Over the past decade the cosmic microwave back-
ground (CMB) has emerged as a fundamental probe of
cosmology and astrophysics. In addition to the primary
fluctuations of the early Universe, the CMB contains
signatures of the gravitational bending of CMB photon
trajectories due to matter, called gravitational lensing.
Mapping this gravitational lensing is important for a
number of reasons including, but not limited to, under-
standing cosmic structure, constraining cosmological pa-
rameters [15, 25] and detecting gravity waves [16, 17, 21].
In this paper we present a local Bayesian estimate that
can accurately map the gravitational lens in high resolu-
tion, low noise measurements of the CMB temperature
and polarization fields.

There is extensive literature on estimating the lens-
ing of the CMB (classic references include [9, 13, 27])
and some recent observational detections [7, 26]. The
current estimators in the literature can be loosely char-
acterized into two types. The first type was initiated in
[27] (see also [5, 23]) and utilizes quadratic combinations
of the CMB and its gradient to infer lens structure. The
optimal quadratic combinations were then discovered by
[12, 13, 20] and are generally referred to as ‘the quadratic
estimator’. This is arguably the most popular estimate
of the gravitational potential and uses a first order Taylor
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approximation to establish mode coupling in the Fourier
domain which can be estimated to recover the gravita-
tional potential (real space analogs to these estimators
can be found in [2, 3]). The second type is an approx-
imate global maximum likelihood estimate and was de-
veloped in [8, 9].

Our method, in contrast, locally approximates a
quadratic form for the gravitational potential and es-
timates the coefficients locally using Bayesian meth-
ods. The locally estimated coefficients are then globally
stitched together to construct an estimate of a low pass
filter of the gravitational potential. The local analysis
allows us to avoid using the typical first order Taylor ex-
pansion for the quadratic estimator and avoids the likeli-
hood approximations used in global estimates. Moreover,
we are able to easily handle missing pixels, problems with
partial sky observations (E and B mode mixing, for ex-
ample), and spatially varying or asymmetric beams. The
motivation for developing this estimate stems, in part,
from current speculation that likelihood methods will al-
low superior mapping of the lensing structure (compared
to the quadratic estimator) under low noise levels, and
that global likelihood methods can be prohibitively com-
putational intensive—indeed intractable—without signif-
icant approximation.

We illustrate our mapping methodology on a high res-
olution, low noise simulation of the CMB temperature
and polarization field on a 17 o × 17 o patch of the flat
sky. This simulation is used throughout the paper to
demonstrate findings and techniques. To get an overview
of the performance of our method, Fig. 1 shows the es-
timated potential (left) from the simulated lensed CMB
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FIG. 1. Left: Estimated gravitational potential on a 17o × 17o patch of the simulated flat sky. Right: Input gravitational
potential used in the simulation. See Section I and Appendix A for the simulation details.

temperature and polarization field (observational noise
levels are set at 1 µK-arcmin for the temperature field,√

2 µK-arcmin for the polarization fields, with a beam
FWHM of 0.25 arcmin). The input gravitational poten-
tial is shown in the right diagram in Fig. 1. The details
of the simulation procedure can be found in Appendix A.
It is clear from Fig. 1 that the mapping accurately traces
the true, unknown gravitational potential. To get an idea
of the noise of this reconstruction for different realizations
of the CMB + noise we present Fig. 2 which shows the
different estimates of the projected matter power spec-
trum using the estimated projected mass—with the local
likelihood approach—for 10 different CMB + noise re-
alizations (dashed lines) while keeping the gravitational
potential in Fig. 1 fixed. The blue curve shows the esti-
mated projected mass power spectrum if one had access
to the true gravitational potential used in our simula-
tions. Finally we plot the theoretical ensemble average
projected mass power spectrum in red to get an idea of
the magnitude of the errors in the mass reconstruction.

II. LOCAL MAXIMUM A POSTERIORI

ESTIMATES OF SHEAR AND CONVERGENCE

The CMB radiation in the flat sky limit can be ex-
pressed in term of the Stokes parameters T, Q, U which
measure total intensity T (x), and linear polarization
Q(x) and U(x) with respect to some coordinate frame
x = (x, y) ∈ R

2. Instead of directly observing T, Q, U we
observe a remapping of the CMB due to the gravitational
effect of intervening matter. This lensed CMB can be
written T (x+∇φ(x)), Q(x+∇φ(x)) and U(x+∇φ(x))
where φ denotes the gravitational potential (see [4], for
example).

To describe our estimate of the gravitational poten-
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FIG. 2. Plot of the projected mass power spectrum (red)
along with the estimated power spectrum using the true, but
unknown, projected mass (blue). The dashed lines correspond
to different estimates of the power spectrum using the esti-
mated projected mass—with the local likelihood approach—
for different CMB realizations but the same lensing potential
realization. See Section I and Appendix A for the simulation
details.

tial, φ, first consider a small circular observation patch
with diameter δ in the flat sky centered at some point
x0, denoted Nδ(x0) ⊂ R

2. Over this small region we
decompose φ into an overall local quadratic fit and error
term

φ = qφ + ǫ

where qφ is a local quadratic approximation of the po-
tential φ with error term ǫ ≡ φ − qφ. In what follows
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we estimate qφ, denoted q̂φ, and associate this estimate
with the neighborhood midpoint x0. Then we repeat
this procedure for other local midpoints x0 throughout
the observation window. After a shrinkage adjustment
is made to the local estimates we show, in Section II D,
how to stitch the estimates together to produce the final

estimated potential φ̂ shown in Fig. 1.
Notice that as δ → 0 the expected magnitude of the

error ǫ approaches zero. This has the effect of improving
the following Taylor approximation

T (x + ∇φ(x)) = T (x̃) + ∇ǫ(x) · ∇T (x̃) + · · · (1)

for x ∈ Nδ(x0), where we use the notation x̃ ≡
x + ∇qφ(x) (with a similar Taylor expansion for both
Q(x + ∇φ(x)) and U(x + ∇φ(x))). Notice that x̃ de-
pends not only on x but also the unknown coefficients
of the quadratic term qφ. We briefly mention that these
are related to the convergence κ and shear γ = γ1 + iγ2

of the gravitational lens by

κ ≈ −(qφ
xx + qφ

yy)/2

γ1 ≈ −(qφ
xx − qφ

yy)/2

γ2 ≈ −qφ
xy

using the shear notation given in [27]. Now when δ is
sufficiently small we can truncate the expansion in (1) to
get





T (x + ∇φ(x))
Q(x + ∇φ(x))
U(x + ∇φ(x))



 ≈





T (x + ∇qφ(x))
Q(x + ∇qφ(x))
U(x + ∇qφ(x))



 (2)

on the local neighborhood Nδ(x0). By regarding qφ as
unknown we can use the right hand side of (2) to de-
velop a likelihood for estimating the coefficients of qφ.
Nominally qφ has 6 unknown coefficients for which to
estimate. However, we can ignore the linear terms in
qφ since the CMB temperature and the polarization are
statistically invariant under the resulting translation in
∇qφ. Therefore, one can write qφ as c1(x − x0)

2/2 +
c2(x − x0)(y − y0) + c3(y − y0)

2/2 for unknown coeffi-
cients c1 = qφ

xx, c2 = qφ
xy, c3 = qφ

yy.
An important probe of gravitational lensing from the

CMB polarization is the creation of a curl-like B mode
from the lensing [14, 22]. We remark that a local
quadratic approximation in (2) still has the power to de-
tect this B mode power so that the local procedure is not
blind to this information source. To see this notice that
a quadratic lensing potential remaps the coordinates by

x̃ = x +

[

qφ
xx qφ

xy

qφ
xy qφ

yy

]

(x − x0).

If we assume the original polarization (Q(x), U(x)) is
curl free then the lensed polarization has curl given by

curl(Q(x̃), U(x̃)) = −2γ2Ux(x̃) + γ1

[

Qx(x̃) − Uy(x̃)
]

.

Therefore the shear parameter γ, and not the conver-
gence κ, is what creates local B-mode power. The dom-
inant source of information for B-mode power is in the
cross correlation between the lensed Stokes parameters
Q(x̃) and U(x̃). This agrees with [13] that the E-B cross
estimator provides optimal signal to noise under nearly
ideal experimental conditions.

We finish this section with a remark on the accuracy
of the Taylor approximation (1). As the the signal to
noise ratio increases and the pixel resolution improves
one can shrink the local neighborhood Nδ(x0) so the
term ǫ becomes smaller (which improves the Taylor ap-
proximation). However, as δ → 0, the fields T, Q and U
become nearly linear and one may expect some loss of
information from the shrinking power in T, Q and U at
frequencies with wavelengths smaller than the neighbor-
hood Nδ(x0). It therefore may be statistically advanta-
geous to artificially increase the neighborhood size while
simultaneously increasing the order of the local polyno-
mial fit qφ. Then, instead of recording the full polyno-
mial fit at each midpoint x0, one can retain the second
order derivatives qφ

xx(x0), q
φ
xy(x0), q

φ
y (x0) for estimates of

κ and γ. It is yet to be seen, however, what δ and what
polynomial order will be optimal for a given noise and
resolution level. In Section III we present an informa-
tion metric for choosing the neighborhood size δ for the
simulation specifics and for a quadratic polynomial qφ.

A. The local posterior

Using the Gaussian approximation of the CMB along
with the quadratic potential approximation given by (2)
we describe how to construct the likelihood as a func-
tion of the unknown quadratic coefficients in qφ. Let
x1, . . . , xn denote the observation locations of the CMB
within the local neighborhood Nδ(x0) centered at x0.
Using approximation (2), the CMB observables in this
local neighborhood are well modeled by white noise cor-
ruption of a convolved (by the beam) lensed intensity
and polarization field. Let t, q, u denote n-vectors of ob-
served CMB values at the corresponding pixel locations
in Nδ(x0) for the intensity T and Stokes parameters Q, U ,
respectively. Using Gaussianity of the full vector of CMB
observables, z = (t†, q†, u†)†, the log likelihood (up to a
constant) as a function of the quadratic fit qφ can be
written

L(qφ|z) = −1

2
z†

(

Σqφ + N
)−1

z − 1

2
ln det

(

Σqφ + N
)

(3)
where Σqφ + N is the covariance matrix of the ob-
servation vector z (we use the subscript to emphasize
the dependence on the unknown quadratic qφ), N =
diag

(

σ2
T I, σ2

QI, σ2
UI

)

is the noise covariance structure and
I is the n×n identity matrix. Notice that the noise struc-
ture does not depend on the unknown quadratic qφ. In
the next section we will derive the exact form of the prior
distribution on qφ, denoted π(qφ), but briefly mention
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that the posterior distribution on qφ, which we maximize
to estimate qφ, is

p(qφ|z) ∝ eL(qφ|z)π(qφ). (4)

The entries of Σqφ + N contain the covariances
〈tktj〉CMB, 〈qkqj〉CMB, 〈ukuj〉CMB and all cross covari-

ances among t, q, u (we use tk to denote the kth entry
of t, for example). Let ϕ denote the instrumental beam
and σT , σQ, σU denote the noise standard deviations of
T, Q, U so that, for example, the kth entry of t is modeled
as

tk ≡
∫

R2

d2x ϕ(x)T (x̃k − x̃) + σT nk (5)

where the nk’s are independent standard Gaussian ran-
dom variables, x̃k = xk +∇qφ(xk) and x̃ = x+∇qφ(x).
Note that this is an approximate model for tk based on
(2). In actuality, the kth temperature measurement is
∫

R2d
2x ϕ(x)T (xk −x+∇φ(xk −x))+σT nk, but the lin-

earity of ∇qφ allows us to write xk − x +∇φ(xk − x) ≈
constant+x̃k−x̃ on the small neighborhood Nδ(x0). Un-
der the assumption of zero B mode, the spectral densities
associated with Q, U can be written

CQ
ℓ = CE

ℓ cos2(2ϕℓ) (6)

CU
ℓ = CE

ℓ sin2(2ϕℓ) (7)

CQU
ℓ = CE

ℓ cos(2ϕℓ) sin(2ϕℓ) (8)

where tan(ϕℓ) = ℓ2/ℓ1 and ℓ = (ℓ1, ℓ2) ∈ R
2. Since one

can write x+∇qφ(x) = Mx where the M is a 2 real ma-
trix, the sheared Stokes parameters T (x̃), Q(x̃) and U(x̃)
are stationary random fields with spectral densities given

by CT
M−1ℓ

detM−1, CQ
M−1ℓ

det M−1 and CU
M−1ℓ

det M−1,
respectively. After adjusting for the beam (which is ap-
plied after lensing) the covariance between the observa-
tions in t can be written

〈tktj〉CMB = σ2
T δij +

∫

R2

d2ℓ

(2π)2
eiℓ·(xk−xj)|ϕ(ℓ)|2 CT

M−1ℓ

det M
.

(9)

The computations are similar to complete the entries of
covariance matrix Σqφ + N . At face value the above in-
tegral seems too computationally intensive for every pair
xk − xj . Moreover, to apply Newton type algorithms
for maximizing the posterior (4) one needs to compute
the derivatives of 〈tktj〉CMB with respect to elements of
M . In Appendix B we show that some of these compu-
tational challenges can be overcome by utilizing a single
FFT to quickly compute the above integral for sufficient
resolution in the argument xk −xj to recover 〈tktj〉CMB
for all pairs k, j.

B. Taylor truncation bias

The quadratic function qφ is defined as the best least
square fit of φ over the neighborhood Nδ(x0). The resid-
ual ǫ = φ − qφ, defined over Nδ(x0), is nonstationary

and will therefore not have a spectral density that diag-
onalizes the covariance structure. However, stationarity
is a good approximation for order of magnitude calcu-
lations on the truncation error in (1). We approximate

the spectral density of ǫ as an attenuated version of Cφ
ℓ

by arguing that the quadratic fit effectively removes the
spectral power at wavelengths greater than 2δ. Reason-
ing similarly we expect the quadratic fit to have negligi-
ble impact on the spectral power at wavelengths smaller
than δ. By assuming the spectral power grows linearly
in the intermediary spectral range, from zero at ℓ = π/δ

to Cφ
2π/δ at ℓ = 2π/δ, we obtain an approximate model

for the spectral density of ǫ

Cǫ
ℓ ≈ min

{

1,
[ δ

π
|ℓ| − 1

]+}2

Cφ
ℓ

where x+ denotes the positive part of the real number
x. Notice that the attenuation happens on the realiza-
tions of φ, hence requiring the square on the low pass
filter in the spectral density. This implies that the sec-
ond term in the Taylor expansion (1) has approximate
spectral density

C
∇T (x̃)·∇ǫ(x)
ℓ ≈

∫

d2ℓ′

(2π)2
(M−1ℓ′ · (ℓ− ℓ′))2Cǫ

ℓ−ℓ′

CT
M−1ℓ′

detM
.

In our simulation we use a neighborhood diameter
of δ = 0.006 radians (20.6 acrmin). This diameter
was chosen using the information criterion developed
in Section III. The corresponding approximate rms of
∇T (x̃) · ∇ǫ(x) is ∼ 2.3 µK with an order of magnitude
reduction for the polarization field. Brute force simu-

lation of

〈

Mean
xk∈Nδ(x0)

{T (xk + ∇φ(xk)) − T (x̃k)}2

〉1/2

CMB
yields a value closer to ∼ 3.6 µK, suggesting a reasonable
stationary approximation to ǫ. These approximations
show that the polarization truncation error is smaller (by
an order of magnitude) than the simulation noise level√

2µK-arcmin. However, the temperature truncation
error is greater than the temperature noise level 1 µK.
A consequence is that the likelihood explains the addi-
tional high frequency power in the observations (from
the error term) by adjusting the estimate of qφ to artifi-
cially magnify the convergence κ estimates. Indeed, this
bias seems relatively constant and can be clearly seen in
Fig. 3 in the top blue points. Each blue point corresponds
to a local neighborhood: the x-coordinate representing
the true ∇2qφ associated with that neighborhood; the y-
coordinate representing the estimated local value shifted
up by 0.2, i.e. ∇2q̂φ + 0.2. The bias of nearly ∼ 0.1
above the top dashed blue line y = x + 0.2, shows the
effect of the additional high frequency power of the er-
ror term ∇T (x̃) · ∇ǫ(x). To adjust this, we subtract the
overall mean of the local estimates, reasoning that the
observation window is large enough at 17 o × 17 o so that
the overall mean of the true values qφ

xx, qφ
xy, q

φ
yy is close to

zero. For smaller observation windows it may be possible
to estimate an overall quadratic fit to correct for this bias
but we do not investigate that here.
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FIG. 3. Estimated values of ∇2φ(x0), for each local neigh-
borhood midpoint x0, plotted against the simulation truth at
different stages of the algorithm. The blue points correspond
to the raw estimates at each local neighborhood; The green
points to the estimates after fitting a gravitational potential;
The red points after a shrinkage correction. The y coordinates
of the blue points are shifted up by 0.2 and the red points are
shifted down by 0.2 to fit on the same diagram. See Sections
IIB and IID for discussion.

C. The prior π(qφ)

The stationary approximation for ǫ also yields an ap-
proximation for the the prior distribution of the local
quadratic fit qφ using the identity qφ = φ − ǫ. Since ǫ
is well modeled by a high pass filter of φ, the quadratic
function qφ can be modeled by the corresponding low
pass filter

qφ(x) ≈
∫

d2ℓ

2π
eix·ℓφlp(ℓ)

over x ∈ Nδ(x0), where φlp(ℓ) ≡ min
{

1,
[

2 −
δ
π |ℓ|

]+}

φ(ℓ) which has spectral density min
{

1,
[

2 −

δ
π |ℓ|

]+}2

Cφ
ℓ . Therefore a natural candidate for the prior

on the coefficients of qφ are the random variables ∂2φlp(0)
∂xk∂xj

which are mean zero and Gaussian with variances ob-
tained by the corresponding spectral moments of φlp.
This prior is used on each local neighborhood Nδ(x0) to
derive the local maximum a posteriori estimate. For the
simulation used in this paper, the neighborhood width
was set to δ = 0.006 radians (20.6 arcmin) which gives
prior variances 0.0023, 0.0008, 0.0023 for qφ

xx, qφ
xy and qφ

yy,
respectively (the only nonzero cross covariance is between
qφ
xx and qφ

yy and is 0.0008).

D. Reconstructing φ from q̂φ

When observing the full sky, the estimates of κ will
allow one to recover the gravitational potential φ by
solving the poisson equation ∇2φ = −2κ (up to a con-
stant). With partial sky observations, however, the shear
is needed to break ambiguity corresponding to different
boundary conditions. We do this in two stages, first using
q̂φ
xx, q̂φ

xy and q̂φ
yy (regarded as functions of the local neigh-

borhood midpoint x0) to recover the estimated displace-

ment field (φ̂x, φ̂y), then using this displacement field to

recover the estimated potential φ̂. To handle this, we

adopt the method of [10, 24] and define φ̂x, φ̂y as mini-
mizers of functionals F1 and F2 defined as

F1(φx) ≡
∫

dxdy
[

(φxx − q̂φ
xx)2 + (φxy − q̂φ

xy)2
]

F2(φy) ≡
∫

dxdy
[

(φxy − q̂φ
xy)2 + (φyy − q̂φ

yy)
2
]

.

In particular, φ̂x satisfies F1(φ̂x) = minφx
F1(φx) and

similarly for φ̂y . See [1] for details of the minimiza-
tion algorithm. Now we use the estimated displacements

(φ̂x, φ̂y) to define the estimated potential φ̂ as the mini-
mizer of the functional F3 defined as

F3(φ) ≡
∫

dxdy
[

(φx − φ̂x)2 + (φy − φ̂y)2
]

.

The minimization is needed to account for the fact that
our estimates are noisy versions of the truth and therefore
may not correspond to an integral vector field for which a

potential exists. A consequence is that the estimate φ̂ is
‘shrunk’ towards zero when the algorithm fits a gradient
to a vector field which may have non vanishing curl. This
shrinking can be seen in Fig. 3 looking at the scatter plot

of green points. These points show (∇2φ(x0),∇2φ̂(x0))
for each local neighborhood Nδ(x0). One can clearly see
the shrinkage effect by noticing the slope of the trend in
the green points is less than one. We undo this shrink-

age effect by multiplying φ̂ by a factor that undoes this
shrinkage. The multiplication factor, denoted c, is de-
termined by matching the variance of the raw estimates

∇2q̂φ with c∇2φ̂. The result of this correction factor is
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FIG. 4. The right diagram shows φx, where ∇φ ≡ (φx, φy) is the true gravitational displacement field used in the simulation.

The left diagram shows the estimate φ̂x which is derived from the local quadratic estimates using the methodology described
in Section II D.

seen in the scatter plot of the red points, in Fig. 3, which
show the local convergence estimates versus truth after

the correction factor (∇2φ, c∇2φ̂ − 0.2).

The estimated φ̂x (after correcting for the shrinkage)
along with the true displacement φx (used in the simula-

tion) are shown in Fig. 4. The estimated φ̂ along with the
true gravitational potential φ are shown in Fig. 1. These
two figures demonstrate accurate reconstruction of both
the gravitational potential and the displacement field. In

addition, by differentiating the estimated potential, φ̂,
one obtains smoothed estimates of convergence and shear

(smoothed from the fitting of φ̂). In Fig. 5 we plot the

estimate φ̂xy (which corresponds to minus the imaginary
part of the shear γ), along with φxy (bottom right) and
the low pass filter φlp

xy (bottom left) defined in Section

II C. Notice that the estimate φ̂xy tracks the derivatives
of the low pass filter φlp

xy, whereas the additional high

frequency in φxy is not accurately estimated from φ̂xy.
This is presumably due to the local fitting of a quadratic
potential over the neighborhoods Nδ(x0).

III. NEIGHBORHOOD SIZE AND STRUCTURE

We define the following measure of information which
is used as a metric for choosing the width of the neigh-
borhood and other parameters of our estimation method:

Information for qφ ≡
variance of the prior on qφ

expected variance of the posterior on qφ
.

The above information metric is essentially a measure
of signal to noise ratio (squared). The variance of the

prior corresponds to the squared magnitude of the sig-
nal, whereas the expected variance of the posterior is a
proxy for the squared magnitude of the noise. We use
simulations to estimate this information (while using the
hessian of the posterior density at q̂φ to approximate pos-
terior variance) and use it for guidance when choosing the
tuning parameters for our estimation algorithm. Note:
we avoided a lengthy and rigorous simulation study to
choose global optimal tuning parameters, opting for a
less rigorous simulation study which yields, potentially,
sub-optimal but reasonable algorithmic parameters.

The main parameter that needs tuning is the local
neighborhood size δ. Notice that our information mea-
sure attempts to balance two competing quantities when
choosing a neighborhood size, the larger the neighbor-
hood the smaller the signal qφ (from the low pass filter).
On the other hand, larger neighborhoods correspond to
more data when the resolution is fixed. Using this met-
ric, δ = 0.006 radians (20.6 arcmin) emerges as a good
neighborhood size when the beam FWHM is 0.25 arcmin
and the noise levels are

√
2 and 1 µK-arcmin pixels for

Q, U and T , respectively.

Due to computational limitations associated with
larger neighborhoods we found it necessary to down-
sample the local neighborhoods by discarding pixels. Us-
ing the information metric we were able to isolate that
randomly sampling the pixels seemed preferable to evenly
downsampling to a courser grid. Moreover, we found that
using different randomly selected pixels for T, Q and U
was preferable to using the same random pixels for all
the Stokes fields. Therefore, for each local neighborhood
we selected 300 random pixels in Nδ(x0) for the T ob-
servations, then randomly selected 300 pixels from those
remaining for Q and finally 300 pixels from the remain-
ing unselected pixels for U (allowing overlaps when the
local neighborhood size had fewer than 900 pixels).
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FIG. 5. The top diagram shows the estimate of φxy (which corresponds to minus the imaginary part of the shear γ) where
φ denotes the gravitational potential. The bottom two diagrams show the simulation truth: bottom left shows φlp

xy where

φlp denotes the low pass filter φlp(ℓ) ≡ min
n

1,
h

2 − 0.006

π
|ℓ|

i+o

φ(ℓ) (see Section II C for a discussion); bottom right shows

φxy. Notice that the estimate of φxy tracks the low pass filter φlp
xy and does not have the high frequency behavior seen in the

simulation truth φxy.

IV. DISCUSSION

We have demonstrated the feasibility of using a local
Bayesian estimate to accurately map the gravitational
potential and displacement fields under low noise, small
beam experimental conditions. The motivation for de-
veloping this estimate stems, in part, from speculation
that likelihood methods will allow superior mapping of
the lensing structure (compared to the quadratic estima-
tor) under low noise levels. The main difference between
the global estimates of [8, 9] and the local estimate pre-
sented here is the nature of the likelihood approximation.
In [8, 9] the global likelihood is defined as a functional
on the unknown gravitational potential φ and approxima-
tions are made to this functional. Our method, in con-
trast, uses a nearly exact likelihood—exact up to approx-

imation (B1) in Appendix B—but under a local model-
ing approximation that assumes a quadratic φ. One ad-
vantage is the added precision available to model instru-
mental and foreground characteristics. For example, the
local analysis models the beam convolved CMB rather
than the deconvolved CMB. Deconvolution induces spa-
tial correlation in the additive instrumental noise which
is potentially nonstationary if the beam spatially varies.
Since this noise is not invariant under warping it com-
plicates the global likelihood. Another advantage is that
the local estimates are relatively easy to implement and
parallelize. In addition, the local estimate automatically
uses the highest signal to noise combinations of Q, U and
T so there is no need to re-derive the optimal quadratic
combinations for different experimental conditions.

The local analysis is not free from disadvantages how-
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ever. A global analysis is presumably much better suited
for estimating long wavelengths in the gravitational po-
tential and wavelengths that are shorter than the lo-
cal neighborhood size. Moreover, since our estimates
are defined implicitly—as the maximum of the posterior
density—it is difficult to derive expected error magni-
tudes. However, the results presented here show that
under some experimental conditions the advantages over-
come the disadvantages. Moreover our local estimate
uses an approximation that is inherently different from
the Taylor approximation used to derive the quadratic
estimator. This leaves open the possibility that the local
estimate may have different bias and error characteristics
which could compliment the quadratic estimator, rather
than replace it.

Appendix A: Simulation details

The fiducial cosmology used for the simulations is
based on a flat, power law ΛCDM cosmological model,
with baryon density Ωb = 0.044; cold dark matter
density Ωcdm = 0.21; cosmological constant density
ΩΛ = 0.74; Hubble parameter h = 0.71 in units of
100 km s−1 Mpc−1; primordial scalar fluctuation ampli-
tude As(k = 0.002 Mpc−1) = 2.45×10−9; scalar spectral
index ns(k = 0.002 Mpc−1) = 0.96; primordial helium
abundance YP = 0.24; and reionization optical depth
τr = 0.088. The CAMB code is used to generate the
theoretical power spectra [18].

We start by simulating maps of the unlensed CMB
Stokes parameters T, Q, U . The following Riemann sum
approximation is used for the random fields T, Q, U

T (x) ≈
∑

ℓ

ZT
ℓ

√
∆ℓ1∆ℓ2

2π
eix·ℓ

√

CT
ℓ (A1)

Q(x) ≈
∑

ℓ

ZE
ℓ

√
∆ℓ1∆ℓ2

2π
eix·ℓ cos(2ϕℓ)

√

CE
ℓ (A2)

U(x) ≈
∑

ℓ

ZE
ℓ

√
∆ℓ1∆ℓ2

2π
eix·ℓ sin(2ϕℓ)

√

CE
ℓ (A3)

where ϕℓ = tan−1(ℓ2/ℓ1); ∆ℓ1, ∆ℓ2 are the frequency
spacing in the two coordinate directions; for each ℓ,
ZT

ℓ and ZE
ℓ are mean zero complex Gaussian random

variables such that 〈ZT
ℓ ZT

ℓ′

∗〉 = 〈ZE
ℓ ZE

ℓ′

∗〉 = δℓ−ℓ′,

〈ZT
ℓ ZE

ℓ′

∗〉 =
CT E

ℓ√
CT

ℓ

√
CE

ℓ

δℓ−ℓ′, ZT
−ℓ = ZT

ℓ

∗
and ZE

−ℓ = ZE
ℓ

∗
.

To enforce the proper cross correlation between ZT
ℓ and

ZE
ℓ we set

[

ZT
ℓ

ZE
ℓ

]

=
1√
2

[

−√
1 − ρ

√
1 + ρ√

1 − ρ
√

1 + ρ

] [

W 1
ℓ

W 2
ℓ

]

(A4)

where ρ ≡ CTE
ℓ√

CT
ℓ

√
CE

ℓ

, and for each ℓ, W 1
ℓ , W 2

ℓ are

mean zero complex Gaussian random variables such that

〈W 1
ℓ W 1

ℓ′

∗〉 = δℓ−ℓ′ , 〈W 2
ℓ W 2

ℓ′

∗〉 = δℓ−ℓ′ , 〈W 1
ℓ W 2

ℓ′

∗〉 = 0,

W 1
−ℓ = W 1

ℓ

∗
and W 2

−ℓ = W 2
ℓ

∗
.

In our simulation, the above sums—equations
(A1),(A2) and (A3)—are taken over frequencies ℓ ∈
{

2π
L k : k ∈ {−N/2, . . . , N/2 − 1}2

}

where L = 0.2967

radians so that T will be periodic on [−L/2, L/2]2. The
limit N = L/∆x is chosen to match the resolution in pixel
space, denoted ∆x, so that FFT can be used to compute
the sums (A1),(A2) and (A3) which, after simplification,
becomes

T (j∆x) ≈
∑

k

ZT
2π
L

k

2π

L
ei2πk·j/N

√

CT
2π
L

k
(A5)

Q(j∆x) ≈
∑

k

ZE
2π
L

k

2π

L
ei2πk·j/N cos(2ϕℓ)

√

CE
2π
L

k
(A6)

U(j∆x) ≈
∑

k

ZE
2π
L

k

2π

L
ei2πk·j/N sin(2ϕℓ)

√

CE
2π
L

k
(A7)

for each j ∈ {N/2, . . . , N/2 − 1}2 where the sums range
over k ∈ {−N/2, . . . , N/2 − 1}2. The matrix of val-
ues

[

T (j∆x)
]

j∈{−N/2,...,N/2−1}2 , for example, can then

be simulated by a two dimensional FFT of the matrix
[

ZT
2π
L

k
2π
L ei2πk·j/N

√

CT
2π
L

k

]

k∈{−N/2,...,N/2−1}2

. The iden-

tities W 1
−ℓ = W 1

ℓ

∗
and W 2

−ℓ = W 2
ℓ

∗
are enforced using a

two dimensional FFT of two N × N matrices with inde-
pendent standard Gaussian random entries.

Remark: Typically the above method suffers from
an aliasing error when truncating to a finite sum in
(A1),(A2) and (A3). We avoid any such complication by

setting the power spectrum in CT
ℓ , CQ

ℓ and CU
ℓ to zero for

all frequencies beyond |ℓ| = 6000. We justify this trunca-
tion since both diffusion damping and the beam FWHM
of 0.25′ combine to produce negligible amplitude in the
CMB Stokes parameters at frequencies |ℓ| ≥ 6000 com-
pared to the noise level.

Remark: Since the full sky Stokes parameters T, Q, U
are defined on the sphere, the theoretical power spectrum

for CT
ℓ , CQ

ℓ , CU
ℓ are only defined on integers ℓ. Our

flat sky approximation is obtained by extending CT
ℓ , CQ

ℓ
and CU

ℓ to ℓ ∈ R
2 by rounding the magnitude |ℓ| to the

nearest integer. See Appendix C in [11] for a derivation
of this flat sky approximation.

To get a realization of the lensed CMB Stokes parame-
ters T, Q, U we use the above method to generate a high
resolution simulation of T, Q, U and the gravitational po-
tential φ on a 17o × 17o patch of the flat sky with 0.25
arcmin pixels. The lensing operation is performed by
taking the numerical gradient of φ, then using linear in-
terpolation to obtain the values T (x + ∇φ(x)), Q(x +
∇φ(x)), U(x + ∇φ(x)). The beam effect is then per-
formed in Fourier space using FFT of the lensed fields.
Finally, we down-sample the lensed fields, every 4th pixel,
to obtain the desired arcmin pixel resolution for the sim-
ulation output.
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Appendix B: Newton’s method for maximizing the

local posterior

In this section we discuss our numerical procedure for
maximizing the local posterior given by (4). We remark
that calculations need to be fast since they will be per-
formed on each local neighborhood for which a shear and
convergence estimate is required. We discuss how the
FFT can be used to to compute the covariance matrix,
denoted Σqφ + N in Section II A, and the corresponding
derivatives with respect to the unknown coefficients of
qφ. We let M be the symmetric 2 × 2 matrix defined as

M ≡
(

1 + qφ
xx qφ

xy

qφ
xy 1 + qφ

yy

)

so that x+∇qφ(x) = Mx. The

matrix M is regarded as the unknown which will be esti-
mated from the data in the local neighborhood Nδ(x0).
Let Tb,M denote a sheared temperature field, convolved
with a Gaussian beam (with standard deviation σb) so
that

Tb,M (x) =

∫

R2

d2yT (Mx− My)e−|y|2/(2σ2
b )(σ2

b 2π)−1.

To compute the covariance matrix of the T observations
t = (t1, . . . , tn)† in Nδ(x0) (see equation (5)) one needs
to evaluate the following covariance function for a given
test shear matrix M at all vector lags h = xj − xk

CTb,M
(h) ≡ 〈Tb,M (x + h)Tb,M (x)〉CMB

=

∫

R2

d2ℓ

(2π)2
eiℓ·he−σ2

b |ℓ|
2 CT

M−1ℓ

detM
.

All these calculations can be approximated using a FFT
by noticing

CTb,M
(j∆x) ≈

∑

k

∆2
ℓ

(2π)2
ei2πk·j/Ne−σ2

b |∆ℓk|2
CT

∆ℓM−1k

detM

(B1)
where the sum ranges over k ∈ {−N/2, . . . , N/2 − 1}2,
∆x is the pixel spacing, j ∈ {−N/2, . . . , N/2 − 1}2,
∆ℓ = 2π/L and L = N∆x. Then to compute the co-
variance between tj and tk we simply select the entry
of the matrix

[

CTb,M
(j∆x) + σ2

T δj1j2

]

j∈{−N/2,...,N/2−1}2

such that j∆x = xj − xk (which was obtained by a sin-
gle FFT). A similar technique can be used to compute all
other covariance and cross-covariances among T, Q and
U to construct the covariance matrix Σqφ . We remark
that to speed up the computations we choose a smaller
N then the one used in the simulations (N = 4096 in
the simulation but N = 256 for the approximation of
CTb,M

(j∆x)).

Once the covariance matrix Σqφ +N is constructed us-
ing the approximation (B1) (and the analogous approxi-
mations for Q, U and all cross correlations) the posterior

is easily computed as p(qφ|z) ∝ eL(qφ|z)π(qφ) where L
denotes the log likelihood (3) and π is the prior distri-
bution derived in Section II C. In principle, one can now
simply use pre-existing minimization algorithms for max-
imizing the posterior p(qφ|z) with respect to qφ. If one
desires a more sophisticated Newton type algorithm for
maximizing the posterior one often needs to compute the
gradient and hessian of the posterior. Using the tech-
niques of automatic differentiation (see [19], for exam-
ple) one can easily compute such derivatives if one can
compute the rates of change of the covariance Σqφ with
respect the the elements of M .

We finish this Appendix by noticing that the FFT can
be used to approximate the derivatives of Σqφ with re-
spect to the elements of the matrix M , denoted Mk,j for
k, j ∈ {1, 2}. For illustration we focus on the covariance
structure of the temperature field T and mention that
the extension to Q, U is similar. First notice that by
transforming variables ℓ′ = M−1ℓ one gets

dCTb,M
(h)

dMk,j
=

d

dMk,j

∫

d2ℓ′

(2π)2
ei(Mℓ′)·h−σ2

b |Mℓ′|2CT
ℓ′

=

∫

d2ℓ′

(2π)2
ei(Mℓ′)·h−σ2

b |Mℓ′|2CT
ℓ′

× d

dMk,j

[

i(Mℓ′) · h − σ2
b |Mℓ′|2

]

Now d
[

i(Mℓ′) ·h−σ2
b |Mℓ′|2

]/

dMk,j can be written as a

sum
∑

k ck(h)gk(M, ℓ′) so that by re-transforming vari-
ables to ℓ = Mℓ′ one gets

dCTb,M
(h)

dMk,j
=

∑

k

ck(h)

∫

d2ℓ

(2π)2
eiℓ·h−σ2

b |ℓ|
2

× gk(M, M−1ℓ)
CT

M−1ℓ

detM
.

The point is that the above integrals can now be approx-
imated using FFT to approximate the matrix of values
[

dCTb,M
(j∆x)

dMk,j

]

j∈{−N/2,...,N/2−1}2
. The same method ap-

plies to approximate all higher order derivatives of the
covariance matrix. These derivatives can then be used
in a Newton type algorithm for finding the maximum
a-posteriori estimates q̂φ.
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