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Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of
paired quark matter in a magnetic field, and taking into consideration the separation between the
longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational
symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. This
result is then used to investigate the possibility of absolute stability, which turns out to require a
field-dependent “bag constant” to hold. That is, only if the bag constant varies with the magnetic
field, there exists a window in the magnetic field vs. bag constant plane for absolute stability of
strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid
(MCFL core) stars are calculated and discussed.
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I. INTRODUCTION

Neutron stars are dense, compact astrophysical objects
which are one possible result of the evolution of massive
stellar progenitors. Determining which is the state of the
matter in the interior of these objects is still an open
question, and of the greatest importance for hadronic
physics and stellar astrophysics alike. High-quality data
presently being taken and analyzed offer for the first time
a real perspective to explore this domain of strong inter-
actions.

It has been proposed that these stars are not composed
of neutron matter, but rather that, given the conditions
of very high density in their interiors, there could be a
phase transition from nuclear to quark matter [1, 2]. Sev-
eral authors have considered an even more extreme possi-
bility [3, 4]: the absolute stability of the deconfined phase
(in which case, self-bound -strange stars- would exist). If
the milder condition is realized, that is, the deconfined
phase is stable only at high pressure, stars with quark
cores (hybrid stars) would ensue.

An interesting twist to the stability problem was given
a decade ago (after an important precursor [5]), when
paired matter was studied [6–8] and the pairing energy
was shown to enlarge the window of stability in param-
eter space. The phenomenon of color superconductivity,
in which quarks pair according to their color and flavor
in a specific pattern, would thus introduce a pairing gap
in the free energy of the system due to the attractive
color-antisymmetric channel in the interaction between
quarks.
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The most symmetric pairing state would be the Color-
Flavor-Locked one (CFL) when quarks of all flavors and
colors pair. This state can only be realized if the mass
split between the lightest quarks (up and down) and the
strange quark is small and/or the chemical potential µ is
high enough, a condition usually written as µ & m2

s/2∆
[9], withms being the strange quark mass and ∆ the pair-
ing gap. When this condition does not hold, other states
could be realized (e. g., LOFF [10], kaon-condensate
phase [11], 1SC [9, 12], homogenous gluon condensate
phase [13], and gluon-vortex lattice [14], among others).
This is a subject under intense study.

Being a possible physical realization of dense mat-
ter physics, a common characteristic of neutron stars
is their strong magnetization. Their surface magnetic
fields range from H = 1.7 × 108G (PSR B1957+20) up
to 2.1 × 1013G (PSR B0154+61), with a typical value
of 1012G [15]. There are observational evidences of even
stronger magnetic fields in the special group of neutron
stars know as magnetars- with surface magnetic fields of
order B ∼ 1014−1015G [16]. In the core of these compact
objects the field may be considerably larger due to flux
conservation during the core collapse or by internal mech-
anisms that can boost a pre-existing seed field [17]. By
applying the equipartition theorem, the interior field can
be estimated to reach values H ∼ 1019−20G [18]. There-
fore, if color superconducting QCD phases constitute the
neutron matter interiors, it is likely that a treatment in-
cluding high field values would be needed.

At this point, it is worth to underline a main differ-
ence between a conventional electric superconductor and
a spin-zero color superconductor in regard to their behav-
ior in the presence of a magnetic field. Spin-zero color
superconductivity, as that of the CFL phase and the two-
flavor 2SC phase, does not screen an external magnetic
field because even though the color condensate has non-
zero electric charge, there is a linear combination of the

photon and the 8th gluon, Ãµ = Aµ cos θ−G8
µ sin θ, that
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remains massless [19]. This combination plays the role
of an in-medium or rotated electromagnetism with the
color condensate being always neutral with respect to

the corresponding rotated charge Q̃. Then, an external
magnetic field can penetrate the color superconductor

through its long-range, in-medium component H̃ . Fur-
thermore, even though the diquark condensate is neu-
tral with respect to the rotated electromagnetism, some

quarks participating in the pairing are Q̃-charged, so they
can couple to a background magnetic field thereby af-
fecting the gap equations of the system [20–23]. Because
of this effect, the three-flavor color superconductor in a
magnetic field exhibits a new phase that is known as
Magnetic Color-Flavor-Locked (MCFL) phase [20]. Al-
though the CFL and the MCFL phases of three-flavor
paired quark matter are similar in that they both break
chiral symmetry through the locking of color and flavor
and have no Meissner effect for an in-medium magnetic
field, they have important differences too (for physical
implications of their differences see [24]).

At present, some of the best-known characteristics of
stellar objects are their masses and radii. The relation
between the mass and the radius of a star is determined
by the equation of state (EoS) of the microscopic matter
phase in the star. If one can find some features that can
connect the star’s internal state (nuclear, strange, color
superconducting, etc.) to its mass/radius relation, one
would have an observational tool to discriminate among
the actual realization of different star inner phases in na-
ture. From previous theoretical studies [8, 25, 26] the
mass-radius relationship predicted for neutron stars with
different quark-matter phases (CS or unpaired) at the
core are very similar to those having hadronic phases,
at least for the observed mass/radius range. As a conse-
quence, it is very difficult to find a clear observational sig-
nature that can distinguish among them. Nevertheless,
an important ingredient was ignored in these studies: the
magnetic field, which in some compact stars could reach
very high values in the inner regions.

As pointed out in [18], a strong magnetic field can cre-
ate a significant anisotropy in the longitudinal and trans-
verse pressures. One would expect then, that the EoS,
and consequently, the mass-radius ratio, become affected
by sufficiently strong core fields. Given that we are be-
ginning to obtain real observational constraints on the
EoS of neutron stars [27], it is important to investigate
the EoS in the presence of a magnetic field for different
inner star phases to be able to discard those that do not
agree with observations.

In order to understand the relevance of the magnetic
field to tell apart neutron stars from stars with paired
quark matter, it is convenient to recall that when the
pressure exerted by the central matter density of neu-
tron stars (which is about 200 − 600MeV/fm3) is con-
trasted with that exerted by an electromagnetic field, the
field strength needed for these two contributions to be
of comparable order results of order ∼ 1018G [28]. On
the other hand, relevant relativistic quantum field effects

(i.e. those due to the Landau quantization of the particle
energy modes) will show up in the neutron/proton star
matter when the particles’s cyclotron energy ehH/mc be-
comes comparable to its rest energy mc2, which for pro-
tons means a field ∼ 1020G.

However, for stars with paired quark matter, the sit-
uation is rather different. Naively, one might think that
comparable matter and field pressures in this case would
occur only at much larger fields, since the quark matter
can only exist at even larger densities to ensure decon-
finement. In reality, though, the situation is more sub-
tle. As argued in [25], the leading term in the matter
pressure coming from the contribution of the particles in
the Fermi sea, ∼ µ4, could be (almost) canceled out by
the negative pressure of the bag constant and in such a
case, the next-to-leading term would play a more relevant
role than initially expected. Consequently, the magnetic
pressure might only need to be of the order of that pro-
duced by the particles close to the Fermi surface, which
becomes the next-to-leading contribution, ∼ µ2∆2, with
∆ the superconducting gap and µ the baryonic chemi-
cal potential. For typical values of these parameters in
paired quark matter one obtains a field strength ∼ 1018G.
Moreover, the magnetic field can affect the pressure in a
less obvious way too, since as shown in Refs. [20–22],
it modifies the structure and magnitude of the super-
conductor’s gap, an effect that, as found in [29], starts
to become relevant already at fields of order 1017G and
leads to de Haas van-Alphen oscillations of the gap mag-
nitude [30, 31]. It is therefore quite plausible that the
effects of moderately strong magnetic fields in the EoS
of compact stars with color superconducting matter will
be more noticeable than in stars made up only of nu-
cleons, where quantum effects starts to be significant for
field three orders of magnitude larger. This is why an
evaluation of a magnetized quark phase is in order.

In this work, we perform a self-consistent analysis of
the EoS of the MCFL matter, taking into consideration
the solution of the gap equations and the anisotropy of
the pressures in a magnetic field. Our main goals are:
1) to investigate the effect of the magnetic field in the
absolute stability of strange stars made of paired matter
in the MCFL phase; 2) to determine the threshold field
at which substantial separation between the parallel and
transverse pressures occurs in the MCFL matter; and
3) to explore whether there is a range of magnetic field
strengths, within the isotropic regime for the EoS, that
can lead to observable differences in the mass-radio ratios
of stars with MCFL vs CFL cores.

The plan of the paper is the following. In Sec. II we
present the thermodynamic potentials for the color su-
perconducting (CFL and MCFL) models used in our cal-
culations throughout. Using them, the equations of state
for the CFL and MCFL phases are then found in Sec. III.
The pressure anisotropy appearing in the MCFL case is
graphically shown and the order of the field strength re-
quired for the anisotropic regime to settle is determined.
The stability conditions for the realization of self-bound
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MCFL matter is investigated in Sec. IV, where we find
that the magnetic field acts as a destabilizing factor for
the realization of strange matter and prove that only if
the bag constant decreases with the field, a magnetized
strange star could exist. In Sec. V, we applied the EoS of
MCFL matter to calculate the mass-radius relationship of
self-bound and gravitational-bound stellar models. The
main outcomes of the paper are summarized in Sec. VI.
Finally, in Appendix A, it is studied the dynamical bag
constant in the chiral limit at H 6= 0.

II. MODEL

As mentioned in the Introduction, a main goal of this
work is to carry out a self-consistent investigation of the
EoS of the MCFL phase. For the sake of understanding,
and for comparison with the case without magnetic field,
we are also going to find the EoS of the CFL phase using
a similar approach. With this aim in mind, we first need
to obtain the thermodynamic potential for each phase.
The CFL superconductor can be modeled by the three-
flavor Nambu-Jona-Lasinio (NJL) theory considered in
[32] (see Eq.(10) of that reference). In our case, we ne-
glect all the quark masses so the color and electrical neu-
tralities are automatically satisfied and the only nonzero
chemical potential will be the baryonic chemical potential
µ. As known, this effective model displays all the sym-
metries of QCD which are relevant at high densities. Its

four-fermion point interaction contains the quark-quark
attractive color antitriplet channel that gives rise to the
diquark condensate.

In the MCFL phase we assume a uniform and constant
magnetic field. The reliability of this assumption for neu-
tron stars, where the magnetic field strength is expected
to vary from the core to the surface in several orders, is
based on the fact that the scale of the field variation in
the stellar medium is much larger than the microscopic
magnetic scale for both weak and strong magnetic fields
[28]. Hence, when investigating the field effects in the
EoS, it is consistent to take a magnetic field that is lo-
cally constant and uniform. This is the reason why such
an approximation has been systematically used in all the
previous works on magnetized nuclear [28, 33] and quark
matter [34].

A. Thermodynamic Potential of the CFL Phase

The mean-field thermodynamic potential of the CFL
phase is [32]

Ω = −
T

2

∑

n

∫
d3p

(2π)3
Tr log(

1

T
S−1(iwn, p)) +

∆η∆η

G

(1)
where the sum in n indicates the finite temperature sum
in the Matsubara frequencies. The inverse full propaga-
tor here is

S−1(p) =

(
p/ + µ/ Pη∆η

P η∆∗
η p/ − µ/

)
(2)

with (Pη)ab
ij = Cγ5ǫ

abηǫijη (no sum over η) and P η =

γ4P
†
ηγ4. The gap is ∆η =< G

2 ψ
TP ηψ > with quark

field ψ of colors (r, g, b) and flavors (u, d, s). The index

η = 1, 2, 3 labels the d-s, u-s, and u-d pairing respectively.

After summing in n and taking the zero temperature
limit, one obtains

ΩCFL = −
1

4π2

∫ ∞

0

dpp2e−p2/Λ2

[16|ε| + 16|ε|] −
1

4π2

∫ ∞

0

dpp2e−p2/Λ2

[2|ε′| + 2|ε′|] +
3∆2

G
(3)

where

ε = ±
√

(p− µ)2 + ∆2
CFL

ε = ±
√

(p+ µ)2 + ∆2
CFL

ε′ = ±
√

(p− µ)2 + 4∆2
CFL

ε′ = ±
√

(p+ µ)2 + 4∆2
CFL

are the dispersion relations of the quasiparticles. Here
we already took into account the well-known solution
∆CFL = ∆1 = ∆2 = ∆3, valid for the CFL gap at zero
quark masses. As in [30], in order to have only continu-
ous thermodynamical quantities, we introduced in (3) a
smooth cutoff depending on Λ.
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B. Thermodynamic Potential of the MCFL Phase

Let us consider now the case with a rotated magnetic

field H̃ , which couples to the charged quarks through the
covariant derivative of the NJL Lagrangian. The mag-
netic interaction leads to the separation of the original
(u, d, s) quark representation into neutral, positively and
negatively charged spinors according to the quark rotated
charges in units of ẽ = e cos θ, with θ being the mixing
angle of the rotated fields,

ur ug ub dr dg db sr sg sb

0 1 1 -1 0 0 -1 0 0
(4)

Because of this separation, it is convenient to introduce
three sets of Nambu-Gorkov spinors that correspond to
positive-, negative- and zero-charged fields. The details
of this procedure, as well as a discussion of Ritus’ method
[35], used to transform the charged spinor fields to mo-
mentum space in the presence of a magnetic field, can be
found in [21]. After integrating in the fermion fields, do-
ing the Matsubara sum and taking the zero temperature
limit, we can write the MCFL thermodynamic poten-
tial as the sum of the contributions coming from charged
(ΩC) and neutral (ΩN ) quarks.

ΩMCFL = ΩC + ΩN (5)

with

ΩC = −
ẽH̃

4π2

∞∑

n=0

(1 −
δn0

2
)

∫ ∞

0

dp3e
−(p2

3
+2ee eHn)/Λ2

[8|ε(c)| + 8|ε(c)|], (6)

ΩN = −
1

4π2

∫ ∞

0

dpp2e−p2/Λ2

[6|ε(0)| + 6|ε(0)|] −
1

4π2

∫ ∞

0

dpp2e−p2/Λ2

2∑

j=1

[2|ε
(0)
j | + 2|ε

(0)
j |] +

∆2

G
+

2∆2
H

G
, (7)

and

ε(c) = ±

√
(

√
p2
3 + 2ẽH̃n− µ)2 + ∆2

H ,

ε(c) = ±

√
(

√
p2
3 + 2ẽH̃n+ µ)2 + ∆2

H ,

ε(0) = ±
√

(p− µ)2 + ∆2, ε(0) = ±
√

(p+ µ)2 + ∆2,

ε
(0)
1 = ±

√
(p− µ)2 + ∆2

a, ε
(0)
1 = ±

√
(p+ µ)2 + ∆2

a,

ε
(0)
2 = ±

√
(p− µ)2 + ∆2

b , ε
(0)
2 = ±

√
(p+ µ)2 + ∆2

b ,

being the dispersion relations of the charged (c) and neu-
tral (0) quarks. In the above we used the notation

∆2
a/b =

1

4
(∆ ±

√
∆2 + 8∆2

H)2

The MCFL gaps ∆ and ∆H correspond to the case where
the (d, s) pairing gap, which takes place only between
neutral quarks, is ∆1 = ∆, while the (u, s) and (u, d)
pairing gaps, which receive contribution from pairs of
charged and neutral quarks, become ∆2 = ∆3 = ∆H .
The separation of the gap in two different parameters in
the MCFL case, as compared to the CFL, where ∆1 =
∆2 = ∆3, reflects the symmetry difference between these
two phases [20]. Here again, Λ-dependent smooth cutoffs
were introduced.

The effects of confinement can be incorporated by
adding a bag constant B to both ΩCFL and ΩMCFL.
Besides, in the magnetized system the pure Maxwell con-

tribution, H̃2/2, should also be added [18]. Hence, the
thermodynamic potential of each phase is given by

Ω0 = ΩCFL +B, (8)

and

ΩH = ΩMCFL +B +
H̃2

2
, (9)

respectively.
While Λ and B must be given to solve the system,

the gaps ∆CFL, ∆, and ∆H have to be found from their
respective gap equations

∂ΩCFL

∂∆CFL
= 0, (10)

∂ΩMCFL

∂∆
= 0,

∂ΩMCFL

∂∆H
= 0. (11)

It is worth to mention that if we take into account the
particle-antiparticle channels in the NJL model here con-
sidered, it is possible to claim that the bag pressure can
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be explicitly calculated in the chiral limit of this model
as an effective bag ”constant” that depends on the dy-
namical masses and chiral condensates. This was done in
[36] by adopting a particular version of the NJL-model
[37] that had four- and six-point interaction terms. At
the high densities required for the realization of both the
CFL and MCFL phases, the NJL-derived bag pressure
contribution to the thermodynamic potential would re-
duce to its zero density value [36]. A natural question
in the context of the present work is whether the exter-
nal magnetic field could effectively modify the vacuum
pressure found in [36]. It turns out that no significant
modification can occur for field strengths below 1020G,
as shown in the Appendix. Therefore for the range of
fields relevant for our calculations, if one were to adopt
the same model as in [36] the field effects can be ignored.

We must also underline that the fact that this NJL-
derived bag constant is practically insensible to the mag-
netic field for a realistic range of field strengths does not
prevent the ”actual” bag constant in general to be signif-
icantly sensible to the magnetic field. First of all, the
bag constant obtained within a NJL model is model-
dependent. Besides, a well-known shortcoming of the
NJL theory is that it cannot describe the confinement-
deconfinement transition, which is a basic feature of
QCD and the one most directly relevant for introduc-
ing a bag constant in a model of unconfined quarks. On
the other hand, it should be highlighted that the CFL
and MCFL phases can be also found independently of
any NJL model, using weak-coupled QCD in the limit of
asymptotically large densities. In this case the bag pres-
sure cannot be explicitly calculated, so one has to rely
on the MIT model analysis to impose some restrictions
to the range of values it can take. Therefore, throughout
the present paper we assume we have an undetermined
bag pressure B which may or not depend on the mag-
netic field. Below, unless otherwise specified, whenever
a fixed value of the bag constant is used, we take B=58
MeV/fm3, which is compatible with both the MIT model
and the zero density value of B found in [36].

III. EQUATIONS OF STATE

In this Section we derive the EoS for the CFL and
MCFL phases using their respective thermodynamic po-
tentials (8) and (9), along with their gap solutions ob-
tained from (10) and (11), respectively. The values of
the free parameters G and Λ are chosen to produce a
CFL gap ∆CFL = 10 MeV, which is within the plausible
range of values that ∆CFL can take in nature [38], and is
small enough to decrease the dependence of our results
on the scale Λ [32]. Then, throughout the entire analysis
we take: G = 4.32 GeV−2 and Λ = 1 GeV.

As it is known [39], the energy density and pres-
sures can be obtained from the different components of
the macroscopic energy-momentum tensor. In the ref-
erence frame comoving with the many-particle system,

the system normal stresses (pressures) can be obtained
from the diagonal spatial components, the system en-
ergy density, from the zeroth diagonal component, and
the shear stresses (which are absent for the case of a uni-
form magnetic field) from the off-diagonal spatial compo-
nents. Then, the energy-density, longitudinal and trans-
verse pressures of the dense magnetized system are given
respectively by

ε =
1

βV
〈τ̃00〉, p‖ =

1

βV
〈τ̃33〉, p⊥ =

1

βV
〈τ̃⊥⊥〉 (12)

here the quantum-statistical average of the energy-
momentum tensor is given by

〈τ̃ρλ〉 =
Tr

[
τ̃ρλe−β(H−µN)

]

Z
(13)

where

τ̃ρλ =

∫ β

0

dτ

∫
d3xτρλ(τ, x) (14)

and Z is the partition function of the grand canonical
ensemble given by

Z = Treβ(H−µN) (15)

with H denoting the system Hamiltonian, N the particle
number, and β the inverse absolute temperature.

In the CFL phase p‖ = p⊥ = p, and following the pre-
scription (12), the pressure and energy density is found
as a function of the thermodynamic potential (8) as

ǫCFL = Ω0 − µ
∂Ω0

∂µ
, (16a)

pCFL = −Ω0 (16b)

while for the MCFL, due to the anisotropy introduced
by the uniform magnetic field, p‖ 6= p⊥, and the energy
density and pressures are found as function of the ther-
modynamic potential (9) as (see Ref. [18] for detailed
derivations of the formulas for the pressures and energy
density in a magnetic field)

ǫMCFL = ΩH − µ
∂ΩH

∂µ
, (17a)

p
‖
MCFL = −ΩH , (17b)

p⊥MCFL = −ΩH + H̃
∂ΩH

∂H̃
(17c)

Notice that in the MCFL phase, because of the pres-
ence of the magnetic field, there is a splitting between

the parallel p
‖
MCFL (i.e. along the field) and the trans-

verse p⊥MCFL (i.e. perpendicular to the field) pressures.
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FIG. 1. Parallel and perpendicular pressures as a function of the
magnetic field intensity for representative values of µ and bag con-
stant B.

We call attention that in Eq. (16) (Eq. (17a)) the gap

is a function of µ (µ and H̃) found by solving Eq. (10)
(Eq.(11)). The anisotropic nature of the system in the
MCFL phase is an important feature that will be dis-
cussed later in connection to stellar models.

The magnetic field dependencies of the parallel and
transverse pressures in (17a) are plotted in Fig. 1. Sim-
ilarly to what occurs in the case of a magnetized uncou-
pled fermion system at finite density [18], the transverse
pressure in the MCFL phase increases with the field,
while the parallel pressure decreases and reaches a zero
value at field strength of order & 1019 G for the den-
sity under consideration (µ = 500 MeV). We see from

Fig. 1 that ΩH and ∂ΩH/∂H̃ do not exhibit the Hass-
van Alphen oscillations as happens with other physical
quantities in the presence of a magnetic field [30, 31, 40].
This is due to the high contribution of the pure Maxwell

term in ΩH and ∂ΩH/∂H̃, which makes the oscillations
of the matter part negligible in comparison.

The splitting between parallel and perpendicular pres-
sures, shown in the vertical axis of Fig.2, grows with the
magnetic field strength. Comparing the found splitting
with the pressure of the (isotropic) CFL phase, we can
address how important this effect is for the EoS. Notice
that for 3 × 1018 G the pressures splitting is ∼ 10% of
their isotropic value at zero field (i.e. the one correspond-
ing to the CFL phase).

In the graphical representation of the EoS in Fig. 3 the
highly anisotropic behavior of the magnetized medium
is explicitly shown. While the magnetic-field effect is

significant for the ǫ − p‖ relationship at H̃ ∼ 1018 G,
with a shift in the energy density with respect to the
zero-field value of ∼ 200 MeV/fm3 for the same pressure,
the field effect in the ǫ−p⊥ relationship is smaller for the
same range of field values.

FIG. 2. Splitting of the parallel and perpendicular pressures, nor-
malized to the zero value pressure (p(H = 0)), as a function of the
magnetic field intensity for µ = 500 MeV and B = 58 MeV/fm3.

If we use

−
∂ΩH

∂µ
= −

∂ΩMCFL

∂µ
= N, (18)

to express the chemical potential µ in terms of the baryon
number density N, plug it into the gaps equations (11) to

find the gaps in terms of the field H̃ and N, and substitute
everything into the energy density (17a), we can see that
the energy density per baryon number (Fig. 4) increases

with increasing magnetic field, in contrast to previous

claims based on a CFL model at H̃ 6= 0 with only one
gap that was fixed by hand [41].

IV. STABILITY CONDITIONS

Having the EoS for MCFL matter, we can analyze the
conditions for this matter to become absolutely stable.
This is done by comparing the energy density at zero
pressure condition with that of the iron nucleus (roughly
930 MeV). Depending on whether the energy density of
the MCFL phase is higher or smaller than this value,
the content of a magnetized strange quark could be or
not made of MCFL matter. If the energy of the MCFL
phase is smaller than 930 MeV for only a specific range
in pressure (or density), this would imply metastability.

To find the maximum value of the bag constant re-
quired for the stability to hold at zero magnetic field, and
then use it as a reference when considering the MCFL
case, we will start our analysis investigating the stabil-
ity in the CFL phase. We call reader’s attention that in
all our derivations we work within a self-consistent ap-
proach, in which the solutions of the gap equations are
substituted in the pressures and energies of each phase
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FIG. 3. Equation of state for MCFL matter considering parallel
(upper panel) and perpendicular (lower panel) pressures for differ-
ent values of H̃: zero field (solid line), 1017G (dashed line) and
5 × 1018G (dotted line). Note that the low value of H = 1017G is
not distinguishable in the plots, being merged with the zero-field
curve. The value of the bag constant was fixed to B=58 MeV/fm3.

before imposing the conditions of equilibrium and stabil-
ity.

A. H = 0 Case

The stability criterion for CFL matter in the absence
of a magnetic field is very simple. Following Farhi and
Jaffe’s [42] approach, we can determine the maximum
value of the bag constant that satisfies the stability con-
dition at zero pressure. With this aim, we first impose
the zero pressure condition in Eq. (16), to get

B = −ΩCFL (19)

ǫCFL = −µ
∂ΩCFL

∂µ
(20)

FIG. 4. Energy per baryon number as a function of the baryonic
density of MCFL matter for different values of the magnetic field,
labeled as in Fig.3. We see that increasing the magnetic field in-
creases the energy per baryon, thus making the matter less stable.

Taking into account that in the CFL phase each of
the three flavors have the same number density (which
is correct as long as one does not introduce the strange
mass and has to impose charge neutrality), we have nA =
1
3 (nu + nd + ns) = 1

3N . Hence, the energy density per
particle becomes

ǫCFL

nA
= −

µ0

nA

∂ΩCFL

∂µ
|µ0

=
µ0

nA
N |µ0

= 3µ0 (21)

with µ0 denoting the chemical potential at zero pressure.
For the CFL matter to be absolutely stable, its energy
density per particle should be smaller than the lowest
energy density per baryon found in nuclei, i.e. that cor-
responding to the iron nucleus. Hence,

ǫCFL

nA
≤ ǫ0(Fe

56), (22)

where ǫ0(Fe
56) = 1

56m(Fe56) ≈ 930MeV . This condi-
tion constraints the maximum allowed value of the chem-
ical potential to be µ0 = 310MeV . Using this result back
in (19) we can determine the value of the maximum bag
constant for absolute stability to hold. The obtained re-
sult is shown in Fig. 5 (horizontal axis). This bag con-
stant value is within an acceptable range. Moreover, it
is of the same order as the one given in reference [8] for
ms = 0.

B. H 6= 0 Case

When H 6= 0 the situation is different. Now, both the
parallel and perpendicular pressures in Eq. (17a) need
to vanish simultaneously. Therefore, the two equilibrium
conditions become
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p
‖
MCFL = −ΩMCFL −B −

H̃2

2
= 0, (23)

p⊥MCFL = H̃
∂ΩMCFL

∂H̃
+ H̃

∂B

∂H̃
+ H̃2 = 0 (24)

Where we are assuming that the bag constant depends
on the magnetic field. It is not unnatural to expect that
the applied magnetic field could modify the QCD vac-
uum, hence producing a field-dependent bag constant.
One can readily verify that Eqs. (23)-(24) are equiva-

lent to require p
‖
MCFL = 0 and ∂p

‖
MCFL/∂H̃ = 0 at the

equilibrium point.
Equation (24) can be rewritten as

H̃ = M −
∂B

∂H̃
(25)

where M = −∂ΩMCFL/∂H̃ is the system magnetization.
If we were to consider that the vacuum energy B does not
depend on the magnetic field, we would need

M = H̃, (26)

to ensure the equilibrium of the self-bound matter, a
condition difficult to satisfy since it would imply that
the medium response to the applied magnetic field (i.e.
the medium magnetization M) is of the order of the ap-
plied field that produces it. Only if the MCFL mat-
ter were a ferromagnet this would be viable. The other
possibility for the equilibrium conditions (23) and (24)
to hold simultaneously is to have a field-dependent bag
constant capable to yield nonzero vacuum magnetization

M0 = − ∂B

∂ eH
≃ H̃. From the discussion at the end of

Section II and the results of the Appendix, it is clear
that this condition cannot be satisfied if the bag con-
stant were the one found in [36]. However, as argued
before, such a bag constant is model-dependent and was
obtained within a theory that does not exhibit confine-
ment. Hence, we cannot discard the possibility that the
actual bag constant is much more sensitive to the applied
magnetic field. We must recall that in other physical sce-
narios, bag constants depending on external conditions
such as temperature and/or density have been previously
considered [43]. Luckily, in the approach we follow here

we do not need to formulate a theory for the H̃-modified
vacuum, as we only need to know the relation between

B and H̃ under equilibrium conditions.
The following comment is in order. The fact that the

bag constant needs to be field-dependent for self-bound
stars in a strong magnetic field is a direct consequence of
the lack of a compensating effect for the internal pressure
produced by the magnetic field other than that applied
by the vacuum (an exception could be of course if the
paired quark matter would exhibit ferromagnetism). For
gravitationally bound stars, on the other hand, the sit-
uation is different, since the own gravitational field can

supply the pressure to compensate the one due to the
field. For such systems, keeping B constant in the EoS
is in principle possible. Under this assumption we con-
sidered a fixed B-value in Fig. 3.

To determine the maximum ”bag constant” allowed for
each magnetic field value in the stable region, we need to
simultaneously satisfy the equilibrium equations (23) and
(24), as well as the stability condition in the presence of
the magnetic field

ǫMCFL

nA
= −

µ eH

nA

∂ΩMCFL

∂µ
|µfH

−
H̃2

2nA

= 3µ eH − 3
H̃2

2N
≤ ǫ eH(Fe56) (27)

Notice that because the nucleons’ rest-energy are modi-
fied in the presence of a magnetic field, the energy density
of iron ǫ eH(Fe56) is now field-dependent. Taking into ac-
count the field interaction with the anomalous magnetic
moment [28], the nucleons’ energy spectrum at H 6= 0, is
given by

Ei =

√
[
√
c4m2

i + c2(p2
⊥)i + κiHσ]2 + c2p2

z, i = p, n

(28)
For the proton (i = p), and neutron (i = n), the following
parameters hold respectively,

mp = 938.28MeV, κp = µN (gp/2 − 1),

(p2
⊥)p = 2leH, l = 0, 1, 2, ..., (29)

mn = 939.57MeV, κn = µNgn/2,

(p2
⊥)n = p2

1 + p2
2, (30)

In (29)-(30), µN = e~/2cmp is the nuclear magneton,
and the Lande g factors are given by gp = 5.58 and gn =
−3.82, respectively.

The proton and neutron rest energies can be obtained
from (28) at zero momentum

E(0)
p = mpc

2 +
σ

2
(gp/2 − 1)

e~H

mpc
,

E(0)
n = mnc

2 +
σ

2
gn/2

e~H

mnc
(31)

It would take a magnetic-field strength larger than
1020G to have the second terms in the RHS of Eqs. (31)
comparable to the first ones. For the field range con-
sidered in this paper (H ≤ 1019G) it is then consistent
to neglect the field correction in the iron energy density,
thus making ǫ eH(Fe56) ≈ ǫ0(Fe

56) = 930MeV .

Then, finding µ eH as a function of H̃ in (27) and sub-
stituting it back in (23), we can numerically solve

B(H̃) = −ΩMCFL(µ eH , H̃) − H̃2/2, (32)

to determine the stability window in the plane H̃ versus
B for the MCFL matter to be absolute stable (Fig. 5).
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FIG. 5. Stability window for MCFL matter in the plane H̃ vs. B.
The curve shown corresponds to the borderline value ǫ/A = 930
MeV.

FIG. 6. Baryonic density at zero pressure conditions for MCFL
matter as a function of the magnetic field eH considering the field
dependence of the bag constant given in Eq. (32).

The inner region, which corresponds to smaller bag con-

stants for each given H̃, is the absolutely stable region.

Note that, contrary to Farhi and Jaffe [42], we did not
impose a minimum value for the bag constant because
we have no clear indication from experiments of the pos-
sible behavior of this parameter when a magnetic field is
applied to a system.

As shown in Fig. 6, the value of the chemical potential
µ eH found from the stability condition (27), grows with

increasing H̃ , in good consistency with our assumption
of zero quark masses and deconfined quark matter. In
summary, our results indicate that a condition for the
MCFL matter to be absolutely stable is to have a field-
dependent bag constant.

V. STELLAR MODELS

The most immediate application of the EoS for the
MCFL phase is to construct stellar models for compact
stars composed of quark matter. There are two distinct
possibilities: new magnetized “strange stars”, if quark
matter in the MCFL phase is absolute stable (the pos-
sibility explored in the last section); and hybrid stars, if
the MCFL matter is metastable (stars would contain a
MCFL core surrounded by normal matter).

As long as the magnetic field strength is not much
larger than the threshold value ∼ 1018G, at which the
pressure anisotropy starts to become noticeable, both
cases can be investigated by integrating the relativis-
tic equations for stellar structure, that is, the Tolman-
Oppenheimer-Volkoff (TOV) and mass continuity equa-
tions,

dm

dr
= 4πr2ǫ (33)

dP

dr
= −

ǫm

r2

(
1 +

P

ǫ

)(
1 +

4πr3P

m

)(
1 −

2m

r

)−1

(34)

written in natural units, c = G = 1. Given that this set of
differential equations apply only to isotropic EoS, while
our results for the pressures indicate a rapidly growing
anisotropy of the EoS beyond the threshold field (Fig.1),
our approach is probing the limits of the validity of spher-
ical models based on isotropic EoS.

A. Magnetic CFL Strange Stars

Based on the analogy with Ref. [1, 4], we construct
stellar models using the EoS with parameters inside the
stability window, that is, for a self-bound matter case. In
Fig. 7 we present the mass-radius relation for two values
of the magnetic field, when the anisotropy is still small
(a few parts per thousand, see Fig. 3) and when the
anisotropy cannot be neglected (a few per cent, Fig. 3).
For each of these values of the field we have calculated two
curves, one considering the pressure given by the parallel
(dotted line) and the other given by the perpendicular
one (dashed line), and compared them with the zero field
mass-radius relation in Fig. 7.

Even though the calculations in Fig. 7 should be con-
sidered as just an example, we see that the perpendicular
pressure provides a “harder EOS” while the parallel is
“softer”. Therefore, the former choice renders a higher
maximum mass.

From those Figs. we conclude that one must restrict
oneself to weak magnetic fields, when the deviation from
spherical symmetry is very small (of order 0.001 %), in
order to justify the use of Eqs. (33) and (34). If the
magnetic field in these compact stars is too high, say
H̃ & 1018 G (at µ = 500 MeV), the spherically sym-
metric TOV equations cannot be employed because the
deviations become important and lead to significant dif-
ferences with respect of realistic axisymmetric models,
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FIG. 7. Mass-radius relation for magnetized strange CFL stars
and bag constant B = 58 MeV/fm3. The full line indicates the M-
R relation for zero magnetic field, whereas the dashed and dotted
lines represent the MR relation calculated with the parallel and
perpendicular pressures, respectively, for H̃ = 1.7× 1017 G (upper
panel) and H̃ = 3× 1018 G (lower panel).

yet to be constructed taking into account the pressure
asymmetry. (this is why the M-R sequences in Fig. 7
lower panel should not be trusted, and we stress again
that they should be considered just as an example). We
shall address this issue elsewhere.

Fig. 8 compares our result for zero magnetic field EoS
with the one presented in reference [8]. It shows that the
curves calculated using NJL + B and bag model with
small ∆ are quite similar. Nonetheless, it is important
to stress that the calculations of the present work feature
a self-consistent gap parameter (not a constant), which
varies according to the particle density.

FIG. 8. Mass-radius relation for the EoS given in [8] for CFL
matter without magnetic field for two different values of the gap
parameter, ∆ = 0 (dashed) and ∆ = 100MeV , and the results
obtained here setting H̃ = 0 (solid line).

B. Hybrid Stars

The construction of models for the so-called “hy-
brid stars” faces the same problem as before when the
magnetic-field-induced pressure anisotropy is considered.
Working outside the stability windows render EoS which
are valid only above a certain critical density, not all
the way down to zero, since MCFL matter would be fa-
vored at high density only. Thus, the stellar models be-
long to the so-called hybrid type, in which a core of the
high-density matter is present. Again, the value of the
magnetic field induces an increasingly large anisotropy,
which in turn forces the construction of axisymmetric
(not spherical) stellar models. In this way, it can be
modelled within the isotropic TOV formalism only for
relative pressure differences in the ballpark of ∼ 10−3.

Fig. 9 displays a hybrid sequence obtained by em-
ploying the well-known Bethe-Johnson EoS for nuclear
matter and using the Gibbs criteria for determining the
value of the transition pressure between exotic and nu-
clear matter. These curves were calculated using the per-
pendicular pressure (for magnetized stars) as an example.
As expected, the appearance of an MCFL core softens

the EoS, rendering lower maximum masses than “pure”
hadronic models. The main feature of considering the
existence of magnetic field for hybrid MCFL stars is to
switch the point where the hybrid sequences begin, i. e.
where the stars start exhibiting a CFL core. Since the
difference in the EoS for low field MCFL matter and CFL
matter is of just a few percent (see Fig. 3), and because
the star radius depends mainly on the nuclear EoS, ob-
servational data of maximum mass and minimum radii
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FIG. 9. Mass-radius relation for hybrid stars. The inner core is
composed of CFL matter with the corresponding magnetic field.
From the transition density to the surface of the star, we have
employed the zero-temperature Bethe-Johnson EoS. The stellar se-
quences correspond to zero (solid), 2× 1017G (dashed) and 1018G
(dotted) fields respectively.

would not be able to distinguish the existence of low
magnetic fields in these hybrid stars. Again, for high
magnetic fields (H̃ & 1018 G) the results are still to be
analyzed, but differences in the maximum allowed mass
may arise, and therefore the results of spherical models
cannot be trusted. This is potentially important for the
identification of actual compact stars masses and radii
[44] (see next Section).

VI. CONCLUSIONS

We have shown that a magnetic field in CFL matter
(termed MCFL phase here) does not, generally speaking,
favor the stability scenario, and even forces a new condi-
tion (a field dependent vacuum “bag constant”) which is
perhaps physically reasonable but cannot be verified as
yet. However, absolute stability is not excluded provided
the vacuum is properly modified by the magnetic field.
On the other hand, in the absence of this dependence,
we conclude that there is no room for absolute stability
of CFL matter under the influence of a magnetic field
within the model. If this is the case, there could be no
magnetized “strange stars”, but only hybrid stars. Even
before calculating stellar models in the anisotropic pres-
sure regime, we can state that the found stability condi-
tions can impose a maximum magnetic field that could
be supported by self-bound MCFL strange stars (that is,
stars made of this magnetized self-bound paired matter),
a feature which in principle, could be compared with ob-
servations.

In the self-consistent approach used here for the gap

parameter, we do not find much difference in the stability
region at zero field as compared to the case in which the
gap parameter is parameterized (and extended to quite
high values) [8]. The EoS is still largely linear and sub-
stantially modified only at sufficiently high fields where
the magnetized medium becomes highly anisotropic. It
is not surprising then that in the quasi-isotropic regime
(H ≤ 1018 G) the stellar sequences are not very different
from the zero-field case (see Fig. 7).

We should notice that the anisotropic pressure regime
is attainable at field values that are allowed in the core
of compact stellar objects [18]. From the heuristic ar-
guments presented in the Introduction, and then analyt-
ically and numerically corroborated in the paper, field
effects become relevant in the EoS of MCFL matter for
field strength H̃ & 1018G. Nevertheless, for that field
range the system asymmetry, expressed in terms of the

pressure splitting (∆p/pCFL) ∼ (H̃2/µ2∆2) ∼ O(1), is
significant, then invalidating the use of the TOV formal-
ism. Thus, to work in the anisotropic regime, where
the most interesting field effects should occur, an en-
tirely different stellar structure formalism in agreement
with the system cylindrical symmetry would be needed,
since the spherical symmetry is broken from the very
beginning by the presence of the strong magnetic field.
We underline that the conventional TOV equations were
obtained by solving the Einstein equations for a gen-
eral time-invariant, spherically symmetric metric. That
is, they were derived assuming spherically symmetric
and isotropic medium in static gravitational equilibrium.
Hence, it becomes imperative to generalize the TOV
equations to an anisotropic medium employing a metric
with cylindrical symmetry [49] that can accommodate
the splitting of the longitudinal and transverse pressures
appearing at strong enough magnetic fields. We expect
to address this issue in a future publication.

It is important to stress that recent works [44]-[45] have
exploited the increasing availability of high-quality data
to pindown masses and radii of selected stellar systems.
Even though the results and analysis are far from being
definitive, there is evidence favoring a relatively soft EoS
to model 4U 1608-52, 4U 1820-30 and EXO 1745-248 [45],
at least in the region immediately above the saturation
density. Comparing the prediction of our hybrid EoS
model shown in Fig. 9 with the 1- and 2-σ confidence
contours for the masses and radii of the three neutron
stars in these binary systems, (shown in Fig. 1 of Ref.
[45]), one can easily see that for fields within the isotropic
regime our EoS is compatible with these observations.

On the other hand, recent measurements [46] of the
Shapiro delay in the radio pulsar PSRJ1614-2230 have
yielded a mass of 1.97 ± 0.04M⊙. Even though such a
large mass calls for a stiffer EoS, it does not rule out
color superconductivity in the star’s core or a self-bound
model like the curves in Fig. 7. In fact, by using the
phenomenological EoS for quark matter proposed in Ref.
[47], the authors of Ref. [48] showed that a large value
of the star mass is only compatible with strongly inter-
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acting quarks paired in a color superconducting state.
It is an interesting open question to explore, within the
self-consistent approach used in our calculations, whether
there is a physically viable region of the parameter space
of the MCFL phase that can produce EoS curves com-
patible with the PSRJ1614-2230 mass observation.

Even if the measured systems do not possess a no-
ticeable magnetic field, future determinations of SGR-
AXN radii and masses are foreseeable. For those sys-
tems, an additional complication would arise with the
consideration of the magnetic field, as discussed above.
The particular case of MCFL elaborated here suggests
that a full evaluation that takes into account the pres-
sure anisotropy may be necessary to address masses and
radii in the presence of very strong magnetic fields.
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Appendix A: Dynamical bag constant in the chiral

limit at H 6= 0

Let us investigate the effect of an external magnetic
field on the bag pressure found in Ref. [36]. In the dy-
namical approach of Ref. [36] the bag pressure has its
origin in the spontaneous breaking of chiral symmetry.
For our high density system the vacuum pressure con-
tribution found in [36] reduces to B0 = B|nu=nd=ns=0

taken in the chiral limit mi0 = 0 with

B =
∑

i=u,d,s

[
3

π2

∫ Λ

0

p2dp

(√
m2

i + p2 −
√
m2

i0 + p2

)
− 2G〈qiqi〉

]
+ 4K〈uu〉〈dd〉〈ss〉, (A1)

Here mi0 and mi are the current and dynamical quark
masses respectively, G and K are quark self-interacting
constants with dimensions energy−2 and energy−5, re-
spectively, and 〈qiqi〉 are the quark condensates given as
functions of the corresponding quark dynamical masses
by

〈qiqi〉 = −
3

π2

∫ Λ

pF i

p2dp
mi√
m2

i + p2
(A2)

with pFi = (π2ni)
1/3 being the Fermi momenta depend-

ing on the densities ni = 〈q†i qi〉.

A magnetic field modifies the expressions for the bag
B and the chiral condensates in the following way

BH =
∑

i=u,d,s


3qiH

2π2

[Λ2/qiH]∑

n=0

d(n)

∫ Λ

0

dp3

(√
m2

i + p2 −
√
m2

i0 + p2

)
− 2G〈qiqi〉H


 + 4K〈uu〉H〈dd〉H〈ss〉H , (A3)

and

〈qiqi〉H = −
3qiH

2π2

[Λ2/qiH]∑

n=0

d(n)

∫ Λ

pF i

dp3
mi√
m2

i + p2
(A4)

where we assumed a magnetic field along the x3-
direction, and used the notation: p2 = p2

3 + 2qinH for
the three-momentum, with n labeling the discrete Lan-
dau levels, n = 0, 1, 2, ...; d(n) = 2 − δn0 for the spin

degeneracy of the n Landau level; qi for the correspond-
ing quarks’ electric charges; and [...] for the integer part
of the argument.

Comparing the leading term of (A1),

B ≃
∑

i=u,d,s

[
3Λ2

4π2
(m2

i −mi2
0 ) − 2G〈qiqi〉

]

+4K〈uu〉〈dd〉〈ss〉, (A5)
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with that of (A3)

BH ≃
∑

i=u,d,s

[
3qiH

4π2
[

Λ2

qiH
](m2

i −mi2
0 ) − 2G〈qiqi〉H

]

+4K〈uu〉H〈dd〉H〈ss〉H , (A6)

and taking into account that qiH [ Λ2

qiH
] ≃ Λ2 we have

that the difference between B and BH is basically due to
the difference between the dynamical masses and conden-
sates at zero and non-zero fields. That a magnetic field
modifies the dynamical mass is a well known result in

the literature [50]. However, as demonstrated in the NJL
model for quark matter [51], and in the QCD chiral effec-
tive theory [52], the field-induced change in the dynami-
cal masses and the chiral condensates are negligibly small
for any field smaller than 1020G. This in turns translates
into a negligible modification of the vacuum pressure B0

by magnetic fields below 1020G. Hence, for the range of
fields of interest for the astrophysics of compact stars, no
significant field-induced variation of the vacuum pressure
found in the framework of this approach will occur.
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