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Abstract

We study Renormalization Group invariant (RGI) quantities in the Minimal
Supersymmetric Standard Model and show that they are a powerful and simple
instrument for testing high scale models of supersymmetry (SUSY)-breaking. For
illustration, we analyze the frameworks of minimal and general gauge mediated
(MGM and GGM) SUSY-breaking, with additional arbitrary soft Higgs mass pa-
rameters at the messenger scale. We show that if a gaugino and two first generation
sfermion soft masses are determined at the LHC, the RGIs lead to MGM sum
rules that yield accurate predictions for the other gaugino and first generation soft
masses. RGIs can also be used to reconstruct the fundamental MGM parameters
(including the messenger scale), calculate the hypercharge D-term, and find rela-
tionships among the third generation and Higgs soft masses. We then study the
extent to which measurements of the full first generation spectrum at the LHC may
distinguish different SUSY-breaking scenarios. In the case of MGM, although most
deviations violate the sum rules by more than estimated experimental errors, we find
a 1-parameter family of GGM models that satisfy the constraints and produce the
same first generation spectrum. The GGM-MGM degeneracy is lifted by differences
in the third generation masses and the messenger scales.
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Introduction

Supersymmetry (SUSY) is an extension of the Standard Model (SM) space-time symme-
try algebra [1]–[3] that leads to a tightly constrained set of new particles and interactions
and addresses a number of open problems in electroweak-scale physics. These problems
include the stabilization of the weak/Planck scale hierarchy, the origin of the negative
Higgs mass parameter driving electroweak symmetry breaking, and the existence of dark
matter. However, if SUSY is discovered in the laboratory, even the Minimal Supersym-
metric Standard Model (MSSM) will introduce a significant collection of new Lagrangian
parameters to be measured. Many of these parameters are soft masses that explicitly
break SUSY and lift the superpartner spectrum above that of the SM particles. It is ex-
pected that the fundamental source of SUSY-breaking should be spontaneous rather than
explicit, and viable phenomenology is most easily achieved if the breaking takes place
in a hidden sector of fields that couple to the MSSM only through higher-dimensional
operators. These operators may be generated by integrating out degrees of freedom as-
sociated with a characteristic “messenger scale” M . Eventually, with experimental input
for several soft masses, it will become interesting to look for patterns that encode the
origin of these operators and explain precisely how SUSY-breaking is communicated to
the MSSM.

There are several approaches to testing hypotheses about the high scale SUSY-breaking
theory and reassembling its parameters from low scale data. One standard method is a
top-down fit of high scale parameters to the TeV scale measurements. In the top-down
procedure, a Monte Carlo scan is performed over the inputs at M , the soft parameters
are RG-evolved to the TeV scale, observables are calculated, and a χ2 statistic is com-
puted for each point in the scan [4]–[6]. In another method, the bottom-up approach, one
starts with low scale soft parameters and RG-evolves them up until they reach a scale
where some structure emerges [7]–[19]. However, the β-functions of all soft sfermion and
Higgs parameters are sensitive to both the gaugino masses and the hypercharge D-term,
DY ≡ Tr(Ym2), while the third generation soft sfermion β-functions contain the soft tri-
linear parameters. Therefore, all the low-scale soft parameters must be measured before
bottom-up reconstruction methods can be used reliably.

A third, complimentary method is provided by 1-loop Renormalization Group invari-
ant (RGI) quantities in the MSSM [20]. Given a model for the generation of the soft
parameters at M , RGIs facilitate the construction of a wide class of sum rules satisfied
by the TeV scale masses. These sum rules can be used either to increase confidence that
the model is correct, or to predict unmeasured masses from known masses. RGIs can
also be used to reconstruct fundamental parameters at the messenger scale. The RGI
reconstruction method is entirely algebraic, and most importantly, it can provide consid-
erable information even if some of the RG-coupled masses in the theory are unknown.
This feature is most apparent in models with . 10 degrees of freedom at M , and occurs
for two reasons: some messenger scale parameters can be reconstructed with RGIs that
depend only on a limited set of TeV scale masses, and every sum rule can be traded for
an unknown TeV scale parameter. Furthermore, the ability to determine messenger scale
parameters with RGIs suggests a useful complementarity to the top-down approach: ev-
ery parameter that can be constrained directly with the RGI method can have its range
considerably reduced in a Monte Carlo scan.
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One powerful constraint on the SUSY-breaking mediation mechanism is already known,
and comes from the absence of experimental evidence for large flavor-changing neutral
currents. Although not the only method, the simplest approach to achieve agreement
with limits from flavor physics is to assume flavor-blindness of the soft parameters at
the messenger scale [21]–[38]. An attractive way to communicate SUSY-breaking such
that the soft sfermion masses are automatically flavor-universal is known as gauge medi-
ation [39]–[43], wherein the hidden sector couples to the MSSM only through SM gauge
interactions. As the name suggests, assuming a single messenger scale, general gauge me-
diation (GGM) [44] is the most general formulation of gauge mediation. In this class of
models the MSSM soft masses are determined at high scales by current-current correlation
functions in the hidden sector.

In Ref. [20] we studied the application of RGIs to flavor-blind messenger scale mod-
els1. We found that under the well-motivated low scale approximations of minimal flavor
violation and degenerate first and second generation soft sfermion masses (as well as the
assumption of no new sources of CP -violation in the sfermion sector), 14 RGIs could be
used to test the flavor-blindness hypothesis and reconstitute all high scale soft parame-
ters as functions of a single undetermined scale. We then applied the method of RGIs to
GGM and studied the sensitivity with which certain invariants can detect deviations from
a GGM pattern of low scale masses. GGM provides a particularly nice illustration of the
method, because under certain conditions, there are exactly enough nonzero invariants so
that all parameters controlling the soft masses at the messenger scale and the messenger
scale itself can be determined.

Although the application to GGM emphasizes the simplicity of the RGI method,
the large number of free parameters in the theory obscures the usefulness of the fact
that no single invariant depends on all of the soft masses. It is interesting to consider
instead what can be done if only a subset of the soft masses are determined. With this
assumption, it becomes necessary to consider more restrictive models of SUSY-breaking
with fewer parameters. A convenient example is minimal gauge mediation (MGM), the
simplest explicit implementation of gauge mediation. In MGM, a single complete SU(5)
representation2 (5 + 5̄) of “messenger” particles with characteristic mass scale M couple
directly to the SUSY-breaking vacuum expectation value in the hidden sector, while
coupling only to the gauge sector of the MSSM. Integrating out the messengers at the
scale M produces soft masses of the same form as in GGM, but with specific relationships
between all the soft masses (gauginos as well as the sfermions), controlled by only one
mass parameter and the gauge couplings at the messenger scale. Additional contributions
to the soft SUSY-breaking masses in the Higgs sector may be required by the solution to
the µ-problem, and these contributions can be included with the unknown parameters of
the model.

In this study we continue the analysis of the RGIs and focus on their use in the case
of less-than-complete information about the low energy soft spectrum. For illustration we

1For other studies of RGIs and sum rules in supersymmetry, see Ref. [44]–[51]. Ref. [46] also discusses
RGIs in variations of the MSSM by the addition of singlets and extra gauge groups. For simplicity, we
restrict our attention to RGIs existing strictly in the MSSM.

2A common generalization of MGM is to increase the number of messengers into N (5 + 5̄) represen-
tations, which alters the relationship between the gaugino and the sfermion masses; we will comment on
this possibility further below, but for our purposes in this work we define MGM to be the case N = 1.
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work in the context of MGM and consider RGIs that are functions only of the gaugino and
the first generation soft masses. If a third generation mass goes unmeasured, it will not be
possible to test the flavor-blindness hypothesis completely. However, the vanishing of one
particular RGI, Dχ1 , in addition to two standard RGI sum rules encoding gaugino mass
unification, will still provide a strong hint that a gauge-mediated mechanism is at work.
We will use the remaining RGIs to reconstruct fundamental MGM input parameters and
to build two new sum rules satisfied by the gaugino and the first generation soft masses
in MGM.

In Section 1 we briefly review the RGIs in GGM and MGM and use them to formulate
new sum rules in the latter. In Section 2, we study the MGM sum rules from the first of
two directions. Analyzing a minimal set of “realistic” experimental measurements, and
after making a simple approximation to absorb the bulk of the 2-loop corrections [20], we
find that the gluino mass M3, the left-handed squark mass mQ̃1

, and the right-handed
selectron mass mẽ1 are sufficient to predict the rest of the first generation and gaugino
MGM soft spectrum using the sum rules. From these measurements we also extract
the messenger scale gauge couplings (and thus the messenger scale itself), non-MGM
corrections to the Higgs masses at the messenger scale (encoded inDY (M)), and the values
of the hypercharge, baryon number, and lepton number D-terms (DY3H

(Mc), DB3(Mc),
and DL3(Mc)) for the third generation and Higgs at the superpartner scale Mc. In Section
3 we consider the complementary scenario in which all of the first generation and gaugino
masses have been measured. The sum rules can then be checked directly, and the question
arises: how well can an MGM mechanism of SUSY-breaking be distinguished from more
general gauge-mediated mechanisms? We concentrate in particular on the new sum rules
involving the sfermion mass parameters, which are more complex than the well-known
sum rules of gaugino mass unification. A 1-parameter GGM family of deviations from
MGM is found that yields the same first generation and gaugino spectrum, and thus does
not violate the sum rules. We discuss methods to distinguish these GGM models from
MGM. We find formulations of the sum rules that efficiently test other deviations from
MGM and follow the analytical analysis with a detailed numerical investigation of the
constraints. Discussion and conclusions are given in Section 4.

1 RGIs in General and Minimal Gauge Mediation

The GGM framework introduces 6 parameters Ar and Br controlling the soft masses, as
well as the messenger scale M at which the sector transmitting SUSY-breaking to the
MSSM can be integrated out, for a total of 7 degrees of freedom in the observed soft
spectrum at low scales. Additional model parameters include the bilinear Higgs mass
term (or, alternatively, the corresponding value of tan(β), the ratio of the Higgs vaccum
expectation values) and the soft trilinear couplings, but they do not appear in the RGIs
and we will not need to consider them further in our analysis. Explicitly, the gaugino
masses are proportional to three constants Br,

3

Mr = g2
rBr , (1.1)

3Relative to the definitions of Ref. [44] and our previous work [20], for convenience we absorb a factor
of the messenger scale M into the definitions of the Br.
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and the soft sfermion and Higgs masses are proportional to three additional parameters
Ar,

m2
f̃

=
3∑
r=1

g4
rCr(f)Ar , (1.2)

where r runs over the three gauge groups and the Cr are quadratic Casimirs for the
sfermion representations.

In order to achieve a realistic value for the Higgsino mass parameter µ, GGM may need
to be modified by the inclusion of the parameters δu and δd, which represent additional
contributions to the soft supersymmetry breaking parameters of the Higgs bosons beyond
those given in Eq. (1.2):

m2
Hu = m2

L̃1
+ δu,

m2
Hd

= m2
L̃1

+ δd. (1.3)

The 14 1-loop invariants discussed in Ref. [20] and their definitions in terms of the
gauge couplings and the 15 soft masses at any scale above the heaviest sparticle mass
are given in the first two columns of Table I. The third and fourth column lists their
values in terms of MGM and GGM fundamental parameters at the messenger scale.
Small deviations will occur at low scales due to effects of higher order corrections to the
β-functions, and we will discuss them further below.

In GGM, with or without the δu and δd modification, the invariants DB13 , DL13 , and
Dχ1 are zero at M . The vanishing of DB13 and DL13 provides a stringent test of the
flavor-blindness hypothesis, while the vanishing of Dχ1 strongly constrains the parameter
space consistent with GGM. If δu 6= δd, there are precisely 11 nonzero RGIs, and so all
6 Ar and Br parameters of GGM, as well as δu, δd, and the 3 gauge couplings at the
messenger scale, can be determined from simple algebraic combinations of the invariants.
Explicit formulae are given in Ref. [20]. This method relies on the ratio DY13H

/IYα in
order to extract the hypercharge gauge coupling at the messenger scale, which can then
be converted into the other high scale gauge couplings with the invariants Ig2 and Ig3 .
Using the analytic expression for the integrated gauge coupling 1-loop RGE, the messenger
scale is determined. On the other hand, if δu = δd, then there is one less free parameter,
but there are two more constraints on the GGM parameter space given by the vanishing of
DY13H

and IYα . Only 9 non-vanishing RGIs are then available for the determination of 10
unknown high energy parameters. Therefore, from the RGIs one can obtain predictions
for 9 of the high energy parameters in terms of a single undetermined one, which can
be taken to be one of the gauge couplings at the messenger scale, or equivalently the
messenger scale itself.

1.1 First generation masses and RGIs

We note from the second column of Table I that of the 14 RGIs, 9 depend only on the
gaugino masses, the first generation masses, and the gauge couplings: Dχ1 , IMr , IBr , and
Igi (r = 1, 2, 3 and i = 1, 2). Dχ1 vanishes in gauge mediated models and thus provides
an MGM/GGM sum rule, but cannot be used to determine high scale parameters.
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Table I: 1-Loop RG Invariants in the MSSM

RGI Definition in Terms of Soft Masses MGM(M) GGM(M)

DB13 2(m2
Q̃1
−m2

Q̃3
)−m2

ũ1
+m2

ũ3
−m2

d̃1
+m2

d̃3
0 0

DL13 2(m2
L̃1
−m2

L̃3
)−m2

ẽ1
+m2

ẽ3
0 0

Dχ1 3(3m2
d̃1
− 2(m2

Q̃1
−m2

L̃1
)−m2

ũ1
)−m2

ẽ1
0 0

DY13H

m2
Q̃1
− 2m2

ũ1
+m2

d̃1
−m2

L̃1
+m2

ẽ1

− 10
13

(
m2
Q̃3
− 2m2

ũ3
+m2

d̃3
−m2

L̃3
+m2

ẽ3
+m2

Hu
−m2

Hd

) − 10
13 (δu − δd) − 10

13 (δu − δd)

DZ 3(m2
d̃3
−m2

d̃1
) + 2(m2

L̃3
−m2

Hd
) −2δd −2δd

IY α

(
m2
Hu
−m2

Hd
+
∑
gen(m2

Q̃
− 2m2

ũ +m2
d̃
−m2

L̃
+m2

ẽ)
)
/g2

1 (δu − δd) /g2
1 (δu − δd) /g2

1

IBr
Mr/g

2
r B Br

IM1 M2
1 − 33

8 (m2
d̃1
−m2

ũ1
−m2

ẽ1
) 38

5 g
4
1B

2 g4
1

(
B2

1 + 33
10A1

)

IM2 M2
2 + 1

24

(
9(m2

d̃1
−m2

ũ1
) + 16m2

L̃1
−m2

ẽ1

)
2g4

2B
2 g4

2

(
B2

2 + 1
2A2

)
IM3 M2

3 − 3
16 (5m2

d̃1
+m2

ũ1
−m2

ẽ1
) −2g4

3B
2 g4

3

(
B2

3 − 3
2A3

)
Ig2 1/g2

1 − 33/(5g2
2) ≈ −10.9 ≈ −10.9

Ig3 1/g2
1 + 11/(5g2

3) ≈ 6.2 ≈ 6.2
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Since mQ̃1
only appears in Dχ1 , the 8 non-vanishing RGIs depend on 10 Mc scale

values (4 sfermion masses, 3 gaugino masses and 3 gauge couplings). Although the Higgs
mass parameters, δu,d, affect the spectrum through their contribution to the hypercharge
D-term, these 8 RGIs do not depend explicitly on them, and in GGM they are fixed in
terms of the 9 parameters (Ar, Br, and gr(M)). Consequently these RGIs link a total
of 19 low and high scale parameters. Measurement of the 10 Mc scale masses would
allow the reconstruction of 8 of the messenger scale parameters as a function of a single
undetermined one, which can be taken to be g3(M).

On the other hand, MGM is a 4-dimensional subset of the parameter space of GGM
defined by 5 constraints:

A1 = A2 = A3 ≡ A,

B1 = B2 = B3 ≡ B,

A = 2B2. (1.4)

The relevant parameters of MGM can therefore be taken to be gr(M), B, δu, and δd.
From the third column of Table I we see that in MGM, the number of non-vanishing
first generation + gaugino RGIs is greater than the number of high scale parameters they
depend on. The 8 relevant RGIs are functions of the same 10 Mc scale values as GGM,
but are fixed by only 4 messenger scale parameters (B and the 3 gauge couplings), for a
total of 14 parameters. Thus, given 6 measurements (3 gauge couplings and 3 masses)
at the scale Mc, not only can the B and gr(M) be reconstructed, but the remaining 4
unmeasured low scale masses can also be predicted (the constraint equation Dχ1=0 allows
the determination of mQ̃1

from the other sfermion masses and thus does not modify this
counting).

If the entire first generation spectrum is measured, the 4 predictions at Mc become
sum rules. The equality of the IBr provide two familiar constraints (and are satisfied
more generally in any high scale SUSY-breaking model with gaugino mass unification
at the GUT scale). The other two sum rules can be formulated by demanding that the
reconstructed gauge couplings at M satisfy the relationships encoded in Ig2 and Ig3 . These
4 constraints on the low scale soft parameters are related to the 5 constraints given in
Eq. (1.4). The fifth constraint implied by Eq. (1.4) cannot be used to generate a low
scale sum rule when considering only the first generation + gaugino RGIs, but instead
it allows the extraction of g3(M) from these RGIs in MGM models. We will discuss the
implications of this property in Section 3.

The RGI reconstruction of the high scale parameters of MGM or GGM depends on
the parameters that can be measured at the low energy scale, and if the MGM sum rules
can be checked. We depict the different cases described above graphically in Fig. 1.

2 Predicting an MGM Mass Spectrum

2.1 Mass Measurements at the LHC

In Ref. [20], we analyzed the possibility of distinguishing different SUSY-breaking struc-
tures using the RGIs if precise experimental measurements exist for the entire sparticle
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Figure 1: The green (light grey) region is GGM parameter space, extending over different Ar,
Br, δu, δd, and M . The blue (medium grey) region denotes the MGM subspace of
GGM, with universal Ar and Br constrained to satisfy the relationship A = 2B2.
Using the RGIs and assuming a high scale MGM structure, low scale experimental
measurements of only 3 soft masses (small red circle at low scale), including at least
2 scalar masses, can determine consistent B and messenger scale values (middle red
arrow). Low scale measurement of all the gauginos and the first generation masses
(purple shaded oval at low scale), on the other hand, leads to the determination of
a consistent region of GGM parameter space (shaded region between outer purple
arrows).

mass spectrum at the TeV scale. Although this may be possible, it is not the most plausi-
ble assumption for the near future. It is more likely that only a subset of all the sparticle
and Higgs mass parameters will be determined with good precision at the LHC. Assuming
a particular minimal SUSY-breaking scenario, the RGIs can still be used to make predic-
tions for the unmeasured sparticle masses, which can then be tested at a higher luminosity
LHC or at future accelerators. To make a detailed program, we try to infer a minimal set
of mass measurements that have the most reasonable chance of being performed at the
LHC in the coming years.
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The LHC will primarily search for supersymmetry by the production of heavy colored
particles, which cascade decay into lighter particles. Mass determination of those particles
which appear off-shell in the cascade decays will be very difficult, while on-shell particle
masses can be determined with relatively good precision. In addition, due to the large
backgrounds, the determination of masses in cascade decays containing leptons will be eas-
ier to perform compared to those containing only jets plus missing energy (and eventually
photons if the messenger scale is low enough). In MGM models, the squarks tend to be
heavier than the gluino, and therefore they tend to appear off-shell in the gluino-initiated
cascades. Similarly, left-handed sleptons are heavier than the second-lightest neutralino
and therefore tend to appear off-shell in cascade decays containing leptons, which will
then be dominated by lighter, right-handed sleptons. Cascade decays of gluinos will thus
provide information on the gluino mass, the right-handed slepton masses, and the first and
second lightest neutralino masses. Further information about the messenger scale may
be obtained by the decay of the next-to-lightest superpartner (NLSP) to the gravitino
lightest superpartner (LSP), if the messenger scale is low enough (M . 107 GeV).

Although produced at a lower rate than gluinos, first and second generation left-
handed squarks may be produced at a sufficiently high rate to be measured in the first
years of LHC running. These squarks will decay in cascades involving jets, leptons and
missing energy. Using the masses obtained in the gluino decays, the left-handed squark
masses may be extracted reasonably precisely.

As indicated above, from these cascade decays information on the first and second
neutralino masses may be obtained. However, due to the possible mixing of the gauginos
with relatively light Higgsinos, these masses will provide only approximate information
on the gaugino soft masses M1 and M2. On the contrary, after computing the relevant
radiative corrections, the gluino mass will be directly translatable into M3. We shall
therefore assume that we have good information on the masses M3, mẽ1 , and mQ̃1

at the
scale of the largest supersymmetric particle mass, which we have denoted Mc as it tends
to be the heaviest colored sparticle. The quantum corrections transforming the measured
pole masses into running masses at Mc introduce an uncertainty that depends on the
unknown spectrum. This problem can be solved by a simple iteration in the calculation
of masses, and we shall consider that no significant new uncertainty is induced by the
presence of these radiative corrections.

In the last section, we showed that knowledge of three masses and three couplings
at the scale Mc are sufficient to determine the MGM parameters as well as the rest of
the first generation spectrum. We will then assume that M3, mQ̃1

, and mẽ1 are measured
experimentally with a few percent precision at Mc, and that the high-scale SUSY-breaking
structure is MGM 4.

2.2 MGM Parameters and Sum Rules

From the the invariants IBr = B in Table I and the knowledge of the gauge couplings at
Mc, we obtain

B =
M3

g2
3(Mc)

, M1 = g2
1(Mc)B, M2 = g2

2(Mc)B, (2.5)

4In this work, we assume the MGM scenario as an example. It should be noted that similar analysis
can be carried out for any choice of SUSY-breaking model.
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which can then be compared with the values obtained from cascade decay measurements.
The predictions for M1,2 are equivalent to the two sum rules for GUT-scale gaugino mass
unification. We stress that in our work we have modified the above predictions with 2-loop
corrections to the RGIs, using the simple parametrization given Ref. [20]. (Effectively, in
the expressions for M1 and M2 in Eq. (2.5), B will be shifted by a term given by the log
of an intermediate messenger scale times the difference between the approximate 2-loop
β-functions for the invariants IB3 and IBr .)

From Table I we see that knowledge of B determines a linear relationship between
the invariants IMr and the gauge couplings g4

r(M) at the messenger scale. Imposing
the relationships encoded in Ig2 and Ig3 that should be satisfied by the reconstructed
messenger scale gauge couplings, we obtain two new sum rules:

CMGM
1 ≡

√
38I2

B

5IM1

− 33

5

√
2I2
B

IM2

− Ig2 ≡ 0,

CMGM
2 ≡

√
38I2

B

5IM1

+
11

5

√
−2I2

B

IM3

− Ig3 ≡ 0. (2.6)

Once expressed in terms of low energy mass parameters, Eq. (2.6) together with the
constraint

Dχ1 = 0 (2.7)

allow the determination of three sfermion masses in terms of two measured ones.
Additionally, from IM3 , g3(M) satisfies

g4
3(M) = − IM3

2B2
≡ 1

2
g4
3(Mc)

[
3

16M2
3

(
5m2

d̃1
+m2

ũ1
−m2

ẽ1

)
− 1

]
, (2.8)

while the other two couplings may be determined from the Igi

g2
1(M) =

(
Ig3 −

11

5g2
3(M)

)−1

,

g2
2(M) =

33

5

(
Ig3 − Ig2 −

11

5g2
3(M)

)−1

. (2.9)

Thus, once the spectrum is determined from Eqs. (2.5), (2.6), and (2.7), the messenger
scale can be also determined from the measurement of a single gaugino mass and two
sfermion masses. Note that instead of using Eq. (2.8), one could determine g4

1(M) or
g4
2(M) through their relationships to the invariants IM1 and IM2 . Provided the relation-

ships given in Eq. (2.9) are fulfilled, any choice would lead to an equivalent result, with
errors that will depend on the experimental errors on the associated measured quantities.
Finally, as with the gaugino masses, the RGIs given above should be modified to account
for the 2-loop corrections. The most important 2-loop effect is in Ig2 , which can shift
by a few percent. We stress that these corrections do not assume the measurement of
any additional parameters. We shall also implement them in all subsequent numerical
calculations and refer the reader to Ref. [20] for details and expressions.
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2.3 Parametric Solutions

Although the determination of the unknown low scale sfermion masses from Eqs. (2.6)
and (2.7) is a generally valid procedure, it is not transparent, since the unknown masses
appear in the denominators of square root expressions. Below we give useful parametric
solutions for the predicted masses as functions of gr(M), which clarifies the dependences
on the measured masses and the expected uncertainties in the predictions. The solutions
can be easily generalized to cases in which the known masses are different from M3, mQ̃1

and mẽ1 . For simplicity of presentation, we shall ignore 2-loop corrections.
Once the gaugino masses are determined using Eq. (2.5), one can use Dχ1 = 0 and

the IM1,2 in Table I to express the first generation sfermion masses as functions of the
measured masses and the gauge couplings at the high scale,

m2
L̃1

=
3

22

M2
3

g4
3(Mc)

[
g4
1(Mc)

(
38

5

g4
1(M)

g4
1(Mc)

− 1

)
+ 11g4

2(Mc)

(
2
g4
2(M)

g4
2(Mc)

− 1

)]
− 1

2
m2
ẽ1
,

(2.10)

m2
ũ1

=
3

22

M2
3

g4
3(Mc)

[
5

3
g4
1(Mc)

(
38

5

g4
1(M)

g4
1(Mc)

− 1

)
− 11g4

2(Mc)

(
2
g4
2(M)

g4
2(Mc)

− 1

)]
− 5

6
m2
ẽ1

+m2
Q̃1
,

(2.11)

m2
d̃1

= − 3

22

M2
3

g4
3(Mc)

[
1

9
g4
1(Mc)

(
38

5

g4
1(M)

g4
1(Mc)

− 1

)
+ 11g4

2(Mc)

(
2
g4
2(M)

g4
2(Mc)

− 1

)]
+

1

6
m2
ẽ1

+m2
Q̃1
.

(2.12)

Similarly, rewriting Eqs. (2.9) in terms of the measured gauge couplings and g3(M),

g2
1(M) = g2

1(Mc)

[
1 +

11

5

g2
1(Mc)

g2
3(Mc)

(
1− g2

3(Mc)

g2
3(M)

)]−1

,

g2
2(M) = g2

2(Mc)

[
1 +

1

3

g2
2(Mc)

g2
3(Mc)

(
1− g2

3(Mc)

g2
3(M)

)]−1

. (2.13)

Substituting in Eq. (2.8) the values of mũ1 and md̃1
from Eq. (2.11)-(2.12) and g1(M)

and g2(M) from Eqs. (2.13), Eq. (2.8) becomes a high-degree polynomial equation in
g3(M), with coefficients that are functions of the measured gaugino and sfermion masses.
Ignoring very small terms, it reads

g4
3(M) =

C
162

g4
3(Mc)

[
1− 32

3 C
g4
3(M)

g4
3(Mc)

] [
1−

(
1 + 3

g2
3(Mc)

g2
2(Mc)

)
g2
3(M)

g2
3(Mc)

]2

, (2.14)

where

C =
1

M2
3

(
6m2

Q̃1
−m2

ẽ1
− 5

33
M2

1 + 9M2
2 −

16

3
M2

3

)
. (2.15)

Generically, with Mc ∼ O(1)TeV, g2(Mc) ∼ 0.65 and g3(Mc) ∼ 1.1. Defining χ =
g2
3(M)/g2

3(Mc), Eq. (2.14) can be roughly approximated by

162

C
χ2 ∼

(
1− 32

3 C
χ2

)
(1− 9χ)2 . (2.16)
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We additionally assume that the messenger scale should be in the range 105 . M . 1016

GeV and therefore
0.25 . g4

3(M) . 1, (2.17)

or equivalently,
0.40 . χ . 0.85. (2.18)

Note that in MGM, C is a number of order 10, which becomes somewhat smaller for larger
values of the messenger scale. Inspection of Eq. (2.16) then determines that typically only
one g3(M) solution satisfies Eq. (2.17) and is therefore physically realistic.

It is simple to solve Eq. (2.14) numerically, even adding the small terms ignored for
simplicity above. It can then be used to calculate the mass spectrum of the first generation
by insertion into Eq. (2.10)-(2.12).

Furthermore, looking at DY13H
and IYα , we see that the Higgs and third generation

masses appear in the same combination in both RGIs. Therefore, once the quantities in
Eqs. (2.5)-(2.9) have been computed, DY (M) and DY3H

(Mc) can be predicted from DY13H

and IYα :

DY (M) = δu − δd =
33

10

(
g2
1(Mc)

g2
1(M)

− 1

)−1

(m2
Q̃1

+m2
d̃1
− 2m2

ũ1
−m2

L̃1
+m2

ẽ1
),

=
33

10

(
g2
1(Mc)

g2
1(M)

− 1

)−1

DY1(Mc). (2.19)

DY3H
(Mc) = 2

(
1 +

13

20

g2
1(Mc)

g2
1(M)

)(
g2
1(Mc)

g2
1(M)

− 1

)−1

(m2
Q̃1

+m2
d̃1
− 2m2

ũ1
−m2

L̃1
+m2

ẽ1
),

=
20

33

(
1 +

13

20

g2
1(Mc)

g2
1(M)

)
DY (M). (2.20)

Similarly, since flavor-blindness implies DB13 = DB1−DB3 = 0 and DL13 = DL1−DL3 = 0,
DB3 and DL3 can be predicted from the assumed measurements:

DB3(Mc) = DB1(Mc) = 2m2
Q̃1
−m2

ũ1
−m2

d̃1
, (2.21)

DL3(Mc) = DL1(Mc) = 2m2
L̃1
−m2

ẽ1
. (2.22)

Eqs. (2.20)–(2.22) imply that the determination of 4 soft parameters in the third genera-
tion and Higgs sector, in addition to the 3 soft masses of the first generation + gauginos,
would be sufficient to fix the soft spectrum entirely.

In Tables II and III, we give two example points in the MGM parameter space where
the mass spectrum of the first generation, the messenger scale gauge couplings, DY (M),
DY3H

(Mc), DB3(Mc), and DL3(Mc) are calculated using the equations above. The points
correspond to different choices of A = 2B2, (δu−δd), and the messenger scale. To estimate
the uncertainties, we assume that the input sparticle masses {M3, mQ̃1

, mẽ1} have been
experimentally measured with central values equal to their MGM values and uncertainties
of about 5%. Although the real errors may be larger than 5% percent, since we choose a
flat uncertainty profile for all the input masses and couplings, the errors in the determined
quantities scale roughly linearly with this value, and 5% provides an easy reference point

11



Table II: Predicted spectrum of masses and parameters given a minimal set of measurements
for the MGM model: A = 2B2 = 0.3 TeV2, DY (M) = δu − δd = 0 TeV2, and
M = 107 GeV. The scale Mc = 1 TeV. The Data column gives the model parameters
and the associated spectrum obtained by running the soft masses down to the scale
Mc. The Calculated column gives the predicted mass spectrum and reconstructed
model parameters, calculated using Eqs. (2.5)-(2.22). The final two columns give the
estimated experimental uncertainties in the calculated quantites, assuming universal
soft mass errors of 1% and 5% for the input soft masses.

Data Calculated ±1% ±5%

g1(Mc) 0.4693 0.0047 (1%)
g2(Mc) 0.6481 0.0065 (1%)
g3(Mc) 1.0800 0.0108 (1%)

M3(GeV) 446.8 4.5 22.3
mQ̃1

(GeV) 641.6 6.4 32
mẽ1(GeV) 114.0 1.1 5.7

g1(M) 0.5159 0.5153 0.0093 0.0329
g2(M) 0.6679 0.6647 0.0080 0.0131
g3(M) 0.9144 0.9093 0.0218 0.0880

M1(GeV) 84.2 84.4 2.5 4.9
M2(GeV) 159.4 158.5 4.8 9.1
mL̃1

(GeV) 227.2 221.3 10.4 31.1
mũ1(GeV) 608.37 611.6 7.3 34.8
md̃1

(GeV) 604.7 607.5 8.2 38.7

Log10M (GeV) 7 6.7 0.6 2.4

A (TeV)2 0.3 0.3 0.013 0.03

DY (M) (TeV)2 0 -0.0075 0.09 0.31

DY3H
(Mc) (TeV)2 -0.0085 -0.0130 0.08 0.28

DB3(Mc) (TeV)2 0.0889 0.0904 0.0067 0.0157

DL3(Mc) (TeV)2 0.0902 0.0933 0.0096 0.0287
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Table III: Predicted spectrum of masses and parameters given a minimal set of measurements
for the MGM model: A = 2B2 = 0.8 TeV2, DY (M) = δu − δd = 0.4 TeV2, and
M = 1012 GeV. The scaleMc = 1 TeV. The Data column gives the model parameters
and the associated spectrum obtained by running the soft masses down to the scale
Mc. The Calculated column gives the predicted mass spectrum and reconstructed
model parameters, calculated using Eqs. (2.5)-(2.22). The final two columns give the
estimated experimental uncertainties in the calculated quantites, assuming universal
soft mass errors of 1% and 5% for the input soft masses.

Data Calculated ±1% ± 5%

g1(Mc) 0.4686 0.0047 (1%)
g2(Mc) 0.6446 0.0064 (1%)
g3(Mc) 1.0670 0.0107 (1%)

M3(GeV) 707.6 7.1 35.5
mQ̃1

(GeV) 934.5 9.3 46.5
mẽ1(GeV) 228.6 2.3 11.5

g1(M) 0.5981 0.5881 0.0267 0.1130
g2(M) 0.6905 0.6812 0.0112 0.0284
g3(M) 0.7803 0.7823 0.0281 0.1511

M1(GeV) 136.0 136.5 4.1 7.8
M2(GeV) 254.0 254.5 7.7 14.7
mL̃1

(GeV) 430.5 409.2 32.4 115.8
mũ1(GeV) 869.5 874.9 9.6 41.9
md̃1

(GeV) 848.4 857.0 17.5 76.7

Log10M (GeV) 12 11.7 1.4 5.6

A (TeV)2 0.8 0.78 0.035 0.086

DY (M) (TeV)2 0.4 0.27 0.37 1.5

DY3H
(Mc) (TeV)2 0.313 0.22 0.31 1.2

DB3(Mc) (TeV)2 0.273 0.273 0.023 0.049

DL3(Mc) (TeV)2 0.316 0.309 0.055 0.197
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to establish the re-scaling. For comparison, we also present results for a 1% uncertainty
in the masses, corresponding to future precision measurements.

The examples in Tables II and III demonstrate that the method is quite powerful:
the propagated errors remain relatively small, and all predicted quantities are within one
standard deviation of their true values. The uncertainty in the masses depends on their
quantum numbers as well as on the messenger scale. The largest uncertainty is induced
by the first terms of Eqs. (2.10)-(2.12), associated with the determination of the gauge
couplings at the messenger scale. The squark masses, mũ1 and md̃1

, depend only weakly
on these terms and predominantly on mQ̃1

. Their relative uncertainty is then small, of
the order of a few percent. On the contrary, mL̃1

depends dominantly on the first term
and hence its uncertainty tends to be larger, growing with larger values of the messenger
scale. Finally, the messenger scale can be determined. Since the parameters are only
mildly logarithmically sensitive to M , an accurate determination will demand a precise
measurement of the relevant low energy masses. However, we note that the uncertainties
in M are much smaller in MGM than what is generically achieved (when reconstructing
M is possible) in GGM [20], since fewer parameters are involved and the reconstruction
is insensitive to the (δu − δd) splitting.

3 Identifying and Differentiating Minimal within GGM Models

3.1 GGM/MGM Models with Degenerate Low Energy Spectra

If all first generation and gaugino masses are measured at a higher luminosity LHC, the
MGM prediction for the spectrum can be tested. However, for each MGM model, there is
a corresponding set of non-minimal GGM models which produces the same first generation
+ gaugino spectrum and thus satisfies the sum rules. These models form a 1-parameter
family which can be parametrized by g3(M).

To identify the degenerate models, it is convenient to introduce the parameters xr:

xr ≡ Ar/2B
2
r . (3.23)

Then the GGM input parameters areBr, xr, δu,d, and the gauge couplings at the messenger
scale. The three parameters Br can be obtained from the RGIs given by the ratios of the
gaugino masses to the gauge couplings squared,

Br = IBr . (3.24)

Furthermore, the ratios I2
Br
/IMr constrain the GGM gauge couplings gr(M)GGM and the

xr to satisfy the relationships

1

g2
3(M)GGM

=

[−2I2
B3

IM3

(
1− 3

2
(1− x3)

)]1/2

,

1

g2
2(M)GGM

=

[
2I2
B2

IM2

(
1− 1

2
(1− x2)

)]1/2

,

1

g2
1(M)GGM

=

[
38 I2

B1

5 IM1

(
1− 33

38
(1− x1)

)]1/2

, (3.25)
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while Eq. (2.9) allows the determination of g1,2(M)GGM as a function of the Igr and
g3(M)GGM. Therefore, in GGM the xr are directly related to the invariants via

CGGM
1 ≡

[
38 I2

B1

5 IM1

(
1− 33

38
(1− x1)

)]1/2

− 33

5

[
2I2
B2

IM2

(
1− 1

2
(1− x2)

)]1/2

− Ig2 = 0,

CGGM
2 ≡

[
38 I2

B1

5IM1

(
1− 33

38
(1− x1)

)]1/2

+
11

5

[−2I2
B3

IM3

(
1− 3

2
(1− x3)

)]1/2

− Ig3 = 0.

(3.26)

For xr = 1, Eq. (3.26) becomes the soft mass sum rules of MGM given in Eq. (2.6), but
note that (3.26) holds in GGM even if MGM is not a solution.

Given a measured first generation and gaugino spectrum, the nonzero RGIs are fixed,
and thus Eq. (3.26) defines a curve in the xr space corresponding to a set of GGM
models. The Ar, Br, and gr(M) parameters of these models are set by Eqs. (3.23)–(3.25).
Monotonicity implies that the curve can parameterized by (for instance) g3(M)GGM. If, in
addition, the RGIs satisfy the MGM sum rules in Eq. (2.6), then the curve passes through
the point xr = 1, and all the models on the curve possess a first generation + gaugino
spectrum satisfying the sum rules.

Moreover, these sectors of the spectrum can be made equivalent for all of the models
on the curve by changing (δu−δd) so that DY1(Mc) remains constant. This can be seen as
follows. Given values for the 3 IMr and the constraint Dχ1 = 0, 4 out of 5 first generation
masses can be fixed. If DY1(Mc) is also specified, then the fifth mass is fixed. From
Eq. (2.19) we see that DY1(Mc) is controlled by (δu − δd). Therefore, adjusting (δu − δd)
along the curve can render the models identical in the first generation and gaugino sectors
alone5.

Consequently, although Eq. (2.6) provides necessary conditions for an MGM spectrum,
it is not completely sufficient to rule out more general GGM models. However, Eq. (2.17)
limits the physically realizable values of the gauge couplings at the messenger scale, and
therefore places bounds on the curve. For completeness, let us mention that for 105 GeV .
M . 1016 GeV, g1(M) and g2(M) must lie in the ranges

0.05 . g4
1(M) . 0.25,

0.2 . g4
2(M) . 0.25. (3.27)

It is very useful to consider a particular linear combination of the invariants possessing
small experimental uncertainties. By themselves the invariants IM1 and IM2 appearing in
the constraint functions tend to have large experimental uncertainties: the squark mass
terms appear with large coefficients and approximately cancel in gauge mediation, while
the experimental uncertainties tend to grow linearly with the squark masses. However,
the combination IM12 , defined as

IM12 = IM1 + 11IM2

= M2
1 +

11

3

(
3M2

2 + 2m2
L̃1

+m2
ẽ1

)
, (3.28)

5Note, however, that sufficiently large positive values of (δu − δd) may prevent electroweak symmetry
breaking at low scales.
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is manifestly independent of the squark masses, and therefore is likely to be determined
more precisely than IM1 or IM2 alone. Since all terms are positive, its fractional error
is controlled by the error in the measurement of the weakly interacting sparticle masses.
Therefore, in addition to CGGM

1 and CGGM
2 , we will use

CGGM
5 ≡ IM12

I2
B2

+
IM3

I2
B3

(
1− 3

2
(1− x3)

)−1

×

95

11

I2
B1

I2
B2

(
1− 33

38
(1− x1)

)[
11− 5Ig3

√
−IM3

2
(
1− 3

2
(1− x3)

)
I2
B3

]−2

+ 1089

(
1− 1

2
(1− x2)

)[
11 + 5 (Ig2 − Ig3)

√
−IM3

2
(
1− 3

2
(1− x3)

)
I2
B3

]−2


= 0, (3.29)

where the constraint function CGGM
5 is now a function of IM12 and IM3 .

Figure 2: Constrained x1 vs. x3 GGM parameter space satisfying Eq. (3.26) and fulfilling the
gauge coupling inequalities given in Eqs. (2.17) and (3.27) and Eq. (3.29) within
1σ (Blue/Dark Grey) or 2σ (Green/Light Grey) for a sample MGM spectrum with
M = 1012 GeV and A = 2B2 = 0.8. Left : 1% uncertainty; Right : 5% uncertainty.

Examples of the curve and bounds are given in Figs. 2 and 3 for a sample MGM point
with Ar = 2B2

r = 0.8 TeV2 and M = 1012 GeV2. The two plots in each figure reflect an
assumption of 1% and 5% experimental errors respectively in the measured low scale soft
masses. Each point in the xr space is constrained to satisfy CGGM

1 , CGGM
2 , CGGM

5 and
the gauge coupling inequalities within 1σ (Blue/Dark Grey) and 2σ (Green/Light Grey).
These plots show that while x2 and x3 can in general be well-constrained, the limits on
x1 are not as strong. There are two reasons for this behavior. First, a large range of x1

values can be found satisfying CGGM
1 and CGGM

2 even for values of x2,3 relatively close to
1. In other words, Eqs. (3.26) and (3.29) are relatively insensitive to x1. Secondly, from
Eq. (3.25), large (small) values of x1 correspond to small (large) values of the messenger
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Figure 3: Constrained x2 vs. x3 GGM parameter space satisfying Eq. (3.26) and fulfilling the
gauge coupling inequalities given in Eqs. (2.17) and (3.27) and Eq. (3.29) within
1σ (Blue/Dark Grey) or 2σ (Green/Light Grey) for a sample MGM spectrum with
M = 1012 GeV and A = 2B2 = 0.8. Left : 1% uncertainty; Right : 5% uncertainty.

scale. Therefore, given low (high) scale MGM model, significant low (high) deviations
from x1 = 1 can be tolerated before the upper (lower) bounds of Eq. (3.27) are violated.

As explained above, the value of (δu − δd) varies along the curve in order to maintain
a fixed first generation + gaugino spectrum. Thus the value of the invariant DY13H

is
changing, implying that the third generation + Higgs hypercharge D-term, DY3H

(Mc), is
different at each point along the curve. Therefore, the spectrum degeneracy will not hold
in the third generation and Higgs sectors, and this fact could be eventually used to select
the proper model.

3.2 GGM Models that can be Distinguished from MGM

We expect that most deviations from MGM into the more general parameter space of
GGM will result in violations of the sum rules. Since the degree of violation should be
measured relative to expected uncertainties in the experimental determination of the sum
rules, it is important to study them in some detail, looking for alternative formulations
that could lead to more stringent constraints. In this section we will discuss useful refor-
mulations of the constraints CMGM

1 and CMGM
2 and analyze numerically their ability to

rule out deviations from MGM. We will consider simple 1-parameter deviations along dif-
ferent vectors in the xr space, and then revisit the full class of non-minimal GGM models
that satisfy the two constraints.

If Eq. (2.8) or Eq. (2.9) are used to reconstruct an MGM gauge coupling g2
r(M

′)MGM

at a messenger scale M ′, but in reality the spectrum is generated by a non-minimal GGM
mechanism, then the MGM reconstruction is related to the gauge coupling g2

r(M)GGM at
the real messenger scale M via

g2
r(M

′)MGM = g2
r(M)GGM [1− cr(1− xr)]1/2 , (3.30)

where cr = {33/38, 1/2, 3/2}. Correspondingly, if the constraints in Eq. (2.6) are imposed
on a non-minimal GGM model, they can be expressed in terms of relations between the
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messenger scale parameters as

CMGM
1 ≡ 1

g2
1(M)GGM

(
1− 33

38
(1− x1)

)−1/2

− 33

5

1

g2
2(M)GGM

(
1− 1

2
(1− x2)

)−1/2

− Ig2 = 0,

CMGM
2 ≡ 1

g2
1(M)GGM

(
1− 33

38
(1− x1)

)−1/2

+
11

5

1

g2
3(M)GGM

(
1− 3

2
(1− x3)

)−1/2

− Ig3 = 0.

(3.31)

Since we do not restrict our attention to a fixed low scale spectrum as in the previous
section, these equations define a surface in (M,xr) parameter space containing the line
(M, 1, 1, 1) as well as the MGM-degenerate curve discussed in the previous section. For a
fixed value of M , a new curve within the surface is obtained from Eq. (3.31). We will refer
to this curve as the invariant line, because it is independent of the way the individual
constraint functions are formulated.

In addition to the two “hard” constraints of Eq. (3.31), we require that the recon-
structed couplings gr(M

′)MGM lie in a physically reasonable range. Eqs. (2.17) and (3.27)
become

0.05 .
5

38

IM1

I2
B

. 0.25 ,

0.2 .
1

2

IM2

I2
B

. 0.25 ,

0.25 . −1

2

IM3

I2
B

. 1.0 . (3.32)

From the form of Eqs. (3.31) we see that the effectiveness of the constraint functions at
detecting deviations from MGM is dependent on the messenger scale through the running
gauge couplings. At low M , g3(M)GGM grows rapidly, g2(M)GGM decreases slowly, and
g1(M)GGM decreases rapidly, reducing the sensitivities to x2 and x3. On the other hand,
the constant coefficients are such that the sensitivity to variations in x1 alone is typically
less than to variations in x2 or x3 for all but the lowest messenger scales. Numerically
this can be seen by linearizing Eq. (3.31) around (1, 1, 1) for a sample messenger scale of
105 GeV,

CMGM
1 ≈ −1.8(x1 − 1) + 3.8(x2 − 1),

CMGM
2 ≈ −1.7(x1 − 1)− 1.7(x3 − 1), (3.33)

and for 1016 GeV,

CMGM
1 ≈ −0.8(x1 − 1) + 3.2(x2 − 1),

CMGM
2 ≈ −0.8(x1 − 1)− 3.2(x3 − 1). (3.34)

Considering the limited reactivity of the constraint functions to x1 and x3 in significant
regions of parameter space, it is worthwhile to search for other formulations that have
minimal expected experimental uncertainties. For this purpose we write the constraints in
a form obtained by constructing the invariants IM1/I

2
B and IM2/I

2
B out of the reconstructed
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B and g4
3(M ′)MGM. Using Eq. (2.9) and the relations in Eq. (3.25) for xr = 1, we arrive

at the new constraint functions:

CMGM
3 ≡ 5IM1

38I2
B

+
50IM3/I

2
B(

22− 5Ig3
√
−2IM3/I

2
B

)2 ,

CMGM
4 ≡ IM2

2I2
B

+
2178IM3/I

2
B(

22− 5(Ig3 − Ig2)
√
−2IM3/I

2
B

)2 . (3.35)

Eq. (3.35) may be rewritten in terms of the xr,

CMGM
3 = g4

1(M)GGM

(
1− 33

38
(1− x1)

)
− g4

3(M)GGM

×

(
g2
3(M)GGMIg3 −

11

5
(
1− 3

2
(1− x3)

)1/2
)−2

,

CMGM
4 = g4

2(M)GGM

(
1− 1

2
(1− x2)

)
− 9g4

3(M)GGM

×

(
5

11
g2
3(M)GGM (Ig3 − Ig2)−

1(
1− 3

2
(1− x3)

)1/2
)−2

. (3.36)

Linearizing Eq. (3.36) around (1, 1, 1), for a messenger scale of 105 GeV gives

CMGM
3 ≈ 0.05(x1 − 1) + 0.05(x3 − 1),

CMGM
4 ≈ 0.09(x2 − 1) + 0.04(x3 − 1), (3.37)

and for 1016 GeV,

CMGM
3 ≈ 0.2(x1 − 1) + 0.8(x3 − 1),

CMGM
4 ≈ 0.1(x2 − 1) + 0.1(x3 − 1). (3.38)

We stress that CMGM
3 and CMGM

4 are not independent from CMGM
1 and CMGM

2 on the
constraint subsurface defined by {Ci = 0}. To reduce experimental errors, we can define

CMGM
5 ≡ 19

5
CMGM

3 + 11CMGM
4 = 0, (3.39)

which is again a function of IM12 and IM3 , similarly to CGGM
5 . For a messenger scale of

105 GeV,

CMGM
5 ≈ 0.19(x1 − 1) + 0.99(x2 − 1) + 0.63(x3 − 1), (3.40)

and for 1016 GeV,

CMGM
5 ≈ 0.76(x1 − 1) + 1.1(x2 − 1) + 4.14(x3 − 1). (3.41)
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Although CMGM
5 will prove to be quite a powerful discriminator, the different con-

straint functions are sensitive to different deviations from MGM, and so it is still useful
to apply all of the CMGM

i as well as the gauge coupling bounds in Eq. (3.32). For ex-
ample, CMGM

3 involves a square that destroys sign information, so that for low x1 there
always exists an x3 that satisfies CMGM

3 = 0. CMGM
2 , on the other hand, clearly cannot

be satisfied for sufficiently low x1, because the first term can become larger than Ig3 .
Secondly, at large M , CMGM

3 and CMGM
5 lose sensitivity for values of x3 < 1, which can

be anticipated as follows. In this region g3(M
′)MGM is less than g3(M)GGM. For high

messenger scales, the lower g3(M
′)MGM is then translated via Ig3 into a reconstructed

value of g1(M
′)MGM that is increasingly closer to the Landau pole above the GUT scale.

Since CMGM
3 contains a positive power of the reconstructed g1(M

′)MGM, the constraint is
then violated significantly; however, for constant fractional errors in the low-scale masses,
the experimental uncertainties grow even faster (this is just the consequence of the fact
that the derivative of a function near a simple pole grows faster than the function itself.)
As a result CMGM

3 and CMGM
5 both become ineffective in this region. On the other hand,

precisely because g3(M
′)MGM is less than g3(M)GGM, it easily violates Eq. (3.32) when M

is large. For these and similar reasons the constraints provide complementarity to each
other in different regions of parameter space.

3.2.1 Numerical Analysis

We turn now to a numerical study of the constraints and inequalities presented in the
previous section. For this purpose we perform scans over GGM parameter space for low
and high values of M . Since we are interested in the case where (δu−δd) is poorly known,
and our constraint functions are insensitive to δu and δd, we fix them to constant values.
We compute the soft spectrum at M and evolve it down numerically to the TeV scale using
the full 2-loop RGEs [52]. At the TeV scale we assign 5% uncertainties to each soft mass
and add errors in quadrature to obtain final uncertainties on the constraint functions.
Although errors in the soft masses may be larger in practice, they are also likely to be
highly correlated and may experience cancellations. The simple approximation used here
is intended only to provide a qualitative picture of the effectiveness of the RGI method
for distinguishing MGM from GGM.

As discussed previously, the simplicity of the IBr RGIs makes it unlikely that any
sizable deviation from B1 = B2 = B3 ≡ B will escape detection once the neutralino
spectrum is determined. The Ar-dependent constraints are less straightforward, and so
as an example we consider deviations from MGM that satisfy universality of the Br and
universality of the Ar, but not necessarily A = 2B2.

In Fig. 4 we plot the scan points in the GGM subspace, coloring them by the maximum
number of standard deviations by which Eqs. (3.31), (3.32), or (3.39) are violated. We
present results for M = 107 GeV and M = 1015 GeV, and restrict to a range 0.3 <
A, 2B2 < 3.0 TeV2 for illustration. For these parameter choices, the low scale soft masses
range from about 500–2000 GeV for the first generation colored sfermions, 220–900 GeV
for the slepton doublet, 110–650 GeV for the slepton singlet, 80–270 GeV for the bino,
and 400–1400 GeV for the gluino.

For x < 1, the sensitivity to displacements from x = 1 is stronger at large M and
is governed by CMGM

1 , CMGM
2 , and g3(M

′)MGM, as discussed in the previous section. For
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Figure 4: Ability to rule out MGM in the presence of a deformation in the A direction in GGM
parameter space. Left : M = 107 GeV; Right : M = 1015 GeV.

x > 1 the dominant constraint comes from CMGM
5 . Displacements at lower M are also

controlled by CMGM
5 . The slight weakening of the sensitivity towards the upper right in

all plots is due to the fact that a constant step size in A or 2B2 corresponds to a smaller
deviation in x for larger values of 2B2.

Note that the space of x 6= 1 models includes those that are relevant for N > 1.
If the only deviation from MGM is in the number of messenger multiplets, then the
sensitivity reflected in Fig. 4 suggests that a constraint requiring N to be an integer may
be reasonably effective. However, we do not investigate this possibility further in this
work.

The sensitivity to other types of simple deviations can be understood similarly. Varia-
tions purely in x1 for low scales will be the most difficult to detect, as they are weakly felt
by CMGM

1 and CMGM
2 at both scales, while the dependence of CMGM

5 on x1 indicates that
it is more sensitive at higher scales where g1(M)GGM is larger. Meanwhile the sensitivity
to pure x2 deviations is slightly stronger at low M where the CMGM

5 constraint is more
powerful.

While simple deviations are instructive, it is interesting to consider more general dis-
placements from MGM, particularly those that fall directly along the invariant line As
stressed previously, a moderate probe of such cases is offered by enforcing the inequalities
in Eq. (3.32). To estimate the power of the inequalities, in Fig. 5 we plot the projection
of the invariant line onto the (x1, x3) and (x2, x3) planes for three values of the messenger
scale, coloring points according to whether or not an inequality is violated outside of the
error bars. For the estimation of the uncertainties we use a fixed spectrum near 500 GeV
and retain the 5% uncertainties. A more precise calculation does not qualitatively alter
the results. Since values of x1,2 > 1 and x3 < 1 lead to reconstructed MGM messenger
scales that are larger than the true M , for low M such deviations are difficult to detect.
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Figure 5: GGM points that survive the constraints may still be distinguished from MGM by
demanding that the reconstructed MGM messenger scale is in a physically acceptable
range. Here we plot the projections of the unconstrained points onto the (x1, x3)
plane (left) and the (x2, x3) plane (right), for values of the messenger scale of 107

GeV and 1015 GeV. Blue and green (dark and light grey) points remain consistent
with the MGM constraints within 2σ after the application of the messenger scale
inequality; red (medium grey) points are outside the uncertainties.

On the other hand, x1,2 < 1 and x3 > 1 easily violate the inequalities. At large M the
reverse holds since there is not a large margin for the allowed overestimation of the scale.

4 Conclusions

In this work we have shown that 1-loop Renormalization Group invariant quantities in
the MSSM may be used to study the structure and parameters of SUSY-breaking, even if
only a subset of the soft breaking parameters can be determined experimentally. Working
in the specific example of Minimal Gauge Mediation, we found RGI sum rules in the
first generation and gaugino sectors that may be used to make predictions for unknown
soft masses. We demonstrated that the measurement of one gaugino mass and two first
generation sfermion masses at the LHC is sufficient to determine the rest of the first
generation and gaugino spectrum in MGM models, threeD-term relations constraining the
third generation and Higgs spectrum, and the high energy input parameters B, (δu− δd),
and the messenger scale. It is of particular interest that the relevant RGIs are independent
of the Higgs sector soft parameters, the soft trilinear couplings, and all third generation
soft masses, which may be more difficult to extract from experimental data.

In the case that the first generation and gaugino masses are known, we showed that
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the sum rules are sensitive to most deviations into the broader parameter space of Gen-
eral Gauge Mediation, including variations in the sfermion mass parameters that are more
complicated to assess than those in the gaugino sector. However, the sum rules cannot
completely differentiate MGM from GGM. A 1-parameter subset of GGM models is con-
sistent with the same low energy first generation and gaugino spectrum as a given MGM
model, but is associated with different values of (δu− δd) and the messenger scale. There-
fore, the GGM models that survive the MGM constraints are limited by the requirement
that the reconstructed messenger scale lies within an acceptable window.

It would be interesting to study the breakdown of the degeneracy between MGM and
GGM models in the third generation and Higgs spectrum, as well as the determination
of (δu + δd) in MGM models. Furthermore, it is of great interest to investigate the com-
plementarity between the RGI method and the top-down approach to SUSY parameter
determination. In the event that a parameter can be fixed via RGI relations, it can be
restricted in a χ2 fit, potentially improving the uncertainties from the fit. Also omitted
from our study is a full analysis of other SUSY-breaking scenarios, including MGM with
N > 1 SU(5) representations of messenger particles. We leave such work for the future.

Acknowledgments:

We would like to thank Matt Strassler for useful comments. Fermilab is operated by
Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy. Work at ANL is supported in part by the U.S. Department of
Energy (DOE), Div. of HEP, Contract DE-AC02-06CH11357. This work was supported
in part by the DOE under Task TeV of contract DE-FGO2-96-ER40956. M. C., N. S.
and C. W. would like to thank the Aspen Center for Physics, where part of this work has
been done.

References

[1] H. P. Nilles, Phys. Rept. 110, 1 (1984).

[2] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).

[3] S. P. Martin, arXiv:hep-ph/9709356.

[4] R. Lafaye, T. Plehn and D. Zerwas, arXiv:hep-ph/0404282.

[5] M. Rauch, R. Lafaye, T. Plehn and D. Zerwas, arXiv:0710.2822 [hep-ph].

[6] C. Adam, J. L. Kneur, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas,
arXiv:1007.2190 [hep-ph].

[7] H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas and X. Tata, JHEP 0306, 054
(2003) [arXiv:hep-ph/0304303].

[8] U. Chattopadhyay, A. Corsetti and P. Nath, Phys. Rev. D 68, 035005 (2003)
[arXiv:hep-ph/0303201].

23



[9] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, Phys. Lett. B 603, 51 (2004)
[arXiv:hep-ph/0408118].

[10] M. Battaglia, A. De Roeck, J. R. Ellis, F. Gianotti, K. A. Olive and L. Pape, Eur.
Phys. J. C 33, 273 (2004) [arXiv:hep-ph/0306219].

[11] A. Djouadi, M. Drees and J. L. Kneur, JHEP 0603, 033 (2006) [arXiv:hep-
ph/0602001].

[12] E. A. Baltz, M. Battaglia, M. E. Peskin and T. Wizansky, Phys. Rev. D 74, 103521
(2006) [arXiv:hep-ph/0602187].

[13] B. C. Allanach, K. Cranmer, C. G. Lester and A. M. Weber, JHEP 0708, 023
(2007) [arXiv:0705.0487 [hep-ph]].

[14] C. F. Berger, J. S. Gainer, J. L. Hewett and T. G. Rizzo, JHEP 0902, 023 (2009)
[arXiv:0812.0980 [hep-ph]].

[15] J. L. Kneur and N. Sahoury, Phys. Rev. D 79, 075010 (2009) [arXiv:0808.0144
[hep-ph]].

[16] J. L. Kneur and G. Moultaka, Phys. Rev. D 59, 015005 (1999) [arXiv:hep-
ph/9807336].

[17] G. A. Blair, W. Porod and P. M. Zerwas, Eur. Phys. J. C 27, 263 (2003) [arXiv:hep-
ph/0210058].

[18] G. A. Blair, A. Freitas, H. U. Martyn, G. Polesello, W. Porod and P. M. Zerwas,
Acta Phys. Polon. B 36, 3445 (2005) [arXiv:hep-ph/0512084].

[19] M. S. Carena, P. H. Chankowski, M. Olechowski, S. Pokorski and C. E. M. Wagner,
Nucl. Phys. B 491, 103 (1997) [arXiv:hep-ph/9612261].

[20] M. Carena, P. Draper, N. R. Shah and C. E. M. Wagner, arXiv:1006.4363 [hep-ph].

[21] J. R. Ellis and D. V. Nanopoulos, Phys. Lett. B 110, 44 (1982).

[22] S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B 353, 591
(1991).

[23] G. Isidori and A. Retico, JHEP 0111, 001 (2001) [arXiv:hep-ph/0110121].

[24] A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Nucl. Phys. B 659,
3 (2003) [arXiv:hep-ph/0210145].

[25] K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84, 228 (2000) [arXiv:hep-
ph/9909476].

[26] A. Dedes and A. Pilaftsis, Phys. Rev. D 67, 015012 (2003) [arXiv:hep-ph/0209306].

[27] D. A. Demir, Phys. Lett. B 571, 193 (2003) [arXiv:hep-ph/0303249].

24



[28] M. S. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C. E. M. Wagner,
Phys. Rev. D 74, 015009 (2006) [arXiv:hep-ph/0603106].

[29] E. Lunghi, W. Porod and O. Vives, Phys. Rev. D 74, 075003 (2006) [arXiv:hep-
ph/0605177].

[30] M. S. Carena, A. Menon and C. E. M. Wagner, Phys. Rev. D 76, 035004 (2007)
[arXiv:0704.1143 [hep-ph]].

[31] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, JHEP 0605, 063 (2006)
[arXiv:hep-ph/0603136].

[32] J. R. Ellis, S. Heinemeyer, K. A. Olive and G. Weiglein, Phys. Lett. B 653, 292
(2007) [arXiv:0706.0977 [hep-ph]].

[33] G. Isidori, F. Mescia, P. Paradisi and D. Temes, Phys. Rev. D 75, 115019 (2007)
[arXiv:hep-ph/0703035].

[34] G. Barenboim, P. Paradisi, O. Vives, E. Lunghi and W. Porod, JHEP 0804, 079
(2008) [arXiv:0712.3559 [hep-ph]].

[35] P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Phys. Lett. B 668, 202 (2008)
[arXiv:0805.3989 [hep-ph]].

[36] J. R. Ellis, J. S. Lee and A. Pilaftsis, Phys. Rev. D 76, 115011 (2007)
[arXiv:0708.2079 [hep-ph]].

[37] M. Carena, A. Menon and C. E. M. Wagner, Phys. Rev. D 79, 075025 (2009)
[arXiv:0812.3594 [hep-ph]].

[38] J. Foster, K. i. Okumura and L. Roszkowski, JHEP 0508, 094 (2005) [arXiv:hep-
ph/0506146].

[39] G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999) [arXiv:hep-ph/9801271].

[40] I. Affleck, M. Dine and N. Seiberg, Nucl. Phys. B 256, 557 (1985).

[41] M. Dine, A. E. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D 53, 2658 (1996)
[arXiv:hep-ph/9507378].

[42] S. P. Martin, Phys. Rev. D 55, 3177 (1997) [arXiv:hep-ph/9608224].

[43] C. E. M. Wagner, Nucl. Phys. B 528, 3 (1998) [arXiv:hep-ph/9801376].

[44] P. Meade, N. Seiberg and D. Shih, Prog. Theor. Phys. Suppl. 177, 143 (2009)
[arXiv:0801.3278 [hep-ph]].

[45] G. L. Kane, P. Kumar, D. E. Morrissey and M. Toharia, Phys. Rev. D 75, 115018
(2007) [arXiv:hep-ph/0612287].

[46] D. A. Demir, JHEP 0511, 003 (2005) [arXiv:hep-ph/0408043].

25



[47] S. P. Martin and P. Ramond, Phys. Rev. D 48, 5365 (1993) [arXiv:hep-ph/9306314].

[48] B. Ananthanarayan and P. N. Pandita, Int. J. Mod. Phys. A 22, 3229 (2007)
[arXiv:0706.2560 [hep-ph]].

[49] B. Ananthanarayan and P. N. Pandita, Mod. Phys. Lett. A 19, 467 (2004)
[arXiv:hep-ph/0312361].

[50] B. Ananthanarayan and P. N. Pandita, Int. J. Mod. Phys. A 20, 4241 (2005)
[arXiv:hep-ph/0412125].

[51] C. Balazs, T. Li, D. V. Nanopoulos and F. Wang, arXiv:1006.5559 [hep-ph].

[52] S. P. Martin and M. T. Vaughn, Phys. Rev. D 50, 2282 (1994) [Erratum-ibid. D
78, 039903 (2008)] [arXiv:hep-ph/9311340].

26


