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The possible origin of the R-parity violating interactions in the minimal supersymmetric

standard model and its connection to the radiative symmetry breaking mechanism (RSBM)

is investigated in the context of the simplest model where RSBM can be implemented. We

find that in the majority of the parameter space R-parity is spontaneously broken at the

low-scale. These results hint that R-parity violating processes could be observed at the Large

Hadron Collider, if Supersymmetry is realized in nature.

I. INTRODUCTION

The minimal supersymmetric standard model (MSSM) is considered as one of the most appeal-

ing extensions of the standard model of strong and electroweak interactions. This theory has a

variety of appealing characteristics including solutions to the hierarchy problem and a dark matter

candidate. However, at the renormalizable level, the MSSM Lagrangian contains flagrant baryon

and lepton number violating operators, the most infamous of which lead to rapid proton decay

(See Ref. [1] for a review on supersymmetry (SUSY) and Ref. [2] for the study of the proton decay

issue in SUSY.).

The most common approach to this problem is the introduction of a discrete symmetry, R-

parity, defined as R = (−1)3(B−L)+2S , where B, L and S are baryon and lepton number, and spin,

respectively (See Ref. [3] for a review on R-parity violation.). The conservation of R-parity also

ensures that the lightest SUSY particle (LSP) is stable and therefore a cold dark matter candidate.

While R-parity is closely linked to B − L, they are not synonymous. Specifically, R-parity allows

for terms that break B − L by an even amount. For general arguments on R-parity conservation

see Refs. [4] and [5].

Theories with local B−L symmetries help shed light on R-Parity. R-parity is an exact symmetry

as long as the same is true for B − L. Breaking B − L by a field with even charge (the canonical

B − L model) guarantees automatic R-parity conservation even below the symmetry scale, since

only B −L violation by an even amount is allowed. An alternative is B −L breaking through the

right-handed sneutrino, a field which must always be included due to anomaly cancellation. Since

the right-handed sneutrino has a charge of one, its VEV results in spontaneous R-parity violation.
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Phenomenologically, this is a viable scenario that does not induce tree-level rapid proton decay

and dark matter is still possible if the gravitino is the LSP.

Recently, spontaneous R-parity violation has been studied in the case of minimal B − L mod-

els [6–10]. However, the following question is still relevant: Does the canonical B − L model favor

R-parity conservation or violation? . In this letter we study this question in the simplest local

U(1)B−L extension of the MSSM assuming, for simplicity, MSUGRA boundary conditions for the

soft terms. We investigate the fate of R-parity using the radiative symmetry breaking mechanism

and show that for the majority of the parameter space, R-parity is broken, namely it is the right-

handed sneutrino that acquires a negative mass squared and therefore a vacuum expectation value

(VEV). This is a surprising result that at the very least questions the feasibility of conserving R-

parity in such a framework. These results are quite general and apply to any SUSY theory where

B − L is part of the gauge symmetry.

II. THEORETICAL FRAMEWORK

We investigate the possible connection between RSBM and the fate of R-parity in the simplest

B − L model, based on the gauge group:

SU(3)
⊗

SU(2)L
⊗

U(1)Y
⊗

U(1)B−L

with particle content listed in Table I.

Field SU(2)L U(1)Y U(1)B−L

Q̂ =
(

û, d̂
)

2 1/6 1/3

ûc 1 -2/3 -1/3

d̂c 1 1/3 -1/3

L̂ = (ν̂, ê) 2 -1/2 -1

êc 1 1 1

ν̂c 1 0 1

Ĥu =
(

Ĥ+
u , Ĥ0

u

)

2 1/2 0

Ĥd =
(

Ĥ0
d , Ĥ−

d

)

2 -1/2 0

X̂ 1 0 -2

ˆ̄X 1 0 2

TABLE I: SU(2)L

⊗

U(1)Y

⊗

U(1)B−L charges for the particle content.
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The most general superpotential is given by

W = WMSSM + WB−L, (1)

WMSSM = Yu Q̂ Ĥu ûc + Yd Q̂ Ĥd d̂c + Ye L̂ Ĥd êc + µ Ĥu Ĥd, (2)

WB−L = Yν L̂ Ĥu ν̂c + f ν̂c ν̂c X̂ − µX X̂ ˆ̄X, (3)

and the corresponding soft SUSY breaking Lagrangian is

−LSoft ⊃
(

aν L̃ Hu ν̃c − aX ν̃c ν̃c X − bX X X̄ +
1

2
MBLB̃′B̃′ + h.c.

)

+ m2
X |X|2 + m2

X̄ |X̄ |2 + m2
ν̃c |ν̃c|2, (4)

where we have suppressed flavor and group indices and B̃′ is the B − L gaugino.

Spontaneous B−L violation requires either the VEV of X, X̄ or ν̃c to be nonzero, however the

fate of R-parity lies solely in the VEV of ν̃c: 〈ν̃c〉 = 0 corresponds to R-parity conservation while

〈ν̃c〉 6= 0 indicates spontaneous R-parity violation. Addressing the values of these VEVs requires

the minimization conditions which can be derived from the full potential where
(

〈X〉 ,
〈

X̄
〉

, 〈ν̃c〉
)

=

1/
√

2 (x, x̄, n) 1:

〈V 〉 = 〈VF 〉 + 〈VD〉 + 〈VSoft〉 , (5)

〈VF 〉 =
1

4
f2 n4 + f2 n2 x2 +

1

2
µ2

X

(

x2 + x̄2
)

− 1√
2

f µX n2 x̄, (6)

〈VD〉 =
1

32
g2
BL

(

2 x̄2 − 2 x2 + n2
)2

, (7)

〈VSoft〉 = − 1√
2

aX n2 x − bXx x̄ +
1

2
m2

X x2 +
1

2
m2

X̄ x̄2 +
1

2
m2

ν̃c n2. (8)

Only two cases exist for spontaneous B −L symmetry breaking: Case i) n = 0; x, x̄ 6= 0 implying

R-parity conservation or Case ii) x, x̄, n 6= 0 implying spontaneous R-parity violation. Note that a

third case, n 6= 0; x, x̄ = 0 cannot exist due to the linear term for x in Eq. (8) and for x̄ in Eq. (6),

which always induce a VEV for these fields.

• Case i): R-Parity Conservation

This is the traditional case studied in the literature. The minimization conditions for x and

x̄ are very similar in form to those of vu and vd in the MSSM:

1

2
M2

Z′ = −|µX |2 +
m2

X tan2 z − m2
X̄

1 − tan2 z
, (9)

1 Technically, the left-handed sneutrino has a VEV as well, but in order to generate the correct neutrino masses,
this VEV must be quite small compared to the others and so can safely be ignored here [7].
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where tan z ≡ x/x̄ and M2
Z′ ≡ g2

BL

(

x2 + x̄2
)

, which is the mass for the Z ′ boson associated

with broken B − L.

To attain a better understanding of the situation, let us examine Eq. (9) in the limit x ≫ x̄,

with m2
X < 0 and m2

X̄
> 0, so that it reduces to

1

2
M2

Z′ = −|µX |2 − m2
X . (10)

Since the left-hand side is positive definite, the relationship −m2
X > |µX |2 must be obeyed

for spontaneous B − L violation: a tachyonic m2
X is not enough. This relationship between

µX and mX is similar to the relationship in the MSSM between µ and mHu
a relationship

typically referred to as the µ problem, i.e. why is µ of the order of the SUSY mass scale.

Then in case i, in addition to the MSSM µ problem, we have introduced a new µ problem

for µX .

As can be seen from Eq. (10), x is of order the SUSY mass scale or about a TeV. Replacing

X by its VEV in the term fνcνcX in the superpotential leads to the heavy Majorana mass

term for the right-handed neutrinos and ultimately to the Type I seesaw mechanism [11] for

neutrino masses:

mν = v2
u Y T

ν (fx)−1 Yν . (11)

Since the mass of the right-handed neutrinos are of order TeV, realistic neutrino masses

require, Yν ∼ 10−6−7. The rest of the spectrum is given in Appendix B.

• Case ii): R-Parity Violation

Evaluation of the minimization conditions in this case is illuminating in the limit n ≫
x, x̄, aX and g2

BL ≪ 1, which will prove to be the case of interest in the numerical section:

n2 =

(

−m2
ν̃c

)

Λ2
X̄

f2 m2
X̄

+ 1
8 g2

BL Λ2
X̄

, (12)

x̄ =

(

−m2
ν̃c

)

f µX
√

2
(

f2 m2
X̄

+ 1
8 g2

BL Λ2
X̄

) , (13)

x =

(

−m2
ν̃c

) [

aXΛ2
X̄

+ f bX µX

]

(

2 f2 − 1
4g2

BL

) (

−m2
ν̃c

)

Λ2
X̄

+ f2 m2
X̄

Λ2
X + 1

8g2
BLΛ2

X̄
Λ2

X

, (14)

where Λ2
X ≡ µ2

X + m2
X and Λ2

X̄
≡ µ2

X + m2
X̄

.

These equations indicate several things: spontaneous B − L symmetry breaking in the R-

parity violating case only requires m2
ν̃c < 0 and does not introduce a new µ problem so that
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µX can be larger than the TeV scale; that x and x̄ are triggered by linear terms since they

go as these linear terms suppressed by the effective mass squared; and all VEVs increase

with µX up to a point after which n asymptotes while x and x̄ decrease as 1/µx. The

µX → ∞ serves as a decoupling limit since x, x̄ → 0 and n2 → −8mν̃c/g2
BL as in the

minimal model [7]. Neutrino masses in this case will have a more complicated form that will

depend both on the type I seesaw contribution and an R-parity contribution although the

bounds on Yν are similar to Case i). The Z ′ mass in this case is

M2
Z′ =

1

4
g2
BL

(

n2 + 4 x2 + 4 x̄2
)

. (15)

and the rest of the spectrum is given in Appendix B.

The important question now becomes: are either of these cases possible from the perspective of

RSBM? Specifically, will running from some SUSY breaking boundary conditions drive either X

or ν̃c tachyonic, or neither? To answer this, we adopt the MSUGRA Ansatz motivated by the fact

that gravity is one of the simplest ways to transmit SUSY breaking [12]. The following boundary

conditions are valid at the GUT scale:

m2
X = m2

X̄ = m2
ν̃c

i

= ... = m2
0 (16)

AX = f A0; Aν = Yν A0; ... (17)

MBL = ... = M1/2, (18)

where ... indicates MSSM parameters.

The necessary renormalization group equations (RGEs), derived using [13], will only be functions

of the beyond the MSSM couplings since Yν is small enough to be neglected. We assume that gBL

unifies with the other gauge couplings at the GUT scale and use the SO(10) GUT renormalization

factor,
√

3/8. In the approximation f3 = f ≫ f1, f2, the RGEs are given by2

16π2 dm2
ν̃c

dt
=

[

8f2XX − 3g2
BL M2

BL

]

, (19)

16π2 dm2
X

dt
=

[

4f2XX − 12g2
BL M2

BL

]

, (20)

16π2
dm2

X̄

dt
= − 12 g2

BL M2
BL, (21)

where t = ln µ, and XX ≡ m2
X + 2m2

ν̃c + 4a2
X . See Appendix A for the full set of RGEs including

the contributions from three families of right-handed neutrinos.

2 We would like to note that our results are in disagreement with the results in Ref. [14].
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Experience from radiative electroweak symmetry breaking in the MSSM [15], indicates that

Yukawa terms in the beta functions tend to drive the masses squared negative while gaugino terms

do the opposite. Due to its smaller B−L charge, ν̃c has the smallest gaugino factor while also having

the largest Yukawa factor. Since in MSUGRA, all of these fields have the same mass at the GUT

scale, it is clear that m2
ν̃c will evolve to the smallest value in the simple one family approximation.

When including all three families, m2
X gets an enhancement from trace of f , Eq. (A10), which

could lead to it being tachyonic and therefore to R-parity conservation. The question of whether

RSBM is possible as well as the fate of R-parity throughout the parameter space will be addressed

numerically in the next section. It is important to mention that one gets only bilinear interactions

which violate R-parity after symmetry breaking. For details see Ref. [6–10].

III. R-PARITY: CONSERVATION OR VIOLATION ?

In addition to addressing the feasibility of RSBM in general and the fate of R-parity specifically,

it would also be prudent to identify the part of parameter space that leads to a realistic spectrum.

One strong experimental constrain is the bound on the Z ′ mass: MZ′/gBL > 5 TeV [16], indicating

the need for a large mass scale, independent of the fate of R-parity, and translates into a large

value for m0 at the GUT scale.

The hyperbolic branch/focus point region of MSUGRA [17] allows for such large m0 without

too much fine-tuning in the MSSM Higgs sector and naturally leads to a slight hierarchy between

the electroweak scale and the B − L scale. Also, the approximations made in the previous section

for case ii are valid. Values for tan β and f are inputted at the SUSY scale and we assume gBL

unifies with the other gauge couplings at the GUT scale. We find that A0 has very little effect

and therefore set it to zero. The EWSB minimization conditions are solved for µ and B and we

assumed that BX = B at the GUT scale, where bX = BXµX . Specifying µX then determines the

spectrum.

Calculating the soft masses of X and ν̃c with increasing f3 yields Fig. 1, for m0 = 2000 GeV,

M1/2 = 200 GeV, A0 = 0 and negligible f1 and f2. As expected, in the f1, f2 ≪ f3 limit, only the

ν̃c mass becomes tachyonic, so while RSBM can be successful, it leads to spontaneous R-parity

breaking. Note that f3 exhibits fixed-point like behavior (as discussed in a similar scenario in [18]).

This means that its range allowing for RSBM, corresponds to a larger range of values at the GUT

scale. In Fig. 2, are the X and ν̃c soft masses for different values f3 versus m0 with all other

parameters the same as in Fig. 1. It indicates that the m0 parameter also plays an important role
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FIG. 1: Soft masses in the form sign(m2
φ)|mφ| for X (blue) and ν̃c (red) versus f3, for m0 = 2000 GeV,

M1/2 = 200 GeV, A0 = 0 and negligible f1 and f2. RSBM is possible for f3 & 0.51 and spontaneous R-parity

violation.

in determining the overall size of the tachyonic mass, and therefore the Z ′ mass, and can even

derail RSBM for lower values of f3.

Ν
�c

X

1000 2000 3000 4000 5000
-2000

-1000

0

1000

2000

3000

4000

m0 HGeVL

M
as

s
HG

eV
L

FIG. 2: Soft masses in the form sign(m2
φ)|mφ| for X (blue) and ν̃c (red) versus m0 for f3 =

0.5 (solid) , 0.52 (dashed) , 0.54 (dot-dashed) , 0.56 (dotted) and all other parameters the same as in Fig. 1.

For f1 ∼ f2 ∼ f3, the Yukawa term in the RGE for m2
X is effectively enhanced by a factor of

three, see Eq. (A10) as compared to Eq. (20), which can lead to an R-parity conserving minima

since no such factor appears for m2
ν̃c . We show these effects in Fig. 3, where red dots indicate

spontaneous R-parity violation and blue dots show the region of R-parity conservation in the

f2–f1 plane for f3 = 0.4 (a) and f3 = 0.55 (b) and m0 = 2000 GeV, M1/2 = 200 GeV and

A0 = 0. In Fig. 3(a) f1 or f2 ∼ 0.52 is needed for RSBM while only f1 ∼ f2 & 0.4 allows for
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R-parity conservation (there is about a 50-50 split between R-parity conservation and violation).

If f1 or f2 > 0.52, these couplings are no longer perturbative at the GUT scale. As one increases

the value of f3, the R-parity conserving points disappear as reflected in Fig. 3(b). In this case,

f1 or f2 & 0.4 leads to non-perturbative values at the GUT scale due to the larger value of f3.
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FIG. 3: The state of the B −L breaking vacuum in the f2–f1 plane with m0 = 2000 GeV, M1/2 = 200 GeV

and A0 = 0 for f3 = 0.4 (a) and f3 = 0.55 (b). Blue dots indicate R-parity conservation while red dots

R-parity violation. In (a), the empty space below the curve indicates no RSBM, while in both graphs, in

the space above the curves, the f ’s are no longer perturbative at the GUT scale. In (a), there is about an

even number of R-parity conserving and violating vacua but increasing f3 tips the favor towards R-parity

violation and eventually only allows for R-parity violation as in (b).

The graphs in Fig. 3 are a bit misleading since they are just slices of the three dimensional space

f1 − f2 − f3, which is displayed in Figs. 4 and 5, with the same legend as the former figure. The

points sit on a shell that roughly composes one eighth of a cube with sides of about length one.

Below the shell, RSBM is not possible due to the small values of f , while those outside are not

perturbative up to the GUT scale. The majority of the parameter space which allows for RSBM is

dominated by R-parity violation (five times more prevalent) while only f1 ∼ f2 ∼ f3 allows for R-

parity conservation. This last figures summarize the findings of this letter: when RSBM is realized

the R-parity breaking vacuum is more probable than the R-parity conserving one, especially when

a hierarchy exists within the f matrix. Only when this matrix is fairly degenerate (degenerate

right-handed neutrinos) does the running allow for R-parity conservation.
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FIG. 4: The state of the B−L breaking vacuum in the f1− f2− f3 space with m0 = 2000 GeV, M1/2 = 200

GeV and A0 = 0. Blue dots indicate R-parity conservation while red dots R-parity violation, the latter

appears five times more often. The key point is that only fairly degenerate values of f (and therefore

the right-handed neutrinos) allow for R-parity conservation. We have checked that all physical masses are

positive in these cases.
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FIG. 5: The state of the B−L breaking vacuum in the f1− f2− f3 space with m0 = 5000 GeV, M1/2 = 500

GeV and A0 = 0. The legend and results are is in Fig 4.
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IV. SUMMARY

The possible origin of the R-parity violating interactions in the MSSM and its connection to

the radiative symmetry breaking mechanism has been investigated in the simplest possible model.

We have found that in the majority of the parameter space R-parity is spontaneously broken at

the low-scale and the soft SUSY mass scale defines the B −L and R-parity breaking scales. These

results can be achieved in any extension of the MSSM where B −L is part of the gauge symmetry,

and only bilinear R-parity violating interactions are generated. The main result of this letter hints

at the possibility that R-parity violating processes will be observed at the Large Hadron Collider,

if Supersymmetry is discovered.
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Appendix A: Renormalization Group Equations

We present first the gamma functions, which are useful for deriving the RGEs. Here i = 1, 2, 3.

γX =
1

16π2

(

2 Tr f2 − 3 g2
BL

)

, (A1)

γX̄ =
1

16π2

(

−3 g2
BL

)

, (A2)

γνc

i
=

1

16π2

(

4 f2
i − 3

4
g2
BL

)

, (A3)

where repeated indices are not summed and f = diag (f1, f2, f3), since f can always be diago-

nalized by rotating the right-handed neutrino fields. The same holds true here for aX due to the

MSUGRA Ansatz.

The RGEs are given by

16π2 dgBL

dt
=9 g3

BL, (A4)

16π2 dfi

dt
=f3

(

8 f2
i + 2 Tr f2 − 9

2
g2
BL

)

, (A5)

16π2 dMBL

dt
=18 g2

BLMBL, (A6)

16π2 daXi

dt
= fX

(

16 fi aXi
+ 4 Tr (f aX) − 9 g2

BL MBL

)

(A7)

+ aXi

(

8 f2
i + 2 Tr f2 − 9

2
g2
BL

)

, (A8)

16π2
dm2

X̄

dt
= − 12 g2

BL M2
BL, (A9)

16π2 dm2
X

dt
=

[

4 Tr f2 m2
X + 8 Tr

(

f2m2
ν̃c

)

+ 4 Tra2
X − 12g2

BL M2
BL

]

, (A10)

16π2
dm2

ν̃c

i

dt
=

[

8 f2
i

(

m2
X + 2 m2

ν̃c

i

)

+ 8 a2
Xi

− 3g2
BL M2

BL

]

. (A11)

Appendix B: Spectrum

In calculating the following spectrum we assume
〈

ν̃c
3, X, X̄

〉

= 1√
2

(n, x, x̄) and all others

zero. Pseudoscalar mass matrix in the basis Im
(

ν̃c
3,X, X̄

)

:

MP =











2
√

2 (aX x + f3 µX x̄)
√

2 aX n −
√

2 f3 µX n
√

2 aX n aX n2 +
√

2 bX x̄√
2 x

bX

−
√

2 f3 n µX bX
f3 µX n2 +

√
2 bX x√

2 x̄











. (B1)
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Scalar mass matrix in the basis Re
(

ν̃c
3,X, X̄

)

:

MS =











(

2 f2
3 + 1

4 g2
BL

)

n2
(

4 f2
3 − 1

2 g2
BL

)

n x −
√

2 aX n −
√

2 f3 µx n + 1
2g2

BL n x̄
(

4 f2
3 − 1

2 g2
BL

)

n x −
√

2 aX n a3 n2 +
√

2 bX x̄√
2 x

+ g2
BL x2 −bX − g2

BL x x̄

−
√

2 f3 µx n + 1
2g2

BL n x̄ −bX − g2
BL x x̄ f3 µX n2 +

√
2 bX x√

2 x̄
+ g2

BL x̄2











.

(B2)

Neutralino mass matrix in the basis
(

B′, νc, X̃, ˜̄X
)

:

Mχ0 =

















MBL
1
2 gBL n −gBL x gBL x̄

1
2 gBL n

√
2 f3 x

√
2 f3 n 0

−gBL x
√

2 f3 n 0 −µX

gBL x̄ 0 −µX 0

















(B3)

The sfermion mass, with matrices in the basis
(

f̃L, f̃R

)

M2
ũ =





m2
Q̃

+ m2
u − 1

8

(

g2
2 − 1

3 g2
1

) (

v2
u − v2

d

)

+ 1
3DBL

1√
2
(au vu − Yu µ vd)

1√
2

(au vu − Yu µ vd) m2
ũc + m2

u − 1
6 g2

1

(

v2
u − v2

d

)

− 1
3DBL



 ,

(B4)

M2
d̃

=





m2
Q̃

+ m2
d + 1

8

(

g2
2 + 1

3 g2
1

) (

v2
u − v2

d

)

+ 1
3DBL

1√
2
(Yd µ vu − ad vd)

1√
2
(Yd µ vu − ad vd) m2

d̃c
+ m2

d + 1
12 g2

1

(

v2
u − v2

d

)

− 1
3DBL



 ,

(B5)

M2
ẽ =





m2
L̃

+ m2
e + 1

8

(

g2
2 − g2

1

) (

v2
u − v2

d

)

− DBL
1√
2

(Ye µ vu − ae vd)

1√
2
(Ye µ vu − ae vd) m2

ẽc + m2
e + 1

4 g2
1

(

v2
u − v2

d

)

+ DBL



 ,

(B6)

m2
ν̃L

= m2
L̃

− 1

8

(

g2
2 + g2

1

) (

v2
u − v2

d

)

− DBL, (B7)

m2
ÑIi

=m2
ν̃c

i

+ 2f2
i x2 − fi f3 n2 +

√
2 aXi

x +
√

2 fi µX x̄ + DBL, (B8)

m2
ÑRi

=m2
ν̃c

i

+ 2f2
i x2 + fi f3 n2 −

√
2 aXi

x −
√

2 fi µX x̄ + DBL. (B9)

where DBL ≡ 1
8 g2

BL

(

2 x̄2 − 2 x2 + n2
)

, and mu, md and me are the respective fermion masses

and au, ad and ae are the trilinear a-terms corresponding to the Yukawa couplings Yu, Yd and

Ye. The right-handed sneutrino eigenstates are the scalars ÑRi
and pseudoscalars ÑIi

where i runs

only over the first two generations and repeated indices are not summed. The third generation

mixes with the Higgses, Eqs. (B1, B2). The above masses are for R-parity violation, case ii from
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the text. For the R-parity conserving case, case i, take the limit n → 0 and the B−L Higgs masses

are given by the lower two-by-two block matrices of Eqs. (B1, B2) and i in Eqs. (B8, B9) runs over

all three generations.
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