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We report the non-perturbative tuning of parameters—κc, κb, and κcrit—that are related to the

bare heavy-quark mass in the Fermilab action. This requires the computation of the masses of D
(∗)
s

and B
(∗)
s mesons comprised of a Fermilab heavy quark and a staggered light quark. Additionally,

we report the hyperfine splittings for D
(∗)
s and B

(∗)
s mesons as a cross-check of our simulation and

analysis methods. We find a splitting of 145±15 MeV for the Ds system and 40±9 MeV for the Bs
system. These are in good agreement with the Particle Data Group average values of 143.9±0.4 MeV
and 46.1± 1.5 MeV, respectively. The calculations are carried out with the MILC 2+1 flavor gauge
configurations at three lattice spacings a ≈ 0.15, 0.12 and 0.09 fm.

I. INTRODUCTION

Lattice QCD calculations play a critical role in the study of standard model physics and the search for new physics.
For a set of lattice QCD calculations to be viable, several basic tasks are necessary. The bare gauge coupling must
be eliminated in favor of an observable allowing the conversion from lattice to physical units; the bare masses in the
lattice action must be tuned to correspond to physical quarks; and experimentally established quantities must be
calculated in order to substantiate the method’s accuracy and reliability. Once these tasks are complete, a variety
of quantities inaccessible to or not yet determined by experiment may be calculated, such as decay constants, form
factors, and mass spectra.

The Fermilab Lattice and MILC Collaborations have reported several calculations [1–8] based on ensembles of lattice
gauge fields with 2+1 flavors of sea quarks, generated by the MILC Collaboration [9, 10]. Details of the scale setting
can be found in Refs. [11, 12], and details of the light-quark mass tuning in Ref. [11]. In this paper, we report on the
necessary tuning of the heavy-quark action for charmed and bottom quarks. In particular, we describe calculations
of the heavy-light pseudoscalar and vector meson masses using, for light quarks, the asqtad staggered action [13]
and, for heavy quarks, the Fermilab interpretation [14] of the Sheikholeslami-Wohlert (“clover”) action [15] for Wilson
fermions [16]. We use the spin-average of these meson masses to nonperturbatively tune the hopping parameter κ,
which is equivalent to the bare heavy-quark mass. We also describe the determination of κcrit, the value of κ for
which a degenerate Wilson pseudoscalar’s mass vanishes. The value of κcrit plays a minor role in the calculation
of heavy-light matrix elements [3–5], and a more important role when determining a renormalized quark mass [6].
Finally, as a by-product of these calculations, we report the spin-dependent hyperfine splittings for Bs and Ds mesons,
which test how well we have improved the chromomagnetic interaction.
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Two aspects of the Fermilab method are important here. First, the Fermilab interpretation makes no assumptions
about the size of the quark mass. Therefore, we are able to treat both charm and bottom quarks within the same
framework. Second, since the Sheikoleslami-Wohlert action maintains the spin and flavor symmetries of heavy quarks,
heavy-quark effective theory (HQET) can be used to interpret and improve lattice discretization effects [17, 18].
HQET techniques can be used to show how the improvement works for observables, such as meson masses, in a way
simpler than, though equivalent to, the Symanzik improvement program [19].

This paper is organized as follows. Section II reviews the theoretical framework upon which these calculations
are based. Section III contains specific descriptions of the gauge configurations, actions, and operators used for the
meson masses. Section IV covers the components of the numerical analysis. Section V details the fitting procedures.
Section VI presents the results for the non-perturbative tuning of the heavy-quark hopping parameters κc and κb, the
hyperfine splitting, and the critical hopping parameter κcrit. Section VII summarizes with a discussion of improvements
to these calculations that are currently underway. Details of the meson-mass discretization error estimation are given in
Appendix A. Appendices B and C tabulate intermediate numerical results. The partially quenched chiral perturbation
theory expression for the hyperfine splitting is derived in Appendix D.

II. THEORETICAL BACKGROUND

The hopping-parameter form of the heavy-quark action is [14]

S = S0 + SB + SE , (2.1)

where

S0 =
∑
n

ψnψn − κ
∑
n,µ

[
ψn(1− γµ)Un,µψn+µ̂ + ψn+µ̂(1 + γµ)U†n,µψn

]
, (2.2)

SB =
i

2
cBκ

∑
n;i,j,k

εijkψnσijBn;kψn, (2.3)

SE = icEκ
∑
n;i

ψnσ0iEn;iψn, (2.4)

where σµν = i
2 [γµ, γν ]. The chromomagnetic and chromoelectric fields Bn;i and En;i are standard and given in

Ref. [14]. The term S0 includes dimension-five terms to alleviate the fermion doubling problem [16]. The couplings
cE and cB of the dimension-five operators in SB and SE are chosen to reduce discretization effects [14, 15].

The hopping parameter κ is related to the tadpole-improved bare quark mass by

am0 =
1
u0

(
1

2κ
− 1

2κcrit

)
, (2.5)

where a is the lattice spacing, u0 is the tadpole-improvement factor [20], and κcrit is the value of κ for which the
pseudoscalar meson mass (of two degenerate Wilson quarks) vanishes. Our nonperturbative determination of κcrit is
discussed in Sec. VI C. To motivate our method of tuning κ, we first discuss the meson dispersion relation. We then
turn to the HQET description of our Lagrangian to understand how to best use the dispersion relation.

The meson dispersion relation can be written, for |p| � m0, a
−1, as [14]

E(p) = M1 +
p2

2M2
+O(p4). (2.6)

Here, and throughout this work, we use lower-case m for quark masses and upper-case M for meson masses. M1

and M2 are known as the rest mass and kinetic mass, respectively. Because the lattice breaks Lorentz invariance,
M1 6= M2, although M1 → M2 as a → 0 for the action in Eq. (2.1). By tuning κ, one could adjust the bare,
heavy-quark mass such that either M1 or M2 is equal to the physical meson mass. (To set M1 = M2 requires the
introduction, and tuning, of an additional parameter in the action. This is possible but, as discussed below, not
necessary [14].)

To clarify the role of the different masses in Eq. (2.6), it is useful to introduce an effective Lagrangian. This also
sets up a language for discussing discretization errors later. Because the action in Eq. (2.1) has the same heavy-quark
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spin and flavor symmetries as continuum QCD, HQET is an obvious candidate for its description [17, 18]. To employ
HQET, one separates the short-distance physics at the scale of the inverse heavy-quark mass 1/mQ from the long-
distance physics at the characteristic scale of QCD, ΛQCD. The fact that we have a lattice does not change the validity
or utility of this separation. It simply means that the lattice spacing a must be included in the description of the
short-distance physics. Thus, the short-distance coefficients of HQET applied to Eq. (2.1) differ from those arrived
at by applying HQET to continuum QCD; these differences are the heavy-quark discretization errors. Parameters in
the lattice action can be chosen to minimize them.

We introduce the heavy-quark effective Lagrangian for our lattice gauge theory by writing [17, 18]

LLGT
.= Llight + LHQET, (2.7)

where Llight is the Symanzik local effective Lagrangian for the light degrees of freedom and .= means the Lagrangian
on the right-hand side describes the on-shell matrix elements of the Lagrangian on the left-hand side. The HQET
Lagrangian has a power-counting scheme, denoted by

LHQET =
∑
s

L(s)
HQET, (2.8)

where L(s)
HQET includes all operators of dimension 4 + s, with coefficients of dimension −s consisting of powers of the

short distances, 1/mQ or a. The first few terms in LHQET are [17]

L(0)
HQET = −h̄(+)(D4 +m1)h(+), (2.9)

L(1)
HQET = h̄(+) D

2

2m2
h(+) + h̄(+) iσ ·B

2mB
h(+), (2.10)

L(2)
HQET = h̄(+) iσ · (D ×E)

8m2
E

h(+) + h̄(+)D ·E
8m2

D

h(+), (2.11)

where h(+) is a two-component heavy-quark field, σ are the Pauli matrices, and B and E are the continuum gauge
fields. The masses m1,m2,mB ,mE , and mD are functions of the bare-quark mass m0 and the gauge coupling. For
example, the masses m1 and m2 are defined to all orders in perturbation theory by Eq. (2.6), applied now to the pole
energy of a one-quark state [21]. The entries in Eqs. (2.9)–(2.11) are commonly referred to as follows. L(0)

HQET gives

the rest mass. The first term of L(1)
HQET is the kinetic energy and the second is the chromomagnetic, or hyperfine,

interaction. The first term of L(2)
HQET is the spin-orbit interaction while the second is known as the Darwin term.

For the pseudoscalar and vector meson rest masses, the HQET formalism can be used to show that [17]

M
(∗)
1 = m1 + Λ̄lat −

λ1,lat

2m2
− dJ

λ2,lat

2mB
+O(1/m2), (2.12)

where J is the total meson angular momentum with d0 = 3 and d1 = −1 for the pseudoscalar (M1) and vector (M∗1 )
mesons, respectively. The quantities Λ̄lat, λ1,lat, and λ2,lat are HQET matrix elements. At non-zero lattice spacing
they contain discretization effects from Llight, hence the subscript “lat”. The continuum limit of these quantities yields
their counterparts in HQET applied to continuum QCD [17], which provides a basis for computing the continuum-QCD
quantities Λ̄ and λ1 [22].

Mass splittings and matrix elements such as decay constants and form factors are not affected by the value of
m1 [17]. Thus, Eqs. (2.9) and (2.10) show that the kinetic mass m2 is the first mass in the expansion that does play
a role in the dynamics. We therefore would like to associate m2, and hence M2, with the physical mass, tolerating
m1 6= m2 (and M1 6= M2) for nonzero lattice spacings. The nonperturbative tuning of κ then entails adjusting κ until
the meson kinetic mass—determined by fits of Monte Carlo lattice data to the dispersion relation, Eq. (2.6)—equals
that of the physical meson mass. A relation similar to Eq. (2.12) holds for M2

M
(∗)
2 = m2 + Λ̄lat +O(1/m), (2.13)

with the leading discretization errors appearing in the 1/m contribution. Final values for the nonperturbative tuning
of κ are given in Sec. VI A.

To calculate the hyperfine splitting of the Ds or Bs meson, consider

∆1 ≡M∗1 −M1. (2.14)
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From Eq. (2.12),

M∗1 −M1 = 4
λ2,lat

2mB
+ · · · , (2.15)

which differs from the continuum splitting only by discretization errors in the light quarks and gluons appearing in
λ2,lat, the mismatch of mB and its continuum counterpart (or, equivalently, the choice of cB), and similar contributions
from higher-dimension operators [17, 23]. The splitting of kinetic masses, ∆2 ≡ M∗2 −M2, does not depend on mB ;
rather, it depends on other generalized masses which are not tuned in our simulations.1 Thus, ∆1 formally has smaller
discretization errors than ∆2. ∆1 is also statistically cleaner than ∆2. In Eq. (2.15), 1/mB is sensitive to the clover
coupling cB in Eq. (2.3), so ∆1 tests how well it has been chosen. The Bs and Ds hyperfine splittings are given in
Sec. VI B.

III. SIMULATIONS

In this section, we describe the gauge configurations used and the details of the actions, operators, and correla-
tion functions that describe the heavy-light mesons. In Section III A, we discuss the gauge configurations and the
parameters that describe each ensemble. We also review how the lattice spacing is determined and the values of the
conversion factors r1 and r1/a. In Section III B, we discuss parameter choices for the valence quarks and the smearing
of the heavy-quark wave function and how correlators are built from heavy and light quark fields.

A. Gauge Configurations and Related Parameters

We use the MILC gauge configurations [9, 10] that have 2+1 flavors of asqtad-improved staggered sea quarks [13] and
a Symanzik-improved gluon action [24, 25]. Discretization errors from the sea quarks and gluons start at O(αsa2, a4).
The four-fold degeneracy of staggered sea quarks is removed by taking the fourth root of the determinant. To support
the legitimacy of this procedure, Shamir has developed a renormalization-group framework for lattice QCD with
staggered fermions, which he uses to argue that non-local effects of the rooted staggered theory are absent in the
continuum limit [26]. Additional support for this procedure comes from chiral perturbation theory arguments [27, 28].
Reviews of these papers and of other evidence that this procedure reproduces the correct continuum limit appear
in [11, 29, 30].

Table I lists the parameters of the gauge configurations used in this work. All configurations have been gauge-fixed
to Coulomb gauge. Ensembles of configurations are grouped by their approximate lattice spacing and are referred to
as “fine” (a ≈ 0.09 fm), “coarse” (a ≈ 0.12 fm), and “medium-coarse” (a ≈ 0.15 fm). The simulation bare masses of
the light and strange sea quarks are denoted by am′l and am′s, respectively, where am′l is the mass of the two lighter
sea-quarks. The range of am′l is light enough that the physical up- and down-quark masses can be reached by a chiral
extrapolation, while am′s is close to the physical strange-quark mass. For convenience below, we write (am′l, am

′
s)

to identify ensembles, e.g., “the (0.0031, 0.031) fine ensemble”. Also in Table I are the tadpole factors u0 [20, 31],
determined from the mean plaquette and used to improve the gauge-configuration actions [9, 10]. The value of the
physical strange-quark mass is denoted by the unprimed ms [31].

To convert between lattice and physical units, the physical value of the lattice spacing must be determined. We
define the distance r1 [12] by

r2
1F (r1) = 1, (3.1)

where F (r) is the force between static quarks, calculated on the lattice. For each ensemble, this yields a value of r1

in lattice units, r1/a. The values are then “smoothed” by fitting ln(r1/a), from all ensembles, to a polynomial in β
and 2am′l + am′s [31]. The physical value of r1 is obtained via the lattice calculation of an experimentally measurable
quantity. We consider two current determinations here. One uses a lattice calculation of the Υ(2S)-Υ(1S) splitting [33]
to arrive at r1 = 0.318(7) fm [10, 34]. A more recent determination using r1fπ gives r1 = 0.3108(15)(+26

−79) fm [35].
These two determinations are consistent within errors. Because the determination of r1 from fπ uses finer lattice
spacings, we take that value,

r1 = 0.3108(+30
−80) fm (3.2)

1 Tree-level expressions for these masses, and hence their mismatch, can be found in Ref. [23].
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TABLE I: Parameters describing the ensembles used. The dimensions of the lattice are given in terms of the spatial (NL) and
temporal (NT ) size in lattice units. The gauge coupling is given by β = 10/g2. The bare masses of the light and strange sea
quarks are given by am′l and am′s, respectively. L = aNL is the linear spatial dimension of the lattice in fm. The column
labeled Ncf is the number of configurations used in this work. The plaquette-determined tadpole-improvement factor is u0 [31].
The physical strange quark mass is ams [31] with errors, statistical and systematic, of less than one percent. The ratio r1/a is
described in the text; errors are Hessian from the smoothing fit. The final column lists the value of the inverse lattice spacing
a−1 using r1 = 0.3108(+30

−80) fm to convert from r1/a; errors are from the error on r1 and r1/a.

N3
L ×NT β am′l am′s L (fm) Ncf u0 ams r1/a a−1 GeV

“Fine” a ≈ 0.09 fm 403 × 96 7.08 0.0031 0.031 3.5 435 0.8779 0.0252 3.692(6) 2.344+60
−23

283 × 96 7.09 0.0062 0.031 2.4 557 0.8782 0.0252 3.701(5) 2.349+61
−23

283 × 96 7.11 0.0124 0.031 2.4 518 0.8788 0.0252 3.721(5) 2.362+61
−23

“Coarse” a ≈ 0.12 fm 243 × 64 6.76 0.005 0.05 2.9 529 0.8678 0.0344 2.645(3) 1.679+43
−16

203 × 64 6.76 0.007 0.05 2.4 836 0.8678 0.0344 2.635(3) 1.672+43
−16

203 × 64 6.76 0.010 0.05 2.4 592 0.8677 0.0344 2.619(3) 1.663+43
−16

203 × 64 6.79 0.020 0.05 2.4 460 0.8688 0.0344 2.651(3) 1.683+43
−16

203 × 64 6.81 0.030 0.05 2.4 549 0.8696 0.0344 2.657(4) 1.687+43
−16

“Medium-coarse” a ≈ 0.15 fm 163 × 48 6.572 0.0097 0.0484 2.4 631 0.8604 0.0426 2.140(4) 1.358+35
−13

163 × 48 6.586 0.0194 0.0484 2.4 631 0.8609 0.0426 2.129(3) 1.352+35
−13

163 × 48 6.600 0.0290 0.0484 2.4 440 0.8614 0.0426 2.126(3) 1.350+35
−13

with no additional error. While this work was being completed, a new determination of r1 that uses two mass splittings
and one decay constant became available; r1 = 0.3133(+23

−3 ) [36], which is consistent with the value used in this work.
Quantities can now be converted from lattice to physical units by using r1 and the appropriate value of r1/a given in
Table I [31].

B. Meson Correlation Functions

Table II lists the values of parameters used in the valence-quark actions. For the light valence quark, we again use the
asqtad action [13] and masses am′q close to the physical value of the strange-quark mass, cf. Table I. From Eqs. (2.9)–
(2.11), one can see that with m2 tuned to the physical mass, the leading mismatch between lattice and continuum
physics is in the hyperfine term in L(1)

HQET. In principle, one can tune mB to its continuum counterpart yielding a
match between lattice and continuum actions for both terms in Eq. (2.10). Here, we use the tree-level expression
for mB , which leaves the leading mismatch at O(αsaΛ). By setting cE = cB we obtain the Sheikholeslami-Wohlert,
O(a)-improvement of discretization errors in the action [15]. From the HQET perspective, this leaves mE 6= m2 in
Eq. (2.11), but the effects of this mistuning are at O(a2Λ2) and O(αsaΛ2/mQ). Implementing the improvements
above and using tree-level tadpole improvement in the perturbative expressions [20, 24], we use cE = cB = u−3

0 .
The values of u0 used in the heavy-quark and light-valence actions are given in Table II. For the fine and medium-

coarse ensembles, they are the plaquette values used to generate the MILC gauge configurations. For the coarse
ensembles, the Landau-gauge link value was used. The use of different u0 definitions results in a slight mismatch
between the light valence- and sea-quark actions. In part because the meson mass is relatively insensitive to the
strange sea-quark mass, we do not expect any significant systematic errors from this mismatch. Changes in u0 result
in changes to the bare mass of the heavy quark as well, but this effect is partly absorbed by the nonperturbative
tuning of κ and κcrit. Table II also lists the nominal values of the light valence-quark mass and sets of κ values for
bottom and charm mesons. These sets of κ values, and mesons created from them, are referred to as charm-type or
bottom-type.

With the parameters of the actions set, we now turn to the construction of the two-point correlators. Contributions
from excited states can be significantly reduced by using a spatially smeared source, sink, or both, for the heavy-quark
propagator. For the correlators in this work, we use two types of source-sink combinations for the heavy quarks. One
is simply a delta function for both the source and sink; we refer to this as the local correlator. The other smears
the field ψ(t,x) with a discretized version [37] of the 1S charmonium wavefunction, S(y), based on the Richardson
potential [38]:

φ(t,x) =
∑

y

S(y) ψ(t,x+ y), (3.3)

and the smearing wavefunction is applied after fixing to Coulomb gauge. Correlators using φ(t,x) are referred to as
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TABLE II: Parameters used in the valence-quark actions. The bare masses of the light and strange sea quarks (am′l, am
′
s)

label the ensemble. The mass of the light (staggered) valence quark is given by am′q. cE and cB are the coefficients of the
chromoelectric and chromomagnetic contributions to the Lagrangian. With cE = cB , they are the ususal Sheihkoleslami-Wohlert
coupling. u0 is the tadpole-improvement factor from measurements of the average plaquette for the fine and medium-coarse
ensembles and from the Landau-gauge link on the coarse ensembles. Hopping parameter values κ used for bottom-like and
charm-like heavy quarks are given in the final two columns.

Lattice (am′l, am
′
s) am′q cE = cB u0 bottom-type κ charm-type κ

Fine (0.0031, 0.031) 0.0272, 0.031 1.478 0.8779 0.0923 0.127
(0.0062, 0.031) 0.0272, 0.031 1.476 0.8782 0.090, 0.0923, 0.093 0.1256, 0.127
(0.0124, 0.031) 0.0272, 0.031 1.473 0.8788 0.0923 0.127

Coarse (0.005, 0.050) 0.030, 0.0415 1.72 0.836 0.086 0.122
(0.007, 0.050) 0.030, 0.0415 1.72 0.836 0.074, 0.086, 0.093 0.119, 0.122, 0.124
(0.010, 0.050) 0.030, 0.0415 1.72 0.8346 0.074, 0.086, 0.093 0.119, 0.122, 0.124
(0.020, 0.050) 0.030, 0.0415 1.72 0.8369 0.074, 0.086, 0.093 0.122, 0.124
(0.030, 0.050) 0.030, 0.0415 1.72 0.8378 0.086 0.122

Medium-coarse (0.0097, 0.0484) 0.0387, 0.0484 1.570 0.8604 0.070, 0.080 0.115, 0.122a, 0.125
(0.0194, 0.0484) 0.0387, 0.0484 1.567 0.8609 0.070, 0.076, 0.080 0.115, 0.122, 0.125
(0.0290, 0.0484) 0.0484 1.565 0.8614 0.070, 0.080 0.115, 0.125

aUsed only with am′q = 0.484.

smeared correlators. All light valence quarks have a local source and sink. The meson correlator is

Ci,j(t,p) =
∑
x

〈O†j(t,x) Oi(0,0)〉eip·x, (3.4)

where i, j denote the source, sink smearing of the heavy-quark field; for this work i = j. Oi(t,x) is a bilinear inter-
polating operator with a gamma-matrix structure that yields quantum numbers appropriate for either pseudoscalar
or vector mesons. To construct this operator, we combine a one-component, staggered light-quark spinor with a
four-component, Wilson-type heavy-quark spinor in a manner similar to Ref. [39],

OΞ(t,x) = ψα(t,x) Γαβ ΩβΞ(t,x)χ(t,x), (3.5)

where Γ = γ5 or γµ; α, β are spin indices; and Ω(x) ≡ γx1
1 γx2

2 γx3
3 γx4

4 . The fields ψ̄ and χ are the Wilson-type and
staggered fields, respectively, and the smeared correlator is constructed in the same way, but with φ̄ instead of ψ̄. The
transformation properties of OΞ(x) under shifts by one lattice spacing are such that Ξ can be viewed as playing the
role of the (fermionic) taste index [30, 40]. In our correlation functions, OΞ(x) is summed over 24 hypercubes, and so
Ξ can be interpreted as a taste degree of freedom in the sense of Refs. [41, 42].

IV. ANALYSIS OVERVIEW

In this section, we describe the components of our analysis. Section IV A discusses the two-point correlator fits used
to determine the meson energies aE(p). Section IV B describes how we fit the meson dispersion relation to obtain
M2. Finally, Sec. IV C explains how κ is tuned and how the hyperfine splitting is determined.

A. Two-point Correlator Fits: E(p)

To determine E(p), we simultaneously fit the local and smeared heavy-light-meson two-point correlators to the
function

Ci,i(t,p) =
N−1∑
η=0

[
Z2
i,η

(
e−Eη(p)t + e−Eη(p)(NT−t)

)
+ (−1)t+1(Zp

i,η)2
(
e−E

p
η(p)t + e−E

p
η(p)(NT−t)

)]
, (4.1)

where NT is the temporal extent of the lattice, and terms proportional to e−Eη(p)(NT−t) are due to periodic boundary
conditions. To simplify notation in this subsection, the lattice spacing a is not written out explicitly. Correlation
functions containing staggered light quarks have contributions from both desired- and opposite-parity states with
the opposite-parity states having the temporally-oscillating prefactor (−1)t+1 [39]. We take each energy level η in
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Eq. (4.1) to include a pair of states consisting of one desired- and one opposite-parity state; the number of pairs
of states in a fit is given by N . Quantities associated with the tower of opposite-parity states are denoted by the
superscript “p.”

Equation (4.1) contains 2N exponentials, and the number of time slices in our data set is finite. Although it
is straightforward to separate the two different parities—because of the (−1)t+1—it is difficult to separate states
within each tower. Rather than relying solely on taking t large enough, we use the technique of constrained curve
fitting [39, 43, 44]. We thus minimize an augmented χ2 [43],

χ2
aug ≡ χ2 +

∑
k

(
Pk − P̃k

)2

σ2
P̃k

, (4.2)

which means each fit parameter Pk is provided a prior Gaussian probability distribution function with central value
and width (P̃k, σP̃k). The central value for fitted quantities comes from minimizing χ2

aug on the whole ensemble. We

take the parameters to be E(p)
0 , ln(Z(p)

i,η ), and (for η > 0) ln(∆E(p)
η ), where ∆E(p)

η = E
(p)
η − E(p)

η−1, thereby enforcing
a tower of states with increasing energy.

In general, one considers a quantity to be determined by the data only if the statistical error, discussed next, is
smaller than the corresponding prior width. In this work, we are most concerned with the lowest-lying desired parity
state, and the data—not the priors—always determine E0 and Zi,0. For parameters that are poorly constrained by
the data, such as those describing excited states, these priors prevent the fitter from searching fruitlessly along flat
directions in parameter space. Because of the freedom in choosing the prior, we test whether the ground-state results
are prior-indpendent, and stable. When testing the stability of fit results, we use the Hessian error, defined as

σPi =

√
2
(
∂2χ2

aug

∂Pi∂Pj

)−1

ii

, (4.3)

because its straightforward definition allows it to be quickly calculated for a single fit.
When using χ2

aug to measure the goodness of fit, we count the degrees of freedom as the number of data points; the
number of fit parameters is not subtracted since there are an equal number of extra terms in χ2

aug. In some cases, this
could result in misleadingly low values of χ2

aug/dof. For example, if the prior width σP̃k is much larger than (Pk− P̃k),
the associated term in χ2

aug will be much smaller than the others. This could be adjusted a posteriori by reducing
the degrees of freedom, but it would require devising a criterion for “large σP̃k”. We do not make such adjustments
in our analyses. Instead, to determine goodness of fit, we monitor the values of χ2

aug/dof from constrained fits, but
rely equally on the stability of fit results.

We estimate statistical uncertainties by generating pseudo-ensembles via the bootstrap method. When fitting a
pseudo-ensemble, the central value of each prior is drawn randomly from its Gaussian probability distribution while
the prior width is kept the same [39, 43]. To prevent large, simultaneous but uncorrelated fluctuations among prior
central values, which could destabilize a fit, we restrict the randomized prior central values to ±1.5σP̃ . Final errors
quoted for meson energies and functions thereof, such as the spin-averaged mass, are obtained from their bootstrap
distributions. We define the upper (lower) 68%-distribution point as the value at which 16% of the distribution has
a higher (lower) value. We refer to half of the distance between these two points as the average 68% bootstrap error.

B. Dispersion Relation Fits: The Kinetic Mass

Having determined E(p), we use the dispersion relation to determine the kinetic meson mass, which we then use
to tune the hopping parameter κ. The low-momentum expansion for E(p) is

E(p) = M1 +
p2

2M2
− a3W4

6

∑
i

p4
i −

(p2)2

8M3
4

+ · · · , (4.4)

where W4 and the deviation of M4 from M2 capture lattice artifacts. (In the continuum limit a3W4 = 0 and M4 = M2.)
The vector n is defined by

ap = (2π/NL)n, (4.5)

where NL is the spatial extent of the lattice, given in Table I; data are generated for |n| ≤ 3. Noise in E(p) increases
with increasing momentum, though, and is substantial by the time O(p4) effects become significant. For charm-type
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mesons, squaring the energy yields a substantial cancellation in the O(p4) contribution because aM1 ≈ aM2 ≈ aM4.
While this is not true for bottom-type mesons, the mass of these mesons is large enough to cause suppression via the
1/M factors whether E(p) or E2(p) is used. By fitting to E2(p) then, the contributions from O(p4) effects are reduced,
and we are able to do a linear fit to low-momentum data, |n| ≤ 2. Setting M1 = E(0) from the zero-momentum
correlator, we square Eq. (4.4) and fit

E2(p)−M2
1 = Cp2 (4.6)

to obtain C. Finally, we set M2 = M1/C. The largest p is chosen so that the O(p4) effects are expected to be
negligible, based on tree-level values of the analogous quark quantities w4 and 1/m3

4. We confirm the negligibility of
these terms by inspecting plots of the data and monitoring χ2/dof. (We do not use constrained curve fitting here
and so we minimize the usual χ2.) This procedure is repeated for each bootstrap-generated pseudo-ensemble, yielding
bootstrap distributions for aM1 and aM2.

C. The Hopping Parameter κ and the Hyperfine Splitting ∆1

For tuning κ, it is helpful to remove the leading discretization errors from spin-dependent terms. Let the spin-
averaged kinetic meson mass be

M2 =
1
4

(M2 + 3M∗2 ), (4.7)

where M2 and M∗2 are determined as described in Sec. IV B. This leaves the second, spin-independent term in
Eq. (2.11) as the leading source of discretization error at O(a2Λ2). Our goal then is to determine the value of κ that
will result in a value of M2 that agrees with the experimental value taken from the Particle Data Group (PDG).

For each lattice spacing, we use the following procedure to tune κ. Using three or more ensembles, we study the
light sea-quark mass dependence of aM2 for at least one combination of κ and m′q. This gives us some insight into
the behavior of aM2 in the physical–sea-quark–mass limit and allows us to assign an uncertainty to aM2 due to non-
physical sea-quark masses. Next, on at least one ensemble, we determine aM2 at two staggered, valence-quark masses
near the strange-quark mass. This allows us to determine the dependence of aM2 on the staggered, valence-quark
mass and interpolate linearly to the physical value if no simulated mass is close enough to the tuned strange-quark
mass. Having dealt with the staggered-valence and light sea-quark masses, we take aM2 at the physical, strange
valence-quark mass at two values of κ and interpolate linearly in κ to the spin-averaged value of the meson masses,
given by the Particle Data Group (PDG) [45], converted to lattice units with a from Table I. Finally, we combine the
uncertainties in the tuned value of κ from statistical and discretization errors in the meson mass, staggered-valence
mass mistuning, non-physical sea-quark masses, and errors from the lattice-spacing conversion of the PDG mass.

To determine the hyperfine splitting, we start with the results for M1 = E(0). For each lattice spacing, we use
values of a∆1 at, or linearly interpolated to, the tuned charm and bottom κ values. We then consider uncertainties
from statistics, the tuning of κ and ams, non-physical sea-quark masses, and discretization. The value of a∆1 on the
fine lattice is taken as our central value and results on the coarse and medium coarse lattices are used in the error
analysis. In the final value, we also include an uncertainty due to the conversion to physical units.

V. FITTING DETAILS FOR E(p),M1,M2

In this section, we describe the details of our fitting procedure for the meson energy E(p) and the meson rest and
kinetic masses, M1 and M2. Our objective here is to document thoroughly our fitting procedures, including values
for the priors, and tests. Readers who are more interested in a summary can skip to Sec. V C.

Section V A discusses the parameters used in our two-point correlator fits for E(p) (Sec. V A 1) and the evaluation of
goodness of fit via χ2

aug/dof and tests of stability (Sec. V A 2). In most tests discussed here, Hessian errors were used,
because they are fast and straightforward. Our complete data set, exhibited in Table II, contains several ensembles
at each of the three lattice spacings. As explained in Sec. V A 1, one ensemble at each lattice spacing is chosen for
the purpose of setting priors in Eq. (4.2). For tuning κ, we need data over a range of κ and am′q on a fixed ensemble.
At the fine lattice spacing, such data were generated on only one ensemble, (0.0062, 0.031), so we set priors and tune
κ on that same ensemble. For the coarse and medium-coarse lattice spacings, we have data for a range of κ and am′q
on several ensembles. We take the coarse (0.010, 0.050), and medium-coarse (0.0194, 0.0484) ensembles to set priors
and then the ensembles with the smallest am′l (and a range of κ and am′q) to tune κ. We compute the hyperfine
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splittings from the same ensembles on which κ was tuned. These choices are summarized in Table III. Data from
other ensembles listed in Table II are used to estimate uncertainties.

Fits of the dispersion relation to determine M2 from E(p) are comparatively simple, and Sec. V B provides details
that may be of interest.

A. Two-point fits: E(p),M1

The number of gauge configurations in each ensemble is given in Table I. To improve statistics, we generate data
at four time sources on each of the fine and coarse gauge configurations and at eight time sources for medium-coarse
configurations. We also average the correlator points C(t) and C(NT − t). In order to reduce the effect of correlations
between data points from sequential configurations, we bin the data by groups of Nbin configurations. Because fits for
this project were done in concert with other projects, Nbin = 4 was adopted. Comparisons of results using Nbin = 2, 4,
and 6 on the ensembles used here show no significant change in the fit-result error bars or the bootstrap distributions.
To account for correlations in the two-point correlator data, the fitter uses the normalized, data-sample covariance
matrix as an estimate of the correlation matrix. This matrix is remade for each bootstrap sample.

1. Priors, time ranges, N

We consider the setting of priors for the ground state parameters, excited-state amplitudes, and energy splittings
separately. Ground-state (η = 0) parameters are well-determined by the data; thus, the ground-state priors can, and
should, be negligibly constraining. In contrast, energy splittings and excited state amplitudes are not well determined
by the data, and the related priors are chosen such that they put reasonable bounds on the parameters. The next
paragraphs describe how the priors are set. Note that the same set of priors is used for all ensembles at a given
lattice spacing, for all momenta in the range |n| = 0 to 2, and for all κ and am′q of a given meson type, e.g., charm
pseudoscalars. The priors used are tabulated in Tables IV–VI.

We use information from a subset of our data, one ensemble per lattice spacing, to set the priors for the two-point–
correlator fits. This is necessary because we do not have enough external knowledge to set them independently. The
ensembles used to help set the priors are listed in Table III. Other ensembles are statistically independent of these
ensembles and so the prior information can be viewed as external to fits on those ensembles. If possible, though, we
do not want to exclude any data from our analysis, including the ensembles used in the setting of priors. For this
reason, our procedure for setting priors keeps the amount of information we take from these ensembles to a minimum.
Specifically, for a parameter P , we use averages over ranges of parameters, like the momentum, for the prior central
value P̃ and chose prior widths σP̃ that are broad enough to cover the expected results for an entire subset of fits;
e.g., the same priors are used for fits with |n| = 0 to 2.

To set ground-state priors, we first fit to large-time data with N = 1 in order to get a general idea of the ground-
state parameter values. We then set N > 1 and fit correlators at low and high momenta to ascertain the range of
values the ground state parameters may take. We set prior central values for the ground-state energy of the desired-
and opposite-parity states, aE0(p) and aEp0 (p), at about the midpoint of the range seen in these fits.

To understand our logic for setting the prior widths for aE0(p) and aEp0 (p), recall that we use a Gaussian distribution
for the prior P̃ with a width σP̃ . We set σaẼ0

and σaẼp0
large enough so that results across the entire momentum

range used in the analysis should fall well within the 1-σaẼ0
, or 1-σaẼp0 , range of the distribution. After priors for the

remaining parameters are set, we perform a complete set of fits and, for at least one ensemble at each lattice spacing,
verify that, indeed, the final fit results for aE0 and aEp

0 fit well within their respective prior distributions.
Priors for the ground-state amplitudes are loosely based on the preliminary N > 1 fits described above. In most

cases, the central value is the nearest whole number to the average of these results. For the desired-parity state, the

TABLE III: Specific ensembles used in steps of the analyses. Setting priors is discussed in Sec. V A 1. Stability and goodness-
of-fit tests done for E(p) results are described in Sec. V A 2. κ-tuning and hyperfine-splitting results are given in Secs. VI A
and VI B, respectively.

Lattice setting priors E(p) tests, tuning κ, and the hyperfine splitting ∆1

Fine (0.0062, 0.031) (0.0062, 0.031)
Coarse (0.010, 0.050) (0.007, 0.050)
Medium-coarse (0.0194, 0.0484) (0.0097, 0.0484)
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widths σP̃ are chosen such that they easily span the range of values seen in the fits. For the opposite parity states,
which are substantially noisier, the widths span the distance between the prior central value and the observed range
in the results by about 1-σP̃ .

Priors for all excited-state amplitudes were set to have a relatively small central value and a wide width. To set
the prior for the energy splitting, we note that experimentally measured meson splittings are a few hundred MeV.
We also bear in mind that the sum of a series of exponentials with a very small energy splitting is not a well-posed
problem. Therefore, we chose the central value of the splitting to be several hundred MeV, slightly large, with a
generous prior width. For example, on the fine lattice the prior for the splitting, ln(a∆E) = −1.45(1.0) is equivalent
to ∆E ≈ 550+950

−350 MeV.
In the charm sector, the opposite-parity partner of the Ds(0−), the D∗s0(0+), is close to the DK threshold. In this

case, the energy splitting should not be viewed as a meson mass splitting, and our choice of prior for the D∗s0(0+)
energy splitting may be inappropriate. The parity-partner signal is noisy, though, and in tests of the priors widths we
see no change in the non-oscillating ground state energy aE(p), which is our main interest. For details, see Sec. V A 2.

To choose the time ranges for the fits, (tmin, tmax), we first look at the data to determine the time by which the error
in the data, e.g. the relative error in the correlator, has increased substantially. This gives us a potential value for tmax.
From effective mass plots we can also see at what time slice the majority of the excited-state contamination has died
off, giving us a potential value for tmin. Constrained curve fitting is designed to reduce excited-state contamination
of the lower-state fit parameters. Nevertheless, we do not see a significant reduction in the error from fitting to the
smallest possible time slice, which requires including a larger number of states in the fit. For simplicity, we chose final
time ranges that are the same for similar sets of data. These can be found in Table VII.

With the time range set, we do fits for increasing values of the number of (pairs of) states N and look for the
ground-state energy to stabilize. We choose the final values of N to be the minimum value needed to be in the stable
region; these are given in Table VII. Figure 1 shows representative plots of aE(p) versus N from fits on the (0.0062,
0.031) fine ensemble. It is clear that for the minimum-value N , the central value of the fit result is always well within
the stable region. In some cases, though, the (Hessian) error from the minimum-N fit is smaller than that in the
stable region. One could remedy this by choosing to fit with more states. Unfortunately, an increase in the number
of states leads to non-gaussian bootstrap distributions with a significant number of outliers — clearly non-physical fit
results that contain ground states with low energies and very small amplitudes. Using the minimum possible number
of states, no outliers have been seen in the distributions.

2. Tests of Stability and Goodness-of-fit

Having set the priors, time range, and number of states for the fits, we check the stability of the results and goodness
of fit in several ways. For result stability, we check the effects of the time range used, the number of (pairs of) states
N , and changes to the prior widths; we also compare the priors to the fit results. We look at a representative subset
of fits for each lattice spacing: pseudoscalar and vector meson correlators at two different κ values (one for charm and
one for bottom) for a given light-valence mass, on one ensemble per lattice spacing, and with momenta n = (0, 0, 0)

TABLE IV: Priors used for fine-ensemble two-point correlator fits for pseudoscalar and vector mesons. Priors for all higher am-
plitudes and splittings are the same as those for the first excited state. The fit-parameter numbers 15–20 label the second excited
state and so on. A prior of ln(a∆E) = −1.45+1.0

−1.0 on the fine ensembles corresponds approximately to ∆E = 550+950
−350 MeV.

Charm Mesons Bottom Mesons

fit parameter fit-parameter number pseudoscalar vector pseudoscalar vector
E0 1 0.90(40) 0.90(40) 1.75(60) 1.75(60)
Ep

0 2 1.0(40) 0.95(40) 1.85(60) 1.85(60)
ln(Z1S,0) 3 1.0(2.0) 1.0(2.0) 1.0(3.0) 1.0(3.0)
ln(Zp

1S,0) 4 1.0(2.0) 1.0(2.0) 1.0(3.0) 1.0(3.0)
ln(Zd,0) 5 −2.0(2.0) −2.0(2.0) −2.0(3.0) −2.0(3.0)
ln(Zp

d,0) 6 −2.0(2.0) −2.0(2.0) −2.0(3.0) −2.0(3.0)
ln(∆E) 8 −1.45(1.0) −1.45(1.0) −1.45(1.0) −1.45(1.0)
ln(∆Ep) 9 −1.45(1.0) −1.45(1.0) −1.45(1.0) −1.45(1.0)
ln(Z1S,1) 10 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

1S,1) 11 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zd,1) 12 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

d,1) 13 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
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and (1, 1, 1) or (2, 0, 0). The specific values of κ, am′q, and (am′l, am
′
s) vary from test to test, and in some cases tests

are extended to other values. A description of the data used in the tests discussed here can be found in Table VIII.

TABLE V: Same as Table IV, but for the coarse ensembles. A prior of ln(a∆E) = −1.2+0.5
−0.5 on the coarse ensembles corresponds

approximately to ∆E = 500+300
−200 MeV.

Charm Mesons Bottom Mesons

fit parameter fit-parameter number pseudoscalar vector pseudoscalar vector
E0 1 1.10(40) 1.2(40) 2.00(40) 2.00(40)
Ep

0 2 1.30(40) 1.3(40) 2.10(40) 2.10(40)
ln(Z1S,0) 3 1.0(2.0) 1.0(2.0) 1.0(2.0) 1.0(2.0)
ln(Zp

1S,0) 4 1.0(3.0) 0.1(3.0) −1.0(2.0) −0.1(2.0)
ln(Zd,0) 5 −1.0(2.0) −1.0(2.0) −2.0(2.0) −1.0(2.0)
ln(Zp

d,0) 6 −1.0(3.0) −2.0(3.0) −2.0(2.0) −2.0(2.0)
ln(∆E) 8 −1.2(0.5) −1.2(0.5) −1.2(0.5) −1.2(0.5)
ln(∆Ep) 9 −1.2(0.5) −1.2(0.5) −1.2(0.5) −1.2(0.5)
ln(Z1S,1) 10 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

1S,1) 11 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zd,1) 12 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

d,1) 13 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)

TABLE VI: Same as Table IV, but for the medium coarse ensembles. A prior of ln(a∆E) = −1.0+0.5
−0.5 on the medium-coarse

ensembles corresponds approximately to ∆E = 500+300
−200 MeV.

Charm Mesons Bottom Mesons

fit parameter fit-parameter number pseudoscalar vector pseudoscalar vector
E0 1 1.38(50) 1.46(50) 2.35(40) 2.38(50)
Ep

0 2 1.50(60) 1.58(60) 2.48(50) 2.50(50)
ln(Z1S,0) 3 0.48(1.0) 0.95(1.0) 0.12(1.4) 0.60(1.0)
ln(Zp

1S,0) 4 −0.65(1.0) 0.20(1.0) −1.0(2.0) 0.1(2.0)
ln(Zd,0) 5 −0.90(1.0) −0.74(1.0) −1.15(1.0) −0.8(1.0)
ln(Zp

d,0) 6 −2.4(1.4) −1.8(2.0) −2.5(3.0) −1.8(3.0)
ln(∆E) 8 −1.0(0.5) −1.0(0.5) −1.0(0.5) −1.0(0.5)
ln(∆Ep) 9 −1.0(0.5) −1.0(0.5) −1.0(0.5) −1.0(0.5)
ln(Z1S,1) 10 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

1S,1) 11 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zd,1) 12 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)
ln(Zp

d,1) 13 −1.0(3.0) −1.0(3.0) −1.0(3.0) −1.0(3.0)

TABLE VII: Time range tmin–tmax and number of (pairs of) states N used in two-point correlator fits at each lattice spacing.
For the time range, the first (second) number in parenthesis is tmin for the 1S-smeared (local) correlator; tmax is the same for
both correlators.

Lattice spacing Time range N
Fine (2, 4)–25 3

Coarse (2, 8)–15 2
Medium-coarse (5, 6)–15 2

TABLE VIII: Data used in stability and goodness-of-fit tests.

Lattice ensemble κ am′q
Fine (0.0062, 0.031) 0.127; 0.090 or 0.093 0.0272
Coarse (0.007, 0.050) 0.122; 0.086 0.0415
Medium-coarse (0.0097, 0.0484) 0.125; 0.070 0.0484
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FIG. 1: Fitted values of aE(p) vs. the number of (pairs of) states N for κ = 0.127, charm-type (a) pseudoscalar and (b) vector
mesons and κ = 0.090, bottom-type (c) pseudoscalar and (d) vector mesons on the (0.0062, 0.031) fine ensemble. Results shown
are for mesons with momenta n = (0, 0, 0) and (2, 0, 0). Errors are Hessian.

For the time-range tests, we vary tmin over two to four time slices, increasing N if appropriate, and vary tmax

over five to ten time slices. We verify that there are no changes in the fit results beyond expected fluctuations.2
For number-of-states tests, we verify that the result is stable as N is increased. Figure 1 shows example results for
the (0.0062, 0.031) fine ensemble. Similar results are seen for the coarse and medium-coarse ensembles and for the
ground-state amplitudes Z1S and Zd.

For prior-width tests, we reduce the widths by a factor of two for the non-oscillating ground state quantities and the
energy splittings and repeat the fits. All changes observed are within statistical errors and, in most cases, the changes
are substantially smaller than one σ. For charm, we also test for effects of the DK threshold near the D∗s0(0+) state.
This splitting is 50 to 100 MeV, which is a several-σ∆̃aEp

deviation from our prior central value. We ran separate tests
on each lattice spacing using a prior width of σ∆̃aEp

= 2.5 for the oscillating-state energy splitting. In units of MeV,
this puts a 50-MeV splitting within 1σ∆̃aEp

of the prior central value. The ground and first-excited-state energies of

2 In one case, κ = 0.086, coarse (0.010, 0.005), although the ground-state energy is stable as tmax is varied, the value of χ2/dof becomes
large as tmax is increased beyond the final value (tmax = 15). This ensemble is not used directly for κ tuning or hyperfine splitting
determinations as explained in the introduction to this section.
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FIG. 2: Fit results shown as open (blue) circles are overlaid on the priors, black dots with dashed widths, for charm-type
(a) pseudoscalar and (b) vector mesons and bottom-type (c) pseudoscalar and (d) vector mesons on the (0.0062, 0.031) fine
ensemble. κ = 0.127 and 0.090 for charm- and bottom-type mesons, respectively; am′q = 0.0272. The upper [lower] plot is from
a fit where the meson has momentum of n = (0, 0, 0) [(2, 0, 0)]. The fit-parameter numbers are defined in Table IV. In each
panel, the leftmost cluster corresponds to quantities from the ground state; the middle cluster corresponds to the first excited
state; and the right most cluster to the second excited state. Errors on the fit results are Hessian. For clarity, fit results are
offset along the x-axis.

the oscillating state are affected by this change but not in a systematic way. This indicates that the oscillating-state
signal is not strong in our data. Our main interest, though, is the non-oscillating ground state energy aE(p); this
value is unaffected by the change in σ∆̃aEp

.
In addition, we compare fit results with their priors. Figure 2 gives examples of these comparisons for fits on the

(0.0062, 0.031) fine ensemble for charm- and bottom-type mesons. The x-axis labels the fit-parameter number, defined
in Table IV; the ground-state energy and amplitudes of the desired-parity state are at positions 1, 3, and 5. We find
that fit results for ground-state quantities are well within the prior widths. For excited states, in some cases the fitter
simply returns the prior value, indicating that the quantity is not constrained by the data. In other cases, the results
appear to be constrained by the data, indicating that some excited-state signal is in the correlator and the fitter
adjusts the amplitudes to absorb it. Although it may appear in Fig. 2 that a number of excited-state quantities are
well-determined, this is an artifact of a minimum-N fit; unlike the ground-state parameters, the excited state results
are not stable as N is increased. For example, Fig. 3 compares the fit results shown in the upper left (pseudoscalar)
panel of Fig. 2 (a), which uses N = 3, with a fit which only differs by the use of N = 4. The comparison demonstrates
that the (desired-parity) ground-state quantities are stable to the change in N while other, excited-state, parameters
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FIG. 3: Fit results shown as open (blue) circles are overlaid on the priors, black dots with dashed widths, for charm-type
mesons on the (0.0062, 0.031) fine ensemble. κ = 0.127; am′q = 0.0272; n = (0, 0, 0). The upper plot is the same as the upper
left (pseudoscalar) panel of Fig. 2 (a). The lower plot is from a fit which only differs by the use of N = 4 pairs of states. The
fit-parameter numbers are defined in Table IV. In each panel, the leftmost cluster corresponds to quantities from the ground
state; the middle cluster corresponds to the first excited state; the next cluster corresponds to the second excited state and
so on. The (desired-parity) ground-state quantities are stable to this change while other, excited-state, parameters are not.
Errors on the fit results are Hessian. For clarity, fit results are offset along the x-axis.

are not.
For goodness-of-fit we begin by looking at the augmented χ2/dof for each fit and verify that it is ≈ 1 or smaller,

where “≈ 1” is based on the 80% range of the χ2/dof distribution for a given number of degrees of freedom. As a
final check, we overlay the result on an effective-mass plot. We define the “effective energy”

2aEeff(p) = ln [C(t)/C(t+ 2a)] (5.1)

using a step of two time units in order to accommodate the oscillating contribution from the opposite-parity state.
Figure 4 shows plots comparing aEeff(p) to the fit result on the (0.0062, 0.031) fine ensemble. The ground-state-energy
result from the multiple-state fit is shown as a straight line segment over the time range fit. The band encompasses
the average 68% bootstrap error. In each case, the fit result nicely matches the effective-energy plateau.

B. The kinetic mass M2

Given results for aE(p), we fit data where |n| ≤
√

3 to Eq. (4.6) to determine the pseudoscalar and vector kinetic
meson masses. Fits use a correlation matrix constructed from the bootstrap distributions. The tables in Appendix B
give results for aM2, aM∗2 , and aM2 on the ensembles used for tuning, listed in Table III. Included in the tables
are the χ2/dof and the probability that χ2 would exceed the value from the fit, known as the p value [45]. Typical
dispersion relation fits are shown for the (0.0062, 0.031) fine ensemble in Fig. 5.

In addition to statistical errors, we consider uncertainties from unphysical sea-quark masses, mistuning of the
valence strange quark, and discretization. The noise in M2 makes it difficult to discern how M2 depends on the
sea-quark masses. The M1 data is much cleaner, though, and we can use it to estimate the sea-quark error on M2,
and hence κ. To do this, we first note that, cf. Eq. (2.12),

aM1 = am1 + aΛ̄lat +O(1/mQ) (5.2)
aM2 = am2 + aΛ̄lat +O(1/mQ) (5.3)

where am1 and am2 capture the leading heavy-quark dependence and Λ̄lat depends only on the light degrees of
freedom. Taking aΛ̄lat to be the same for both aM1 and aM2 (see Appendix A and Ref. [46]) we can estimate the
size of the effect of non-physical (light) sea quark masses on aΛ̄lat, and hence aM2, by studying the behavior of aM1

as the light sea-quark masses are varied.
In Fig. 6, we plot the spin-averaged meson rest mass r1M1 versus the ratio of the light to strange sea-quark masses

m′l/m
′
s for the coarse and fine ensembles used here. On the far right of each plot is a bar indicating the size of the 1-σ
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FIG. 4: Effective energy plots, aEeff(p), for charm-type (a) pseudoscalar and (b) vector mesons and bottom-type (c) pseu-
doscalar and (d) vector mesons on the (0.0062, 0.031) fine ensemble. κ = 0.127 and 0.093 for charm- and bottom-type mesons,
respectively; am′q = 0.0272. The upper [lower] plot is from a fit where the meson has momentum of n = (0, 0, 0) [n = (2, 0, 0)].
Open (blue) triangles mark the local correlator and open (red) circles mark the 1S-smeared correlator. Lines connecting the
data points are simply to guide the eye; they are not a fit. The unadorned black line is the multi-correlator fit result and the
shaded band marks the average 68% bootstrap error.

statistical error on r1M2; for fine this is from the (0.0062, 0.031) ensemble and for coarse the (0.007, 0.050) ensemble.
The light sea-quark mass dependence is negligible compared to the statistical error on r1M2. We find similar behavior
for the medium-coarse ensemble.

We must also consider how the non-physical value of the strange sea-quark mass affects M2. The strange sea-quark
mass is mistuned by an amount 0.19am′s, 0.31am′s and 0.12am′s on the fine, coarse, and medium-coarse ensembles,
respectively. The continuum chiral perturbation theory expression for the heavy-light spin-averaged mass [47] shows
that the leading sea-quark dependence of M2 is proportional to the sum over the sea-quark masses, 2m′l+m′s. Hence,
varying am′l tells us about the effect of varying am′s. Figure 6 shows that a change of 0.3am′s in am′l has a negligible
effect on M2, so we conclude that the mistuning of am′s has a negligible effect as well.

The tuned value of the strange-quark mass on each ensemble is given in Table I. On the fine lattice, the valence-
quark mass used in the simulation, am′q = 0.0272, differs from the physical value ams = 0.0252 by 0.0020. A
comparison of our results for aM2 in Table XVIII shows that even a deviation in am′q of twice this size does not
discernibly affect aM2. The situation is similar for the coarse and medium-coarse results. For the coarse ensembles,
the simulation mass am′q = 0.03 differs by 0.0044 from the tuned value of ams. Table XIX shows that aM2 is barely
affected at the 1-σaM2

level as am′q changes by over twice this size. For the medium-coarse ensembles, the simulation
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FIG. 5: Results of fits to the dispersion relation for (a) charm-type (κ = 0.127) and (b) bottom-type (κ = 0.0923) mesons
on the (0.0062, 0.031) fine ensemble. (Blue) dots are the data. A black line shows the fit result with the (pink) shaded band
showing the one-sigma error from the fit. Upper panels show results for pseudoscalars and lower for vectors.
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FIG. 6: The spin-averaged meson rest mass in physical units versus the ratio of the light to strange sea-quark masses m′l/m
′
s

for the (a) fine and (b) coarse ensembles. Error bars are statistical only, from the average 68% bootstrap error. On the far right
of the plot is a (red) bar indicating the size of the one-sigma statistical error on r1M2. The upper-panel plot is for charm-type
mesons, lower is for bottom-type. Values of κ used are 0.127, 0.0923 on the fine ensembles with am′q = 0.0272 and κ 0.122,
0.086 on the coarse ensembles with am′q = 0.0415.

mass of 0.0484 differs from the tuned strange-quark mass by 0.0058. A comparison of the values of aM2 in Table XX
shows that a deviation in am′q just under twice this size yields, at most, a 1-σaM2

variation in aM2. Therefore, we
take our results of aM2 at am′q = 0.0272, 0.03, and 0.0484 as the masses of the Bs and Ds on the fine, coarse and
medium-coarse ensembles, respectively, with no additional error for valence-mass mistuning.

In Appendix A, we derive an expression for the discretization error in M2, M2 = Mcontinuum + δM2. The result,
Eq. (A22), can be written

δM2 =
Λ̄2

6m2

[
5
(
m3

2

m3
4

− 1
)

+ 4w4(m2a)3

]
, (5.4)

replacing 〈p2〉 of Eq. (A22) with Λ̄2. Expressions for the short-distance coefficients m2, m4, and w4 are given in
Appendix A [14, 23]. To estimate the discretization error, we use values of the physical (pole) quark mass (1.4 GeV



17

for charm and 4.2 GeV for bottom) for m2 in the prefactor of Eq. (5.4), and Λ̄ = 0.7 GeV. Using these values, u0

from Table II, and κcrit from Table XVII yields the values of δM2 shown in Table IX. The error estimate in Eq. (5.4)
pertains to the kinetic mass, but the main focus here is the tuning of κ. After tuning, we shall propagate this error
from M2 to κc and κb.

C. Fitting Summary

The preceding subsections contain many details intended for those engaged in similar analyses. In this section,
we re-emphasize the main features of the analysis. Because, in this and related [3–8] work, we are interested in the
ground state, we do not dwell on the excited states here.

Our priors are guided by the data, using one ensemble to set them and (generally) other ensembles for physical
results. We choose a time range such that the fit results for the ground state are stable, listed in Table VII. We
also test for stability as the number N of (pairs of) exponentials grows—as shown in one example in Fig. 1—and
choose the minimum value of N for which the central value is stable within errors. The errors on the ground-state
amplitudes and energies are always determined by the data, not the priors, as shown in Fig. 2 and 3. (In many cases,
even excited-state information is data-determined, not prior-determined.) Figure 4 shows that the fits agree with
the effective energies. (Note that the oscillations of aEeff at small t are to be expected with staggered quarks.) In
conclusion, the constrained curve fitting for E(p) has worked as advertised, subsuming the subjectivity of fit ranges
and different choices of N into robust results for both central value and error bar. Figures 5 and 6 show that, once
E(p) is well-determined, we can straightforwardly obtain the kinetic mass M2 and the hyperfine splitting.

VI. RESULTS

In this section, we present the main results of these calculations, including our error analysis. Section VI A focuses
on the tuned values of κc and κb, Sec. VI B on the Ds and Bs hyperfine splittings, and Sec. VI C on the critical value
of the hopping parameter κcrit.

A. The tuning of κc and κb

As discussed in Sec. V B, effects from non-physical sea-quark masses and the mistuning of the valence strange-quark
mass are negligible compared to the statistical error on aM2. In that section, we explain why taking aM2 at certain
values of am′q is an acceptable approximation to aM2 at the tuned physical strange-quark mass. We choose to tune κ
at those same am′q, which are am′q = 0.0272 on the (0.0062, 0.031) fine ensemble, am′q = 0.03 on the (0.007, 0.050)
coarse ensemble, and am′q = 0.0484 on the (0.0097, 0.0484) medium-coarse ensemble.

To obtain the tuned κ for the charm (bottom) quark, κc (κb), we want to interpolate M2 to the PDG value of
the spin-averaged Ds (Bs) mass [45]. In practice, it is simpler to do the interpolation with the meson mass in lattice
units. Hence, we linearly interpolate aM2 to aMPDG, the PDG value for the meson mass converted to lattice units
with a from Table I. This interpolation is repeated for the entire bootstrap distribution of aM2. We then estimate
the statistical error on κ as the average 68% bootstrap error described in Sec. IV A. The discretization error in M2,
δM2, is given by Eq. (5.4), and is always positive. This results in a single-sided, negative error bar on κ. We convert
δM2 to the error, δκ, using dM2/dκ ≈ dm2/dκ and expressions for m0a and m2a given in Appendix A. The δκ are

TABLE IX: The relative error in the tuned hopping parameter δκ/κ due to discretization effects in the kinetic meson mass.
The ensembles used are (0.0062, 0.031), (0.007, 0.050), and (0.0097, 00484) for the fine, coarse, and medium-coarse lattices,
respectively. Values of κ are 0.127 and 0.0923 on fine; 0.122 and 0.086 on coarse; and, 0.122 and 0.076 on medium-coarse. The
[· · ·] denotes the quantity in brackets in Eq. (5.4). We use (Λ̄2/6mch) = 0.0583̄ and (Λ̄2/6mbot) = 0.0194̄ to convert the [· · ·] to
δM2. Values of δκ/κ are given as fractions not a percentage.

charm bottom

lattice spacing m0a [· · ·] δM2
dm2a
dm0a

δκ
κ

m0a [· · ·] δM2
dm2a
dm0a

δκ
κ

fine 0.391 1.31 0.0763 0.843 −0.0086 2.08 16.8 0.327 0.880 −0.0256
coarse 0.565 2.37 0.1384 0.831 −0.0203 2.62 23.6 0.459 0.899 −0.0440
medium-coarse 0.682 3.18 0.1857 0.830 −0.0346 3.56 37.2 0.724 0.922 −0.0756
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given in Table IX. The experimental errors on the PDG values are negligible. The remaining errors to consider are
those which appear in the conversion between lattice and physical units. The error in the determination of r1/a is
negligible, so we only need to consider the error in r1, given in Eq. (3.2).

The error on r1 is propagated to an error on a−1 and then to an error on aMPDG, denoted σPDG. Table X gives the
values of the PDG meson masses used in this work and tabulates their spin-averaged mass and hyperfine splitting.
Table XI gives the spin-averaged mass in lattice units. The uncertainty σPDG is propagated to κ using the standard
error formula σκ = σPDG/s, where s is the slope used in the interpolation. Table XII gives the error budget for κc

and κb, and Table XIII lists the final tuned results.

B. The rest mass and hyperfine splitting

In this section, we discuss the uncertainties in our calculation of the hyperfine splitting and compare our final
results, for the Bs and Ds systems, with the PDG values. To support the discussion, we tabulate our results for the
pseudoscalar and vector meson rest masses and the hyperfine splitting, aM, aM∗, a∆1, r1∆1, in Tables XXI–XXIII in
Appendix C. Statistical errors in these tables are the average 68% bootstrap errors described in Sec. IV A. The other
errors we consider are the mistuning of the valence strange-quark mass, unphysical sea-quark masses, the uncertainty
in the tuning of κ, discretization effects, and the conversion to physical units. For the central value, at each lattice

TABLE X: PDG values of the pseudoscalar and vector masses for the Ds and Bs mesons and the hyperfine splitting ∆ [45].
Also listed is the derived quantity M , the spin-averaged mass.

M (GeV) M∗ (GeV) M (GeV) ∆ (MeV)

Ds 1.96849(34) 2.1123(5) 2.0763(4) 143.9(4)

Bs 5.3661(6) 5.4120(12) 5.4005(9) 46.1(1.5)

TABLE XI: Spin-averaged PDG masses converted to lattice units with an error from the uncertainty in the lattice spacing a.
Values of a used in the conversion can be found in Table I.

Ensemble aMDs aMBs

Fine (0.0062, 0.031) 0.884+0.009
−0.023 2.299+0.023

−0.060

Coarse (0.007, 0.050) 1.242+0.012
−0.032 3.230+0.031

−0.083

Medium-coarse (0.0097, 0.0484) 1.529+0.015
−0.039 3.977+0.038

−0.102

TABLE XII: Percent errors in the tuned κ and the total error. For several sources of uncertainty, we determined that the error
was smaller than the precision of these calculations. This is indicated by an entry of “0.0” in the table.

Charm Bottom

Uncertainty Fine Coarse Medium-coarse Fine Coarse Medium-coarse
Statistical 1.26 0.57 0.53 5.0 9.1 5.6
Discretization (0,−0.86) (0,−2.0) (0,−3.46) (0,−2.6) (0,−4.4) (0,−7.56)
Sea-quark masses 0.0 0.0 0.0 0.0 0.0 0.0
ams mistuning 0.0 0.0 0.0 0.0 0.0 0.0
Unit conversion (a) (+0.90,−0.35) (+0.49,−0.19) (+0.77,−0.30) (+1.7,−0.64) (+1.9,−0.72) (+1.76,−0.66)
Total (1.5, 1.6) (+0.75,−2.1) (+0.93,−3.5) (+5.3,−5.7) (+9.3,−10.1) (+5.9,−9.4)

TABLE XIII: Final tuned results for κc and κb with the total error.

Fine Coarse Medium-coarse

κc 0.127(2) 0.1219+9
−25 0.122+1

−4

κb 0.090(5) 0.082(8) 0.077+5
−7



19

spacing, we take a∆1 at the tuned values of κc and κb, linearly interpolating in κ when necessary.
PDG results for the hyperfine splitting show a weak dependence on the light-quark valence mass, so we expect the

mistuning in the simulated valence strange-quark mass to have a negligible effect.3 The simulation valence masses
am′q = 0.0272, 0.03, 0.0484 for the fine, coarse, and medium-coarse lattices, respectively, differ from the physical ams

given in Table I by 0.0020, 0.0044, 0.0058, respectively. Tables XXI–XXIII show that, indeed, these small mistunings
have a negligible effect on the hyperfine splitting. Hence, we do not interpolate to ams; rather, we take a∆1 at the
valence masses am′q listed above as the result at the physical strange valence-quark mass and take the error for this
approximation to be negligible.

To estimate the error due to the non-physical values of the sea-quark masses we use partially-quenched chiral
perturbation theory. The needed expression is derived in Appendix D and we repeat Eq. (D1) here for convenience.
The hyperfine splitting M∗x −Mx of a heavy-light meson with light-valence quark x is

M∗x −Mx = ∆− ∆g2
π

8π2f2
δlog + 2∆(σ)(2ml +ms) + 2∆(a)mx , (6.1)

where δlog contains the chiral logs, ml and ms are the light and strange sea-quark masses, and ∆(σ) and ∆(a) are
counter terms which must be determined from the lattice data. Working at a fixed value of mx, we can use the
difference of splittings at different values of ml to determine ∆(σ). Given ∆(σ), we can find the difference between
the splitting at simulation values of (m′l,m

′
s) and the physical values (ml,phys,ms,phys). We take this difference as the

error due to the non-physical sea-quark masses.
We have tabulated values of the hyperfine splitting in physical units, r1∆1, in Appendix C 2. Figure 7 shows how

r1∆1 varies with the light sea-quark mass on fine and coarse lattices. From Fig. 7, it is clear that, due to statistical
variation in the splitting, using the difference in the central values of splittings from any two points will yield different
values for ∆(σ). For the fine and coarse ensembles, we look only at the aml/ams = 0.4 to 0.1 and aml/ams = 0.4 to
0.2 differences and take the one that gives the larger error; for medium coarse, we have no aml/ams = 0.1 data and
so take the error from the aml/ams = 0.4 to 0.2 difference.

For the error estimate, we take f = 131 MeV and gπ = 0.51 [48]. We relate meson to quark masses by

M2
xy = B0(mx +my) (6.2)

where B0 is determined empirically with r1B0 = 6.38, 6.23, 6.43 on the fine, coarse, and medium-coarse lattices,
respectively. These values of B0 come from tree-level fits to MILC light-meson data, as described in Refs. [2, 11, 35].
We calculate ∆(σ) for each meson type, Bs and Ds, at each lattice spacing. We then calculate the difference

(M∗x −Mx)sim − (M∗x −Mx)phys (6.3)

where the subscript “sim” (“phys”) denotes simulation (physical) sea-quark mass inputs (aml, ams). For the physical
masses, we use (aml,phys, ams,phys) = (0.00092, 0.0252), (0.00125, 0.0344), (0.00154, 0.0426) for the fine, coarse, and
medium-coarse lattices, respectively. These values of the quark masses are taken from Ref. [11], after adjustment
for the r1 scale used here. The simulation masses are those on the the (0.0062, 0.031) fine, (0.007, 0.050) coarse,
and (0.097, 0.0484) medium-coarse ensembles. The error calculated in this manner is labeled “sea-quark masses” in
Tables XIV and XV.

For the uncertainty in a∆1 due to the error in κ, recall that the non-negligible sources of error in κ, from Table XII
in Sec. VI A, are statistics, units conversion, and discretization error in M2. Because we want to consider discretization
errors separately from all others, we start by considering only the κ-tuning error that comes from statistics and units-
conversion. To convert the error in κ to an error in a∆1, we look at the change in a∆1between two values of κ on
the (0.0062, 0.031) fine, (0.007, 0.050) coarse, and (0.0097, 0.0484) medium-coarse ensembles; specific values can be
found in Tables XXI–XXIII. This is the error labeled “κ tuning” in Tables XIV and XV.

For the Ds (Bs) meson, Table XIV (XV) gives the error budget for a∆1 at each lattice spacing, from all sources
except discretization. These are statistics, valence-mass mistuning, unphysical sea-quark masses, and κ tuning. In
Fig. 8, these values are plotted as black, filled dots.

We now consider the three, distinct sources of discretization error in a∆1. The first is indirect, coming from the
discretization error in aM2, which is propagated to an error on κ as discussed in Sec. VI A. This error can be traced
to a mismatch between the spin-independent O(p4) terms in Eq. (2.8) (not given explicitly) and the corresponding
terms in the effective Lagrangian for continuum QCD. These terms contribute to aM2 as discussed in Appendix A.

3 For X = B or D, the difference between the MX∗s -MXs splitting and the MX∗ -XX splitting is measured to be about 1% or less [45].
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The second source of discretization error is a direct result of the lattice-continuum mismatch of the dimension-seven
operator {iσ ·B,D2} [23].4 The third source of discretization error is the O(αs) mismatch in the coefficient of the
iσ ·B operator in Eq. (2.10). For the discussion of error estimates below, it is useful to recall that the heavy-quark
dynamics associate m2 with the physical quark mass. Mismatches between m2 and the generalized masses associated
with other operators capture the heavy-quark discretization effects. We now give numerical estimates of the error
from each source.

Our estimate of discretization error in aM2 and its inclusion in the error on κ is discussed in Sec. VI A. In Fig. 8,
the value of r1∆1 with an error that includes only the uncertainty due to the discretization error on κ is shown as
an open (blue) circle with a dashed error bar. Note, as described in Sec. V B, this uncertainty estimate depends on
one’s choice of ΛQCD. In this paper, we use ΛQCD = 0.7 GeV. Choosing ΛQCD = 0.5 GeV would cut the error on κ
in half and decrease the error on r1∆1.

Next we estimate the contribution from the dimension-seven operator {iσ ·B,D2}. Using the notation of Ref. [23],
summarized in Sec. A 4, this operator’s contribution to the hyperfine splitting has a coefficient

1
(mB′a)3

=
1

(m4a)3
, (6.4)

where the equality holds at the tree level for the choices of parameters in our action. The difference between am4 and
am2 captures the discretization error. The fractional error in the hyperfine splitting due to this mismatch is

(aΛQCD)22am2

[
1

(2am4)3
− 1

(2am2)3

]
. (6.5)

This error is plotted as a (green) dash-dot line on an X in Fig. 8. It would be added in quadrature with the error on
the filled dot, if it were to be included in the total error. Again we take ΛQCD = 0.7 GeV, but choosing ΛQCD = 0.5
would cut these error bars in half. The error from Eq. (6.5) is small for the Ds splitting at the fine lattice spacing,
but increasingly large and non-negligible at the coarse and medium-coarse lattice spacings; for the Bs splitting, the
error is negligible.

Finally, we turn to the effects of the O(αs) mistuning in cB , which leads to an O(αs) mismatch between mBa and
m2a. Ideally, cB should be adjusted so the coefficient of h̄(+)iσ · Bh(+) equals ZB/2m2, where ZB is a coefficient
with an anomalous dimension, such that ZBh̄(+)iσ ·Bh(+) is scale and scheme independent [49]. In practice, cB is
chosen in some approximation, in our case the tadpole-improved tree level of perturbation theory.

Given a value of cB , our simulations produce

M∗1 −M1 = ∆1 =
4λ2

2mB(cB)
. (6.6)

From Eq. (A26), we see that 1/amB has a contribution cB/(1 +m0a). Hence, to include the leading correction to the
hyperfine splitting, we shift

4λ2a

[
1

2amB(cB)

]
→ 4λ2a

[
1

2amB(cB)
+

cideal
B − cB

2(1 +m0a)

]
(6.7)

where cideal
B is the ideal choice. (Because loop corrections to 1/amB depend on cB , subleading corrections also exist.)

To estimate the error in ∆1, we have to estimate cideal
B − cB . In fact, Eq. (6.7) can also be used to shift the central

value of the hyperfine splitting.
Reference [50] describes preliminary work on a calculation of the one-loop corrections to c[1]

B , as a function of the
bare quark mass. For all relevant values of m0a, the one-loop effects are a small correction to the tadpole-improved
Ansatz cB = u−3

0 , provided that u0 is the average link in Landau gauge. On the coarse ensembles, we chose u0

this way, and we can estimate the remaining correction directly from the calculation in Ref. [50]. Given further
uncertainties from higher orders, we take this small correction as an uncertainty estimate. On the medium-coarse and
fine ensembles, however, we chose u4

0 to be the average plaquette. In those cases, the leading correction to cB comes
from,

cideal
B − cB = u−3

0,LL − u
−3
0,plaq (6.8)

4 Other dimension-six and -seven operators are either redundant, loop-suppressed, or known to have small coefficients [23].



21

0.22

0.24

0.26
r 1

∆

0 0.1 0.2 0.3 0.4 0.5
m

l
'/m

s
'

0.05

0.06

0.07

0.08

r 1
∆

0.22

0.24

0.26

r 1
∆

0 0.1 0.2 0.3 0.4 0.5
m

l
'/m

s
'

0.05

0.06

0.07

0.08

r 1
∆

(a) (b)

FIG. 7: The hyperfine splitting, in units of r1, versus the ratio of the light to strange sea-quark masses m′l/m
′
s on (a) fine and

(b) coarse ensembles. Errors are the average 68% bootstrap error. The upper panel in each plot is for charm-like splittings and
the lower panel is for bottom-like splittings. Values of κ are 0.127, 0.0923 for the fine ensembles and 0.122, 0.086 for coarse
ensembles. Values of am′q are 0.0272 and 0.0415 for the fine and coarse ensembles, respectively.

where the labels refer to “Landau-gauge link” and “plaquette.” Equation (6.8) leads to significant corrections to the
hyperfine splitting, so we shift ∆1 on the medium-coarse and fine ensembles by the amount corresponding to Eq. (6.7)
and (6.8). These shifts put ∆1 at the medium-coarse and fine lattice spacings on the same footing as those at the
coarse spacing. Empirically, they flatten the lattice-spacing dependence.

For the medium-coarse and fine data, we use the values of u0 given in Table XVI to calculate the shift described
above. It is displayed in Fig. 8 as a (pink) star with a single-sided, positive error bar. To obtain an error bar
corresponding to the one-loop correction to cB in Ref. [50], we take αs(0.09 fm) = 1/3 and use one-loop running to
obtain values of αs for the coarse and medium-coarse lattices. These corrections are shown in in Fig. 8 as a (red)
triangle with a solid error bar.

In summary, discretization errors in the hyperfine splitting are small at the fine lattice spacing; therefore, we take
as our final results the splittings calculated on the fine lattice. In addition, since the effect of the leading O(αs)
mistuning of cB can be quantified, we shift our final central values by this amount. All other discretization errors
are included in our final error. We convert our results to physical units using the values of r1/a and r1 as listed in
Table I. After including the error from the units conversion in the total, our final results for the hyperfine splittings
are

∆Ds = 145± 15 MeV (6.9)
∆Bs = 40± 9 MeV (6.10)

These results are in good agreement with the PDG values of 143.9± 0.4 MeV and 46.1± 1.5 MeV, respectively.

TABLE XIV: Percent errors in the hyperfine splitting, a∆1, of Ds not including discretization effects.

Uncertainty Fine Coarse Medium-coarse

Statistical 2.2 1.9 1.9
κ tuning (8.8,−7.5) (4.0,−3.1) (4.0,−2.7)
Valence ms 0 0 0
Sea-quark masses 3.6 5.4 6.9
Total (10,−9) (7,−7) (8,−8)
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FIG. 8: Hyperfine splittings in r1 units versus the squared lattice spacing a2 (fm2) for the (a) Ds meson and (b) Bs meson.
Filled (black) dots with a solid error bar show the splitting with an error from all sources except discretization. Open (blue)
circles with a dashed error bar show the splitting with an error that also includes discretization error effects in κ. (Green)
X’s with dash-dotted error bars show the estimated size of discretization effects from the lattice-continuum mismatch of the
dimension-7 operator {iσ · B,D2} — the errors are barely visible for the Bs system. (Pink) stars with a dotted error bar
show the O(αs) discretization error from the 1-loop mismatch between m2 and mB . For the difference between the O(αs)
discretization effects on the coarse lattice versus the fine and medium-coarse lattices, see the text.

C. The critical hopping parameter κcrit

In principle, it is possible to carry out a suite of nonperturbative heavy-quark calculations without knowing κcrit,
but in practice κcrit is useful. In particular, it enters the construction of improved bilinear and 4-quark operators via
m0a Eq. (2.5). It also enters the computation of matching factors such as ZV and ZA [18]. Note that these all amount
to small corrections, so we do not need a very precise determination of κcrit. Equation (2.5) shows that it does not
have to be much better determined than κc and κb.

A nonperturbative definition of κcrit is the value of κ such that the mass of a pseudoscalar meson consisting of
two Wilson quarks (with the clover action) vanishes. The computation of these light-light pseudoscalar meson masses
shares code with the work reported here and in Ref. [8], and it is convenient to report the analysis here. The value of
κcrit depends on u0 via our choice of clover coupling, cB = cE = u−3

0 . In this and other work [3–8], u0 has been set
sometimes from the average plaquette and sometimes from the average link in Landau gauge. The prescription for u0

used in each κcrit determination is given in column four of Table XVII.

TABLE XV: Percent errors in the hyperfine splitting, a∆1, of Bs not including discretization effects.

Uncertainty Fine Coarse Medium-coarse

Statistical 9.5 4.0 5.6
κ tuning (12,−11) (17,−17) (11,−10)
Valence ms 0 0 0
Sea-quark masses 17 7.8 2.6
Total (23,−22) (19,−19) (13,−12)

TABLE XVI: Tadpole-improvement factors for the estimate of the O(αs) discretization error shown in Fig. 8.

ensemble u0,plaquette u0,Landau

fine (0.0062, 0.031) 0.878 0.854
medium-coarse (0.0097, 0.0484) 0.860 0.822
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TABLE XVII: Values of κcrit by ensemble. “u0 used” gives the origin of the u0 value used in the κcrit determination. κcrit

values are given in two columns. The first κcrit column contains values which were determined by a fit. The second κcrit column
contains values which were estimated from fitted values at the same (approximate) lattice spacing. The last column gives the
fit method used in the determination, explained in the text.

κcrit

Lattice (am′l, am
′
s) u0 used Iterated fit Direct fit Estimated

Fine (0.0031, 0.031) Landau-gauge link 0.1372
(0.0062, 0.031) Landau-gauge link 0.1372
(0.0062, 0.031) plaquette 0.1391
(0.0124, 0.031) Landau-gauge link 0.1372

Coarse (0.005, 0.050) Landau-gauge link 0.1379
(0.007, 0.050) Landau-gauge link 0.1379
(0.010, 0.050) Landau-gauge link 0.1379
(0.020, 0.050) Landau-gauge link 0.1378
(0.030, 0.050) Landau-gauge link 0.1377

Medium-coarse (0.0097, 0.0484) plaquette 0.1424
(0.0194, 0.0484) plaquette 0.1424
(0.0290, 0.0484) plaquette 0.1423

The determination of κcrit is carried out on a subset of the available configurations, 50–100 configurations for the
fine ensembles and 400–600 for the coarse and medium-coarse. We compute two-point correlators for a range of κ that
yields meson masses of about MPS = 450–900 MeV on the fine ensembles, 650–1100 MeV on the coarse ensembles,
and 550–950 MeV on the medium-coarse ensembles. It is impractical to push to lower MPS due to exceptional
configurations. MPS is a function of the quark mass, which we parametrize as the tree-level, tadpole-improved kinetic
or rest mass. In the relevant region, m1,2a = m0a[1− 1

2m0a] + O((m0a)3), so both pertain equally well. The meson
masses can be fit to a polynomial ansatz

a2M2
PS(κ) = A+Bam2(κ, κcrit) + Ca2m2

2(κ, κcrit) (6.11)

(or m1 instead of m2), where A = 0 when κcrit is correctly adjusted.
We use two techniques to determine κcrit. One method starts with a reasonable value of κcrit and fits Eq. (6.11)

to obtain A, B, and C, which depend implicitly on κcrit. A better trial value of κcrit is chosen, and the process is
iterated until a κcrit is found such that A = 0. We call this the “iterated fit”. The second method freezes A to zero,
and then B, C, and κcrit are the fit parameters. We call this the “direct fit”. On several ensembles the κcrit values
were simply estimated from the other ensembles with the same (approximate) lattice spacing, these are labeled as
“estimated”.

Table XVII contains our results for κcrit, indicating the method used. The table does not include error bars for
κcrit, but we believe that the results are correct to the number of significant figures shown, even though the range
of MPS is high. We carried out several tests to verify this accuracy. We compared linear iterated fits [i.e., C = 0
in Eq. (6.11)] to the baseline quadratic. We also compared direct fits with and without the (continuum) chiral log.
These test show that higher order or log contributions do not alter our values of κcrit significantly. We fit comparable
data with staggered valence quarks allowing (m0a)crit 6= 0, thereby testing whether a range of such large MPS skews
the results. None of these tests suggests an error larger than a few in the fourth digit. Such errors are negligible
compared to those for κc and κb—see Tables XII and XIII—when forming m0a with Eq. (2.5).

VII. SUMMARY AND OUTLOOK

An accurate and precise determination of κc and κb is important for all calculations using the Fermilab action [3–
8]. In this analysis, the error on κb is dominated by statistics, and the error on κc receives approximately equal
contributions from statistics and discretization effects. These errors play a significant role on quantities as diverse as
D- and B-meson decay constants [3] and the quarkonium hyperfine splitting [8]. Our final results for κc and κb are
given in Table XIII.

Another ingredient that is useful for matrix elements [3–5] is the additive renormalization of the bare quark mass
or, equivalently, κcrit. The improvement and matching of the operators needed to compute these matrix elements
depends mildly on κcrit via m0a [18]. Our final results for κcrit are given in Table XVII.

The key ingredient needed to determine κc and κb is a computation of the pseudoscalar and vector heavy-strange
meson masses. These can be combined to yield the hyperfine splitting for Ds and Bs mesons. Our final results for
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the hyperfine splittings are given in Eqs. (6.9) and (6.10). Both are in good agreement with the corresponding PDG
averages. These results bolster confidence in the tuning of κc and κb, as well as the choice cB = u−3

0 . Further tests
of these choices come from related calculations of the quarkonium spectrum [8]. With detailed attention given to the
connection between action parameters and mass splittings, those results are found to be consistent with experiment
within the expected uncertainties.

Improved determinations of κc, κb, and κcrit for the medium-coarse, coarse, and fine ensembles are underway with
higher statistics, as well as calculations on the new superfine (a ≈ 0.06 fm), and ultrafine (a ≈ 0.045 fm) lattices.
The increased statistics will also allow us to use higher momentum data and fit to the O(p4) terms in the dispersion
relation. Refinements in the determination and use of r1/a are allowing for a better understanding of sea-quark effects
which will be needed as the statistical error on aM2 decreases. We are also investigating the use of twisted boundary
conditions [51] which will allow us to obtain data points at lower momenta.

As uncertainties in M2 and M1 decrease, there will be a need for a better understanding of the chiral behavior of
these masses. One-loop, O(Λ/mQ) chiral perturbation theory results exist for continuum QCD [47]. The extension to
staggered chiral perturbation theory should be straightforward, and would allow us to extrapolate the light-valence
mass to the physical up/down quark mass and determine the hyperfine splittings of the B± and D± mesons. In this
paper, we have included the partially quenched expression for the hyperfine splitting in Appendix D, since it is useful
in estimating uncertainties from the unphysical sea-quark masses.

In addition, tuned values of κc, κb, and κcrit combined with one-loop (lattice) perturbation theory can yield
determinations of the pole masses m1 and m2 for both charmed and bottom quarks5, which can be converted to the
potential-subtracted, MS, and other schemes [6]. Quark masses combined with staggered chiral perturbation theory
for the B± and D± mesons, can yield ab initio calculations of HQET matrix elements [22, 53], which are used to
calculate the Cabibbo-Kobayashi-Maskawa matrix element |Vcb| via inclusive decay measurements. Finally, improved
determinations of the oscillating-state energy Ep could make determinations of the experimentally accessible masses
of the positive parity states, D∗s0(2317) and Ds1(2460) [54] a viable option [55].
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Appendix A: Discretization Error in the Kinetic Meson Mass

In this appendix, we present a semi-quantitative estimation of the discretization error in the kinetic mass of heavy-
light hadrons. We use a formalism that applies when both quarks are non-relativistic, even though this approximation
is not good for the light quark in a heavy-light meson. A posteriori, we examine two ways to re-interpret the resulting
formula for a relativistic light quark. Both estimates are numerically the same, so we proceed to use the formula in
Sec. V B.

In what follows, the generalized masses m1,m2,m4 and the coefficient w4 are used to describe the discretization
errors. Expressions for them when using the Fermilab action are in Refs. [14] or [23] and are given at the end of this
appendix for convenience. We assume that the light quark (s) has a mass in lattice units msa � 1 and makes no
significant contribution to the discretization error.

The bound state’s kinetic mass can be read off from its kinetic energy (by definition). It will have a kinematic
contribution, from the constituents’ kinetic energy, and a dynamical contribution, from the interaction that binds the

5 The determination of the quark mass from m1 requires a non-perturbative calculation of the binding energy as defined by M1 −m1 [6].
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constituents. We consider each in turn.

1. Contributions from constituents’ kinetic energy

The hadron of interest is a heavy-strange meson, a bound state of a heavy quark Q (momentum Q) and a strange
antiquark s (momentum s). The non-relativistic kinetic energy is

T = m1Q +
Q2

2m2Q
− (Q2)2

8m3
4Q

− 1
6w4Qa

3
∑
i

Q4
i +m1s +

s2

2m2s
− (s2)2

8m3
4s

− 1
6w4sa

3
∑
i

s4
i . (A1)

The binding energy is communicated to the bound-state kinetic mass via the terms quartic in the momenta and via
corrections to the potential, given below. In general, the lattice breaks relativistic invariance, so m1 6= m2 6= m4,
w4 6= 0. Re-writing the kinetic energy in center-of-mass coordinates

Q =
m2Q

m2Q +m2s
P + p, (A2)

s =
m2s

m2Q +m2s
P − p, (A3)

P = Q+ s, (A4)

p =
m2sQ−m2Qs

m2Q +m2s
, (A5)

one finds

T = m1Q +m1s +
P 2

2(m2Q +m2s)
+
p2

2µ2
− P

2 p2 + 2(P · p)2

4(m2Q +m2s)2

[
m2

2Q

m3
4Q

+
m2

2s

m3
4s

]

− a3
∑
i

P 2
i p

2
i

(m2Q +m2s)2

(
w4Qm

2
2Q + w4sm

2
2s

)
+ · · · , (A6)

1
µ2

=
1

m2Q
+

1
m2s

. (A7)

The only quartic terms shown are those quadratic in P ; the omitted terms are not smaller; they just do not contribute
to the bound state’s kinetic energy. The objective is to collect all terms quadratic in P , because their overall coefficient
will yield the bound state’s kinetic mass.

2. Contribution from the interaction: Breit equation

To obtain the two-particle system’s potential energy, one has to work out the scattering amplitude from one-gluon
exchange, obtaining an expression called the Breit equation [46, 56].

In momentum space, for the color-singlet channel

V (K) = −CF g2Dµν(K)NQ(Q+K)ū(ξ′,Q+K)ΛµQ(Q+K,Q)u(ξ,Q)NQ(Q)

×Ns(s)v̄(ξ, s)Λνs (s, s−K)v(ξ′, s−K)Ns(s−K), (A8)

where Dµν is the (lattice) gluon propagator, Λµq is the lattice vertex function (for q = Q, s), and Nq is an external-
line factor needed with the normalization conditions on spinors employed here [14, 23]. (In continuum field theory,
N =

√
m/E.)

To the accuracy needed here, the gluon propagator can be replaced with the continuum propagator. The heavy-
quark line is

J4
Q = NQ(Q+K)ū(ξ′,Q+K)Λ4

Q(Q+K,Q)u(ξ,Q)NQ(Q)

= ū(ξ′,0)

[
1− K

2 − 2iΣ · (K ×Q)
8m2

EQ

+ · · ·

]
u(ξ,0), (A9)

JQ = NQ(Q+K)ū(ξ′,Q+K)ΛQ(Q+K,Q)u(ξ,Q)NQ(Q)

= −iū(ξ′,0)
[
Q+ 1

2K

m2Q
+
iΣ×K
2mBQ

+ · · ·
]
u(ξ,0), (A10)



26

and, to the extent that the strange antiquark is non-relativistic, one has a similar expression for the antiquark line
Jνs = Ns(s)v̄(ξ, s)Λνs (s, s−K)v(ξ′, s−K)Ns(s−K).

In Coulomb gauge,

D44(K) =
1
K2

, Dij(K) =
1
K2

(
δij − KiKj

K2

)
, (A11)

and the other components vanish. Thus, noting that K4 = i[(Q+K)2 −Q2]/2mQ is subleading,

V (K) = −CF g2

[
1
K2
−

(
1

8m2
EQ

+
1

8m2
Es

)
− 1
m2Qm2s

(
Q · s− Q ·KK · s

K2

)
1
K2

]

+ spin-dependent terms. (A12)

Let us discuss each part of the bracket in turn. The leading term yields, after Fourier transforming to position space,
the 1/r potential. The second yields a contact term proportional to δ(r): it is a relativistic correction to the bound
state’s rest mass, so it is of no further interest here. Similarly, the spin-dependent terms do not contribute to the
bound state’s kinetic energy, so they are not written out. The remaining exhibited contributions do contribute to the
bound state’s kinetic energy, when Q and s are eliminated in favor of P and p.

Next we Fourier transform from K to r using∫
d3K

(2π)3

eir·K

K2
=

1
4πr

, (A13)∫
d3K

(2π)3

KiKje
ir·K

(K2)2
= 1

2 (δij + ri∇j)
∫

d3K

(2π)3

eir·K

K2
. (A14)

Following with the substitution of P and p for Q and s this yields

V (r,P ,p) = −CFαs
r

[
1− P 2

2(m2Q +m2s)2

]
− ri∇j

CFαs
r

PiPj
2(m2Q +m2s)2

+ · · · , (A15)

where the omitted terms do not influence the bound state’s kinetic energy.
Note that K changes p but not P , so r is conjugate to p. To take expectation values, we use the virial theorem

〈ri∇jV (r)〉 =
〈pipj〉
µ2

, (A16)

so the total energy of the bound state, E(P ) = 〈T + V 〉, is

E(P ) = m1Q +m1s +
〈p2〉
2µ2

−
〈
CFαs
r

〉
+

P 2

2(m2Q +m2s)

[
1− 〈p2〉

2µ2(m2Q +m2s)
+

1
(m2Q +m2s)

〈
CFαs
r

〉]
+

P 2

2(m2Q +m2s)2

〈p2〉
2µ2

[
1− µ2

(
m2

2Q

m3
4Q

+
m2

2s

m3
4s

)]

+
PiPj

(m2Q +m2s)2

〈pipj〉
2µ2

[
1− µ2

(
m2

2Q

m3
4Q

+
m2

2s

m3
4s

)]

− a3
∑
i

P 2
i 〈p2

i 〉
(m2Q +m2s)2

(
w4Qm

2
2Q + w4sm

2
2s

)
+ · · · . (A17)

The first line of Eq. (A17) shows the binding energy adding to the quarks’ rest masses to form the bound state’s rest
mass,

M1 = m1Q +m1s +
〈p2〉
2µ2

−
〈
CFαs
r

〉
. (A18)
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The second line shows the same binding energy modifying the kinetic energy. The remaining terms are discretization
errors. In general they are a bit messy, but they simplify for the S-wave states we use to tune κ. Then 〈pipj〉 = 1

3δij〈p
2〉,

whence

E(P ) = M1 +
P 2

2M2
+ · · · , (A19)

where

M2 = m2Q +m2s +
〈p2〉
2µ2

−
〈
CFαs
r

〉
+

5
3
〈p2〉
2µ2

[
µ2

(
m2

2Q

m3
4Q

+
m2

2s

m3
4s

)
− 1

]
+

4
3
a3 〈p2〉

2µ2
µ2

(
w4Qm

2
2Q + w4sm

2
2s

)
+ · · · . (A20)

The last line exhibits the discretization errors, which would vanish if m4 = m2, w4 = 0.
The error can be re-written

δM2 =
1
3
〈p2〉
2µ2

{
5

[
µ2

(
m2

2Q

m3
4Q

+
m2

2s

m3
4s

)
− 1

]
+ 4aµ2

[
w4Q(m2Qa)2 + w4s(m2sa)2

]}
, (A21)

which is equivalent to Eq. (14) of Ref. [46]. Note that the error ends up being proportional to the internal kinetic
energy of the bound state, 〈p2〉/2µ2.

3. Relativistic light degrees of freedom

For asqtad light quarks, the discretization errors are O(αsm2
sa

2) and O(m4
sa

4). So, for a semi-quantitative estimate
of the discretization error, it should be safe to assume m4s = m2s = m1s = ms, a3w4s = 0. Equation (A21) is then

δM2 =
1

3m2Q

〈p2〉
2µ2

µ2

[
5

(
m3

2Q

m3
4Q

− 1

)
+ 4w4Q(m2Qa)3

]
. (A22)

To use this formula we need a value for 〈p2〉, and we consider two possibilities. The first is to replace 〈p2〉 with
Λ̄2. The reduced mass µ2 then cancels, yielding a sensible limit even when ms → 0. The second is to replace the
non-relativistic kinetic energy 〈p2〉/2µ2 with a relativistic version, namely Λ̄. If we take a constituent quark mass
ms = 1

2 Λ̄, then this discretization-error estimate equals that of the first approach to O(ms/mQ).

4. The generalized masses and w4

General tree-level expressions for the quark masses and w4 were originally given in Ref. [14] and succinctly recapit-
ulated in Ref. [23]. For convenience we give them here with parameters ζ = 1 = rs as in our simulations

m0a =
1
u0

(
1

2κ
− 1

2κcrit

)
, (A23)

m1a = ln(1 +m0a) (A24)
1

m2a
=

2
m0a(2 +m0a)

+
1

1 +m0a
, (A25)

1
mBa

=
2

m0a(2 +m0a)
+

cB
1 +m0a

, (A26)

1
4m2

Ea
2

=
1

[m0a(2 +m0a)]2
+

cE
m0a(2 +m0a)

, (A27)

1
m3

4a
3

=
8

[m0a(2 +m0a)]3
+

4 + 8(1 +m0a)
[m0a(2 +m0a)]2

+
1

(1 +m0a)2
, (A28)

w4 =
2

m0a(2 +m0a)
+

1
4(1 +m0a)

. (A29)

These expressions and Eq. (A22) are used to obtain Table IX.
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Appendix B: Tables of the kinetic mass

In this appendix, we tabulate values of the pseudoscalar, vector, and spin-averaged kinetic mass, aM2, aM
∗
2 , and

M2, respectively. Values are given for all combinations of κ and am′q on the ensembles used for tuning κ. χ2/dof and
the p value, one minus the χ2 cumulative distribution [45], from the dispersion relation fits are also given.

χ2/dof (p)
κ aM2 aM∗2 aM2 aM2 aM∗2

am′q = 0.0272 0.090 2.30(17) 2.31(25) 2.31(21) 0.21 (0.81) 0.24 (0.79)

0.0923 2.19(15) 2.22(22) 2.21(19) 0.22 (0.80) 0.35 (0.71)

0.093 2.16(14) 2.19(22) 2.18(18) 0.22 (0.80) 0.37 (0.69)

0.1256 0.860(19) 0.936(42) 0.917(32) 0.09 (0.92) 0.14 (0.87)

0.127 0.819(15) 0.912(39) 0.889(30) 0.36 (0.70) 0.00 (1.0)

am′q = 0.031 0.0923 2.22(14) 2.22(21) 2.22(18) 0.18 (0.84) 0.31 (0.73)

0.1256 0.871(18) 0.947(38) 0.928(30) 0.14 (0.87) 0.16 (0.85)

0.127 0.828(15) 0.918(37) 0.895(29) 0.40 (0.67) 0.00 (1.0)

TABLE XVIII: The kinetic meson mass for bottom- and charm-type mesons on the (0.0062, 0.031) fine ensemble from fits to
E2(p) − E2(0) using |n| ≤

√
3. Fits are done to obtain aM2 and aM∗2 and the results are then spin averaged. Uncertainties

are the average 68% bootstrap error. χ2/dof with the p value in parentheses is also given. The p value is one minus the χ2

cumulative distribution [45].

χ2/dof (p)
κ aM2 aM∗2 aM aM2 aM∗2

am′q = 0.03 0.074 3.78(49) 3.64(54) 3.67(50) 1.12 (0.33) 0.17 (0.84)

0.086 2.93(21) 3.03(33) 3.01(29) 0.28 (0.76) 0.21 (0.81)

0.093 2.50(14) 2.66(24) 2.62(21) 0.05 (0.95) 0.11 (0.90)

0.119 1.263(16) 1.402(43) 1.368(34) 0.84 (0.43) 0.20 (0.82)

0.122 1.132(17) 1.270(46) 1.236(37) 0.35 (0.70) 0.34 (0.71)

0.124 1.038(16) 1.161(43) 1.130(33) 0.28 (0.76) 0.52 (0.60)

am′q = 0.0415 0.074 3.66(35) 3.75(53) 3.73(48) 0.26 (0.77) 0.23 (0.79)

0.086 2.99(19) 3.09(28) 3.06(25) 0.46 (0.63) 0.48 (0.62)

0.093 2.57(13) 2.75(25) 2.70(21) 0.14 (0.87) 0.31 (0.73)

0.119 1.292(15) 1.456(41) 1.415(33) 0.88 (0.41) 0.38 (0.69)

0.122 1.157(17) 1.310(44) 1.272(36) 0.19 (0.83) 0.24 (0.79)

0.124 1.065(15) 1.200(43) 1.166(34) 0.15 (0.86) 0.47 (0.63)

TABLE XIX: Same as Table XVIII but for mesons on the (0.007, 0.050) coarse ensemble.



29

χ2/dof (p)
κ aM2 aM∗2 aM aM2 aM∗2

am′q = 0.0484 0.070 4.54(32) 4.53(45) 4.53(41) 0.55 (0.58) 0.78 (0.46)

0.080 3.79(19) 3.77(27) 3.78(24) 0.54 (0.58) 1.19 (0.31)

0.115 1.747(25) 1.825(47) 1.805(37) 1.32 (0.27) 0.36 (0.70)

0.125 1.304(12) 1.415(32) 1.387(26) 1.23 (0.29) 0.05 (0.95)

am′q = 0.0387 0.070 4.47(35) 4.44(50) 4.44(46) 0.47 (0.63) 0.72 (0.49)

0.080 3.73(21) 3.70(31) 3.71(28) 0.53 (0.59) 1.07 (0.34)

0.115 1.725(28) 1.804(58) 1.784(47) 1.06 (0.43) 0.04 (0.96)

0.125 1.282(13) 1.388(37) 1.361(29) 0.89 (0.41) 0.07 (0.93)

TABLE XX: Same as Table XVIII but for mesons on the (0.0097, 0.0484) medium-coarse ensemble
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Appendix C: Tables of M1 = E(0) and the hyperfine splitting

In this appendix, we tabulate the hyperfine splitting a∆1 and r1∆1 discussed in Sec. VI B.

1. The hyperfine splitting in lattice units a∆1

In this subsection, we tabulate values of a∆1 relevant to the discussion in Sec. VI B of the uncertainty in the
hyperfine splitting due to statistics, κ tuning, and the light valence mass.

κ ensemble aM1 aM∗1 a∆1

am′q= 0.0272 0.090 (0.0062, 0.031) 1.7387(13) 1.7546(19) 0.0158(15)

0.0923 (0.0031, 0.031) 1.6877(21) 1.7054(25) 0.0177(19)

0.0923 (0.0062, 0.031) 1.6870(13) 1.7037(20) 0.0167(16)

0.0923 (0.0124, 0.031) 1.6835(16) 1.7024(19) 0.0188(14)

0.1256 (0.0062, 0.031) 0.8408(8) 0.8968(16) 0.0561(15)

0.127 (0.0031 0.031) 0.7944(9) 0.8534(19) 0.0590(19)

0.127 (0.0062, 0.031) 0.7946(7) 0.8544(15) 0.0599(13)

0.127 (0.0124, 0.031) 0.7901(7) 0.8514(11) 0.0613(12)

am′q= 0.031 0.090 (0.0062, 0.031) 1.7441(13) 1.7601(17) 0.0159(14)

0.0923 (0.0062, 0.031) 1.6926(12) 1.7093(18) 0.0167(14)

0.1256 (0.0062, 0.031) 0.8470(8) 0.9030(14) 0.0560(13)

0.127 (0.0062, 0.031) 0.8009(7) 0.8606(14) 0.0597(12)

TABLE XXI: Fine-ensemble values of the rest mass M1 = E(0) and hyperfine splitting ∆1. am′q = 0.0272 and 0.031.
Uncertainties are the average 68% bootstrap error.
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κ ensemble aM1 aM∗1 a∆1

am′q= 0.0415 0.074 (0.007, 0.050) 2.2394(22) 2.2618(25) 0.0224(09)

0.086 (0.005, 0.050) 1.9662(17) 1.9941(27) 0.0279(18)

0.086 (0.007, 0.050) 1.9644(17) 1.9943(21) 0.0299(11)

0.086 (0.010, 0.050) 1.9676(16) 1.9978(21) 0.0301(12)

0.086 (0.020, 0.050) 1.9584(16) 1.9891(21) 0.0307(14)

0.122 (0.005, 0.050) 1.0529(10) 1.1399(22) 0.0870(17)

0.122 (0.007, 0.050) 1.0520(7) 1.1393(17) 0.0873(15)

0.122 (0.010, 0.050) 1.0549(10) 1.1414(26) 0.0865(22)

0.122 (0.020, 0.050) 1.0446(9) 1.1339(16) 0.0894(16)

0.124 (0.007, 0.050) 0.9871(7) 1.0819(17) 0.0948(15)

am′q= 0.030 0.074 (0.007, 0.050) 2.2241(26) 2.2466(29) 0.0225(11)

0.086 (0.007, 0.050) 1.9488(21) 1.9787(25) 0.0299(14)

0.122 (0.007, 0.050) 1.0339(08) 1.1220(20) 0.0881(17)

TABLE XXII: Same as Table XXI but for the coarse ensembles with am′q = 0.0415 and 0.03.

κ ensemble aM1 aM∗1 a∆1

am′q= 0.0484 0.076 (0.0097, 0.0484) 2.3192(27) 2.3472(36) 0.0280(17)

0.076 (0.0194, 0.0484) 2.3153(30) 2.3424(47) 0.0270(26)

0.076 (0.0290, 0.0484) 2.3137(23) 2.3445(21) 0.0308(16)

0.080 (0.0097, 0.0484) 2.2298(24) 2.2606(34) 0.0308(17)

0.122 (0.0097, 0.0484) 1.2427(8) 1.3390(21) 0.0963(19)

0.122 (0.0194, 0.0484) 1.2397(8) 1.3400(17) 0.1004(14)

0.122 (0.0290, 0.0484) 1.2364(7) 1.3402(17) 0.1038(14)

0.125 (0.0097, 0.0484) 1.1565(8) 1.2634(21) 0.1069(20)

am′q= 0.0387 0.076 (0.0097, 0.0484) 2.3060(31) 2.3341(40) 0.0281(19)

0.122 (0.0097, 0.0484) 1.2271(9) 1.3237(25) 0.0966(24)

TABLE XXIII: Same as Table XXI but for medium-coarse ensembles with am′q = 0.0484 and 0.0387.
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2. The hyperfine splitting in physical units r1∆1

In this subsection, we tabulate values of r1∆1 relevant to the discussion in Sec. VI B of the dependence of the
hyperfine splitting on the sea-quark masses.

ensemble r1∆1

κ = 0.0923 (0.0031, 0.031) 0.0653(69)

(0.0062, 0.031) 0.0618(58)

(0.0124, 0.031) 0.0700(52)

κ = 0.127 (0.0031 0.031) 0.2178(69)

(0.0062, 0.031) 0.2217(48)

(0.0124, 0.031) 0.2281(43)

TABLE XXIV: Fine-ensemble values of the hyperfine splitting ∆1 in units of r1. am′q = 0.0272. Uncertainties are the average
68% bootstrap error.

ensemble r1∆1

κ = 0.086 (0.005, 0.050) 0.0738(46)

(0.007, 0.050) 0.0788(29)

(0.010, 0.050) 0.0788(32)

(0.020, 0.050) 0.0814(36)

κ = 0.122 (0.005, 0.050) 0.2301(44)

(0.007, 0.050) 0.2300(39)

(0.010, 0.050) 0.2265(58)

(0.020, 0.050) 0.2370(43)

TABLE XXV: Same as Table XXIV but for the coarse-ensembles with am′q = 0.0415.

ensemble r1∆1

κ = 0.076 (0.0097, 0.0484) 0.0616(37)

(0.0194, 0.0484) 0.0603(57)

(0.0290, 0.0484) 0.0699(37)

κ = 0.122 (0.0097, 0.0484) 0.2117(41)

(0.0194, 0.0484) 0.2244(30)

(0.0290, 0.0484) 0.2357(39)

TABLE XXVI: Same as Table XXIV but for medium-coarse–ensembles with am′q = 0.0484.
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Appendix D: Partially quenched chiral perturbation theory for the heavy-light hyperfine splitting

For full (unquenched) QCD, Jenkins [47] has calculated the hyperfine splitting at one loop in heavy-meson chiral
perturbation theory. It is not difficult to take her result (Eq. (A.10) of Ref. [47]) and extend it to partially quenched
QCD. The further step of including staggered taste-violations (i.e., doing staggered chiral perturbation theory) would
also be fairly straightforward, but we do not take it here because the continuum partially quenched form is sufficient
for estimating the small systematic effect due to the mistuning of sea quark masses. Unlike Jenkins, we neglect
electromagnetic and isospin-violating effects.

At the quark-flow level, the relevant diagrams are the self-energy diagrams shown in Fig. 5(a) [left] of Ref. [57] (the
“connected diagram”) and in Figs. 5(b),(c) [left] of Ref. [57] (the “disconnected diagram”).6 One simply needs to
determine how much of Jenkins’s result comes from each of these two diagrams. This is accomplished by noting that,
when the light valence quark is a u (a = 1 in Jenkins’s notation), an internal kaon only appears in the connected
diagram, when the quark in the virtual loop is an s. This fixes the normalization of the connected diagram. Using the
methods described in Refs. [57–59] (but dropping the taste violations and indeed the taste degree of freedom itself),
the disconnected diagram is easily calculated. Its normalization can then be fixed so that it supplies the remainder
of the a = 1 result in Ref. [47].

There are ample checks of this reasoning. First, the same normalizations must apply for any choice of the valence
mass. The η contributes in each case only through the disconnected diagram, while the pion contributions come from
both connected and disconnected diagrams for valence u or d (a = 1, 2), and must be absent for valence s (a = 3).
Finally the contribution from the unphysical ss̄ state, which appears in each diagram for a = 3, should cancel.

It is then immediate to write down the partially quenched version. Let the light valence quark be x, with mass
mx, and let the sea quarks be u, d, s with masses mu = md = ml and ms. With the light meson decay constant f
normalized so that f ≈ fπ ≈ 130 MeV, the hyperfine splitting M∗x −Mx is given by

M∗x −Mx = ∆− ∆g2
π

8π2f2
δlog + 2∆(σ)(2ml +ms) + 2∆(a)mx , (D1)

where ∆ is the splitting in the (three-flavor) chiral limit, and ∆(σ) and ∆(a) are LECs that start at order 1/mQ in
the heavy quark expansion. The non-analytic chiral logarithms δlog are

δlog =
∑

F=u,d,s

`(M2
xF )− 1

3
R

[2,2]
X ({m}, {µ}) ˜̀(M2

X)− 1
3

∑
j=X,η

D
[2,2]
j,X ({m}, {µ}) `(M2

j ) . (D2)

Here MX is the mass of the valence xx̄ meson, and MxF is the mass of the mixed valence-sea xF̄ meson. The residue
functions R[n,k]

j and D
[n,k]
j,i , as well as the chiral logarithm functions `(m2) and ˜̀(m2), are defined in Refs. [58, 59].

The term with the sum over F comes from the connected diagram, while those with the residue functions come from
the disconnected diagram, which has a double pole at M2

X in the partially quenched case. The denominator ({m})
and numerator ({µ}) mass sets are

{m} = {MX ,Mη} , {µ} = {MU ,MS} (D3)

with MU and MS the masses of the uū and ss̄ mesons, respectively.
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