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Abstract

We estimate the contributions by double-parton interactions to the cross sections for
pp → π0π0X and dA → π0π0X at RHIC. We find that such contributions become impor-
tant at large forward rapidities of the produced pions. This is in particular the case for
dA scattering, where they strongly enhance the azimuthal-angular independent “pedestal”
component of the cross section, providing a natural explanation of this feature of the RHIC
dA data. We argue that the discussed processes open a window to studies of double quark
distributions in nucleons. We also briefly address the roles of shadowing and energy loss
in dA scattering, which we show to affect the double-inclusive pion cross section much
more strongly than the single-inclusive one. We discuss the implications of our results for
the interpretation of pion azimuthal correlations.



I Introduction

Cross sections for the production of identified hadrons at large transverse momentum play a

crucial role at RHIC, for both the spin and the heavy-ion program. In the latter they serve

as important probes of phenomena such as shadowing, gluon saturation, or parton energy

loss [1]. For single-inclusive hadron production in pp scattering, pp → hX, it was found that

next-to-leading order (NLO) perturbative QCD [2] provides a very good description of the

RHIC data over wide ranges of transverse momentum, rapidity, and beam energy [3]. Striking

suppression effects with respect to the pp baseline have been observed on the other hand for

scattering involving nuclei, among them in dA scattering at forward rapidities [4, 5, 6]. These

experimental studies at RHIC were also extended to the production of two forward pions,

in both pp and dA scattering [5, 7, 8]. Of particular interest here are correlations between

the pions in the difference of their azimuthal angles, ∆ϕ. As expected, strong peaks in the

distributions at ∆ϕ = 0, π were observed in pp scattering. These are also present in peripheral

dA collisions. However, in central dA collisions, the “backward” peak at ∆ϕ ∼ π is strongly

depleted. It has been suggested that this depletion is due to gluon saturation effects in the

Color Glass Condensate of the gold nucleus [9, 10]. At the same time, all distributions show a

very significant ∆ϕ-independent “pedestal” that is much higher in the dA case than in pp, a

feature that has received somewhat less attention.

In this paper we will demonstrate that double-parton interactions for which two leading

partons of the “projectile” proton (or deuteron) interact with the “target” naturally make large

contribution in the forward kinematics studied at RHIC, often dominating over the leading-

power contribution. They are particularly important in dA scattering. We will find that they

could well be responsible for the pedestals in the ∆ϕ correlations and impact the interpretation

of the observed correlations in both the pedestal and the backward peak regions.

Apart from their relevance for forward scattering at RHIC, double-parton interactions are

also of wider interest in QCD as they provide a novel window of on strong-interaction dynam-

ics, including correlations of leading partons inside nucleons or nuclei [11]. As a result, they

have received an ever growing attention over the past few years [12, 13, 14, 15]. In addition,

understanding of double- and multi-parton interactions is also important for a proper modeling

of the structure of the final state for central pp collisions at the LHC [11, 14, 16] and hence for

the search for new particles. Current experimental studies of multi-parton interactions involve

selection of events with two back-to-back pairs of jets (or, a jet and a photon); see e.g. [17, 18].

The fact that RHIC may provide a unique way to learn about multi-parton interactions, without

having to use the more traditional double-scattering observables, is remarkable.
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Our paper is organized as follows. In Sec. II we discuss double-inclusive pion production

in pp scattering. We first demonstrate that in the leading-twist (LT) approximation the cross

section at forward rapidities involves incoming quarks with very high momentum fraction. As a

result, we find that double-parton processes in which two quarks each with relatively moderate

x ∼ 0.3 − 0.4 scatter independently, become competitive over a fairly wide kinematic range at

RHIC. In Sec. III we study the double-parton mechanism for dA collisions, which we find in

the impulse approximation to be significantly enhanced as compared to the LT mechanism. We

then discuss the impact of double-scattering contributions on the pedestal and the peak of the

∆ϕ distribution, along with generic features of gluon shadowing and parton energy loss, and

argue that the suggested mechanisms allow to describe the bulk features of the data. Finally,

we summarize our results in Sec. IV.

II Two-pion production in pp scattering

In this section we explore the main features of pp → π0π0X through the LT mechanism based

on a single hard scattering, and through double-parton interactions. We choose the case of

pp collisions, both because of its potential for studying new aspects of high energy QCD and

nucleon correlation structure, but also because it sets the baseline for our later discussion of

nuclear scattering. In the following, pT,1, η1 are the transverse momentum and pseudo-rapidity

of the “trigger” pion. The corresponding variables of the second “associated” pion are denoted

by pT,2, η2. We consider collisions at center-of-mass energy
√

S = 200 GeV and 500 GeV.

II.1 Leading-twist mechanism

We start with the LT mechanism for which two partons collide in a single hard scattering. The

generic expression for the LT pp → π0π0X cross section is given in factorized form by

d4σLT

dpT,1dη1dpT,2dη2
=

∑

abcd

∫

dxadxbdzcdzd f p
a (xa)f

p
b (xb)

d4σ̂ab→cdX

dpT,1dη1dpT,2dη2
Dπ0

c (zc)D
π0

d (zd), (1)

where the sum runs over all partonic channels, with f p
a , f p

b denoting the usual parton distribution

functions of the proton, Dπ0

c , Dπ0

d the pion fragmentation functions for partons c, d, and σ̂ab→cdX

the corresponding partonic hard-scattering cross sections. The latter may be computed in QCD

perturbation theory, starting at lowest order (LO) from 2 → 2 scattering ab → cd. Even though

the NLO corrections are available in the literature [19], we will restrict ourselves for this study

to LO computations. We shall comment on this point below. We have for simplicity suppressed
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Figure 1: Distributions of the leading-power LO cross section for pp → π0π0X (see Eq. (1))
at

√
S = 200 GeV in momentum fraction xa, for η1 = 2 (left) and η1 = 3 (right). We have

chosen pT,1 = 2.5 GeV and integrated over 1.5 GeV ≤ pT,2 ≤ pT,1 and various bins in η2. Units
are arbitrary. The inserts show the corresponding normalized distributions on a linear scale.

in Eq. (1) the dependence of the various functions on the factorization/renormalization scale

µ. Throughout our studies we choose the CTEQ6L parton distribution functions [20] and the

LO de Florian-Sassot-Stratmann (DSS) set of fragmentation functions [21].

Since η1+η2 = log(xa/xb), production of two pions at relatively forward rapidities must arise

from “imbalanced” collisions where a large-x parton from one proton hits a small-x parton from

the other [22]. These will typically be collisions of a valence quark and a gluon. Figure 1 shows

the distributions of the integrand in Eq. (1) in xa for various values of η1 and bins in η2. Here

we have chosen pT,1 = 2.5 GeV and 1.5 GeV ≤ pT,2 ≤ pT,1 and the scale µ2 = (p2
T,1 + p2

T,2)/2.

The inserts in the figure show the distributions on a linear scale, normalized in such a way

that their integral is unity in each case. One observes overall that with increasing η1 or η2 the

distributions are shifted to higher values of xa. In particular, we see that the average value of

xa = xquark for typical kinematics of the RHIC forward measurements is very high.

II.2 Double-scattering mechanism

The results shown in Fig. 1 suggest that “double-scattering” contributions, with two separate

hard interactions in a single pp collision, could become relevant at forward rapidities. Here

the idea is that each of the two hard interactions produces a pion. The double-scattering

contributions are power suppressed or “higher-twist”. Like for the leading-twist contribution

in Eq. (1), each of the two interactions will proceed primarily by a high-x (valence) quark
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scattering off a small-x gluon. However, compared to the leading-twist part, the momentum

fractions of the quarks participating in the double-scattering contributions will on average be

much smaller, because for the latter the kinematics of the two recoiling “unobserved” partons is

unconstrained. This makes the double-scattering contributions potentially dominant at forward

rapidities.

A proper treatment of the double-parton mechanism would involve use of “two-parton gener-

alized parton distributions” (2pGPDs) in the proton; see [13] for summary and references. This

would allow to calculate the dimensional factor between single- and double-inclusive scattering,

which characterizes the transverse spread of the double-parton distributions in the colliding

protons. At present, knowledge about 2pGPDs is overall not sufficient to fully apply this

formalism to the case of hadron pair production in hadronic collisions. We therefore resort

to simple physically motivated estimates of the double-scattering contribution. Here we are

guided by the observation that in the case when the partons in each of the scattering protons

are completely uncorrelated, we will have

d4σdouble,uncorr.

dpT,1dη1dpT,2dη2
=

1

πR2
int

d2σ̃LT

dpT,1dη1

d2σ̃LT

dpT,2dη2
(2)

for the double-scattering contribution to pp → π0π0X, where σ̃LT denotes the leading-twist

single-inclusive cross section for pp → π0X, given by

d2σ̃LT

dpT dη
=

∑

abc

∫

dxadxbdzc f p
a (xa)f

p
b (xb)

d2σ̂ab→cX

dpT dη
Dπ0

c (zc), (3)

with single-inclusive partonic cross sections σ̂ab→cX . Furthermore, in Eq. (2) πR2
int is an “effec-

tive” transverse area covered by the two correlated partons (it was denoted as σeff in a number

of experimental papers and some of the theoretical papers, although it has little to do with

an interaction cross section). In the approximation of partons uncorrelated in the transverse

plane it can be expressed through a convolution of usual generalized parton distributions in the

hadrons [13, 23]. Hence, if we assume for simplicity that the partons’ transverse spread does

not depend on their momentum fractions x, we can write

d4σdouble

dpT,1dη1dpT,2dη2
=

1

πR2
int

∑

abc a′b′c′

∫

dxadxbdzcdxa′dxb′dzc′ f
p
aa′(xa, xa′)f p

b (xb)f
p
b′(xb′)

× d2σ̂ab→cX

dpT,1dη1

d2σ̂a′b′→c′X′

dpT,2dη2
Dπ0

c (zc) Dπ0

c′ (zc′) . (4)

Here f p
aa′(xa, xa′) is a “double-parton” distribution for partons a, a′ in the same proton, which

we will model in the following. If the partons are not correlated, it is equal to the product

of two ordinary parton distributions, f p
aa′(xa, xa′) = f p

a (xa)f
p
a′(xa′), and Eq. (4) reverts to (2).
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As shown in Eq. (4), we neglect for simplicity correlations in the “target”, i.e., in the proton

probed at small-x.

The double-parton distribution has to obey the kinematic constraint xa + xa′ ≤ 1. We

implement this condition for all partonic channels. Beyond that, we only consider double-

parton correlations for valence quarks, that is, for the case a, a′ ≡ q, q′, with q = u, d. For these

we make the ansatz

f p
qq′(xq, xq′) =

1

2

[

f p
q (xq) × φ

(

xq′

1 − xq

)

+ (q ↔ q′)

]

. (5)

The picture we have in mind here is that the first interaction involves a valence quark with its

distribution fq(xq). The distribution of a second valence quark that participates in the second

hard scattering is then expected to be modified relative to the usual parton distribution. For

instance, if the first hard scattering involves an up quark, then fewer up quarks will be available

for the second interaction. We assume this effect to be described by a single function φ, given

by

φ(ξ) =
c√
ξ
(1 − ξ)n, (6)

with c = 3/4 and n = 1. The latter value follows from counting rule arguments; scaling

violations would be expected to increase it somewhat. The normalization factor c in Eq. (6)

is determined from the baryon number sum rule
∫ 1

0
dξφ(ξ) = 1. Since the expression for the

cross section is symmetric in xq, xq′ we perform symmetrization of Eq. (5). For all partonic

combinations not involving valence quarks, we also use Eq. (5), but with φ replaced by the usual

parton distribution function f p
a′(xa′/(1−xa)). Here the modified argument guarantees that the

kinematic constraint xa +xa′ ≤ 1 is respected. Our procedure should be compared to the model

of [24] where it was assumed that also for valence quarks the function φ(ξ) is given by the usual

distribution f p
q (ξ), which has n ∼ 3, and no symmetrization was performed. While our ansatz

arguably is physically better motivated, we do not find much numerical difference between the

two models, except very close to the phase space boundary at high rapidities and/or transverse

momenta. Rather than the precise choice of φ, it is the kinematic constraint xa + xa′ ≤ 1 that

matters most in our numerical studies, reducing the cross section.

For our calculations, we choose πR2
int = 15 mb [17, 18] in Eq. (2). This experimental value

is smaller than πR2
int = 34 mb obtained in the mean field approximation for the 2pGPDs when

partons are not correlated in the transverse plane [23]. The value ∼ 34 mb is an upper limit

on πR2
int when only momentum fractions larger than ∼ 10−2 are relevant, provided there is no

repulsion between the partons. A smaller experimental value of πR2
int indicates the presence of

transverse correlations among partons. In principle these correlations can depend on the flavors
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and momentum fractions of the partons involved in the double-scattering interaction. Quali-

tatively, we expect that picking two leading quarks would select configurations with reduced

transverse separation between the quarks, making it more natural to use the experimental value

for πR2
int than the uncorrelated estimate. It is of interest here that in the limit when the typical

transverse separation between the quarks is much smaller than for the small-x gluons, one can

derive based on [13]

πR2
int =

[
∫

d2∆

(2π)2
F 2

2g(∆)

]

−1

=
12π

m2
g

≈ 14 mb. (7)

Here F2g(∆) ≈ 1/(∆2/m2
g + 1)2 with m2

g(x ∼ 0.01) = 1.1 GeV2 is the two-gluon form factor of

the nucleon. A larger value of πR2
int would evidently reduce the size of our estimates for the

double-interaction contribution.

Figure 2 shows our results for the leading-twist cross section dσLT for pp → π0π0X in Eq. (1)

and for the double-interaction contribution dσdouble according to Eq. (4), as functions of the

trigger pion’s transverse momentum and rapidity. For the associated pion we have integrated

the cross sections over 1.5 GeV ≤ pT,2 ≤ pT,1 and 1.5 ≤ η2 ≤ 2 (upper row) or 2.5 ≤ η2 ≤ 4

(lower row). dσLT has been calculated as before; for dσdouble in Eq. (4) we have chosen the same

parton distributions and fragmentation functions, and the scales µ = pT,i. All calculations are

done at LO. As one can see from Fig. 2, the estimated double-scattering contribution shows the

typical features of a higher-twist (power-suppressed) contribution. It tends to increase relative

to the leading-twist cross section towards lower transverse momenta. Near mid-rapidity and

for moderately high pT,1, double-scattering is essentially negligible. On the other hand, it

also increases towards the kinematic boundaries at high rapidities and transverse momenta.

Therefore, it is likely to play a significant role for much of the kinematic regime relevant in

the studies of two-pion correlations at forward rapidities at RHIC. Here it would affect also

the distributions in the difference ∆ϕ of the azimuthal angles of the two pions, where it should

enhance both the backward peak at ∆ϕ ∼ π and the “pedestal” at ∆ϕ < π. It is worth

emphasizing already at this point that the lowest-order LT part only contributes at ∆ϕ = π,

whereas the double-scattering piece will uniformly contribute at all ∆ϕ. Hence, as the LT

cross section receives contributions at ∆ϕ < π only at higher orders in perturbation theory,

the double-scattering is expected to dominate even more strongly away from the backward

peak. For future reference, we also define the ratio of the double-scattering contribution to the

leading-twist one:

rpp ≡
d4σdouble

d4σLT

. (8)

We show the results for rpp in the inserts in Fig. 2. This number should be compared with the

ratio of the areas under the pedestal and under the backward peak at ∆ϕ ∼ π, which is of the
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Figure 2: Comparison of the leading-twist cross section for pp → π0π0X (solid, see Eq. (1))
and the double-interaction contribution estimated from Eq. (4) (dashed), as functions of pT,1

(left) and η1 (right). The plots in the upper row are for 1.5 < η2 < 2, the ones in the lower row
for 2.5 < η2 < 4. For all plots we have chosen 1.5 GeV < pT,2 < pT,1. The inserts in each plot
show the ratio rpp of the double-interaction contribution to the leading-twist one, see Eq. (8).
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Figure 3: As Fig. 2, but at
√

S = 500 GeV and for 2 GeV < pT,2 < pT,1 and 1.5 < η2 < 4.

order of two.

As there will be high luminosity runs at RHIC with polarized protons at
√

S = 500 GeV,

we have also performed calculations at this energy. Figure 3 shows the results as functions of

pT,1 and η1, integrated over 2 GeV < pT,2 < pT,1 and 1.5 < η2 < 4. As expected the effects are

overall smaller than at
√

S = 200 GeV, but remain significant at large rapidities.

As we have hinted at earlier, there are still considerable uncertainties in the computation

of the double-scattering contribution. We remind the reader that one would in principle need

to set up a framework based on 2pGPDs. Even within our ansatz in Eq. (2) there is some

uncertainty regarding the value for πR2
int and the model used for the double-parton correlation

functions. Furthermore, at forward rapidities the fragmentation functions are probed at rather

high momentum fractions z, where they are not known accurately. On top of this, one needs

to address the role of higher-order QCD corrections. The double-inclusive and single-inclusive

leading-twist cross sections carry significant dependence on the renormalization/factorization

scales. While the NLO corrections are available for both the double-inclusive leading-twist cross

section [19] and for the single-inclusive one in Eq. (3) [2], it is not guaranteed that the form of

dσdouble in Eq. (4) carries over to higher orders of perturbation theory, since particle radiation

will tend to correlate the two separate hard interactions (this effect should be small, however,

for configurations which dominate in the mean field uncorrelated approximation, since in this

case the bulk of the parton cross sections originates from quark transverse separations much

larger than 1/pT ). That said, each of the cross sections dσLT, dσ̃LT in Eqs. (1),(2) is known to

receive NLO radiative corrections of & 50% or so for RHIC kinematics, so that it appears likely
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that QCD corrections will overall enhance the relevance of the double-scattering contribution.

The uncertainties inherent in the present calculations somewhat limit the possibilities to

achieve a better determination of πR2
int from RHIC measurements. Nonetheless, if our phe-

nomenological predictions are correct, it might be possible to identify the double-scattering

contributions from detailed studies of the dependence of the two-pion cross section on trans-

verse momenta and rapidities. A further possible test of this picture would be to measure a third

pion at “recoil kinematics” η3 ∼ 0. This could serve to further enhance the double-scattering

contribution over the leading-twist one, since the latter can give rise to a third pion only at

higher orders in perturbation theory, whereas the double interactions naturally give rise to a

third (and even a fourth) recoiling “jet”. Obviously the study of polarization effects in two-pion

correlations would be of interest as well in the context of the double-scattering mechanism.

III Two-pion production in dA scattering

III.1 Introductory remarks

An important finding at RHIC [4, 5, 6] is that the rate of forward pion production at relatively

large transverse momenta, where perturbative QCD describes the corresponding pp data, is

suppressed in dA scattering by a large factor as compared to the impulse approximation result.

This suppression is expressed by the “nuclear modification factor” RdA, which effectively com-

pares the observed production rates for a given centrality trigger to the prediction based on

the approximation that the parton density in nuclei at an impact parameter b is equal to the

additive sum of the parton densities of individual nucleons at this impact parameter. A more

formal way to formulate the latter assumption is to define the impact-parameter dependent par-

ton distribution of the nucleus, fA
a (x, Q2, b), which is related to the corresponding generalized

parton distribution [25]. In the discussed approximation, fA
a (x, Q2, b) is given by

fA
a (x, Q2, b) = fN

a (x, Q2)TA(b), (9)

where TA(b) is the standard nuclear profile function which is given by an integral of the density

function over the longitudinal direction:

T (b) =

∫

ρA

(√
b2 + z2

)

dz. (10)

TA is normalized to
∫

d2bT (b) = A. The experimental data show that the suppression becomes

stronger with increase of rapidity η. It is found that RdA is typically of the order 1/3 for forward
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kinematics. Furthermore, the suppression becomes stronger with decrease of b and is strongest

for b ∼ 0.

The analysis [22] has demonstrated that the dominant mechanism for single-inclusive pion

production in the forward kinematics explored at RHIC is scattering of a leading quark of

one (“projectile”) nucleon off a gluon in the other (“target”) nucleon. The median value of

momentum fraction xg of the gluon was found to be in the range xg ∼ 0.01 − 0.03, depending

on the rapidity of the pion. The nuclear gluon density for such values of xg is known to be close

to the incoherent sum of the gluon fields of the individual nucleons since the coherence length

in the interaction is rather modest for the distances involved. As a result, the leading-twist

nuclear shadowing effects cannot explain the observed suppression [22], and one needs a novel

dynamical mechanism to explain the suppression of pion production in such collisions.

An important additional piece of information comes from the study of correlations of the

leading forward pion with an additional pion produced at central rapidities [5, 26]. In this

case, the dominant contribution comes from the scattering off gluons with xg ∼ 0.01 − 0.02.

An extensive analysis performed in [27] has demonstrated that the strengths of such forward-

central correlations are similar in dA and in pp scattering once one corrects for the contribution

of soft interactions to the pion yield at η ∼ 0, and that in dA the dominant source of leading

pions is scattering at large impact parameters. This conclusion is supported by the observation

of the STAR experiment [28] that the associated multiplicity of soft hadrons in events with a

forward pion is a factor of two smaller than in minimum-bias dA events. This reduction factor

is consistent with the estimate of [27]. Overall, the patterns observed in forward inclusive-pion

production and forward-central correlations are consistent with the picture of effective energy

losses which we further discuss in Sec. III.3. Hence we will use it below for the numerical

estimates of the deviation form the impulse approximation. We note in passing that the above

mentioned features of the forward pion production data represent a challenge for the 2 → 1

scattering mechanism [29, 30] that dominates in the color glass condensate model. In this

mechanism forward pions are predominantly produced at central impact parameters without

producing recoil pions at central rapidities.

In Ref. [22] we suggested that to study the effects of small-x gluon fields in the initial

state one needs to study production of two leading forward pions in nucleon−nucleus collisions.

Recently such data were taken in dAu collisions [5, 7, 8]. In the next subsection, we will

analyze the role of the double-parton interactions in the kinematics explored at RHIC. The

effects associated with suppression of the single-inclusive spectrum mentioned above will be

discussed further below in Sec. III.3.
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Figure 4: Contributions to two-pion production in dA collisions through the double-interaction
mechanism.

III.2 Double-parton versus single-parton interactions − treatment
in the impulse approximation

As we saw in the previous section, large values of the rapidities of the two pions select high x in

the “projectile” hadron, and double-scattering contributions may become very significant. As

measurements in this kinematic domain have been carried out in dAu scattering at RHIC [5,

7, 8], it is of much interest to see in how far the double-interaction contributions are further

enhanced in the reaction dA → π0π0X. Compared to the pp case, it is clear that the presence

of many nucleons in the scattering process will offer more possibilities for multiple-parton

interactions.

We may distinguish three contributions to the double-parton mechanism in dA scattering,

as shown in Fig. 4:

(a) Two (valence) quarks from one of the nucleons in the deuteron participate in the hard-

scattering, striking the same nucleon in the heavy nucleus (Fig. 4(a)).

(b) Independent scattering of the deuteron’s proton and neutron off separate nucleons in the

heavy nucleus. Each of the two collisions produces one of the observed pions (Fig. 4(b)).

(c) Same as (a), but with the double interaction occurring off two different nucleons in the

heavy nucleus. Again each of the two collisions produces one of the observed pions

(Fig. 4(c)).

We now proceed to make estimates for these contributions. For our more illustrative purposes,

we neglect effects of nuclear (anti-)shadowing for the heavy nucleus. Also, we treat the heavy

nucleus as roughly iso-scalar. For our estimates we need to take into account the distribution

of nucleons in a heavy nucleus. Since the experiments are performed with a centrality trigger,

it is useful to first write the double-inclusive cross section in a form where the integral over
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impact parameter b is kept explicitly [12]. We write all expressions for N -nucleus scattering,

where N = (p + n)/2 denotes an iso-scalar combination of proton and neutron. Since they are

bound in a deuteron they propagate at similar impact parameters. We further assume that the

impulse approximation is valid for the interaction with the nucleus. For any contribution that

involves scattering off only one of the “target” nucleons, we then have the generic formula

d4σNA

dpT,1dη1dpT,2dη2
=

∫

d2b T (b)
d4σNN

dpT,1dη1dpT,2dη2
(11)

for the two-pion cross section. Here, T (b) is the nuclear thickness factor defined above in

Eq. (10). Equation (11) holds for contribution (a), but evidently also for the leading-twist

piece. Hence, if we consider a fixed impact parameter and take their ratio, the factor T (b) will

cancel:

ra(b) ≡
d4σNA

double,(a)

d4σNA
LT

=
d4σNN

double

d4σNN
LT

= rNN . (12)

In the last step we have used our definition in Eq. (8) for the ratio of the double-interaction

contribution to the leading-twist one, now adapted to the case of NN collisions. Apart from

trivial (and small) isospin modifications related to the fact that there are contributions here

from pp, pn, np, and nn scattering, rNN is identical to rpp considered in the previous section.

The situation is different, however, for contributions (b) and (c), for which two “target”

nucleons are involved in the scattering, so that the square of T (b) will appear in the expres-

sions [12]. For contribution (b) we have

d4σNA
double,(b)

dpT,1dη1dpT,2dη2
=

∫

d2b
A − 1

A
T 2(b) × 1

2

[

d2σ̃pN
LT

dpT,1dη1

d2σ̃nN
LT

dpT,2dη2
+ (pT,1, η1 ↔ pT,2, η2)

]

, (13)

where σ̃LT again denotes a LT single-inclusive cross section as introduced in Eq. 3. Here we

have neglected for simplicity any correlations between quarks in the two “projectile” nucleons.

As indicated, we need to properly symmetrize (13), since either the pN or the nN interaction

can produce a given pion. Taking again the ratio to the leading-twist term at fixed impact

parameter, one factor of T (b) cancels, and we have for large A:

rb(b) =
d4σNA

double,(b)

d4σNA
LT

=
T (b)

[

d2σ̃pN
LT d2σ̃nN

LT + (pT,1, η1 ↔ pT,2, η2)
]

2 d4σNN
LT

. (14)

Finally, for contribution (c) we define analogously

rc(b) ≡
d4σNA

double,(c)

d4σNA
LT

. (15)

Here the numerator is again proportional to T 2(b), while the denominator is linear in T (b).

With the help of Eq. (4) we find at fixed impact parameter:

rc(b) = T (b) πR2
int

d4σNN
double

d4σNA
LT

= T (b) πR2
int rNN , (16)
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again up to small isospin corrections.

Before presenting more detailed numerical results for the ratios in Eqs. (12),(14),(16), we

discuss their relative size. From (12),(16) we see immediately that to very good approximation

ra

rc

=
1

T (b) πR2
int

. (17)

As before we use πR2
int = 15 mb. For heavy nuclei with b ∼ 0 we have T (0) ≈ 2.2 fm−2 =

1/(4.54 pb). Therefore, we have ra/rc ≈ 0.3. The ratio of rb and rc will be close to one at

mid-rapidity where correlations and valence-gluon scattering are not very important. Towards

large rapidities, however, rb must become much larger than rc, since it is not subject to the

constraint xa + xa′ ≤ 1 because of the fact that for (b) the proton and the neutron scatter

independently.

Figure 5 shows the sum

rdA ≡ ra + rb + rc (18)

at impact parameter b = 0. It gives the ratio of the full double-scattering contribution to the

leading-twist one 1. One can see that double-parton interactions in dA scattering appear to lead

to very significant enhancements of the cross section over the leading-twist one, much stronger

than in pp scattering. The inserts in the figure show the corresponding ratios ra/rc and rc/rb

which show the trend discussed above.

III.3 Impact on interpretation of pion azimuthal correlations

We expect our findings in Fig. 5 to be also relevant for the interpretation of the azimuthal

distributions of the pions mentioned earlier. Such distributions have recently been investigated

by the STAR and Phenix experiments at RHIC [5, 7, 8]. What is measured is the distribution

in the difference ∆ϕ of the azimuthal angles of the two pions. The distributions are normalized

relative to the total number of trigger events, that is, given a high-pT,1 pion with rapidity η1

that passes the selection cuts, the ∆ϕ distribution gives the probability for finding a second

pion in a given azimuthal bin. The (still preliminary) data show peaks corresponding to near-

side (∆ϕ ∼ 0) and away-side (∆ϕ ∼ π) correlations, on top of a broad “pedestal” that extends

over all ∆ϕ. The pedestal is significantly higher in dA than in pp scattering. Also it is found

that in central dA the away-side peak is strongly depleted when both pions are produced at

forward rapidities, ηi ∼ 3 [5, 7, 8].

1Note that our rdA is not to be confused with the usual nuclear modification factor RdA mentioned in
Sec. III.1.
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Figure 5: Ratio rdA (defined in Eq. (18)) of double-parton and leading-twist contributions in
dA → π0π0X. The plots in the upper row are for 1.5 < η2 < 2, the ones in the lower row for
2.5 < η2 < 4. For all plots we have chosen 1.5 GeV < pT,2 < pT,1. The inserts show the ratios
ra/rc and rc/rb.
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In view of the relatively early stage the data are in, our discussion will be overall be more

qualitative here. Also, the theoretical framework is not sufficiently developed for a full quanti-

tative study. The leading-twist calculations we have done in the previous section were entirely

in the framework of collinear factorization. Here the ingredients for a full calculation are es-

sentially available, including next-to-leading order corrections (even though for simplicity we

did not use these). In the case of the correlation function in ∆ϕ, however, the calculation is

much more involved. Away from ∆ϕ = π, the leading-twist part will be dominated by 2 → 3

processes, which are available. However, near ∆ϕ = π – the most interesting region – any

finite order of perturbation theory will fail because of the presence of large Sudakov double-

logarithms. A resummation of these logarithms to all orders in perturbation theory is required

here, which unfortunately so far has not been worked out. To perform this resummation is of

course well outside the scope of this paper. In addition, also non-perturbative contributions

will be present very close to ∆ϕ = π. It seems to us that none of the theoretical studies of the

correlation function addresses these contributions at an appropriate level. We could follow a

standard procedure and attempt to model perturbative and non-perturbative contributions to

the ∆ϕ correlation function using Gaussian smearing in parton transverse momenta; however,

we refrain from such a rather ad-hoc approach and stick to a more qualitative discussion that

captures the main physics.

Our first observation is that, as discussed in Sec. II.1, for the leading-twist mechanism the

two pions will predominantly be produced back-to-back in azimuthal angle, that is, around

∆ϕ = π. Pure 2 → 2 scattering produces the pions at ∆ϕ = π; the region away from the

backward peak, around say ∆ϕ ∼ π/2, can only be filled by 2 → 3, 4, . . . scattering, which

are of higher order in the strong coupling αs. These features are in contrast to the double-

scattering mechanism, for which the two pions are produced essentially uncorrelated in ∆ϕ and

which hence is expected to uniformly fill the ∆ϕ distribution. Since we found in the previous

subsections that double-scattering is prevalent at forward angles in pp and in particular dA

scattering, we conclude that the numerator of the pedestal around ∆ϕ ∼ π/2 should be almost

entirely due to the double-scattering mechanism. The denominator, on the other hand, is

the single-inclusive “trigger” cross section d2σ̃/dpT,1dη1, for which we can safely assume that

double-scattering contributions play a less important role. In any case, its value is known from

past STAR measurements in pp and dA scattering [5]. Therefore, the height of the pedestal for

dA is generically given as

Ped dA ≈ d4σdA
double

dpT,1dη1dpT,2dη2

/

d2σ̃dA

dpT,1dη1
, (19)

and similarly for pp scattering. If our considerations are correct, we can estimate the relative
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heights of the pedestals in pp and dA scattering:

Ped dA

Ped pp

≈ d4σdA
double

d4σpp
double

× d2σ̃pp

d2σ̃dA
=

d4σdA
LT

d4σpp
LT

× rdA

rpp

× d2σ̃pp

d2σ̃dA
, (20)

where in the second step we have used Eqs. (8) and (18) to introduce the ratio of leading-twist

and double-scattering contributions. The last factor, d2σ̃pp/d2σ̃dA, corresponds to the inverse of

the nuclear modification factor RdA that we mentioned earlier, at trigger transverse momentum

pT,1 and rapidity η1. We assume that the first factor, d4σdA
LT/d4σpp

LT, roughly shows the square

of this suppression and hence is of order R2
dA. We shall give a better argument for this below.

Then, one factor of RdA cancels in the ratio of the pedestals, and we obtain

Ped dA

Ped pp

≈ RdA × rdA

rpp

≈ 3 . (21)

Here we have used a typical value of rdA/rpp ∼ 10 from our previous figures 2 and 4, and [4, 5, 6]

RdA ∼ 1/3. Obviously, the value we find in (21) can only be a rough estimate; however, we

are encouraged by the fact that it is well consistent even quantitatively with the experimental

observation of a significant enhancement of the pedestal in central dA scattering [7]. Thus we

conclude that the RHIC experiments may well have discovered the first example of multiparton

interactions in many-nucleon systems, with all previous observations having been restricted to

pp or pp̄ collisions. Data with a finer binning in η1, η2 would allow a more detailed check of our

expectations.

We can now go one step further and consider the away-side peak around ∆ϕ ∼ π. In the

peak region, the structure of the two-pion correlation in dA scattering is

Peak dA ≈
(

d4σdA
LT

dpT,1dη1dpT,2dη2

+
d4σdA

double

dpT,1dη1dpT,2dη2

) /

d2σ̃dA

dpT,1dη1

. (22)

As indicated, we here expect to have a contribution also from the leading-twist term. We now

subtract the pedestal term given in Eq. (19) and find

Peak dA − Ped dA ≈ d4σdA
LT

dpT,1dη1dpT,2dη2

/

d2σ̃dA

dpT,1dη1

. (23)

Taking again the ratio to the corresponding quantity in pp scattering we obtain

Peak dA − Ped dA

Peak pp − Ped pp

≈ d4σdA
LT

d4σpp
LT

× d2σ̃pp

d2σ̃dA
. (24)

Compared to the pedestal ratio given in (20), this value does not contain the factor rdA/rpp ∼ 10.

We hence conclude that the height of the peak above the pedestal is about RdA ∼ 1/3 times

smaller in dA scattering than in pp. Compared to the relative heights of the pedestals in dA
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and pp, this is a reduction of even a factor 10. Again, both these findings are consistent with

the observations in the data. Evidently, within our more qualitative discussion one cannot

rule out that there could also be a contribution due to the 2 → 1 broadening mechanism

discussed in [9, 10] to the pion azimuthal correlation, which in these models constitutes only

a small fraction (. 1/6) of the pedestal events. In view of the much larger double-parton

mechanism contribution that we find for the same ∆ϕ, it is not clear at the moment how to

check experimentally to what degree such a 2 → 1 broadening contribution is present.

The step that remains is to investigate the ratios d2σ̃pp/d2σ̃dA and d4σdA
LT/d4σpp

LT in (20)

and (24). The former is given by the nuclear modification factor RdA which, as we mentioned,

has been found experimentally at RHIC to show a significant suppression of the dA cross section

relative to the pp one at forward rapidities. The mechanism behind this suppression is not

conclusively understood so far. As discussed in [22], it could arise, at leading-twist level, from

a combination of two effects. The first is the leading-twist shadowing phenomenon [31] whose

impact on RdA we computed in [22]. Using the nuclear parton distribution functions (nPDFs)

of [32] we found relatively small shadowing effects, because the relevant gluon momentum

fractions in the “target” are on average not very small for single-inclusive hadron production,

〈xg〉 ∼ 0.02, even at forward rapidities. For such xg, gluon shadowing is predicted in [32] to be

relatively moderate. That said, little is known experimentally about gluon shadowing, and the

recent set [33] of nPDFs proposes a stronger shadowing effect. For our present study we will

stick to the use of the nPDFs of [32].

The second effect is energy loss of partons. It was shown in [34] that partons propagating

through the “target” nucleus in kinematics close to the black disk regime suffer “fractional”

energy losses. The interactions near the black disk regime select configurations in which the

parton has split into two or more partons. In [22] we pointed out that even a relatively small

energy loss of order 5 to 10%, which is consistent with the estimated magnitude of this effect [27],

can explain the observed patterns of suppression in forward dA-scattering at RHIC. Energy

loss effects are also typically embodied in an effective way in “nuclear-modified” fragmentation

functions; see for example [35, 36, 37, 38, 39], which are fitted or compared to RHIC dA and

AA data. These may hence also serve as useful tools for investigating suppression effects in a

leading-twist calculation of single-inclusive or double-inclusive particle production at RHIC.

The left part of Fig. 6 makes our observations more quantitative. We show results for RdA

(for A = Au), computed from the leading-twist single-inclusive cross section dσ̃dA
LT/pT,1dη1 in

Eq. (3) and normalized to the corresponding pp cross section. The upper dashed line shows the

effect of including leading-twist shadowing of [32] which, as discussed above, is quite small. The

17



Figure 6: Left: Nuclear modification factor RdA for single-inclusive leading-twist pion produc-
tion as a function of rapidity η1 at pT,1 = 2.5 GeV. The upper dashed line shows the effect
of leading-twist shadowing for the Frankfurt-Guzey-Strikman (FGS) nuclear parton distribu-
tions [32]. The solid line includes shadowing and the “medium-modified” fragmentation func-
tions of Sassot-Stratmann-Zurita (SSZ) [36]. The lower dashed lines show the results for two
simple energy-loss models, see text. Right: Same for double-inclusive pion production.

solid line shows the result when using the same shadowing and in addition the set of nuclear-

modified fragmentation functions of Ref. [36]2. As one can see, RdA is suppressed, except for

the mid-rapidity region, where anti-shadowing effects are relevant. The suppression grows with

η1 and is of order 1/3 − 1/2 at forward rapidities of the pion, in line with the experimental

observations. This is expected since the fragmentation functions of [36] have been fitted to the

RHIC data.

Interestingly, a simple model of energy loss generically yields results of the same size, as

shown by the two lower dashes lines. Here we have, in the spirit of the earlier discussion of

“fractional” energy loss, simply rescaled the momentum fraction xb of the parton in the gold

nucleus by xb → xb(1 + ǫ), and similarly for the fragmenting parton. At forward rapidities, the

results for ǫ = 0.02 and ǫ = 0.05 roughly span the one obtained for the nuclear-modified frag-

mentation functions. At mid-rapidity, they are lower and fail to reproduce the anti-shadowing

effects seen in the data. This is not a surprise, however, since our simple energy loss estimate is

only expected to work at larger rapidities where the produced parton has to traverse the largest

2We note that only NLO sets of nuclear-modified fragmentation functions have been presented in the pa-
per [36]. In order to avoid any mismatch with the DSS set [21] that we use for the ordinary fragmentation
functions, the solid curves in Fig. 6 have been computed by also using the NLO set of [21] for the calculation
of the pp cross section in the denominator of RdA.
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amount of strongly-interacting matter and where one is closer to the black disk regime. What

is surprising is that even rather small values of ǫ generate relatively large suppression effects.

This suggests that, regardless of its precise mechanism, energy loss will always be expected to

play a significant role in dA scattering. Note that in our picture energy losses are fractional

only in the proximity of the black disk regime. Consequently, for fixed transverse momentum

and increasing rapidity we expect ǫ to increase. In our rough estimates we have neglected this

effect which obviously will work to amplify further the suppression effect. At the same time the

energy losses are expected to be energy independent far away from the black disk regime [40],

which explains the absence of suppression of the forward-central correlations. We point out

that the resummation of nuclear-enhanced power corrections to the leading-twist cross section

also results effectively in a shift of the momentum fraction of the initial “projectile” quark [41],

whose size depends on kinematics. This approach was shown to be quantitatively consistent

with the forward suppression of RdA.

Strikingly, the effects we find for single pions are amplified for double-inclusive scattering.

The corresponding results are shown in the right part of Fig. 6. One reason for the additional

suppression in this case is that significantly smaller momentum fractions are probed in the

“target”, down to xg ∼ 10−3 [22], where gluon shadowing is stronger. This effect is seen from

the upper dashed line in Fig. 6. Furthermore, since two fragmentation functions are present

for double-inclusive pion production, the energy loss effect is much more prominent, as shown

by the solid and lower dashed lines. Indeed, as we anticipated, the overall suppression of the

dA double-inclusive leading-twist cross section is roughly given by the square of that for the

single-inclusive one, that is, by R2
dA. This feature is likely generic for any kind of shadowing

and energy loss mechanisms present in dA scattering. In this sense, a strong depletion of the

backward peak in the pion azimuthal correlation in forward dA scattering (which is of the

same magnitude as the experimentally observed depletion) is very natural, given the previously

found milder suppression of single-inclusive pion production. It is of interest that the observed

suppression of the double-inclusive cross section at central impact parameters as compared to

the impulse approximation is close to its lower bound corresponding to the probability that a

quark passing through the nucleus encounters only one nucleon at its impact parameter, which

for the case of scattering off gold at b ∼ 0 is about 1/20 − 1/10 [42].

We note that for pA scattering the dominant mechanism (b) of subsection III.2 would be

absent, so that the double-scattering contributions would remain a bit closer in size to what

we found in the pp case. The pion azimuthal correlation should then have a less pronounced

pedestal, but a similarly suppressed backward peak.
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We finally briefly address the “near-side” correlation of two hadrons produced at ∆ϕ ∼ 0,

both with large rapidity. Experimentally, this correlation shows a strong peak that (unlike

the backward peak at ∆ϕ ∼ π) is not suppressed in dA scattering. One may wonder what

can be said in the context of our present calculation about the region ∆ϕ ∼ 0. It is clear

that the near-side correlation receives contributions from a rather different physics mechanism:

the two hadrons produced at similar azimuthal angle and rapidity may originate from just

a single fragmentation process, through leading-twist double fragmentation of a high-pT final-

state parton, described by di-hadron fragmentation functions [43]. Unfortunately, little is known

at present about the latter. Kinematically, such a contribution is rather similar to a single-

inclusive cross section. It is therefore not expected to show the suppression ∼ R2
dA that we

found above for the leading-twist double-inclusive piece, but rather a suppression of order RdA.

As a result, one would naturally expect the near-side peak in dA to show little suppression.

To be more specific, we denote the contribution to two-hadron production arising from double-

fragmentation by d4σdA
df,LT. It adds to the (roughly ∆ϕ-independent) double-scattering pedestal

contribution. Subtracting the pedestal as before, we find the following structure of the two-pion

correlation in dA scattering in the near-side peak region:

(Peak dA − Ped dA)near−side ≈
d4σdA

df,LT

dpT,1dη1dpT,2dη2

/

d2σ̃dA

dpT,1dη1
, (25)

where as before d2σ̃dA is the ordinary single-inclusive trigger piece. Taking again the ratio to

the corresponding quantity in pp scattering we obtain

(

Peak dA − Ped dA

Peak pp − Ped pp

)

near−side

≈
d4σdA

df,LT

d4σpp
df,LT

× d2σ̃pp

d2σ̃dA
, (26)

to be compared to Eq. (24) for the away-side correlation at ∆ϕ ∼ π. If the double-fragmentation

contribution indeed behaves similar to a single-inclusive cross section– which we consider to

be quite natural given its origin from fragmentation of a single parton– the two factors on

the right-hand-side of Eq. (26) would be RdA and 1/RdA, respectively, and hence cancel. The

whole ratio would then be unity, which is indeed what the data [7] show. Even though this

discussion is again rather qualitative, it offers a natural and straightforward explanation of the

non-suppression of the near-side peak in dA scattering.

IV Conclusions

We have investigated the role of double-scattering contributions to double-inclusive pion pro-

duction in pp and dA scattering at RHIC. We have found that these become important at large
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rapidities of the produced pions. This is in particular the case for central dA scattering, where

the double-scattering contribution can exceed the leading-twist one by large factors. Further

detailed studies of double-inclusive pion production at RHIC may provide a unique way for

studying parton correlations in the nucleon. This is remarkable because traditionally only

four-particle final states were considered as possible probes of double-parton scattering. These

would typically not be viable at forward rapidities.

The double-scattering contributions appears to play a critical role in the interpretation

of the pion azimuthal correlations observed experimentally at RHIC. They primarily produce

pions that are uncorrelated in azimuthal angle and hence are expected to strongly dominate the

pedestals seen in the distributions. We have shown that the relative heights of the pedestals

in pp and dA scattering can be qualitatively understood in this way. We have furthermore

shown that once the pedestal is subtracted, the remaining backward correlation peak in dA

scattering is strongly affected by shadowing and energy loss effects. These are found to be

much stronger for double-inclusive scattering compared to single-inclusive, giving rise to a

depletion of the backward peak in dA, consistent with the observations at RHIC. Overall, in

the light of our results, the patterns observed in the pion azimuthal correlations at RHIC find

a natural qualitative explanation.

Acknowledgments

We are grateful to L. Frankfurt, A. Gordon, S. Heppelmann, B. Jacak, and L. McLerran for use-

ful discussions and comments. M.S. would like to thank the Yukawa International Program for

Quark Hadron Sciences for hospitality and stimulating atmosphere during a part of this study.

M.S.’s research was supported by DOE grant No. DE-FG02-93ER40771. W.V.’s work has been

supported by the U.S. Department of Energy (contract number DE-AC02-98CH10886).

21



References

[1] See, for example: K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005)

[arXiv:nucl-ex/0410003]; J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102

(2005) [arXiv:nucl-ex/0501009]; I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A

757, 1 (2005) [arXiv:nucl-ex/0410020].

[2] F. Aversa, P. Chiappetta, M. Greco and J. P. Guillet, Nucl. Phys. B 327, 105 (1989);
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