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ABSTRACT

The anomalous magnetic moment of the top quark may be
measured during the first run of the LHC at 7 TeV. For these
measurements, it will be useful to have available tree ampli-
tudes with tt and arbitrarily many photons and gluons, includ-
ing both QED and color anomalous magnetic moments. In this
paper, we present a method for computing these amplitudes us-
ing the Britto-Cachazo-Feng-Witten (BCFW) recursion formula.
Because we deal with an effective theory with higher-dimension
couplings, there are roadblocks to a direct computation with the
BCFW method. We evade these by using an auxiliary scalar
theory to compute a subset of the amplitudes.
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1 Introduction

The first run of the Large Hadron Collider (LHC) at 7 TeV promises
to yield a wealth of data and could lead to hints at physics beyond the
Standard Model. While we do not know what questions the LHC will answer
in regards to electroweak symmetry breaking, supersymmetry, dark matter
or other new physics, we can be sure that during the first run our knowledge
of the Standard Model particles will increase. In particular, the number of
top quarks that will be produced at the LHC will be comparable to that
produced so far at the Fermilab Tevatron, and a much greater sample will
be produced at large tt masses. This will give us an opportunity to probe
for interactions of the top quark that might indicate its composite structure
or coupling to new forces.

One aspect of this study will be the search for anomalous magnetic mo-
ment couplings of the top quark. The consequences of anomalous magnetic
moments of the top quark have been considered previously, beginning with
the work of Atwood, Kagan, and Rizzo [1] and Haberl, Nachtmann, and
Wilch [2]. These authors analyzed top quark pair production; they com-
puted the effect of the color anomalous magnetic moment on the total cross
section and distributions of the top quarks for this process. At the high
energies available at the LHC, however, one should also consider the effect
of radiation of additional gluons. It would be useful to have a calculational
method that could produce arbitrarily complicated tree amplitudes of this
type.

In this paper, we will discuss a straightforward method for computing
tt + ng + mγ tree amplitudes of arbitrary complexity. In principle, these
amplitudes can be computed from Feynman diagrams. However, the multi-
ple vertices and the complexity of gluon interactions make this a challenge.
Already at the level of tt+ 4g processes, corresponding to tt production with
2 gluons radiated, there are over 100 Feynman diagrams. This number in-
creases greater than factorially with the number of gluons. A better solution
would be to compute the amplitudes recursively, using either the Berends-
Giele approach [3] or the more recently proposed on-shell recursion formula
of Britto, Cachazo, Feng, and Witten (BCFW) [4]. Some time ago, Schwinn
and Weinzierl developed a formalism for massive quarks that uses the BCFW
method and is computationally very effective for QCD tree amplitudes [5].

However, the Schwinn-Weinzierl scheme does not generalize directly to
include the anomalous magnetic moment couplings. The BCFW method re-
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quires good behavior of amplitudes as some external momenta are taken to
infinity. Thus it is nontrivial to apply this method to effective Lagrangians
that involve higher-dimension interactions. Indeed, we find that direct appli-
cation of the BCFW method is stymied by the additional momentum factor
in the anomalous magnetic moment vertex.

Fortunately, there is a way around this difficulty. We find that those
amplitudes that cannot be computed by direct application of BCFW can be
computed using an auxiliary theory of a scalar particle that carries the spin
internally. Combining the results, we produce a compact recursive method.
This method introduces what we consider a promising approach to the ap-
plication of on-shell recursion to general effective Lagrangians with higher-
dimensional interactions.

The outline of this paper is as follows: In Section 2, we will present
our notation and review some aspects of BCFW computation. In Section
3, we will analyze the use of BCFW recursion for fermions with anomalous
magnetic moment couplings. In Section 4, we will present a useful rewriting
of this theory as an auxiliary scalar theory. In Section 5, we will present
some explicit calculations that check the relation of this scalar theory to the
original fermion theory. In Section 6, we will present our conclusions and
compare our approach to other work on the treatment of higher-dimension
interactions by on-shell methods.

2 Review of Spinor Helicity and BCFW Recursion

The goal of this paper will be to present a method for tree-level calcula-
tions in the theory

L = Ψ
[
i 6D −m+

ga

4m
ΣµνF

µνata
]
Ψ , (1)

where g is the QCD coupling, a is a fixed constant color anomalous magnetic
moment, F µνa is the QCD field strength, and Σµν = i[γµ, γν ]/2. The same
method will generalize readily if the theory also includes a QED anomalous
magnetic moment term

δL = +Ψ
[
2

3

eaQED

4m
ΣµνF

µν
]
Ψ . (2)

Throughout this paper, we will use the spinor helicity notation, as re-
viewed pedagogically in [6]. Instead of using 4-vectors, we will use as funda-
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mental objects the spinor products

〈ij〉 = u−(i)u+(j) [ij] = u+(i)u−(j) . (3)

associated with lightlike vectors pi, pj. These objects are antisymmetric and
obey

|〈ij〉|2 = |[ij]|2 = (pi + pj)
2 = sij . (4)

The spinor completeness relation is written in this language as

p〉[p+ p]〈p =6p . (5)

As an example, the polarization vectors of a gauge boson can be written as

εµ+(k) =
〈rγµk]√

2〈rk〉
εµ−(k) = − [sγµi〉√

2[sk]
, (6)

using auxiliary reference spinors r, s. The spinors r, s are arbitrary, corre-
sponding to the gauge freedom of the boson.

The spinor helicity formalism has been extended for use with massive
fermions by Schwinn and Weinzierl (SW) [5]. For a massless fermion, the
helicity states are physically distinct and Lorentz-invariant. For massive
fermions, there is no unambiguous specification of spin state. In the formal-
ism of SW, a lightlike reference vector r is used to specify the spin basis to
be used. Starting with the massive 4-vector p, one defines a lightlike 4-vector
p[ by

6p[ = p[〉[p[ =6p− m2

〈rpr]
6r . (7)

Then the u+(p), u−(p) spinors for a massive fermion are

u+(p) =
(p+m)r〉
〈p[r〉

u−(p) =
(p+m)r]

[p[r]
. (8)

It is straightforward to check that these spinors satisfy the required com-
pleteness relation.

We will express the values of fermion amplitudes by taking all fermions
and antifermions to be outgoing. With this prescription, outgoing fermions
are described by spinors u(p) given by

for qR :
〈r(p+m)

〈rp[〉
, for qL :

[r(p+m)

[rp[]
, (9)
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Outgoing antifermions are described by spinors v(p) given by

for qR :
(p−m)r〉
〈p[r〉

, for qL :
(p−m)r]

[p[r]
. (10)

To study the effects of top quark polarization, it is useful to be able to
compute massive fermion amplitudes for an arbitrary choice of the reference
vector r for each fermion. We will try to retain that freedom in our analysis.

BCFW [4] proposed a method for computing QCD amplitudes based
on the idea of deforming the external momenta by a complex parameter z
such that total momentum remains conserved and all particles remain on-
shell. The explicit deformation they proposed chooses two particles i, j and
modifies their momenta according to

pi → pi − zq , pj → pj + zq . (11)

To keep particles i and j on-shell, q must be light-like and satisfy q · pi =
q · pj = 0. For massless i and j this can be expressed as a deformation of the
individual spinor components:

i〉 → i〉 − z j〉 , i]→ i] ,

j〉 → j〉 , j]→ j] + z i] . (12)

At tree level, the deformed amplitudeA(z) has only simple poles in z from
Feynman propagators going on-shell. BCFW then considered the object∮ dz

z
A(z) , (13)

where the contour encircles z = 0 and is taken to∞. If A(z)→ 0 as z →∞,
the integral receives no contribution from the contour at ∞ and the integral
vanishes. By Cauchy’s theorem, this is the sum of residues of poles in the
contour. Then,

A(0) = −
∑

Res A(z) . (14)

The quantity on the left-hand side of (14) is the original amplitude to be
evaluated. The residues on the right occur when the deformed momentum
that flows through a propagator goes on-shell. This relates lower point on-
shell amplitudes to the amplitude of interest. BCFW thus obtain a recursion
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formula that allows the original amplitude A to be computed in terms of
lower-point amplitudes.

More explicitly, the recursion relation is

iA =
∑
cuts

iAL(̂i)
i

P 2
L

iAR(ĵ) . (15)

The sum runs over cuts through a single propagator that divide the amplitude
into two parts, with the external leg i in the left-hand amplitude AL(̂i) and
the external leg j in the right-hand amplitude AR(ĵ). These amplitudes are
computed with all momenta on-shell and with i and j set to their shifted
values. The identity requires good large z behavior of the amplitude A(z).
If this amplitude does not tend to zero as z →∞, extra terms appear from
the contour at ∞ that invalidate the simple recursion.

3 Large z behavior

Since the BCFW recursion formula depends on good behavior of the
shifted amplitude as z →∞, there is a danger that the BCFW method will
not be valid for effective theories that contain non-renormalizable operators.
In this section, we will show that this is a problem for the model (1). Specif-
ically, we will show that tree amplitudes in the theory (1) can be computed
in terms of amplitudes with all + or − gluon helicities. However, this still
leaves a gap that needs to be filled before all amplitudes can be computed
from simple components.

In our analysis of the theory (1), we will only consider shifts of gluon
momenta. In [5], SW give a prescription for shifting the momenta of external
massive fermions. However, this analysis works only for specific choices of
the reference vector r in (7), while we would like to maintain the freedom to
work with an arbitrary choice of r.

An arbitrary shift on gluons will, according to (12), involve an external
momentum i with its angle bracket shifted and an external momentum j
with its square bracket shifted. There are four possible helicity combinations
of the ij to consider: ++, +−, −− and −+. For standard QCD with a = 0,
the first three shifts give good z →∞ behavior while the last case −+ does
not allow BCFW recursion. Still, for any two gluons, there is an allowed
shift, and so any qq + ng amplitude can be reduced to 3-point functions by
BCFW recursion.
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Now consider adding to the theory the anomalous magnetic moment ver-
tex. If the shift momentum zq flows into the quark line through this vertex,
the vertex is proportional to z at large z. A fermion propagator carrying
the shift momentum behaves as z0, and all other fermion vertices—including
the magnetic moment vertex with an O(1) external momentum—scale as
z0. If the gluon from the magnetic moment vertex is connected to external
gluon lines through a tree of gluons, each propagator in this tree carrying
the shift momentum scales as z−1 and each vertex is at worst z1. Then,
finally, the worst possible behavior of amplitudes as z →∞ is z2, times the
z-dependence of the external gluon polarization vectors.

If we take q as the reference vector for the polarization vectors of the
shifted gluons, these polarization vectors scale as

εµ+(̂i) =
〈qγµi]√

2〈qî〉
∼ 1

z
, εµ+(ĵ) =

〈qγµĵ]√
2〈qj〉

∼ z ,

εµ−(̂i) = − [qγµî〉√
2[qi]

∼ z , εµ−(ĵ) = − [qγµj〉√
2[qĵ]

∼ 1

z
. (16)

We conclude that, in the three cases of shifts allowed in standard QCD, the
shifted amplitudes behave at worst as

î ĵ large z
+ + z2

+ − 1
− − z2

However, the true situation is slightly better. For an anomalous magnetic
moment vertex that stands in front of a fermion propagator carrying the shift
momentum,

gaΣµν(zqν + kν)
z 6q+ 6k′ +m

(zq + k′)2 −m2
, (17)

we can rewrite
Σµνqν = i(γµ 6q − qµ) . (18)

Since q2 = ( 6q)2 = 0, the 6q term cancels the leading term in the propagator,
and the qµ term either vanishes when dotted into a polarization vector or
dots with a q in a 3-gluon vertex and thus cancels the leading z term in
this vertex. For a magnetic moment vertex behind a fermion propagator
carrying the shift momentum, a similar manipulation applies. This reduces
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the estimates in the table by at least a factor of z−1. In this way, we see that
the +− shift allows a BCFW reduction, while the ++ and −− shifts still
may not.

To resolve these last cases, it is simplest to directly compute the ampli-
tudes for 2 gluons with one magnetic moment vertex in the case of massless
fermions. For massless fermions, (1) is not well-defined. However, a mass-
less fermion can have an anomalous magnetic moment, and so we replace m
in the denominator of the last term in (1) with some high scale M . This
prescription for massless fermions will also be used in the discussion in the
Appendix. In standard QCD, the massless fermion amplitudes with two +
or − helicity gluons vanish. With nonzero a, this is no longer the case. We
find

A(q+, g+
1 , g

+
2 , q

+) =
g2a

2M

[12]2

〈qq〉
. (19)

This expression behaves as z0 after a ++ shift on the gluons. In contrast

A(q−, g−1 , g
+
2 , q

−) = − g
2a

2M

〈q1〉2〈q1〉2

〈q1〉〈12〉〈2q〉
. (20)

This behaves as z−1 after a +− shift. This confirms that our current esti-
mates are, in general, the best possible. The BCFW recursion can be used to
reduce amplitudes for which a +− shift is possible, but, for a 6= 0, it cannot
be used in the cases of ++ and −− shifts.

Using +− shifts only, we can reduce any amplitude for qq+ ng to ampli-
tudes that involve all + helicity gluons or all − helicity gluons. However, we
cannot, in general, go further. We need another method to compute these
cases, which are required as input to the general qq + ng amplitude.

For the case of gluons coupling to massless quarks, we have obtained
an explicit formula for the amplitudes with all + helicity gluons. This is
presented in Appendix A. We have not succeeded in generalizing this to the
case of massive fermions relevant for top quark physics. In the next section,
we will take up another approach to this problem.

4 An Auxiliary Scalar Theory

We can make progress toward the computation of the all + helicity gluon
amplitudes by breaking up (1) into chiral components and rearranging it into
a second-order Lagrangian.
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Let (ψ, ψ) be the left- and right-handed spinor components of Ψ, so that

Ψ =
(
ψ
ψ

)
, Ψ =

(
ψ
†

ψ†
)
. (21)

In this basis, the Dirac matrices take the form

γµ =
(

0 σµ

σµ 0

)
(22)

where σµ = (1, ~σ)µ and σµ = (1,−~σ)µ, and

Σµν = 2i
(
σµν 0
0 σµν

)
, (23)

where

σµν =
1

4
(σµσν − σνσµ) σµν =

1

4
(σµσν − σνσµ) . (24)

The Lagrangian (1) becomes

L = ψ†(iσ ·D)ψ + ψ
†
(iσ ·D)ψ −mψ†ψ −mψ†ψ

+i
ga

2m
ψ†(σµνF

µνata)ψ + i
ga

2m
ψ
†
(σµνF

µνata)ψ . (25)

Now formally integrate out ψ and ψ†. This gives

L = ψ
†
[
−m+ i

ga

2m
σµνF

µνata + σ ·D 1

m− i(ga/2m)σµνF µνata
σ ·D

]
ψ . (26)

After Taylor expanding the denominator and using the properties of the
sigma matrices, this becomes

L =
1

m
ψ
†
[
−D2−m2− igĝL

2
σµνF

µνata−σ ·D
∞∑
n=1

(−iga
2m2

σµνF
µνata

)n
σ ·D

]
ψ .

(27)
In this equation, the factor a in front of σ · F in (26) has combined with
a term arising from the commutator of covariant derivatives to produce the
factor

ĝL = 2 + a (28)

Thus, we obtain a second-order equation with a term close to the full mag-
netic moment of the fermion appearing explicitly. Note that (28) differs from
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the Landé g factor of the fermion, which would be (2 + 2a). The Landé g
factor refers to the behavior of the fermion in a background magnetic field.
The ~σ · ~B term gets contributions both from σ ·F and σ ·F . Thus, the n = 1
term in the sum in the last term also contributes to the Landé g factor,
supplying the missing contribution of a.

If we had chosen instead to integrate out ψ and ψ
†
, we would have ob-

tained the same second-order action with the positions of σµν and σµν inter-
changed. The significance of this exchange will be made clear below.

The procedure of integrating out components of the quark field is used
in other contexts in infinite momentum frame quantization [7], light cone
QCD [8], and soft and collinear effective field theory [9]. For the application
here, we would like to emphasize that this integration out introduces no
approximations. From (27), we are able to reconstruct any amplitude in the
original theory. Although our new Lagrangian is not the most convenient
way to obtain the scattering amplitudes in the limit m→ 0, it does give the
correct answers in this limit, as we will illustrate in Section 5.

To analyze the consequences of (27), it is tempting to drop the series of
terms with σ · F and approximate this theory by

L =
1

m
ψ
†
[
−D2 −m2 + i

gĝL
2
σµνF

µνata
]
ψ . (29)

This theory resembles a relativistic theory of a scalar field, except that this
scalar retains a 2-component internal spin variable on which σµν acts. In
the following, we will refer to this model as a scalar theory even though it
does describe spin 1

2
. To better understand the relation of this theory to

the original Dirac theory, note that if we start from the Dirac equation with
a = 0

(i 6D −m)Ψ = 0 (30)

and multiply by (i 6D +m) on the left, we obtain

(−D2 −m2 +
g

2
ΣµνF

µνata)Ψ = 0 , (31)

in which the top two components are precisely the equation of motion from
(29) with ĝL = 2. The equation (31) arises in calculating of the determinant
of the Dirac operator, for example, in the background-field derivation of the
QCD beta function.

In general, there is no justification for approximating (27) by (29). How-
ever, we are interested here in computing the amplitude for qq plus gluons
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with + helicity only. A configuration of gluons with all + helicities is a
self-dual Yang-Mills field [10]. The operator σµνF

µν projects onto self-dual
field configurations. Conversely, σµνF

µν projects onto anti-self-dual config-
urations and is zero in a self-dual background [11]. So, precisely for the
situation of computing an amplitude with all + helicity gluons, we may use
(29) as a replacement for (27), with is equivalent to (1). The same argument
implies that, for computing amplitudes with all − helicity gluons, we may

use the second-order Lagrangian obtained by integrating out ψ
†

and ψ, which
has the form of (29) with σµν replaced by σµν .

The Feynman rules for the theory (29) are the same as those for scalar
QCD, augmented with the new vertices from the magnetic moment term.
These vertices contain 2× 2 sigma matrices which must be evaluated in the
correct external spin states. To compute Feynman diagrams in this theory,
we first evaluate the diagrams as in a scalar theory with an internal spin. The
sum of diagrams will contain a product of σµν matrices. We must then take
the matrix element of this product using the 2-component spinor correspond-
ing to the components of u or v in (9), (10) that have not been integrated
out. Specifically, to compute the amplitude for an outgoing fermion with
momentum p, in a spin basis described by the reference vector r, we use the
spinors

for qR : [p[ , for qL :
[rm

[rp[]
, (32)

where p[ is defined by (7). Similarly, for an outgoing antifermion, we use

for qR : p[] , for qL :
−mr]

[p[r]
. (33)

A separate reference vector can be used for each external momentum. Finally,
to account the factor (1/m) in front of (29), the entire amplitude should be
multiplied by (1/m).

At any point, we can break up the products of σµν matrices using the
following completeness relation: Let a, b be any lightlike vectors that are not
collinear. Then

1 =
a][b− b][a

[ba]
. (34)

The object on the right is the identity when acting on a] and b], which are
independent 2-component vectors, so it must be the identity in general. This
formula is useful to write the right-hand side of the BCFW identity as a pair
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2

3 4

n+1

n+2

Figure 1: Notation for the qq + ng color-ordered amplitude.

of amplitudes in the scalar theory. On a cut line, the scalar 4-momentum
will be on-shell, but (32), (33) will be replaced by the more arbitrary spinors
a] and b].

For this construction to be truly useful, we need to show that it allows
a BCFW recursion that computes the scalar amplitudes in the case of all
+ helicity gluons. For this scalar theory, we can show that the +− gluon
shift is always allowed by näıve power counting alone. First, if the shifted
gluons are only separated by gluon propagators, the good large z behavior
is guaranteed by arguments from pure QCD. The only issues arise if the
deformed momentum flows through a scalar propagator. To argue that even
in these cases, the large z behavior is good, we note that scalar propagators
scale as 1/z and that trees of gluons which contain one of the shifted gluons
also scale as 1/z. The usual scalar QCD vertices scale at worst as z for large
z. Thus, the +− gluon shift is always allowed in scalar QCD. The new,
helicity violating vertices also scale at worst as z for large z, since they are
also proportional to momentum, and so the +− gluon shift is always allowed
in this theory. However, this argument fails for the ++ gluon shift and so
the scalar theory has the same problem that we found in the fermion theory.

However, there is another possible shift in the scalar theory that is allowed
in the case of all + gluon amplitudes. This involves a gluon and an external
scalar. Consider the qq + ng amplitude with the external legs numbered as
in Fig. 1. When the gluon 3 is shifted by

3〉 → 3〉 − z l1〉 , (35)

where l1 is lightlike, and the external scalar 1 is shifted by

1→ 1 + z 3]〈l1 , (36)
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we will show that the all + amplitude scales as 1/z for large z. Particle 1 is
massive, and l1 must be defined so that the shifted vector 1 remains on mass
shell. This requires

1̂2 = (1 + z 3]〈li)2 = 12 + z[3 1 l1〉 = 12 ; (37)

that is,
[3 1 l1〉 = 0 . (38)

A general solution to this condition is

l1 = 1− m2

[3 1 3〉
3 , (39)

that is, that l1 is the flatted vector of 1 computed using 3 as a reference
vector.

In the fermion theory, this shift could also be defined, but it would restrict
the choice of the reference vector for the external fermion to r = 3 [5]. In the
scalar theory, we are free to make this choice of a shift without any restriction
on the reference vector that will appear in (32).

We will now prove that the above shift on the legs 1 and 3 has the
good z → ∞ behavior that we have claimed. To do this, we consider the
possible forms of Feynman diagram that can contribute to an amplitude in
this theory with arbitrary numbers of helicity violating vertices. We need
only consider the left-most piece of the diagram that contains the scalar line
1 and the gluons 2 and 3. For this, there are two possibilities: either gluon 2
is connected directly to the scalar line and gluon 3 is part of a tree of gluons
with external legs 3 · · · k, or gluons 2 and 3 are part of the same tree of gluons
with external legs 2 · · · k. These cases are shown in Figs. 2 (a) and (b).

To analyze the trees, we need the explicit expresson for the tree in the
case in which all gluons have + helicity. This expression, for the case in which
all gluons have the same reference vector r, is worked out in the Appendix.
The result, for external gluons j · · · k, is

Ja(j, · · · , k) = −i (j + · · ·+ k)r〉〈r(j + · · ·+ k)

〈rj〉〈j(j + 1)〉 · · · 〈(k − 1)k〉〈kr〉
. (40)

The dangerous term here will be the one that involves the shifted momentum
3̂ in both terms of the numerator. Note that 3̂ also appears twice in the
denominator, so this term is only of order z0.
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2
3

a) b)

Figure 2: Two classes of diagrams needed to analyze the large z behavior of the
13 shift of the amplitude shown in Fig. 1.

Now consider the first case, shown in Fig. 2(a). The scalar propagator
scales as z−1. If we take the gluon 2 to couple via a magnetic moment vertex,
the vertex will be of order 1 and the diagram will vanish as z → ∞. Thus,
the only dangerous diagram is that in which 2 couples by the ordinary scalar
vertex. The leading term in this diagram is

i
〈r1̂2]

〈r2〉
i

〈21̂2]

−i 3̂r〉〈r3̂
〈r3̂〉〈3̂4〉 · · · 〈kr〉

· · · . (41)

Notice that the numerator of the last term is a matrix. This is a 2× 2 sigma
matrix for which we must eventually take the matrix element between the
spinors (32) and (33). This term scales as z0.

In the second case, the value of the first part of the diagram is just that
of the tree (40). The dangerous term is

−i 3̂r〉〈r3̂
〈r2〉〈23̂〉〈3̂4〉 · · · 〈kr〉

· · · . (42)

These two bad pieces contribute to the amplitude at the same order of g
and a, and so we may add them together. Then an amazing thing happens.
The sum is

−i 3̂r〉〈r3̂
〈r2〉〈21̂2]〈23̂〉〈r3̂〉〈3̂4〉 · · · 〈kr〉

· [〈21̂2]〈r3̂〉 − 〈r1̂2]〈23̂〉] · · · . (43)

The quantity in brackets is

[21̂2〉〈r3̂〉 − [21̂r〉〈23̂〉 = 〈r2〉[21̂3̂〉 , (44)

13



by the Schouten identity. Since the leading z term in 1̂ and 3̂ is proportional
to the same lightlike vector, this term cancels in the last product. Then the
sum of diagrams scales as z−1 and the sum has good behavior as z → ∞.
This proves our claim that the shift on 1 and 3 generates a BCFW recursion
formula for the amplitude with all + helicity gluons.

We now have an algorithm for computing any qq + ng amplitude for
nonzero a. If the amplitude contains both + and − helicity gluons, we
can apply +− shifts of the gluons to reduce the amplitude to lower-point
components. If the amplitude has only + helicity gluons, we can use the
13 shift above in the scalar theory to reduce the amplitude to lower-point
components. If the amplitude has only − helicity gluons, we can use the
scalar theory with σ · F . In this theory, a 13 shift that shifts the square
bracket of 3 reduces the amplitude to lower-point components. Eventually,
the recursion gives the original amplitude in terms of on-shell three-point
amplitudes. Though we have given the argument explicitly only for (1), the
same strategy works when the QED anomalous magnetic moment interaction
(2) is added to the theory.

5 Calculations in the Scalar Theory

Although we have shown that the scalar theory described by (27) or (29)
can be effective for computing qq+ng amplitudes, some aspects of this theory
still appear odd. Of these, the oddest feature is the factor of 1/m in front
of the Lagrangian. Some diagrams will then contain factors of 1/m, and one
might worry that these would generate bad behavior in the limit m→ 0. In
this section, we will display some amplitudes in the theory (29) that might
provide sanity checks on the use of that expression.

First, consider three-point amplitudes. The scalar amplitude as a 2 × 2
matrix is

As(1, 2+, 3) =
g

m

[ 〈r12]〈s32]

〈s31r〉+m2〈sr〉
+
ĝL
2

2][2
]
, (45)

where r and s are the reference spinors for particles 1 and 3, respectively.
Setting ĝL = 2, the fermion amplitudes can be computed by taking matrix
elements in (32) and (33). We find

A(1+, 2+, 3+) =
gm

〈r1[〉〈3[s〉
〈sr〉〈r12]〈s32]

〈s31r〉+m2〈sr〉
, (46)
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A(1+, 2+, 3−) = −g [1[2]2

[1[3[]
− gm2

〈r1[〉〈s3s]
〈rs〉[1[s]

[1[3[]

〈r12]〈s32]

〈s31r〉+m2〈sr〉
, (47)

A(1−, 2+, 3+) = g
[23[]2

[1[3[]
+

gm2

〈r1r]〈3[s〉
〈rs〉[r3[]

[1[3[]

〈r12]〈s32]

〈s31r〉+m2〈sr〉
, (48)

A(1−, 2+, 3−) = −gm [r2][2s]

[r1[][3[s]
− gm [rs]

[r1[][3[s]

〈r12]〈s32]

〈s31r〉+m2〈sr〉
. (49)

These expressions are in agreement with explicit QCD calculations. Taking
the limit m→ 0, these expressions reduce to the familiar three point maximal
helicity violating (MHV) amplitudes

A(1+, 2+, 3−) = −g [12]2

[13]
, (50)

A(1−, 2+, 3+) = g
[23]2

[13]
, (51)

with A(1+, 2+, 3+) = A(1−, 2−, 3−) = 0.
At four points, there exist two helicity configurations of the gluons that

cannot be related by parity. These amplitudes can be computed in the scalar
theory; we find

As(1, 2+, 3+, 4) = g2m
[32]

〈2123〉
+
g2ĝL
2m

(
m2 2][3

〈2123〉
+

12〉[32][2

〈2123〉
+

412][3

〈2123〉
+
ĝL
2

2][23][3

〈212]

)

As(1, 2+, 3−, 4) = −g
2

m

〈312]2

〈212]〈232]
− g2ĝL

2m

〈312]

〈212][23]
2][2 . (52)

To compare to fermion amplitudes, we need to take matrix elements of these
2×2 matrices. For brevity, we will only consider the ĝL = 2, m = 0 case. For
the case with both gluons with + helicity, the massless fermion amplitude
with any helicity configuration for the fermions must vanish. For massless
fermions, the −− fermion projection explicitly vanishes. Multiplying this
scalar amplitude by [a on the left and b] on the right and simplifying yields

[a As(1, 2+, 3+, 4) b] =
g2

m

〈41〉[23][4b][1a]

〈212]〈23〉
. (53)

This indeed vanishes if either 1 or 4 have + helicity.
In the second case, in which the gluons have opposite helicity, the projec-

tion should yield the familiar MHV amplitudes at four points. If we choose
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both particles 1 and 4 to have + helicity, the projection vanishes by momen-
tum conservation. If instead, particles 1 and 4 have opposite helicity, the
projection yields

A(1+, 2+, 3−, 4−) = g2 〈13〉〈34〉3

〈12〉〈23〉〈34〉〈41〉
, (54)

A(1−, 2+, 3−, 4+) = g2 〈13〉3〈34〉
〈12〉〈23〉〈34〉〈41〉

, (55)

which agree with the standard results.
As discussed in the previous section, the all + helicity amplitudes are

completely described by this theory. In fact, from the amplitude in (52),
one can verify that, order by order in a, this expression agrees with that
calculated using from (1). However, a simple observation on the opposite
helicity amplitude in (52) shows that this amplitude cannot reproduce the
full result from (1). The result above contains only terms proportional to
a0 and a1, while the exact answer would also contain a term proportional to
a2. This discrepancy is expected, and it is not troublesome for us, since this
amplitude in the original theory can be constructed using BCFW directly.

There is one more interesting cross check that we have made of the form
of (29). For ĝL = 2, a = 0, and so (29) gives an exact description of (1) for all
gluon helicity states. At the same time, for a = 0, all amplitudes of (1) can
be computed by BCFW shifts on gluons with the helicity combinations +−,
++, −−. Thus, one can compute every qq+ng amplitude in two ways, first,
from (1) using gluon shifts only and, second, from (29), using the 13 shift
described in the previous section. We have checked equality numerically to
6 significant figures for all of these amplitudes up to n = 8 gluons.

6 Conclusion

We have shown that the BCFW recursion relations can be used to com-
pute all amplitudes in a theory with an anomalous magnetic moment. The
prescription for using BCFW is as follows:

1. If an amplitude contains at least one − and one + helicity gluon, use
the +− shift to compute amplitudes in the theory defined by

L = Ψ(i 6D −m)Ψ +
ga

2m
ΨΣµνF

µνataΨ . (56)
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2. If an amplitude contains only + helicity gluons, shift on the scalar and
a non-adjacent gluon to compute amplitudes in the theory defined by

L =
1

m
ψ
†
[
−D2 −m2 + i

gĝL
2
σµνF

µνata
]
ψ . (57)

The gluon momentum should be shifted in the angle bracket. To com-
pute the amplitude with external fermions, project onto the fermion
line by multiplying by the appropriate wavefunctions on the left and
right.

3. If an amplitude contains only − helicity gluons, shift on the scalar and
a non-adjacent gluon to compute amplitudes in the theory defined by

L =
1

m
ψ
[
−D2 −m2 + i

gĝL
2
σµνF

µνata
]
ψ† . (58)

The gluon momentum should be shifted in the square bracket. To
compute the amplitude with external fermions, project onto the fermion
line by multiplying by the appropriate wavefunctions on the left and
right.

We have shown that this is an efficient algorithm for computation of tree
amplitudes. We hope to present some phenomenological applications of this
method soon.

Our conclusions include the statement that the BCFW recursion formula
cannot be used to fully construct amplitudes in the original fermion theory.
This apparently contradicts a result of [12], although in fact the anomalous
magnetic moment coupling falls outside the hypotheses of that paper [13].
More generally, the validity of BCFW recursion must be thought through
carefully for effective theories with nonrenormalizable couplings. However,
our analysis indicates that remedies for their bad large-momentum behavior
can be found in some cases.

A distinct momentum shift useful for studying generic theories was intro-
duced in [14]. Instead of only shifting the momenta of two of the particles
in an amplitude, the authors consider shifting the momentum of all external
particles. Explicitly, for an amplitude with all massless particles, the shift
can be expressed as

i〉 → i〉+ wi z X〉. (59)
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i is any external particle in the amplitude, X is an arbitrary, massless four-
vector and the coefficients wi are chosen to conserve momentum:∑

i

wi i] = 0. (60)

The dependence on the parameter z is easily determined by considering the
dimension and helicity constraints on an amplitude in a generic theory. For
the case of the shift in (59), the amplitude behaves as

A ∼ zs as z →∞ with 2s = 4− n− c−H, (61)

where n is the number of external legs, c is the sum of dimensions of coupling
constants in an amplitude and H is the sum of helicities of external particles.
An on-shell recursion exists when s < 0; in that case, there are more angle
brackets in the denominator of an amplitude than in the numerator. In the
anomalous magnetic moment theory, this all-leg shift leads to a recursion
relation precisely for those amplitudes for which BCFW fails. This is easily
seen at the four point level from (19) and (20). In (19), the amplitude
is constructible with this shift because there is one angle bracket in the
denominator and none in the numerator, while in (20) there is one more
angle bracket in the numerator and so this amplitude is not constructible.
This all-leg shift could be another way to compute amplitudes in a theory
with an anomalous magnetic moment. Unfortunately, its practical use is
limited because of the proliferation of cuts that one needs to compute.

Recently, there has been some interest in the literature in finding classes
of theories in whose amplitudes are constructible using BCFW [15,16]. The
hope has been that the validity of the BCFW recursion formula would say
something about the behavior of the theory at high energy. It is remarkable
that amplitudes in Einstein gravity and, equivalently, in N = 8 supergrav-
ity, are are constructible using BCFW [17,18]. It has been hoped that this
property is evidence for special simplicity of the N = 8 theory. Further spec-
ulations on this point ought to take into account, one way or the other, our
result that QCD with an anomalous magnetic moment is also BCFW con-
structible. We hope that the methods discussed here can be used to study
other realistic or effective theories, and that those investigations will shed
more light on the high-momentum behavior of non-renormalizable theories.
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A All-+ gluon helicity amplitude for massless quarks

For massless particles, we have found an explicit formula for the qq + ng
amplitudes with all + helicity gluons. The derivation of this formula makes
use of the off-shell current formalism of Berends and Giele [3]. The off-shell
current with all + helicities is needed for other arguments in this paper, in
particular, in the analysis of the large z behavior of the scalar theory at the
end of Section 4.

We consider an amplitude with a single massless fermion line and n +
helicity gluons. We would like to compute the correction to the standard
QCD result coming from the presence of an anomalous magnetic moment.
Since the background field with only + helicity gluons is self-dual, the σ · F
piece of the magnetic moment operator gives zero and only the σ · F of this
operator contributes to the amplitude. This term has a matrix element only
between a + helicity fermion and a + helicity antifermion. All propagators
and all other vertices in the diagram are helicity-conserving. This means
that, for the amplitude to be non-zero, the helicity of both external fermions
must be + and there must be exactly one insertion of the magnetic moment
operator.

The magnetic moment operator contains both a three-point and a four-
point vertex. Both terms contribute to the Berends-Giele current. The terms
simplify, however, if we choose all of the + helicity gluons to have the same
reference vector r. Our analysis here generalizes the results of Berends and
Giele [3] obtained for currents with standard QCD vertices.

Consider first the term from the four-point vertex. Computing the first
few trees emanating from the four-point vertex, we find

J4(1, 2) = i
(1 + 2)2

〈r1〉〈12〉〈2r〉
r〉〈r , (62)

J4(1, 2, 3) = i
(1 + 2 + 3)2

〈r1〉〈12〉〈23〉〈3r〉
r〉〈r . (63)

From these expressions, we postulate the general form of this term:

J4(1, . . . , n) = i
(1 + · · ·+ n)2

〈r1〉〈12〉 · · · 〈nr〉
r〉〈r . (64)

To prove this, note that the BCFW recursion is valid for shifting on any two
gluons. Thus, to prove the general expression, shift gluons 2 and 3 and use
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induction. Only one term contributes in the BCFW sum and it is given by
the above equation.

Similarly, one can compute the first few all + gluon trees that emanate
from the three point helicity violating vertex:

J3(1) = −i1][1 = −i(1)r〉〈r(1)

〈r1〉〈1r〉
, (65)

J3(1, 2) = −i(1 + 2)r〉〈r(1 + 2) + (1 + 2)2 r〉〈r
〈r1〉〈12〉〈2r〉

, (66)

J3(1, 2, 3) = −i(1 + 2 + 3)r〉〈r(1 + 2 + 3) + (1 + 2 + 3)2 r〉〈r
〈r1〉〈12〉〈23〉〈3r〉

. (67)

These suggest a general form,

J3(1, . . . , n) = −i(1 + · · ·+ n)r〉〈r(1 + · · ·+ n) + (1 + · · ·+ n)2 r〉〈r
〈r1〉〈12〉 · · · 〈nr〉

. (68)

and that can again be established by induction.
Note that the first term in the numerator in (68) gives a matrix element

between a + helicity fermion and + helicity antifermion. The second term
gives a matrix element between a − helicity fermion and a − helicity an-
tifermion. However, this latter term, proportional to the total mass of the
gluons in the tree, cancels neatly against (64). Finally, we find

Ja(1, . . . , n) = J3(1, . . . , n)+J4(1, . . . , n) = −i(1 + · · ·+ n)r〉〈r(1 + · · ·+ n)

〈r1〉〈12〉 · · · 〈nr〉
.

(69)
This result for the Berends-Giele current of all + helicity gluons is quoted

in (40) and forms the basis for our analysis at the end of Section 4.
In the case of massless QCD with a single helicity violating vertex, the

amplitude has the diagrammatic form shown in Fig. 3. We can write the
gauge invariant amplitude as

A(q+, g+
1 , . . . , g

+
n , q

+) =
gna

2M

∑
0≤i<j≤n

6J(q; 1, . . . , i) 6Ja(i+1, . . . , j) 6J(j+1, . . . , n; q) .

(70)
Here, the factors J are currents with an off-shell fermion leg and any number
of gluons. These were first found by Berends and Giele in [3]. The factor Ja
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Figure 3: Generic form of a qq + ng amplitude for massless fermions with a mag-
netic moment vertex and all + helicity gluons. The cross represents the magnetic
moment vertex.

is the current from a magnetic moment vertex discussed above. The explicit
forms for the currents J are

6J(q; 1, . . . , i) = −〈r(1 + · · · i+ q)

〈q1〉〈12〉 · · · 〈ir〉
(71)

and

6J(j + 1, . . . , n; q) = −((j + 1) + · · ·+ n+ q)r〉
〈r(j + 1)〉 · · · 〈nq〉

. (72)

The amplitude we wish to compute is the sum over all possible insertions
of the helicity violating vertex with j − i gluons off of the helicity violating
vertex and i and n − j to the left and right of the helicity violating vertex,
respectively.

Plugging in the various pieces, the amplitude becomes

A(q+, g+
1 , . . . , g

+
n , q

+) =
gna

2M

∑
0≤i<j≤n

〈r(q + 1 + · · ·+ i)((i+ 1) + · · ·+ j)r〉2

〈q1〉 · · · 〈ir〉〈r(i+ 1)〉 · · · 〈jr〉〈r(j + 1)〉 · · · 〈nq〉
,

(73)
where momentum conservation has been used. For n = 2, this equation
agrees with the expression in (19). This expression is gauge invariant as well.
It is important to note that gauge invariance follows only after summing over
all possible places of insertion of the magnetic moment vertex. In massless
QCD, this is the end of the story. We have explicitly constructed the am-
plitude with all + helicity gluons and on all other amplitudes, one can use
BCFW to construct amplitudes.
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Since the amplitude in (73) involves only + helicity gluons, it is also
possible to look at this amplitude as a solution for the motion of a massless
fermion in a purely self-dual background field. For such backgrounds, Rosly
and Selivanov [19] have developed a special formalism, called the perturbiner
method, for amplitude computations. In this method, they solve the Yang-
Mills equations recursively in the number of gluons, then use that solution
to evaluate the fermion propagator. Their solution can be written as

Aµ = i
∞∑
i=0

〈rγµ(1 + 2 + · · ·+ i)r〉
〈r1〉〈12〉 · · · 〈ir〉

E1E2 · · · Ei , (74)

for color-ordered gluons, with r the common reference vector for all of the
gluons. The objects En are the solutions to the free equations of motion,

En = antne
ikn·x ,

where an is the nilpotent creation operator and tn is the color matrix. The
coefficients of the product of Es are the Berends-Giele off-shell currents for
all + helicity gluon configurations. Applying (74) to the magnetic moment
vertex gives an alternative derivation of (69).

This analysis becomes much more complex in the case of massive fermions.
In the massive case, the fermion propagators now have helicity-violating fac-
tors, and so we can insert any number of magnetic moment vertices into an
amplitude. In principle, we can still construct the all + gluon amplitude with
the stitching procedure used in the massless case. However, to do this, we
need to know an explicit form for the analog of the off-shell current in (71)
for massive fermions. In addition, we would need to know this current for
both helicities of the massive fermion. We do not show them here as their
form is not illuminating. However, rather than suggesting a general form
for this current, the expressions seem to get only more complicated as the
number of gluons increases. It seems that for massive fermions, this method
is not useful for determining the amplitude with all + helicity gluons.
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